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We present a new determination of the NΔ axial form factors from neutrino induced pion production
data. For this purpose, the model of Hernandez et al. [Phys. Rev. D 76, 033005 (2007)] is improved by
partially restoring unitarity. This is accomplished by imposing Watson’s theorem on the dominant vector
and axial multipoles. As a consequence, a largerCA

5 ð0Þ, in good agreement with the prediction from the off-
diagonal Goldberger-Treiman relation, is now obtained.
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I. INTRODUCTION

Weak pion production off nucleons provides valuable
insight into the axial structure of hadrons. In addition, pion
production cross sections grow to become one of the main
reaction mechanisms for neutrinos of few-GeV energies,
which is an important range for current and future oscil-
lation experiments. Therefore, a better understanding of
weak pion production mechanisms is actively pursued
[1–3]. Recent measurements on, predominantly, carbon
targets by MiniBooNE [4–6] and MINERvA [6,7] experi-
ments have revealed discrepancies with existing theoretical
models and among different data sets [8–12].
The first requirement to achieve a precise knowledge of

neutrino induced pion production on nuclear targets is a
realistic model at the nucleon level. Theoretical studies of
weak pion production off the nucleon at intermediate ener-
gies [13–42] have highlighted the important role of baryon
resonance excitation, predominantly the Δð1232Þ3=2þ.
The weak nucleon-to-Δð1232Þ transition current can be
written in terms of vector and axial form factors, CV

3–5 and
CA
3–6 in the notation of Ref. [16]. Although there are quark

model determinations of these form factors [26,43–45],
a common strategy is to adopt empirical parametrizations
for them. The role of heavier resonances has also been
investigated, although the available experimental informa-
tion about the axial sector is very limited. Among these
states, only the Nð1520Þ3=2− appears to be relevant for
neutrino energies below 1.5 GeV [33]. Nonresonant
electroweak amplitudes have also been extensively con-
sidered. As pointed out in Ref. [31], these terms are not
only demanded but, close to threshold, fully fixed by chiral
symmetry. Away from threshold, these amplitudes are
usually modeled using phenomenologically parametrized
nucleon form factors, introduced in a way that respects both
the conservation of the vector current (CVC) and the partial
conservation of the axial current (PCAC).

In Ref. [31] (referred from now on as the HNV model),
nonresonant amplitudes, evaluated from the leading con-
tributions of the SU(2) chiral Lagrangian, supplemented
with empirical parametrizations of the nucleon form factors,
were considered alongside the Δð1232Þ excitation. The
vector form factors in the NΔ vertex come from helicity
amplitudes extracted in the analysis of electron scattering
data [29]. The most important among the axial form factors
is CA

5 , which appears at leading order in an expansion of the
hadronic tensor in the 4-momentum transfer q2. Assuming
the pion pole dominance of the pseudoscalar form factorCA

6 ,
it can be related to CA

5 owing to PCAC. For the subleading
CA
3;4 form factors, Adler’s parametrizations [13,14] were

adopted: CA
3 ¼ 0, CA

4 ¼ −CA
5=4. The available bubble-

chamber data on pion production induced by neutrinos on
deuterium, taken at Argonne and Brookhaven National
Laboratories (ANL and BNL) [46,47] are quite insensitive
to the values of these form factors [36]. With the aim of
extending the model toward higher energies, the Nð1520Þ
intermediate state was added in Ref. [9] using the transition
form factors introduced in Ref. [33].
The pion pole dominance of CA

6 and PCAC result in a
relation between the leading axial coupling CA

5 ðq2 ¼ 0Þ and
the Δ → Nπ decay coupling known as the off-diagonal
Goldberger-Treiman relation (GTR). Studies that neglected
the nonresonant contributions found good agreement
between the CA

5 ð0Þ value extracted from ANL and/or BNL
data and the GTR [24,35]. However, the fit of CA

5 ðq2Þ to the
flux averaged νμp → μ−pπþ ANL q2-differential cross
section data [46] with the HNV model found a discre-
pancy of 30% with respect to the GTR prediction of
CA
5 ð0Þ ¼ 1.15 − 1.2. A simultaneous fit to both ANL and

BNL data samples including independent overall flux nor-
malization uncertainties for each experiment, as suggested
in Ref. [35], and considering deuterium-target corrections
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obtained CA
5 ð0Þ ¼ 1.00� 0.11 [36], still 2σ below the GTR

value. Although theHVNmodel could be reconciledwith the
GTR by simultaneously fitting vector form factors to elec-
tron-proton scattering structure functionF2 [40,48], it should
be realized that the HNV model does not satisfy Watson’s
theorem [49]. The latter, which is a consequence of unitarity
and time-reversal invariance, implies that the phase of the
electroweak pion production is fully determined by the strong
πN interaction. The goal of the present study is to impose
Watson’s theorem in the HNVmodel. It is shown that, in this
way, the consistency with the GTR prediction is restored.
The dynamical model of photo-, electro-, and weak pion

production derived in Ref. [27] deserves a special mention.
To date, this is the only weak pion production model
fulfilling Watson’s theorem exactly. Starting from an effec-
tive Hamiltonian with bare NΔ couplings obtained in a
nonrelativistic constituent quark model [22], the Lippmann-
Schwinger equation in coupled channels is solved, which
restores unitarity. Besides, the bare couplings get renormal-
ized by meson clouds. The predicted cross sections are in
good agreement with data (Figs. 5–8 of Ref. [27]). The
scheme has been further refined and extended to incorporate
N� resonances and a larger number of meson-baryon states
[41,50]. Although the chiral counting at threshold is broken
by the presence of ρ and ω exchanges in the t channel or the
introduction of explicit σ meson intermediate states, this
framework should satisfy unitary constraints and fulfill
Watson’s theorem. The partially unitarized HNV model
presented here is considerably simpler. The agreement with
the GTR and a good description of data for invariant masses
WπN < 1.4 GeV are achieved by introducing two relative
phases between the Δð1232Þ and the nonresonant contri-
butions. The HNV model improved in this way is portable
and can be easily implemented in event generators used in
the analysis of neutrino oscillation experiments.
The paper is organized as follows. In Sec. II, we

introduce Watson’s theorem, which is based on unitarity
and time reversal invariance, and explain its implementa-
tion in the HNV model. In Sec. III, we present the new
extraction of the CA

5 ðq2Þ axial form factor. Appendices A,
B, and C collect some useful formulas needed for the
calculation. Finally, in Appendix D, we give a parametri-
zation of the Olsson phases (see below) used to impose
Watson’s theorem in our approach.

II. UNITARITY, TIME-REVERSAL INVARIANCE,
AND WATSON’S THEOREM

A scattering process due to short-range interactions (like
strong or weak interactions) can be described in terms of
initial and final states of noninteracting particles. The
amplitude for a transition is given by the corresponding
matrix element of the scattering operator

S ¼ 1 − iT: ð1Þ

Given an initial state jIi, the probability for finding the
system in an asymptotic state jNi is PN ¼ jhNjSjIij2; sinceP

NPN ¼ 1, one deduces that S is a unitary operator,
SS† ¼ S†S ¼ 1, which implies that1

iðT − T†Þ ¼ T†T

ifhFjTjIi − hFjT†jIig ¼ hFjT†TjIi
¼

X
N

hFjT†jNihNjTjIi

¼
X
N

hNjTjFi�hNjTjIi: ð3Þ

On the other hand, if time reversal invariance holds,

hFjSjIi ¼ hIT jSjFT i; ð4Þ
where T jIi ¼ jIT i and T jFi ¼ jFT i. In other words, if the
system is time reversal invariant, T ST † ¼ S† and therefore
T †T†T ¼ T. The time reversal operator T is antiunitary2

[51,52] with T 2 ¼ �1. Thus, one finds

hFjT†jIi ¼ hIjTjFi�
¼ hIjT †T†T jFi�
¼ hIT jT†jFT i
¼ hFT jTjIT i�: ð5Þ

Using this result in Eq. (3), we obtain from unitarity and
time reversal invariance that

ifhFjTjIi − hFT jTjIT i�g ¼
X
N

hNjTjFi�hNjTjIi: ð6Þ

If hFjTjIi ¼ hFT jTjIT i, which is always satisfied for
transitions between c.m. two-particle states with well-
defined helicities and total angular momentum whenever
the interaction is invariant under time reversal [51], and
there is only one relevant intermediate state in the sum of
Eq. (6), one obtains that

hNjTjFi�hNjTjIi ¼ −2ImhFjTjIi ∈ R ð7Þ

so that the phases of hNjTjFi and hNjTjIi coincide. This
result constitutes Watson’s theorem [49] on the effect of
final state interactions on reaction cross sections. As
shown, it is a consequence of unitarity and time reversal
invariance.

