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We obtain predictions for a number of radiative decays BðsÞ → Vγ, V the vector meson, which proceed
through the weak-annihilation mechanism. Within the factorization approximation, we take into account the
photon emission from the B-meson loop and from the vector-meson loop; the latter subprocesses were not
considered in the previous analyses but are found to have a sizeable impact on the BðsÞ → Vγ decay rate. The

highest branching ratios for the weak-annihilation reactions reported here are BðB̄0
s → J=ψγÞ ¼ 1.5 × 10−7

and BðB− → D̄�−
s γÞ ¼ 1.7 × 10−7, the estimated accuracy of these predictions being at the level of 20%.
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I. INTRODUCTION

The investigation of rare B decays forbidden at the tree
level in the Standard Model provides the possibility to
probe the electroweak sector at large mass scales.
Interesting information about the structure of the theory
is contained in the Wilson coefficients entering the effective
Hamiltonian which take different values in different the-
ories with testable consequences in rare B decays.
There is an interesting class of rare radiative B decays

which proceed merely through the weak-annihilation
mechanism. These processes have very small probabilities
and have not been observed. So far, only upper limits on the
branching ratios of these decays have been obtained; in
2004, the BABAR Collaboration provided the upper limit
BðB0 → J=ψγÞ < 1.6 × 10−6 [1]. Very recently, the LHCb
Collaboration reached the same sensitivity to the B0 decay
and set the limit on the B0

s decay: BðB0 → J=ψγÞ < 1.7 ×
10−6 and BðB0

s → J=ψγÞ < 7.4 × 10−6 at 90% C.L. [2].
Obviously, with the increasing statistics, the prospects to
improve the limits on the branching ratios by 1 order of
magnitude or eventually to observe these decays in the near
future seem very favorable.
The annihilation-type B decays are promising from the

perspective of obtaining theoretical predictions since the
QCD dynamics of these decays is relatively simple [3,4].
These decays have been addressed in the literature, but—in
spite of their relative simplicity—the available theoretical
predictions turned out to be rather uncertain; for instance,
the predictions for BðB0

s → J=ψγÞ decay vary from 5.7 ×
10−8 [5] to 5 × 10−6 [6]. The situation is clearly unsatis-
factory and requires clarification. We did not find any of
these results convincing and present in this paper a more
detailed analysis of the B → Vγ decays.
The annihilation-type B → Vγ decays proceed through

the four-quark operators of the effective weak Hamiltonian.

In the factorization approximation, the amplitude can be
represented as the product of meson leptonic decay con-
stants and matrix elements of the weak current between the
meson and photon; the latter contain the meson-photon
transition form factors. The photon can be emitted from the
loop containing the B-meson [Fig. 1(a)], and this contri-
bution is described by the Bγ transition form factors. The
photon can be also emitted from the vector-meson V-loop
[Fig 1(b)]; this contribution is described by the Vγ
transition form factors. The latter were erroneously
believed to give a small contribution to the amplitude
and have not been considered in the previous analyses.
The main new ingredient of this paper is the analysis of

the photon emission from the V-loop. First, we show that
this contribution has no parametric suppression compared
to the photon emission from the B-loop. Then, we calculate
the Bγ and Vγ form factors within the relativistic dispersion
approach based on the constituent quark picture [7]. As
shown in Ref. [8], the form factors from this approach
satisfy all rigorous constraints which emerge in QCD in the
limit of heavy-to-heavy and heavy-to-light transitions; as
demonstrated in Refs. [9–11], the numerical results for the
weak transition form factors from this approach exhibit an
excellent agreement with the results from lattice QCD and
QCD sum rules.
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FIG. 1. Diagrams describing the weak-annihilation process for
B → Vγ in the factorization approximation: (a) The photon is
emitted from the B-loop, and (b) the photon is emitted from the
vector-meson V-loop.

PHYSICAL REVIEW D 93, 014015 (2016)

2470-0010=2016=93(1)=014015(12) 014015-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.014015
http://dx.doi.org/10.1103/PhysRevD.93.014015
http://dx.doi.org/10.1103/PhysRevD.93.014015
http://dx.doi.org/10.1103/PhysRevD.93.014015


Numerically, we report here that the V-loop contribution
to the amplitude turns out to be comparable with the B-loop
contribution and has a sizeable impact on the probability of
the weak-annihilation B → Vγ decay.
The paper is organized as follows. In Sec. II, the effective

weak Hamiltonian and the structure of the amplitude are
recalled. We discuss the general structure of the B → Vγ
amplitude and work out the constraints coming from gauge
invariance. In Sec. III, we consider the photon emission
from the B-loop and present the Bγ transition form factors
within the relativistic dispersion approach based on the
constituent quark picture. Section IV contains the analysis
of the Vγ transition form factors. Finally, in Sec. V, the
numerical estimates are given. The concluding Sec. VI
summarizes our results and presents a critical discussion of
other results existing in the literature.

II. EFFECTIVE HAMILTONIAN, THE
AMPLITUDE, AND THE DECAY RATE

We consider the weak-annihilation radiative B → Vγ
transition, where V is the vector meson containing at least
one charm quark, i.e., having the quark content q̄c
(q ¼ u; d; s; c). The corresponding amplitude is given by
the matrix element of the effective Hamiltonian [12]

AðB → VγÞ ¼ hγðq1ÞVðq2ÞjHeff jBðpÞi; ð2:1Þ
where p is the B momentum, q2 is the vector-meson
momentum, and q1 is the photon momentum, p ¼ q1 þ q2,
q21 ¼ 0, q22 ¼ M2

V , p2 ¼ M2
B. The effective weak

Hamiltonian relevant for the transition of interest has the
form (we provide in this section formulas for the effective
Hamiltonian with the flavor structure d̄cūb, but all other
decays of interest may be easily described by an obvious
replacement of the quark flavors and the corresponding
Cabibbo-Kobayashi-Maskawa (CKM) factors ξCKM)

Heff ¼ −
GFffiffiffi
2

p ξCKMðC1ðμÞO1 þ C2ðμÞO2Þ; ð2:2Þ

GF is the Fermi constant, ξCKM ¼ V�
cdVub, C1;2ðμÞ are the

scale-dependent Wilson coefficients [12], and we only
show the relevant four-quark operators

O1 ¼ d̄αγνð1 − γ5Þcαūβγνð1 − γ5Þbβ;
O2 ¼ d̄αγνð1 − γ5Þcβūβγνð1 − γ5Þbα: ð2:3Þ

We use notations e ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p
, γ5 ¼ iγ0γ1γ2γ3, σμν ¼

i½γμ; γν�=2, ϵ0123 ¼ −1, and Spðγ5γμγνγαγβÞ ¼ 4iϵμναβ.
The amplitude can be written as

AðB → VγÞ ¼ −
GFffiffiffi
2

p ξCKMaeffðμÞhVðq2Þγðq1Þjd̄γν
× ð1 − γ5Þc · ūγνð1 − γ5ÞbjBðpÞi; ð2:4Þ

where aeffðμÞ is an effective scale-dependent Wilson
coefficient appropriate for the decay under consideration.
It is convenient to isolate the parity-conserving contri-

bution which emerges from the product of the two equal-
parity currents and the parity-violating contribution which
emerges from the product of the two opposite-parity
currents. The amplitude may then be parametrized as
follows,

AðB → VγÞ ¼ eGFffiffiffi
2

p ½ϵq1ϵ�1q2ϵ�2FPC

þ iϵ�ν2 ϵ�μ1 ðgνμpq1 − pμq1νÞFPV�; ð2:5Þ

where FPC and FPV are the parity-conserving and parity-
violating invariant amplitudes, respectively. Hereafter, ϵ2
(ϵ1) is the vector-meson (photon) polarization vector. We
use the shorthand notation ϵabcd ¼ ϵαβμνaαbβcμdν for any
4-vectors a; b; c; d.
For the decay rate, one finds

ΓðB→ VγÞ ¼G2
Fαem
16

M3
Bð1−M2

V=M
2
BÞ3ðjFPCj2þjFPVj2Þ:

ð2:6Þ

Neglecting the nonfactorizable soft-gluon exchanges, i.e.,
assuming vacuum saturation, the complicated matrix
element in Eq. (2.4) is reduced to simpler quantities—
the meson-photon matrix elements of the bilinear quark
currents and the meson decay constants. The latter are
defined as usual:

hVðq2Þjd̄γνcj0i ¼ ϵ�2νMVfV; fV > 0;

h0jūγνγ5bjBðpÞi ¼ ipνfB; fB > 0: ð2:7Þ

A. Parity-violating amplitude

Theparity-violating contribution to theweak-annihilation
amplitude has the form

APVðB→ VγÞ ¼ GFffiffiffi
2

p ξCKMaeffðμÞfhVγjd̄γνcj0ih0jūγνγ5bjBi

þ hVjd̄γνcj0ihγjūγνγ5bjBig: ð2:8Þ

It is convenient to denote

Að1Þ
PV ¼ hVðq2Þjd̄γνcj0ihγðq1Þjūγνγ5bjBðpÞi ð2:9Þ

and

Að2Þ
PV ¼ hVðq2Þγðq1Þjd̄γνcj0ih0jūγνγ5bjBðpÞi∶ ð2:10Þ
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(1) Let us start with Að1Þ
PV. One can write

hγðq1Þjūγνγ5bjBðpÞi ¼ eϵ�μ1 TB
μν; ð2:11Þ

where

TB
μνðp;q1Þ¼ i

Z
dxeiq1xh0jTðJe:m:

μ ðxÞ;ūγνγ5bÞjBðpÞi;