1The optical theorem trivially follows from the particular case
jIi ¼ jFi,

ImhIjTjIi ¼ −
1

2

X
N

jhNjTjIij2: ð2Þ
2This is to say antilinear, hAT jOjBT i ¼ hAjT †OT jBi�, and

satisfying T −1 ¼ T †.

ALVAREZ-RUSO, HERNÁNDEZ, NIEVES, and VACAS PHYSICAL REVIEW D 93, 014016 (2016)

014016-2



A. Watson’s theorem for c.m. two-particle helicity states

Assuming that only two-particle intermediate states (2body), with massesm0
1 andm

0
2, contribute

3, the unitarity condition
of Eq. (3) for the binary process aþ b → 1þ 2 can be written as

ifhθ;φ; λ1; λ2; γ12jTðsÞj0; 0; λa; λb; γabi − hθ;φ; λ1; λ2; γ12jT†ðsÞj0; 0; λa; λb; γabig

¼
X
2body

λ1=2ðs;m02
1 ; m

02
2 Þ

32π2s

Z
dΩ0X

γ0
12

X
λ0
1
λ0
2

hθ0;φ0; λ01; λ
0
2; γ

0
12jTðsÞjθ;φ; λ1; λ2; γ12i�hθ0;φ0; λ01; λ

0
2; γ

0
12jTðsÞj0; 0; λa; λb; γabi;

ð8Þ

where s ¼ ðpa þ pbÞ2 and the function λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz. Two-particle states in the c.m. are
defined in Appendix A. The matrix element of the T operator is computed in the little Hilbert space (see Appendix A and
Ref. [51]),

hθ;φ;λ1;λ2;γ12jTðsÞj0;0;λa;λb;γabi≡hαFjTPjαIi¼
ð2πÞ24 ffiffiffi

s
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j~pI∥~pFj
p hθ;φ;λ1;λ2;γ12jTPj0;0;λa;λb;γabi≡TFIðsÞ; ð9Þ

where j~pIðFÞj≡ j~pað1Þj ¼ j~pbð2Þj; TP is the reduction of the full operator T in the little Hilbert space, Eq. (A12).
Normalizations are fixed by the expression of the c.m. differential cross section for the aþ b → 1þ 2 reaction, which is
calculated as

dσ
dΩ

¼ 1

64π2s
j~pFj
j~pIj

jTFIðsÞj2: ð10Þ

The unitarity condition, Eq. (8), can be rewritten for states jJ;Mi with well-defined angular momentum. Changing basis

with Eq. (A16) and using the orthogonality properties of the DðJÞ
MM0 ðφ; θ;−φÞ rotation matrices [Eq. (A18)], the condition

DðJÞ
MM0 ð0; 0; 0Þ ¼ δMM0 , the fact that T is a scalar under rotations, and Parseval’s identity associated to Eq. (A14), one gets

that

ifhJ;M; λ1; λ2; γ12jTðsÞjJ;M; λa; λb; γabi − hJ;M; λ1; λ2; γ12jT†ðsÞjJ;M; λa; λb; γabig

¼
X
2body

λ1=2ðs;m02
1 ; m

02
2 Þ

32π2s

X
γ0
12

X
λ0
1
λ0
2

hJ;M; λ01; λ
0
2; γ

0
12jTðsÞjJ;M; λ1; λ2; γ12i�hJ;M; λ01; λ

0
2; γ

0
12jTðsÞjJ;M; λa; λb; γabi; ð11Þ

withM ¼ λa − λb as follows from Eq. (A15). In practice, all the above matrix elements do not depend onM because T is a
scalar under rotations. Hence, it is usual to adopt the short notation

hJ;M; λ1; λ2; γ12jTðsÞjJ;M; λa; λb; γabi ¼ hλ1; λ2; γ12jTJðsÞjλa; λb; γabi: ð12Þ

Assuming time reversal invariance (T †TT ¼ T†),

hλ1; λ2; γ12jT†
JðsÞjλa; λb; γabi ¼ hλ1; λ2; γ12jT †TJðsÞT jλa; λb; γabi ¼ hλ1; λ2; γ12jTJðsÞjλa; λb; γabi�; ð13Þ

since T is an antiunitary operator. We have also used the transformation properties under time reversal of the helicity
jJ;M; λ; λ0; γi states4:

T jJ;M; λ1; λ2; γi ¼ ð−1ÞJ−MjJ;−M; λ1; λ2; γi: ð14Þ

3This is exact below the three-particle threshold.
4To obtain Eq. (14), the intrinsic time reversal parities of all involved particles have been set to þ1 (see Ref. [51]). Within the

conventions used in Ref. [31] (HNVmodel), this is not the case for the pion, which should be taken into account in the following (see the
discussion in Appendix C).
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Thus, the left-hand side of Eq. (11) becomes

ifhλ1; λ2; γ12jTJðsÞjλa; λb; γabi − hλ1; λ2; γ12jT†
JðsÞjλa; λb; γabig ¼ −2Imhλ1; λ2; γ12jTJðsÞjλa; λb; γabi: ð15Þ

Hence, (provided time reversal invariance holds) one finds

Imhλ1; λ2; γ12jTJðsÞjλa; λb; γabi ¼ −
1

2

X
2body

λ1=2ðs;m02
1 ; m

02
2 Þ

32π2s

×
X
γ0
12

X
λ0
1
λ0
2

hλ01; λ02; γ012jTJðsÞjλ1; λ2; γ12i�hλ01; λ02; γ012jTJðsÞjλa; λb; γabi: ð16Þ

Let us consider an electroweak transition from an initial state (aþ b) involving at least a gauge boson to a purely hadronic
final state (1þ 2). Furthermore, let us assume that the total c.m. energy,

ffiffiffi
s

p
, is such that the only relevant strong process is

the elastic one 1þ 2 → 1þ 2. In these circumstances, the sum over intermediate states in Eq. (16) is dominated by the
1þ 2 → 1þ 2 strong T matrix. The contribution of any other intermediate state will be proportional to the product of two
electroweak transition amplitudes, and hence highly suppressed. Therefore,X

γ0
12

X
λ0
1
λ0
2

hλ01; λ02; γ012jTJðsÞjλ1; λ2; γ12i�hλ01; λ02; γ012jTJðsÞjλa; λb; γabi ∈ R; ð17Þ

which establishes a series of relations between the phases
of the electroweak aþ b → 1þ 2 and the strong 1þ 2 →
1þ 2 amplitudes.