ð2:12Þ

and

Je:m:
μ ðxÞ ¼ 2

3
ðūγμuþ c̄γμcþ t̄γμtÞ

−
1

3
ðd̄γμdþ s̄γμsþ b̄γμbÞ ð2:13Þ

is the electromagnetic quark current.
The amplitude TB

μν in general contains five inde-
pendent Lorentz structures and can be parametrized
in various ways [4,11,13]. There is, however, the
unique parametrization of the amplitude, which
provides a distinct separation of the amplitude: form
factors in the gauge-invariant transverse part of
the amplitude and contact terms in its longitudinal
part [7]:

TB
μν ¼ T⊥

μν þ
iq1μpν

q21
R1 þ

iq1μq1ν
q21

R2; ð2:14Þ

with

T⊥
μν ¼ i

�
gμν −

q1μq1ν
q21

�
pq1FA1ðq21Þ

þ i

�
pμ −

pq1
q21

q1μ

�
q1νFA2ðq21Þ

þ i
�
pμ −

pq1
q21

q1μ

�
pνFA3ðq21Þ: ð2:15Þ

The invariant amplitudes R1 and R2 in the longi-
tudinal structure can be determined using the con-
servation of the electromagnetic current ∂μJe:m:

μ ¼ 0

[10], which leads to

q1μTB
μνðp; q1Þ ¼ −h0j½Q̂; ūγνγ5b�jBðpÞi

¼ iQBfBpν ð2:16Þ

and thus to

R1 ¼ QBfB; R2 ¼ 0: ð2:17Þ

The parametrization (2.14) of the amplitude is
prompted by the structure of the Feynman diagram;

let us rewrite the usual electromagnetic coupling of
the quark as follows (q1 ¼ k − k0):

ðmþ k̂0Þγμðmþ k̂Þ ¼ ðmþ k̂0Þ
�
γμ− q̂1

q1μ
q21

�
ðmþ k̂Þ

þq1μ
q21

½ðk2−m2Þðmþ k̂0Þ− ðk02−m2Þðmþ k̂Þ�:

ð2:18Þ

The first term is explicitly transverse with respect to
q1μ and leads to T⊥

μν. The second term, containing
the factors ðk2 −m2Þ and ðk02 −m2Þ, leads to the
contact term ipν

q1μ
q2
1

fB. The Lorentz structures in

(2.15) have singularities at q21 ¼ 0, but the full
amplitude TB

μν should be regular at q21 ¼ 0. So the
singularities must cancel each other, yielding the
constraints on the form factors at q21 ¼ 0:

FA1ð0Þ ¼ −FA2ð0Þ; FA3ð0Þ ¼
fBQB

pq1
: ð2:19Þ

Hereafter, when evaluating the invariant amplitudes
at q21 ¼ 0, one should make use of relation
pq1 ¼ 1

2
ðM2

B −M2
VÞ. By virtue of (2.19), for the

amplitude APV
1 at q21 ¼ 0, we find

Að1Þ
PV ¼ iefVMVϵ

�μ
1 ϵ�ν2 fgμνpq1FA1ð0Þ þ pμq1νFA2ð0Þ

þ pμpνFA3ð0Þg
¼ iefVMVϵ

�μ
1 ϵ�ν2

×

�
ðgμνpq1 − pμq1νÞ

FA

MB
þ pμq1ν

fBQB

pq1

�
;

ð2:20Þ

with FA ¼ MBFA1ð0Þ. Notice that the contact term
does not contribute to the amplitude directly but
nevertheless determines the value of the form
factor F3Að0Þ.

(2) Let us now turn to Að2Þ
PV. Using the equation of

motion for the quark fields

iγν∂νqðxÞ ¼ mqðxÞ −QqAνγ
νqðxÞ;

i∂νq̄ðxÞγν ¼ −mq̄ðxÞ þQqAνq̄ðxÞγν; ð2:21Þ

one obtains

i∂νðd̄γνcÞ ¼ jþ ðQd −QcÞd̄γνcAν; ð2:22Þ

where

jðxÞ ¼ ðmc −mdÞd̄ðxÞcðxÞ ð2:23Þ
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is the scale-independent scalar current. Then, for the

amplitude Að2Þ
PV, we find

Að2Þ
PV ¼ ipνfBhVγjd̄γνcj0i

¼ −ifBhVγjjj0i − ifBðQd −QcÞϵ�ν1 hVjd̄γνcÞj0i
¼ −ifBhVγjjj0i − ifBϵ

�μ
1 ϵ�ν2 gμνQVfVMV:

ð2:24Þ

We have taken into account here the charge-
conservation relation

Qb −Qu ¼ QB ¼ QV ¼ Qd −Qc: ð2:25Þ

The amplitude hVγjjj0i may be written as

hVðq2Þγðq1Þjjj0i ¼ ieϵ�μ1 ðq1ÞhVðq2Þj

×
Z

dxeiq1xTðJe:m:
μ ðxÞjð0ÞÞj0i

≡ ieϵ�μ1 ðq1ÞTV
μ ; ð2:26Þ

and for TV
μ , one can write the decomposition

TV
μ ¼ iϵ�ν2 ðq2Þ

��
gμν −

q1μq1ν
q21

�
pq1HS1ðq21Þ

þ
�
pμ −

pq1
q21

q1μ

�
q1νHS2ðq21Þ

�
: ð2:27Þ

Making use of the electromagnetic current conser-
vation, one finds that the contact terms in TV