B. Watson’s theorem for WN → πN
and ZN → πN amplitudes

Pion production off nucleons induced by (anti)neutrinos
proceeds through charged (CC) or neutral current (NC)

interactions. These are determined by transition amplitudes
of the kind WN → πN and ZN → πN, respectively. In the
following, we explicitly refer to the CC case, but the
extension to NC processes is straightforward. The off-shell-
ness of theW boson does not alter the following arguments
and will be reconsidered later on.
For the WN → πN reaction, considering only πN

intermediate states, Eq. (17) becomes5

X
ρ

hJ;M; 0; ρ|{z}
πN

jTðsÞjJ;M; 0; λ0|{z}
πN

i�hJ;M; 0; ρ|{z}
πN

jTðsÞjJ;M; r; λ|{z}
WN

i ∈ R; M ¼ r − λ; ð18Þ

where r is the helicity of the W gauge boson and λ; λ0; ρ are the corresponding helicities of the initial, final and intermediate
nucleons. The above expression is equivalent to6X

ρ

hJ;M; 0; ρ|{z}
πN

jTðsÞjJ;M; 0; λ0|{z}
πN

i�hJ;M; 0; ρ|{z}
πN

jTðsÞj0; 0; r; λ|{z}
WN

i ∈ R; ð19Þ

where we identify the initialWN pair with the z direction (θ ¼ 0;φ ¼ 0) helicity c.m. two-particle state. Introducing states
with well-defined orbital angular momentum L and spin S [Eq. (A20)], and using parity conservation on the πN → πN
matrix elements, one getsX
L

X
ρ

2Lþ1

2Jþ1
ðL;1=2;Jj0;−λ0;−λ0ÞðL;1=2;Jj0;−ρ;−ρÞhJ;M;L;1=2jTðsÞjJ;M;L;1=2i�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

πN→πN

hJ;M;0;ρjTðsÞj0;0;r;λi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
WN→πN

∈R

∀J; M¼ r−λ: ð20Þ

Here, ðL; S; JjML;MS;MJÞ are Clebsch-Gordan coefficients.

5As the states are fully defined, the sum over γ012 can be dropped.

6We use that j0; 0; r; λi ¼ P
J

ffiffiffiffiffiffiffiffi
2Jþ1
4π

q
jJ;M ¼ r − λ; r; λi and that T is a scalar.
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C. Olsson’s implementation of Watson’s theorem
for the WN → πN amplitude in the Δ region

At intermediate energies, the weak pion production off
nucleons is dominated by the weak excitation of the
Δð1232Þ resonance and its subsequent decay into Nπ.
Thus, for J ¼ 3=2, isospin I ¼ 3=2 (Wþp → πþp), and
c.m. energies in the Δ region, the L ¼ 1 partial wave in

Eq. (20) should be the most important. Actually, it largely
dominates the πþp → πþp reaction at these energies for
J ¼ 3=2. Its contribution is much larger than the one of the
d wave, which is also allowed. Therefore, for the different
r; λ values, but with fixedM ¼ r − λ, the quantities χr;λðsÞ,
defined as (we introduce the factor

ffiffiffiffiffiffiffiffiffiffi
3π=8

p
for latter

convenience)

χr;λðsÞ ¼
ffiffiffiffiffiffi
3π

8

r X
ρ

ð1; 1=2; 3=2j0;−ρ;−ρÞh3=2;M; 0; ρjTðsÞj0; 0; r; λi; M ¼ r − λ; ð21Þ

should have the phase, δP33
ðsÞ, of the L2Jþ1;2Iþ1 ¼ P33 πN partial wave. Expressing the jJMi πN intermediate state in terms

of helicity c.m. two-particle states [Eq. (A19)], we finally find

χr;λðsÞe−iδP33 ¼
ffiffiffi
3

8

r �X
ρ

ð1; 1=2; 3=2j0;−ρ;−ρÞ
Z

dΩDð3=2Þ
M−ρ ðφ; θ;−φÞhθ;φ; 0; ρ|fflfflfflfflffl{zfflfflfflfflffl}

πþp

jTðsÞj0; 0; r; λi|fflfflfflfflffl{zfflfflfflfflffl}
Wþp

�
e−iδP33 ∈ R ð22Þ

for r ¼ 0;�1; λ ¼ �1=2, andM ¼ r − λ. There appear six,
in principle, independent amplitudes. The phase of all of
them should be δP33

.
Note that χr;λ in Eq. (22) is given in terms of amplitudes

between c.m. states with well-defined 3-momenta and
helicities, which could be readily obtained in quantum
field theoretical descriptions of the Wþp → πN reaction,
such as the HNVmodel presented in the Introduction. Even
for J ¼ 3=2, I ¼ 3=2 and only L ¼ 1, the HNVmodel does
not fulfill the constraints implicit in Eq. (22).
To improve the HNV model, we (partially) unitarize it in

the same fashion as in Refs. [53,54] for pion production
induced by real and virtual photons, respectively. We
follow the procedure suggested by M. G. Olsson in
Ref. [55] and, for every given value of the four-momentum
transfer squared q2, introduce small phases ΨV;Að

ffiffiffi
s

p
; q2Þ,

which correct the vector and axialΔ terms in the amplitude.
The matrix element

hθ;φ; 0; ρjTðsÞj0; 0; r; λi
¼ ϵrμT

μ
λρðθ;φÞ

¼ ϵrμT
μ
Bλρðθ;φÞ þ ϵrμT

μ
Δλρðθ;φÞ ð23Þ

can be split into a background (B) and a direct Delta (Δ)
contribution. Here, ϵrμ is the polarization vector of the
initial W boson. We now follow Ref. [55] and implement
Watson’s theorem by modifying the above expression to

ϵrμT
μ
Bλρðθ;φÞ þ eiΨϵrμT

μ
Δλρðθ;φÞ ð24Þ

so that

X
ρ

ð1; 1=2; 3=2j0;−ρ;−ρÞ

×
Z

dΩDð3=2Þ
M−ρ ðφ; θ;−φÞðϵrμTμ

Bλρðθ;φÞ

þ eiΨϵrμT
μ
Δλρðθ;φÞÞ;

M ¼ r − λ ð25Þ

has the right phase, δP33
ðsÞ. As mentioned, the phase Ψ

depends on the intermediateΔþþ invariant mass
ffiffiffi
s

p
and q2.

Unfortunately, there is no single phase able to do so for all
r; λ values. Next-to–leading contributions in the chiral
expansion, which depend explicitly on helicities, would
eventually perturbatively restore unitarity at the price of
introducing new and uncertain low-energy constants. In
addition, the resulting amplitudes would be much more
complicated and difficult to handle in Monte Carlo event
generators. The practical solution proposed here is to
consider two different Olsson phases, ΨV and ΨA, for
the vector and axial parts of the transition amplitude

T ¼ TV − TA; ð26Þ

chosen to unitarize only the dominant vector and axial
multipoles. Note that both vector and axial parts of these
dominant Wþp → pπþ multipoles are required to fulfill
Watson’s theorem independently. This is justified because
the vector part, which is the only one present in photo- and
electropion production amplitudes, should satisfy Watson’s
theorem independently and therefore have the phase δP33

.
Using invariance under parity, the number of indepen-

dent amplitudes can be reduced down to three vector and
three axial ones (Appendix B) because

WATSON’S THEOREM AND THE NΔð1232Þ AXIAL … PHYSICAL REVIEW D 93, 014016 (2016)

014016-5



χr;λ ¼ χVr;λ − χAr;λ ¼ −ðχV−r;−λ þ χA−r;−λÞ: ð27Þ

To obtain the vector and axial dominant multipoles, we
rewrite the j3=2;M;L0S0i initial WN states in Eq. (B1) in
terms of the set of states commonly used in pion electro-
production [56]. Thus, we first couple the WN orbital

angular momentum to theW boson spin ðL0 ⊗ 1Þ~l and then
the resulting ~l angular momentum to the nucleon spin to get
total angular momentum states with J ¼ 3=2. The relation
between the new and old states is given in terms of Racah
coefficients ( ~W),

jJM;L0S0i

¼
X
~l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2S0 þ 1Þð2~lþ 1Þ

q
~Wð1=2;1; J;L0;S0~lÞjJM;L0~li:

ð28Þ

The six independent multipoles in this basis are matrix
elements of the form

hL ¼ 1; S ¼ 1=2jTV;A
J¼3

2

ðsÞjL0~li; ð29Þ

with ðL0 ¼ 1; ~l ¼ 1; 2Þ and ðL0 ¼ 3; ~l ¼ 2Þ for the vector
part and ðL0 ¼ 0; ~l ¼ 1Þ and ðL0 ¼ 2; ~l ¼ 1; 2Þ for the axial
one. The actual relations of these multipoles with the χV;Ar;λ

amplitudes can be found in Appendix B [Eqs. (B9)–(B14)].
As discussed above, we impose Watson’s theorem

only on the dominant vector and axial multipoles given,

respectively, by Eqs. (B9) and (B12). These are the
magnetic M1þ multipole in the vector part [56],
hL ¼ 1; S ¼ 1=2jTV

J¼3
2

ðsÞjL0 ¼ 1~l ¼ 1i, and the WN

s-wave hL ¼ 1; S ¼ 1=2jTA
J¼3

2

ðsÞjL0 ¼ 0~l ¼ 1i multipole

in the axial one. The remaining two matrix elements
involve the WN pair in the relative d wave (L0 ¼ 2). In
Fig. 1, we show the modulus of the different vector and
axial multipoles defined in Eqs. (B9)–(B14) in
Appendix B. The results are very similar after partial
unitarization. From Fig. 1, it is apparent that, while the
vector multipole of Eq. (B9) remains dominant in the whole
q2 range, the axial multipole of Eq. (B13) becomes
comparable to the one of Eq. (B12) asQ2 ¼ −q2 increases.
One might then question the approximation of imposing
unitarity for the multipole of Eq. (B12) alone in the axial
sector. In this respect, it should be stressed that for largerQ2

the contributions of both multipoles to the amplitudes
become very similar. This is because the terms in which
they differ (proportional to χA0;−1=2) are suppressed by

powers of 1=
ffiffiffiffiffiffi
Q2

p
from the vector boson polarization

for r ¼ 0 [Eq. (C5)]. Therefore, once the dominant multi-
pole of Eq. (B12) fulfills Watson’s theorem, it is, to a large
degree, also fulfilled by the subdominant one of Eq. (B13).
The relative Δ to background phases, ΨVð

ffiffiffi
s

p
; q2Þ and

ΨAð
ffiffiffi
s

p
; q2Þ, are fixed by requiring the phase of each of the

amplitudes χV and χA, defined as7
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defined in Eqs. (B9)–(B14) of Appendix B.
The scale is the same in all panels.

7Note that the symmetry relations of Eq. (27) guarantee that χV

(χA) depends only on matrix elements of TV (TA).
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χV ¼ 1

2
½ðχ1;1=2 − χ−1;−1=2Þ þ

ffiffiffi
3

p
ðχ1;−1=2 − χ−1;1=2Þ� ð30Þ

χA ¼ −
1ffiffiffi
6

p ½
ffiffiffi
2

p
ðχ0;−1=2 þ χ0;1=2Þ þ

ffiffiffi
3

p
ðχ1;−1=2 þ χ−1;1=2Þ

þ ðχ1;1=2 þ χ−1;−1=2Þ� ð31Þ
to be δP33

ðsÞ. This is to say, we impose

Im½e−iδP33 ðsÞχV;A� ¼ 0: ð32Þ

In each case, there exist two sets of solutions, which
correspond to χV;A having phases δP33

and ðδP33
þ πÞ,

respectively (note that the πN phase shift is defined up
to a π factor). We take the first set of solutions because it
leads to the smallest ΨV and ΨA Olsson extra phases. The
second solution for the vector current is discarded by data
on pion photoproduction off nucleons. This is shown in
Fig. 2 where we apply the vector part of our model to
describe the γp → nπþ reaction. As seen from Fig. 2,
a much better agreement with the data is obtained when

taking the solution with the smallest ΨV Olsson phase. As
for ΨA, the results shown in Fig. 12 of Appendix B of
Ref. [31] favor vector and axial Δð1232Þ contributions
having similar phases.

III. RESULTS AND DISCUSSION

We (partially) unitarize the HNV model using Olsson’s
implementation of Watson’s theorem discussed in Sec. II C.
For this purpose, we implement the constraints implicit in
Eq. (32) using χr;λ amplitudes calculated by means of
Eq. (22). In Appendix C, details on the evaluation of matrix
elements hθ;φ; 0; ρjTðsÞj0; 0; r; λi, which appears in
Eq. (22), within the HNV model are provided. For the
P33 πN phases, we have used the output of the George
Washington University Partial Wave Analysis (SAID) [58]
from which we take the WI08 single energy values. In the
analysis, we neglect the influence of the small errors (ranging
from 0.1% to 0.6%) in the P33 phase shifts given in Ref. [58].

A. Fit A

Following Ref. [36], we make a simultaneous fit to both
ANL and BNL data samples, taking into account deuterium
effects but now imposing the unitarity of the two dominant
multipoles χV;A. This analysis gives (fit A)

CA
5 ð0Þ ¼ 1.12� 0.11;

MAΔ ¼ ð953.7� 62.6Þ MeV: ð33Þ
The new central value of CA

5 ð0Þ agrees within 1σ with the
off-diagonal GTR prediction. As in Ref. [36], the ANL [46]
flux-averaged dσ=dQ2 differential cross section, with a
WπN ¼ ffiffiffi

s
p

< 1.4 GeV cut in the final pion-proton invari-
ant mass, and the integrated cross sections for the three
lowest neutrino energies (0.65, 0.9, and 1.1 GeV) of the
BNL data set [47] have been fitted. A systematic error, due
to flux uncertainties (20% for ANL and 10% for BNL data)
has been added in quadratures to the statistical one.
In Table I, we compare the results for CA

5 ð0Þ and MAΔ
obtained in this work with those from previous HNV fits

200 300 400 500
E    [MeV]

0

100

200

300

400

σ 
 [μ

b]

Without imposing Watson’s theorem
First solution for Olsson’s phases
Second solution for Olsson’s phases
Experiment

γ p → n π +

γ

FIG. 2. Results for the γp → nπþ reaction obtained with the
vector part of our model. A better description of the experimental
data is obtained with the smallest ΨV Olsson phase (first
solution). Experimental data are taken from Ref. [57].

TABLE I. Results from different fits to the ANL and BNL data. All fits include the ANL [46] flux-averaged dσ=dQ2 differential cross
section, with aWπN ¼ ffiffiffi

s
p

< 1.4 GeV cut, and the integrated cross sections for the three lowest neutrino energies (0.65, 0.9, and 1.1 GeV)
of the BNL data set [47]. Fits I�, II�, and IVare taken from Ref. [36]. In all cases, Adler’s constraints (CA

3 ¼ 0; CA
4 ¼ −CA

5=4) [13,14] are
imposed. Deuteron effects [36] are included in fit IVand in those carried out in this work. The nonresonant chiral background contributions
are included in all cases, with the exception of fit I�. ForCA

5 ðq2Þ, a dipole form,CA
5 ðq2Þ ¼ CA

5 ð0Þ=ð1 − q2=M2
AΔÞ2, has been used in all fits

except in the one carried out in Ref. [31], where an extra factor 1=ð1 − q2=3MAΔÞwas included [see Eq. (48) of that reference]. Finally, r is
the Gaussian correlation coefficient between CA

5 ð0Þ and MAΔ. For reference, the prediction of the GTR is CA
5 ð0Þ ¼ 1.15 − 1.2.