μ are
absent due to the relation hVjjj0i ¼ 0. Again, the
singularities at q21 ¼ 0 of the transverse Lorentz
projectors should cancel in the amplitude which is
free from the singularity at q21 ¼ 0, leading to

HS1ð0Þ ¼ −HS2ð0Þ: ð2:28Þ

Then, for the radiative decay q21 ¼ 0, one obtains

hVðq2Þγðq1Þjjj0i ¼ iefBϵ
�μ
1 ϵ�μ2 ðgμνpq1 − pμq1νÞHS;

ð2:29Þ

with HS ¼ HS1ð0Þ. Finally, using charge conserva-
tion QV ¼ QB, we arrive at

Að2Þ
PV ¼ iefBϵ

�μ
1 ϵ�ν2 ðgμνpq1 − pμq1νÞHS

− ifBϵ
�μ
1 ϵ�μ2 gμνQVfVMV: ð2:30Þ

(3) We are ready now to obtain the parity-violating
contribution to the amplitude in the factorization
approximation. First, let us mention that making

use of the charge-conservation QB ¼ QV , the
sum of the separately gauge-noninvariant terms
in (2.20) and (2.30) yields a gauge-invariant
combination

−ieϵ�μ1 ϵ�μ2

�
gμν −

pμq1ν
pq1

�
fBQBfVMV: ð2:31Þ

For the sum Að1Þ
PV þ Að2Þ

PV, we then find an explicitly
gauge-invariant expression

Að1Þ
PVþAð2Þ

PV ¼ ieϵ�μ1 ϵ�ν2 ðgμνpq1−pμq1νÞ

×

�
FA

MB
fVMV þfBHS −

QBfBfVMV

pq1

�
;

ð2:32Þ

such that the parity-violating amplitude of (2.5) is

FPV ¼ ξCKMaeffðμÞ

×

�
FA

MB
fVMV þ fBHS −

2QBfBfVMV

M2
B −M2

V

�
:

ð2:33Þ

B. Parity-conserving amplitude

This amplitude reads

APCðB → VγÞ ¼ −
GFffiffiffi
2

p ξCKMaeffðμÞfhVjd̄γνcj0ihγjūγνbjBi

þ hγVjd̄γνγ5cj0ih0jūγνγ5bjBig∶ ð2:34Þ

(1) The first contribution to the amplitude, correspond-
ing to the photon emission from the B-meson loop,
reads

Að1Þ
PC ¼ hVjd̄γνcj0ihγjūγνbjBi

¼ −eMVfVϵq1ϵ�1q2ϵ�2
FV

MB
; ð2:35Þ

where FV is the form factor describing the B → γ
transition induced by the vector weak current

hγðq1ÞjūγνbjBðpÞi ¼ −eϵq1ϵ�1q2ν
FV

MB
: ð2:36Þ

(2) The second term in (2.34), describing the photon
emission from the vector-meson loop, may be
reduced to the divergence of the axial-vector current.
Making use of the equations of motion (2.21), one
finds
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i∂νðd̄γνγ5cÞ ¼ −j5 þ ðQd −QcÞd̄γνγ5cAν ð2:37Þ

with the scale-independent pseudoscalar current

j5 ¼ ðmd þmcÞd̄γ5c: ð2:38Þ

Taking into account that hVjd̄γνγ5cj0i ¼ 0, we find

Að2Þ
PC ¼ h0jūγνγ5bjBihγVjd̄γνγ5cj0i

¼ fBhγVj∂νðd̄γνγ5cÞj0i
¼ −efBϵq1ϵ�1q2ϵ�2HP; ð2:39Þ

where the form factor HP is defined as

hγðq1ÞVðq2Þjj5j0i ¼ ieϵq1ϵ�1q2ϵ�2HP: ð2:40Þ

(3) Finally, the parity-conserving invariant amplitude of
(2.5) takes the form

FPC ¼ ξCKMaeffðμÞ
�
FV

MB
fVMV þ fBHP

�
: ð2:41Þ

Summing up this section, within the factorization
approximation, the weak-annihilation amplitude may be
expressed in terms of four form factors: FA, FV , HP, and
HS. It should be emphasized that each of the form factors
FA, FV ,HP, andHS actually depends on two variables: The
B-meson transition form factors FA, FV depend on q21 and
q22, and FA;Vðq21; q22Þ should be evaluated at q21 ¼ 0 and
q22 ¼ M2

V . The vector-meson transition form factors HP

and HS depend on q21 and p2, and HS;Pðq21; p2Þ should be
evaluated at q21 ¼ 0 and p2 ¼ M2

B.