CA
5 ð0Þ MAΔ=GeV Data r χ2=dof

Ref. [31] 0.867� 0.075 0.985� 0.082 ANL −0.85 0.40

Ref. [36]: Fit I� (only Δ pole) 1.08� 0.10 0.92� 0.06 ANL & BNL −0.06 0.36
Fit II� 0.95� 0.11 0.92� 0.08 ANL & BNL −0.08 0.49
Fit IV (with deuteron effects) 1.00� 0.11 0.93� 0.07 ANL & BNL −0.08 0.42

This work (unitarizedþ deuteron effects) fit A 1.12� 0.11 0.954� 0.063 ANL & BNL −0.08 0.46
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carried out in Refs. [31,36]. With respect to the fit carried out
in Ref. [31], the consideration of BNL data and flux
uncertainties in Ref. [36] led to an increased value of
CA
5 ð0Þ, while strongly reducing the statistical correlations

betweenCA
5 ð0Þ andMAΔ. The inclusion of background terms

reducedCA
5 ð0Þ, while deuteron effects slightly increased it by

about 5%, consistently with the results of Refs. [31] and
[24,35]. The implementation of Watson’s theorem, for the
dominant vector and axial multipoles, in new fit A, further
increases the CA

5 ð0Þ value, bringing it into much better
agreement with the off-diagonal GTR prediction.
The resulting Olsson phases from fit A are depicted in

Fig. 3. In the left panel of Fig. 3, we show the phases ΨV ,
ΨA obtained at theΔ peak as a function ofQ2. In the middle
and right panels of Fig. 3, we give, for different Q2 values,
the ΨV , ΨA dependence on the Δ invariant mass WπN . The
vector phase ΨV agrees reasonably well with the one
determined for electron scattering in Ref. [54].
The results of the (partially) unitarized model derived in

this work (fit A) are confronted to the fitted data in Fig. 4.
The same good agreement to the data as in Ref. [36], where
partial unitarity was not imposed, is now obtained with a
higher CA

5 ð0Þ consistent with the GTR. The increase in the

CA
5 ð0Þ value with respect to that calculation is compensated

by the change in the interference between the dominant Δ
term and the background terms once Watson’s theorem is
imposed on the dominant multipoles.
In Fig. 5, we show the predictions of the partially

unitarized (fit A) HNV model for the νμn → μ−pπ0 and
νμn → μ−nπþ channels. They are compared to the ANL and
BNL data, assuming that the proton in the deuteron acts as a
spectator. The problem with the νμn → μ−nπþ channel,
where data are underestimated in most theoretical models,
still persists after partial unitarization. This significant
discrepancy deserves additionalwork, evenmore so because
there exist only two independent amplitudes, and thus the
pπ0 and pπþ channels fully determine the nπþ amplitude
[31]. We would like to point out that the crossed Δ
mechanism has a large contribution in the nπþ channel.
Indeed, besides the Δ propagator, the numerical factors of
the (direct and crossed) Δ mechanisms are (

ffiffiffi
3

p
& 1=

ffiffiffi
3

p
),

(2=
ffiffiffi
3

p
& −2=

ffiffiffi
3

p
), and (1=

ffiffiffi
3

p
&

ffiffiffi
3

p
) for the pπþ, pπ0, and

nπþ channels, respectively [31]. The spin structure of theΔ
propagator used in Ref. [31] suffers from some off-shell
ambiguities/inconsistencies, which are clearly enhanced in
the evaluation of the crossed term, where the resonance is far
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FIG. 4. Results from fit A for the differential dσ=dQ2 (left) and total (right) cross section for the νμp → μ−pπþ reaction compared to
the ANL [46] and BNL [47] data. The theoretical bands correspond to the variation of the results when CA
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interval determined from the fit. Experimental data include a systematic error, due to flux uncertainties (20% for ANL and 10% for BNL
data), which has been added in quadratures to the statistical ones. Theoretical results and ANL data include a cut in the final pion-proton
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as a spectator (details in Ref. [36]).
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from its mass shell. This might have consequences, which
would affect much more the nπþ channel than the other
two charge configurations. Research along these lines is
underway.
Effects of the final state interactions (FSIs) on cross

sections for the single pion production off the deuteron
should also be considered and might help to explain the
puzzling nπþ channel. Such effects have been recently
examined in the work of Ref. [59]. There, it is found that
the orthogonality between the deuteron and final pn
scattering wave functions significantly reduces the cross
sections. Thus, the ANL and BNL data on the deuterium
target might need a more careful analysis with the FSIs
taken into account. It is also relevant to incorporate the
kinematical cuts implemented in the experiments to prop-
erly separate the three reaction channels.
Finally, in Fig. 6, we give the fit A results for the ν̄μn →

μþnπ− and νμn → νμpπ− channels. In the first case, we
compare with the data from Ref. [60] that were obtained at
the CERN proton synchrotron (PS) using a freon-propane
(CF3Br─C3H8) target. There is a large discrepancy in this
case between the theoretical calculation and the experimental

data. As shown in Ref. [61], this can be explained by
nuclear medium and pion absorption effects, which were
not properly taken into account in the analysis of Ref. [60].
For the second reaction, we find a nice agreement with the
experimental data from Ref. [62].

B. Fit B

The ANL and BNL bubble chamber pion production
measurements have been recently revisited [63]. Both
experiments have been reanalyzed to produce the ratio
between the σðνμp → μ−pπþÞ and the charged current
quasielastic (CCQE) cross sections measured in deuterium,
cancelling in this way the flux uncertainties present in the
data. A good agreement between the two experiments for
these ratios was found, providing in this way an explan-
ation to the longstanding tension between the two data sets.
By multiplying the cross section ratio by the theoretical
CCQE cross section on the deuteron,8 which is well under
control, flux normalization independent pion production
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FIG. 5. Results from fit A [Eq. (33)] for the νμn → μ−pπ0 (left panel) and νμn → μ−nπþ (right panel) total cross sections as compared
to ANL [46] and BNL [47] data. Theoretical bands and experimental errors have the same meaning as in Fig. 4. Theoretical results and
ANL data include a cut in the final active nucleon-pion invariant mass given byWπN < 1.4 GeV. Deuteron effects have been taken into
account as explained in Ref. [36], assuming that the proton in the deuteron acts as a spectator.
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FIG. 6. Results from fit A [Eq. (33)] for the ν̄μn → μþnπ− (left panel) and νμn → νμpπ− (right panel) total cross sections. Data from
CERN PS were taken in a freon-propane (CF3Br─C3H8) target [60]. Experimental data for the νμn → νμpπ− reaction are from
Ref. [62]. Since this latter cross section was measured at ANL, we have assumed a 20% systematic error, due to flux uncertainties, that
has been added in quadratures to the statistical error. Besides, for the νμn → νμpπ− case, we have taken into account deuteron effects, as
explained in Ref. [36], assuming the proton in the deuteron as a spectator. Theoretical bands have the same meaning as in Fig. 4.
Theoretical results, except where indicated, include a cut in the final pion-nucleon invariant mass given by WπN < 1.4 GeV.

8They use the prediction from GENIE 2.9 [64].
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cross sections were extracted. We have taken advantage of
these developments and performed a new fit considering
some of the new data points.
We have minimized

χ2 ¼
X
i∈ANL

�
βdσ=dQ2

i jexp − dσ=dQ2
i jth

βΔðdσ=dQ2
i jexpÞ

�2

þ
X
i∈ANL

�
σijexp − σijth
ΔðσijexpÞ

�
2

þ
X
i∈BNL

�
σijexp − σijth
ΔðσijexpÞ

�
2

:

ð34Þ

The ANL and BNL integrated cross sections included in the
above χ2, taken from Ref. [63], are collected in Table II.
Since no cut in the outgoing pion-nucleon invariant mass
was considered in the new analysis of Ref. [63], and in
order to avoid heavier resonances from playing a significant
role, we have only included data points corresponding to
laboratory neutrino energies Eν ≤ 1.1 GeV. To constrain
the q2 dependence, we have also fitted the shape of the
original ANL flux-folded dσ=dQ2 distribution, not affected
by the new analysis of Ref. [63], where a WπN ¼ ffiffiffi

s
p

<
1.4 GeV cut in the final pion-proton invariant mass was

implemented. The new best fit parameter β in the first term
of Eq. (34) is an arbitrary scale that allows us to consider
only the shape of this distribution. In turn, we do not now
include any systematic error on the ANL dσ=dQ2 differential
cross section. As in fit A, we consider deuterium effects and
Adler’s constraints (CA

3 ¼ 0,CA
4 ¼ −CA

5=4) on the axial form
factors and for CA

5 ðq2Þ use the dipole functional form shown
in the caption of Table I. Besides, Olsson’s approximate
implementation of Watson’s theorem is also taken into
account. The best fit parameters in this case (fit B) are

CA
5 ð0Þ ¼ 1.14� 0.07;

MAΔ ¼ ð959.4� 66.9Þ MeV; ð35Þ
with β ¼ 1.19� 0.08 and χ2=dof ¼ 0.3. The values for
CA
5 ð0Þ andMA from fit B are very close to the ones obtained

in fit A. Without including the Olsson phases, fit B gives a
smaller CA

5 ð0Þ ¼ 1.05� 0.07 value, in worse agreement
with the GTR prediction. This is the same effect seen when
comparing fit A with fit IV in Ref. [36]. The value β ¼
1.19� 0.08 suggests that ANL results in Ref. [46] could
have underestimated the pion production cross sections by
some 20% due to neutrino flux uncertainties. A comparison
of the theoretical results from fit B and the fitted data is now
shown in Fig. 7. Similar results to those from fit A are
obtained for the Olsson phases and the cross sections for
the other channels.

IV. FINAL REMARKS

Pion production on a deuteron target induced by neutrinos
and antineutrinos has been studied using the HNV model
[31], which takes into account nonresonant amplitudes,
required by chiral symmetry, as well as resonant
ones with Δð1232Þ and N�ð1520Þ intermediate states.
Phenomenological form factors allow us to apply the model
to finite 4-momentum transfers q2 probed in neutrino

TABLE II. ANL and BNL integrated cross sections (in units of
10−38 cm2) taken from the reanalysis of Ref. [63] and included in
the χ2 of Eq. (34) (fit B).

Eν (GeV) σjexp ΔðσjexpÞ Exp.

0.3 0.0020 0.0020 ANL
0.5 0.070 0.012 ANL
0.7 0.28 0.03 ANL
0.9 0.50 0.06 ANL
0.5 0.056 0.016 BNL
0.7 0.26 0.03 BNL
0.9 0.43 0.04 BNL
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FIG. 7. Results from fit B [Eq. (35)] for the shape of the differential dσ=dQ2 (left) and for total cross sections (right) for the
νμp → μ−pπþ reaction compared, respectively, to the ANL [46] data and the ANL and BNL reanalyzed total cross sections of Ref. [63].
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experiments. The model has now been improved by impos-
ing Watson’s theorem to the dominant vector and axial
multipoles. In this way, unitarity has been partially restored.
With this theoretical tool, we have undertaken a new

determination of the leading axial NΔð1232Þ transition
form factor from ANL and BNL data. We have fitted not
only the original data (fit A) but also those obtained in a
recent reanalysis [63] that has removed the tension between
the two data sets by considering flux independent ratios
(fit B). Both fits A and B show that the partial unitarization
increases the value of the leading axial couplingCA

5 ð0Þwith
respect to fits where no unitarization was applied. Thanks
to the new analysis of Ref. [63], the error in CA

5 ð0Þ has been
reduced from 10% (fit A) to 6% (fit B). The agreement with
the data is equally satisfactory as in previous fits performed
without unitarization, but the newCA

5 ð0Þ values are in better
agreement with the prediction from the off-diagonal GTR.
One should also mention that the description of pion
photoproduction at the Δð1232Þ peak is also improved
without refitting the electromagnetic couplings (Fig. 2). It
is the new interference pattern between the Δ-pole ampli-
tude and background contributions that compensates for the
increase in the CA

5 ð0Þ value. Actually, the results are
compatible with the ones obtained in a simpler model
where only the dominant Δ mechanism was included and
where CA

5 ð0Þ ≈ 1.15–1.2, as given by the off-diagonal
GTR. However, a more complete model containing not
only the Δ mechanism but also background terms is
definitely more robust. In fact, as shown in Ref. [31],
there are parity violating observables that are nonzero only
in the presence of background terms.
Full unitarity is also to be preferred. The advantage of the

simpler scheme adopted here resides mostly in its simplic-
ity. This would allow for an easier implementation in event
generators used in the analysis of neutrino experiments
while, at the same time, providing an accurate description
of the pion production data for WπN < 1.4 GeV. The
framework is also general enough to correct for deviations
from Watson’s theorem in more elaborated weak pion
production models. The accuracy can be also increased by
fixing the phases in other subdominant multipoles.
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APPENDIX A: C.M. TWO-PARTICLE
HELICITY STATES

We follow the notation in Ref. [51], up to some trivial
factors in the normalization of the states. Particle states are
defined by the Poincaré symmetry group Casimir operators.
Thus, the states jm; j; ~p; λi are characterized by the mass
(m), spin (j), 3-momentum (~p), and helicity9 (λ) of the
particle. They are constructed as

jm; j; ~p; λi ¼ Rðφ; θ;−φÞZj~pjjm; j; ~0; λi; ðA1Þ

with Zj~pj being a boost in the positive z direction and
Rðφ; θ;−φÞ a rotation that takes that axis into the direction
of ~p (θ, φ are the polar and azimuthal angles of ~p,

0 ≤ θ ≤ π, 0 ≤ φ < 2π). The state j~0; λi has ~p ¼ ~0 and
spin projection along the z axis λ. After the transformations,
λ becomes the helicity of the one-particle state. The
normalization is such that

hm; j; ~p; λjm; j; ~p0; λ0i ¼ ð2πÞ32Eð~pÞδ3ð~p − ~p0Þδλλ0 ðA2Þ

with Eð~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~p2

p
. Helicity c.m. two-particle states

are defined as

jp; θ;φ; λ1; λ2; γi ¼ jm1; j1; ~p; λ1i ⊗ jm2; j2;−~p; λ2i;
ðA3Þ

where γ encompasses all other not explicitly identified
quantum numbers, and

jm2; j2;−~p; λ2i
¼ ð−1Þj2−λ2Rðφ; θ;−φÞRð0; π; 0ÞZj~pjjm2; j2; ~0; λ2i;

ðA4Þ

the phase factor ð−1Þj2−λ2 is introduced so that as ~p → 0

jm2; j2; ~p ¼ ~0; λ2i ¼ jm2; j2; ~p ¼ ~0;−λ2i: ðA5Þ

Defining the two-particle state in this way guarantees good
transformation properties under rotations

jp; θ;φ; λ1; λ2; γi ¼ Rðφ; θ;−φÞjp; 0; 0; λ1; λ2; γi: ðA6Þ

It is convenient to decompose

jp; θ;φ; λ1; λ2; γi ¼ 2π

ffiffiffiffiffiffiffiffiffi
4

ffiffiffi
s

p
j~pj

s
jPijθ;φ; λ1; λ2; γi; ðA7Þ

9Spin component along the direction of motion.
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with P the total four-momentum and P2 ¼ s. The normal-
izations are10

hP0jPi ¼ ð2πÞ4δ4ðP − P0Þ;
hθ0;φ0; λ01; λ

0
2; γ

0jθ;φ; λ1; λ2; γi ¼ δðΩ −Ω0Þδλ1λ01δλ2λ02δγγ0 :
ðA8Þ

The decomposition in Eq. (A7) attends to the fact the
4-momentum is a conserved quantity and thus

hFjSjIi ¼ ð2πÞ4δ4ðPF − PIÞhαFjSPjαIi ðA9Þ

and any state of the Hilbert space, containing any
number of particles, can be written as a superposition
of vectors of the form jPijαi. The set of vectors jαi
spans the so-called little Hilbert space [51]. It follows
that the scattering operator S may be written as the
direct product