III. PHOTON EMISSION FROM THE B-MESON
LOOP AND THE FORM FACTORS FA AND FV

In this section, we calculate the form factors FA;V within
the relativistic dispersion approach to the transition form
factors based on the constituent quark picture. This
approach has been formulated in detail in Ref. [8] and
applied to the weak decays of heavy mesons in Ref. [9].
The pseudoscalar meson in the initial state is described in

the dispersion approach by the following vertex [7]:
q̄1ðk1Þiγ5qð−k2ÞGðsÞ=

ffiffiffiffiffiffi
Nc

p
, with GðsÞ ¼ ϕPðsÞðs −M2

PÞ,
s ¼ ðk1 þ k2Þ2, k21 ¼ m2

1 and k22 ¼ m2
2. The pseudoscalar-

meson wave function ϕP is normalized according to the
relation [7]

1

8π2

Z
∞

ðm1þm2Þ2
dsϕ2

PðsÞðs− ðm1−m2Þ2Þ
λ1=2ðs;m2

1;m
2
2Þ

s
¼ 1:

ð3:1Þ

The decay constant is represented through ϕPðsÞ by the
spectral integral

fP ¼
ffiffiffiffiffiffi
Nc

p Z
∞

ðm1þm2Þ2
dsϕPðsÞðm1 þm2Þ

×
λ1=2ðs;m2

1; m
2
2Þ

8π2s
s − ðm1 −m2Þ2

s
: ð3:2Þ

Here, λða; b; cÞ ¼ ða − b − cÞ2 − 4bc is the triangle
function.
Recall that the form factors FA;V describe the transition

of the B-meson to the photon with the momentum q1,
q21 ¼ 0, induced by the axial-vector (vector) current with
the momentum q2, q22 ¼ M2

V . We derive the double spectral
representations for the form factor in p2 and q22; this allows
us to avoid the appearance of the unphysical polynomial
terms in the amplitudes which otherwise should be killed
by appropriate subtractions.

A. Form factor FA

The form factor FA is given by the diagrams of Fig. 2.

Figure 2(a) shows FðbÞ
A , the contribution to the form factor

of the process when the b-quark interacts with the photon;
Fig. 2(b) describes the contribution of the process when the
quark u interacts while b remains a spectator.
It is convenient to change the direction of the quark line

in the loop diagram of Fig. 2(b). This is done by performing
the charge conjugation of the matrix element and leads to a
sign change for the γνγ5 vertex. Now both diagrams in
Figs. 2(a) and 2(b) are reduced to the diagram of Fig. 3

which defines the form factor Fð1Þ
A ðm1; m2Þ; setting

(b)(a)

γ

γν

μ

γ5i

=
5γi

γμ

γν 5γ

5γ

γ γ5ν

γμ

5γi u

b b

b

u u
u u

b

(   )_

FIG. 2. Diagrams for the form factor FA: a) F
ðbÞ
A and b) FðuÞ

A .

i γν

γμ

k’1 1

m 1

k

m 1

2m
γ5

k

2
γ5

FIG. 3. The triangle diagram for Fð1Þ
A ðm1; m2Þ. The cuts

correspond to calculating the double spectral density in p2

and q22.
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m1 ¼ mb, m2 ¼ mu gives FðbÞ
A , while setting m1 ¼ mu,

m2 ¼ mb gives FðuÞ
A such that

FA ¼ QbF
ðbÞ
A −QuF

ðuÞ
A : ð3:3Þ

For the diagram of Fig. 3 (quark 1 emits the photon, quark 2
is the spectator, and all quark lines are on their mass shell),
the trace reads

− Spðiγ5ðm2 − k̂2Þγνγ5ðm1 þ k̂01Þγμðm1 þ k̂1ÞÞ
¼ 4iðk1 þ k10Þμðm1k2 þm2k1Þν
þ 4iðgμνq1α − gμαq1νÞðm1k2 þm2k1Þα: ð3:4Þ

The double spectral density of the form factor Fð1Þ
A ðm1; m2Þ

in the variables p2, p ¼ k1 þ k2, and q22, q2 ¼ k01 þ k2 is
obtained as the coefficient of the structure gμν after the
integration of the trace over the quark phase space. At
q21 ¼ 0, the double spectral representation for the elastic
form factor is reduced to a single spectral representation,
which is given below.
The easiest was to derive this spectral representation is to

use the light-cone variables [14]. Performing the necessary
calculations, we arrive at the following representation:

1

MB
Fð1Þ
A ðm1;m2Þ¼

ffiffiffiffiffiffi
Nc

p
4π2

Z
dx1dx2dk2⊥

x21x2
δð1−x1−x2Þ

ϕBðsÞ
s−M2

V

×
�
m1x2þm2x1þðm1−m2Þ

2k2⊥
M2

B−M2
V

�
:

ð3:5Þ

Here, xi is the fraction of the B-meson light-cone momen-
tum carried by the quark i, and

s ¼ m2
1

x1
þm2

2

x2
þ k2⊥
x1x2

: ð3:6Þ

This expression may be cast in the form of a single
dispersion integral

1

MB
Fð1Þ
A ðm1; m2Þ ¼

ffiffiffiffiffiffi
Nc

p
4π2

Z
∞

ðm1þm2Þ2
dsϕBðsÞ
ðs −M2

VÞ

×

�
ρþðs;m1; m2Þ þ 2

m1 −m2

M2
B −M2

V
ρk2⊥ðs;m1; m2Þ

�
;