S ¼ 1 ⊗ SP ðA10Þ

such that

hFjSjIi ¼ hPFj1jPIihαFjSPjαIi: ðA11Þ

Just as in the case of the S operator, T may also be
written as a direct product,

T ¼ 1 ⊗ TP; SP ¼ 1 − iTP: ðA12Þ

This is the form in which the T matrix is generally used.
In fact, we refer to TP as the T operator and TFIðsÞ ¼
hαFjTPjαIi as the T matrix element.
The c.m. states can be written in terms of states with

well-defined total angular momentum,

jp; J;M; λ1; λ2; γi ¼ 2π

ffiffiffiffiffiffiffiffiffi
4

ffiffiffi
s

p
j~pj

s
jPijJ;M; λ1; λ2; γi; ðA13Þ

with

hJ0;M0; λ01; λ
0
2; γ

0jJ;M; λ1; λ2; γi ¼ δJJ0δMM0δλ1λ01δλ2λ02δγγ0 :

ðA14Þ

Starting from the case θ ¼ 0, φ ¼ 0,

j0; 0; λ1; λ2; γi ¼
X
J

CJjJ; Jz ¼ λ; λ1; λ2; γi; ðA15Þ

with λ ¼ λ1 − λ2, one arrives at

jθ;φ; λ1; λ2; γi ¼
X
J;M

CJD
ðJÞ
Mλðφ; θ;−φÞjJ;M; λ1; λ2; γi;

λ ¼ λ1 − λ2; ðA16Þ

where DðJÞ
MM0 ðα; β; γÞ is the matrix representation of a

rotation operator Rðα; β; γÞ in an irreducible representation
space,

DðJÞ
M0Mðα; β; γÞ ¼ e−iαM

0
dJM0MðβÞe−iγM;

dJM0MðβÞ ¼ hJM0je−iβJy jJMi: ðA17Þ

From the above equation and using thatZ
dΩDðJÞ�

Mλ ðφ; θ;−φÞDðJ0Þ
M0λðφ; θ;−φÞ ¼

4π

2J þ 1
δJJ0δMM0 ;

ðA18Þ

it follows that

jJ;M; λ1; λ2; γi ¼
2J þ 1

4πCJ

Z
dΩDðJÞ�

Mλ ðφ; θ;−φÞjθ;φ; λ1; λ2; γi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4π

r Z
dΩDðJÞ�

Mλ ðφ; θ;−φÞjθ;φ; λ1; λ2; γi; λ ¼ λ1 − λ2; ðA19Þ

where we have made use of the normalization conditions to determine jCJj2 ¼ 2Jþ1
4π and have taken the coefficients CJ to be

real. States with well-defined orbital angular momentum L and spin S can be introduced as

jJ;M; λ1; λ2; γi ¼
X
L;S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

2J þ 1

r
ðL; S; Jj0; λ; λÞðj1; j2; Sjλ1;−λ2; λÞjJ;M;L; S; γi;

jJ;M;L; S; γi ¼
X
λ1;λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

2J þ 1

r
ðL; S; Jj0; λ; λÞðj1; j2; Sjλ1;−λ2; λÞjJ;M; λ1; λ2; γi; ðA20Þ

where ðj1; j2; jjm1; m2;MÞ are the Clebsch-Gordan coefficients and λ ¼ λ1 − λ2 as usual.

10Note that E1E2δ
3ð~p1 − ~p2Þδ3ð~p0

1 − ~p0
2Þ ¼

ffiffiffi
s

p
δ4ðP − P0Þδ2ðΩ − Ω0Þ=j~pj, with ~p ¼ ð~p1 − ~p2Þ=2.
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APPENDIX B: PROPERTIES OF THE χ r;λ AMPLITUDES DEFINED IN EQ. (21)

The χr;λ amplitudes in Eq. (21) can be rewritten in terms of states jJ;M;L; Si with well-defined total orbital (L) and spin
(S) angular momenta as

χr;λ ¼
ffiffiffi
3

8

r X
ρ

ð1; 1=2; 3=2j0;−ρ;−ρÞh3=2;M; 0; ρjTðsÞj3=2;M; r; λi

¼ 1ffiffiffi
2

p h3=2;M;L ¼ 1; S ¼ 1=2jTðsÞj3=2;M; r; λi

¼
X
L0;S0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L0 þ 1

8

r
ð1; 1=2; S0jr;−λ;MÞðL0; S0; 3=2j0;M;MÞhL ¼ 1; S ¼ 1=2jTJ¼3

2
ðsÞjL0S0i; ðB1Þ

withM ¼ r − λ. Note that the matrix element of the T-scattering operator does not depend onM, since it is invariant under
rotations. Now, the amplitude has a vector and an axial part,

T ¼ TV − TA; ðB2Þ

and under a parity transformation, we have

PTP† ¼ TV þ TA ðB3Þ

PjJ;M;LSi ¼ η1η2ð−1ÞLjJ;M;L; Si; ðB4Þ

where η1;2 are the intrinsic parities of the particles (1 for nucleons and −1 for π andW). We thus find that only odd (even) L0

waves contribute to the vector (axial) part of the χr;λ,

χr;λ ¼ χVr;λ − χAr;λ ðB5Þ

χVr;λ ¼
X

S0¼1=2;3=2

X
L0¼1;3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L0 þ 1

8

r
ð1; 1=2; S0jr;−λ;MÞðL0; S0; 3=2j0;M;MÞhL ¼ 1; S ¼ 1=2jTV

J¼3
2

ðsÞjL0S0i ðB6Þ

χAr;λ ¼
X

S0¼1=2;3=2

X
L0¼0;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L0 þ 1

8

r
ð1; 1=2; S0jr;−λ;MÞðL0; S0; 3=2j0;M;MÞhL ¼ 1; S ¼ 1=2jTA

J¼3
2

ðsÞjL0S0i: ðB7Þ

Now, taking into account

ð1; 1=2; S0jr;−λ;MÞðL0; S0; 3=2j0;M;MÞ ¼ ð−1ÞL0 ð1; 1=2; S0j − r; λ;−MÞðL0; S0; 3=2j0;−M;−MÞ; ðB8Þ

we trivially find Eq. (27).
On the other hand, using the basis introduced in Eq. (28), we obtain the following relations11:

−
1

2
hL ¼ 1; S ¼ 1=2jTV

J¼3=2jL0 ¼ 1; ~l ¼ 1i ¼ 1

2
ðχV1;1=2 þ

ffiffiffi
3

p
χV1;−1=2Þ; ½M1þ� ðB9Þ

−
1

2
hL ¼ 1; S ¼ 1=2jTV

J¼3=2jL0 ¼ 1; ~l ¼ 2i ¼ 1ffiffiffiffiffi
20

p ð2
ffiffiffi
2

p
χV0;−1=2 þ

ffiffiffi
3

p
χV1;−1=2 − 3χV1;1=2Þ; ½E1þ=L1þ� ðB10Þ

−
1

2
hL ¼ 1; S ¼ 1=2jTV

J¼3=2jL0 ¼ 3; ~l ¼ 2i ¼ 1ffiffiffiffiffi
10

p ð−
ffiffiffi
6

p
χV0;−1=2 þ χV1;−1=2 −

ffiffiffi
3

p
χV1;1=2Þ; ½E1þ=L1þ� ðB11Þ

11For matrix elements of the vector current, the involved multipoles in the notation of Ref. [56] are shown in square brackets.
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−
1

2
hL ¼ 1; S ¼ 1=2jTA

J¼3=2jL0 ¼ 0; ~l ¼ 1i

¼ −
1ffiffiffi
6

p ð
ffiffiffi
2

p
χA0;−1=2 þ

ffiffiffi
3

p
χA1;−1=2 þ χA1;1=2Þ ðB12Þ

−
1

2
hL ¼ 1; S ¼ 1=2jTA

J¼3=2jL0 ¼ 2; ~l ¼ 1i

¼ −
1ffiffiffiffiffi
12

p ð−2
ffiffiffi
2

p
χA0;−1=2 þ

ffiffiffi
3

p
χA1;−1=2 þ χA1;1=2Þ ðB13Þ

−
1

2
hL ¼ 1; S ¼ 1=2jTA

J¼3=2jL0 ¼ 2; ~l ¼ 2i

¼ −
1

2
ðχA1;−1=2 −

ffiffiffi
3

p
χA1;1=2Þ: ðB14Þ

APPENDIX C: COMPUTATION OF THE χ r;λðsÞ
AMPLITUDES WITHIN THE HNV MODEL

Equation (22) allows us to compute χr;λðsÞ in terms of
the matrix elements hθ;φ; 0; ρj|fflfflfflfflfflffl{zfflfflfflfflfflffl}

πþp

TðsÞj0; 0; r; λi|fflfflfflfflffl{zfflfflfflfflffl}
Wþp

, which

involve the helicity c.m. two-particle states introduced in
Eq. (A3). We have always labeled the proton as the second
particle. This is to say that the “bar” jj;−~p; λi states
correspond to the protons. One can prove that

jj;−~p; λi ¼ ð−1Þj−λð−1Þ2je−2iλφjj;−~p; λi ðC1Þ

with

jj;−~p; λi ¼ Rðφþ π; π − θ;−φ − πÞZj~pjjj; ~0; λi; ðC2Þ

where θ and φ are the polar and azimuthal angles of ~p. The
latter states, jj;−~p; λi for the case of a nucleon j ¼ 1=2,
can be easily obtained using the Dirac space representations
of the boost and the rotation that appears in Eq. (C2).
Finally, and using Eq. (C1), we find that the spinors
corresponding to the bar states are

j − ~p; λ ¼ 1=2i≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EþMN

p
0
BBBBBB@

− sin θ
2
e−iφ

cos θ
2

− j~pj
EþMN

sin θ
2
e−iφ

j~pj
EþMN

cos θ
2

1
CCCCCCA ðC3Þ

j − ~p; λ ¼ −1=2i≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EþMN

p
0
BBBBBB@

cos θ
2

sin θ
2
eiφ

− j~pj
EþMN

cos θ
2

− j~pj
EþMN

sin θ
2
eiφ

1
CCCCCCA; ðC4Þ

with MN the nucleon mass and E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ ~p2
p

. On the
other hand, the virtual gauge boson helicity states, when the
W 3- momentum is in the positive z direction, read

ϵμðj~pj; r ¼ 0Þ ¼
�
j~pj=

ffiffiffiffiffiffi
Q2

p
; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 −Q2

q
=

ffiffiffiffiffiffi
Q2

p �
ðC5Þ

ϵμðj~pj; r ¼ �1Þ ¼ ∓1ffiffiffi
2

p ð0; 1;�i; 0Þ; ðC6Þ

with −Q2, the virtual mass of the gauge boson, i.e., its 4-
momentum squared. We only consider the three polariza-
tions that are orthogonal to the W 4-momentum since our
analysis in Secs. II B and II C implicitly assumes a positive
invariant mass squared for theW boson. The results are then
analytically continued to negative invariant masses squared.
With all of these ingredients, within the HNV model, we

deduce that, up to an overall real normalization constant
that does not affect its phase,

hθ;φ; 0; ρjTðsÞj0; 0; r; λi ∼ −i½jμðρ; λÞϵμðj~pj; rÞ�; ðC7Þ
where the pπþ current jμ is taken from Eq. (51) of Ref. [31]
and Eq. (A6) of Ref. [9], replacing the proton spinors uð~pÞ
by the bar states of Eqs. (C3) and (C4) corresponding12 to
the helicities ρ and λ. The current of Eq. (A6) of Ref. [9]
accounts for the crossed Nð1520Þ pole mechanism, which
gives a quite small contribution for the πN invariant masses
studied in this work. Note that the direct N�ð1520Þ
excitation mechanism also considered in Ref. [9] does
not contribute to the isospin 3=2 channel.
Note that in the definition of the current jμ in Refs. [9,31],

the factor i from theweak vertex is not included. Actually the
gauge coupling is not included either. According to our
normalizations, one has−iTaux ¼ iL ∝ ijμϵμ, and thus, up to
real constants, Taux is given by−j · ϵ. The extra i (iTaux ¼ T)
in Eq. (C7) is included to ensure that Eq. (14) that leads to
Eqs. (13) and (15) is satisfied. This is needed because in our
conventions the pion and the W gauge boson intrinsic time
reversal phases are different (−1 and 1, respectively). To keep
Eq. (14) correct, one should add a phase i to the πN state,
which compensates the pion odd intrinsic time reversal13

thanks to the antiunitary character of the time-reversal
operator in Eq. (14).
In addition and to implement Watson’s theorem, within

the approximate Olsson scheme discussed in Sec. II C, the
vector and axial directΔ contributions should be multiplied
by the Olsson phases, ΨV and ΨA.

12Obviously, the ū spinor that appears in Eq. (51) of Ref. [31]
should be evaluated using Eqs. (C3) and (C4), taking Hermi-
tian conjugation (†) and multiplying by the γ0 Dirac matrix.

13This is easy to see, for instance, by looking at the πNN
Lagrangian in Eq. (26) of Ref. [31] and considering the trans-
formation under time reversal of the nucleon axial current and the
derivative operator.
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APPENDIX D: PARAMETRIZATIONS OF THE ΨV AND ΨA OLSSON PHASES

In the following, we give parametrizations for the ΨV and ΨA Olsson phases, as a function of w ¼ WπN − 1.0779 GeV
and Q2 ¼ −q2, valid in the intervals WπN ∈ ½1.1; 1.4� GeV, Q2 ∈ ½0; 2.5� GeV2:
(1) Fit A:

ΨV ¼ 5w

�
8.3787þ 2.7315 − 25.5185w

0.05308416þ ð0.62862 − 5wÞ2 þ 301.925w − 985.80w2 þ 862.025w3

�
× ðð1.þ 0.14163Q2Þ−2 þ ð0.066192þ wð−0.34057þ 1.631475wÞÞQ2Þ; ðD1Þ

ΨA ¼ 5w

�
5.2514þ 2.9102 − 26.5085w

0.0531901969þ ð0.63033 − 5wÞ2 þ 266.565w − 814.575w2 þ 624.05w3

�
× ðð1.þ 0.088539Q2Þ−2 þ ð0.026654þ wð−1.17305þ 3.66475wÞÞQ2Þ: ðD2Þ

(2) Fit B:

ΨA ¼ 5w
�
4.9703þ 2.929 − 26.6295w

0.0531256401þ ð0.63051 − 5wÞ2 þ 264.27w − 798.525w2 þ 598.85w3

�
× ðð1.þ 0.10152Q2Þ−2 þ ð0.041484þ wð−1.20715þ 3.7545wÞÞQ2Þ; ðD3Þ

while ΨV is the same as for fit A.
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