ð3:7Þ
where

ρþðs;m1;m2Þ ¼ ðm2 −m1Þ
λ1=2ðs;m2

1;m
2
2Þ

s

þm1 log

�
sþm2

1 −m2
2þ λ1=2ðs;m2

1;m
2
2Þ

sþm2
1−m2

2− λ1=2ðs;m2
1;m

2
2Þ
�
;

ð3:8Þ

ρk2⊥ðs;m1;m2Þ ¼
sþm2

1−m2
2

2s
λ1=2ðs;m2

1;m
2
2Þ

−m2
1 log

�
sþm2

1−m2
2þ λ1=2ðs;m2

1;m
2
2Þ

sþm2
1 −m2

2− λ1=2ðs;m2
1;m

2
2Þ
�
:

ð3:9Þ
Making use of the light-cone representation (3.5) and the
light-cone representation of the pseudoscalar-meson decay
constant (3.2)

fP¼
ffiffiffiffiffiffi
Nc

p
4π2

Z
dx1dx2dk2⊥

x1x2
δð1−x1−x2Þδ

×

�
s−

m2
1

x1
−
m2

2

x2
−

k2⊥
x1x2

�
ϕPðsÞðm1x2þm2x1Þ ð3:10Þ

and employing the fact that the wave function ϕPðsÞ
is localized near the threshold in the regionffiffiffi
s

p
−mb −mu ≤ Λ̄, it is easy to show that in the limit

mb → ∞ the photon emission from the light quark domi-
nates over the emission from the heavy quark [15],

1

MB
FðuÞ
A ¼ fB

Λ̄mb
þ � � � ; 1

MB
FðbÞ
A ¼ fB

m2
b

þ � � � ð3:11Þ

B. Form factor FV

The consideration of the form factor FV is very similar to
the form factor FA. FV is determined by the two diagrams

shown in Fig. 4. Figure 4(a) gives FðbÞ
V , the contribution of

the process when the b-quark interacts with the photon;
Fig. 4(b) describes the contribution of the process when the
quark u interacts.
It is again convenient to change the direction of the quark

line in the loop diagram of Fig. 4(b) by performing the
charge conjugation of the matrix element. For the vector
current γν in the vertex, the sign does not change (in
contrast to the γνγ5 case considered above). Then, both
diagrams in Figs. 4(a) and 4(b) are reduced to the diagram

of Fig. 5 which gives the form factor Fð1Þ
V ðm1; m2Þ; setting

m1 ¼ mb, m2 ¼ mu gives FðbÞ
V , while setting m1 ¼ mu,

m2 ¼ mb gives FðuÞ
V such that

FV ¼ QbF
ðbÞ
V þQuF

ðuÞ
V : ð3:12Þ

γ

γν

μ

γ5i

=
γν

γμ

5γi 5γi

γμ

γν

(+)

(b)(a)

b b

u

b

u u
u u

b

FIG. 4. Diagrams for the form factor FV : a) F
ðbÞ
V and b) FðuÞ

V .
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The trace corresponding to the diagram of Fig. 4 (1—active
quark, 2—spectator) reads

−Spðiγ5ðm2 − k̂2Þγνðm1 þ k̂01Þγμðm1 þ k̂1ÞÞ
¼ 4ϵμq1ναðm1k2 þm2k1Þα:

The light-cone representation of the form factor corre-
sponding to Fig. 5 takes the form

1

MB
Fð1Þ
V ðm1; m2Þ ¼ −

ffiffiffiffiffiffi
Nc

p
4π2

Z
dx1dx2dk2⊥

x21x2
δð1 − x1 − x2Þ

×
ϕBðsÞ
s −M2

V
ðm1x2 þm2x1Þ; ð3:13Þ

which may be written as a single spectral integral,

1

MB
Fð1Þ
V ðm1;m2Þ¼−

ffiffiffiffiffiffi
Nc

p
4π2

Z
∞

ðm1þm2Þ2
dsϕBðsÞ
ðs−M2

VÞ
ρþðs;m1;m2Þ:

ð3:14Þ
The function ρþðs;m1; m2Þ is given in (3.8). In the heavy-
quark limit mb → ∞, one finds

1

MB
FðuÞ
V ¼ −

fB
Λ̄mb

þ � � � ; 1

MB
FðbÞ
V ¼ −

fB
m2

b

þ � � �

ð3:15Þ

The dominant contribution in the heavy-quark limit again
comes from the process when the light quark emits the
photon. As seen from Eqs. (3.11) and (3.15), one finds
FA ¼ FV in the heavy-quark limit, in agreement with the
large-energy effective theory [16].

IV. PHOTON EMISSION FROM THE VECTOR-
MESON LOOP. THE FORM FACTORS HS AND HP

We now calculate the form factors HP;S using the
relativistic dispersion approach. The vector meson in the
final state is described in this approach by the vertex

q̄2ð−k2ÞΓβq1ðk10Þ, Γβ ¼ ð−γβ þ ðk1 0−k2Þβffiffi
s

p þm1þm2
ÞGðsÞ= ffiffiffiffiffiffi

Nc
p

,

with GðsÞ ¼ ϕVðsÞðs −M2
VÞ, s ¼ ðk01 þ k2Þ2, k021 ¼ m2

1,
and k22 ¼ m2

2. The vector-meson wave function ϕV is
normalized according to [8]

1

8π2

Z
∞

ðm1þm2Þ2
dsϕ2

VðsÞðs− ðm1−m2Þ2Þ
λ1=2ðs;m2

1;m
2
2Þ

s
¼ 1:

ð4:1Þ

Its decay constant is represented through ϕVðsÞ by the
spectral integral

fV ¼
ffiffiffiffiffiffi
Nc

p Z
∞

ðm1þm2Þ2
dsϕVðsÞ

×
2

ffiffiffi
s

p þm1 þm2

3

λ1=2ðs;m2
1; m

2
2Þ

8π2s
s − ðm1 −m2Þ2

s
:

ð4:2Þ

Now, the form factors HS;P describe the transition of the
current with momentum p, p2 ¼ M2

B, to the photon with
momentum q1, q21 ¼ 0, and the vector meson with the
momentum q2, q22 ¼ M2

V . Similar to the previous section,
we derive the double spectral representations for the form
factor in p2 and q22.

A. Form factor HS

The form factor HS is given by the diagrams of Fig. 6.

Figure 6(a) shows HðdÞ
S , the contribution to the form factor

of the process when the d-quark interacts with the photon;
Fig. 6(b) describes the contribution of the process when the
quark u interacts while d remains spectator.
Changing the direction of the quark line in the loop

diagram of Fig. 6(b) leads to a sign change for the scalar
current j ¼ ðmc −mdÞd̄c in the vertex, such that both
diagrams in Figs. 6(a) and 6(b) are reduced to the diagram

of Fig. 7 which defines the form factor Hð1Þ
S ðm1; m2Þ;

setting m1 ¼ md, m2 ¼ mc gives HðdÞ
S , while setting

m1 ¼ mc, m2 ¼ md gives HðcÞ
S such that

HS ¼ QdH
ðdÞ
S −QcH

ðcÞ
S : ð4:3Þ

For the diagram of Fig. 7 (quark 1 emits the photon, quark 2
is the spectator, and all quark lines are on their mass shell),
the trace for q21 ¼ 0 reads

k’

γν

γμ

1 1
k

m 1 m 1

m 2

2k
iγ5

FIG. 5. The triangle diagram for Fð1Þ
V ðm1; m2Þ. The cuts

correspond to calculating the double spectral density in p2

and q22.

β

(   )_

d

cc

Γ

(m −m )

(m −m ) γμ

c c

c
Γβ

(m −m )

(a)

γμ

d d

c βΓ

(b)

γμ

=
c d

dc

cd

FIG. 6. Diagrams for the form factor HS: a) H
ðdÞ
S and b) HðcÞ

S .
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−Spððm1þ k̂01Þγμðm1þ k̂1Þðm2− k̂2ÞΓβÞ¼−4ðk1þk10Þμ
× ðm1k2−m2k1Þβ−4ðgμβqα−gμαqβÞðm1k2−m2k1Þα
þ2

ðk01−k2Þβffiffiffi
s

p þm1þm2

ðk1þk10Þμðs− ðm1þm2Þ2Þ: ð4:4Þ

The double spectral density of Hð1Þ
S ðm1; m2Þ in p2,

p ¼ k1 þ k2, and q22, q2 ¼ k01 þ k2, is obtained as the
coefficient of the structure gμν after the integration of the
trace over the quark phase space. The light-cone repre-
sentation for the form factor reads

Hð1Þ
S ðm1; m2Þ ¼

ffiffiffiffiffiffi
Nc

p
4π2

Z
dx1dx2dk2⊥

x21x2
δð1 − x1 − x2Þ

×
ϕVðsÞ

s − p2 − i0
ðm2 −m1Þ

�
m1x2 −m2x1 þ

2k2⊥
ffiffiffi
s

p
p2 −M2

V

�
;

ð4:5Þ

with s given in terms of x1;2 and k2⊥ by (3.6). The
corresponding single dispersion integral has the form

Hð1Þ
S ðm1;m2Þ ¼

ffiffiffiffiffiffi
Nc

p
4π2

Z
∞

ðm1þm2Þ2
dsϕVðsÞ

ðs−p2− i0Þ ðm2 −m1Þ

×

�
ρþðs;m1;−m2Þþ

2
ffiffiffi
s

p
p2−M2

V
ρk2⊥ðs;m1;m2Þ

�
; ð4:6Þ

where ρþðs;m1; m2Þ and ρk2⊥ðs;m1; m2Þ were determined
earlier in (3.8) and (3.9).
The light-cone representation (4.5) allows us to obtain

the behavior of the form factor in the limitmQ → ∞ for the
heavy-light vector meson Q̄q (and assuming p2 ∼m2

Q),

HðqÞ
S ∝ fV=Λ̄; HðQÞ

S ∝ fV=mQ; ð4:7Þ

but one expects a strong numerical suppression because of
the partial cancellation of the leading-order contributions.

B. Form factor HP

The form factor HP is determined by the two diagrams

shown in Fig. 8: Fig. 8(a) gives HðdÞ
P , the contribution of

the process when the d-quark interacts with the photon;

Fig. 8(b) describes the contribution of the process when the
c-quark interacts.
We again change the direction of the quark line in the

loop diagram of Fig. 8(b) by performing the charge
conjugation of the matrix element. For the pseudoscalar
current ðmc þmdÞd̄γ5c in the vertex, the sign does not
change, and both diagrams in Figs. 8(a) and 8(b) are
reduced to the diagram of Fig. 9 which gives the form factor

Hð1Þ
P ðm1; m2Þ; settingm1 ¼ md,m2 ¼ mc givesH

ðdÞ
P , while

setting m1 ¼ mc, m2 ¼ md gives HðcÞ
P such that

HP ¼ QdH
ðdÞ
P þQcH

ðcÞ
P : ð4:8Þ

The trace corresponding to the diagram of Fig. 9 (1—active
quark, 2—spectator) reads

−Spððm1 þ k̂01Þγμðm1 þ k̂1Þγ5ðm2 − k̂2ÞΓβÞ

¼ 4iϵμq1βq2ðm1k2 þm2k1Þα þ 4iϵμq1αq2
k2αðk10 − k2Þβffiffiffi
s

p þm1 þm2

:

The light-cone representation of the form factor corre-
sponding to the diagram of Fig. 5 takes the form

Hð1Þ
P ðm1;m2Þ ¼

ffiffiffiffiffiffi
Nc

p
4π2

Z
dx1dx2dk2⊥

x21x2
δð1− x1 − x2Þ

ϕVðsÞ
s−p2− i0

ðm1þm2Þ
�
m1x2þm2x1þ

k2⊥ffiffiffi
s

p þm1þm2

�
;

ð4:9Þ

which may be written as a single spectral integral,

m Γ
1

2

β
(m −m )

γμ

k’1 1k
m 1

k2

m

2 1

FIG. 7. The triangle diagram for Hð1Þ
S ðm1; m2Þ.

d

γμ

d d

c βΓ γμ

d

cc

Γβγ
5 μ

c c

Γβ
(m +m )γ

5γ
5

(m +m )
(+)=

(m +m )

(b)(a)

γ

dcc

c d

d

FIG. 8. Diagrams for the form factor HP: a) H
ðdÞ
P and b) HðuÞ

P .

m Γγ5
(m +m )

1

2

β

γμ

k’1 1k
m 1

k2

m

1 2

FIG. 9. The triangle diagram for Hð1Þ
P ðm1; m2Þ. The cuts

correspond to calculating the double spectral density in p2

and q22.
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Hð1Þ
P ðm1; m2Þ ¼

ffiffiffiffiffiffi
Nc

p
4π2

Z
∞

ðm1þm2Þ2
dsϕVðsÞ

ðs − p2 − i0Þ ðm1 þm2Þ

×

�
ρþðs;m1; m2Þ þ

ρk2⊥ffiffiffi
s

p þm1 þm2

�
;

ð4:10Þ

with ρþðs;m1; m2Þ and ρk2⊥ given in (3.8) and (3.9).
The light-cone representation (4.9) leads to the following

large-mQ behavior of HðQ;qÞ
P for the heavy-light vector

meson Q̄q:

HðqÞ
P →

fV
Λ̄

m2
Q

m2
Q − p2

; HðQÞ
P →

fVmQ

m2
Q − p2

: ð4:11Þ

For the B decays of interest, we need the value of the form
factors HP;Sðp2; q21 ¼ 0Þ at p2 ¼ M2

B, which lies above the
threshold ðmc þmqÞ2. The spectral representations for
HP;Sðp2 ¼ M2

BÞ develop the imaginary parts which occur
due to the quark-antiquark intermediate states in the p2-
channel. It should be emphasized that no anomalous cuts
emerge in the double spectral representation at q21 ≤ 0 [17].
In all cases considered in this paper, the value of p2 ¼ M2

B
lies far above the region of resonances which occur in the
quark-antiquark channel. Far above the resonance region,
local quark-hadron duality works well, and the calculation
of the imaginary part based on the quark diagrams is
trustable. The imaginary part turns out to be orders of
magnitude smaller than the real part of the form factor and
for the practical purpose of the decay-rate calculation may
be safely neglected.

V. NUMERICAL RESULTS

The derived spectral representations for the form factors
allow one to obtain numerical predictions for the form
factors of interest as soon as the parameters of the model—
the meson wave functions and the quark masses—are fixed.

A. Parameters of the model

The wave function ϕiðsÞ, i ¼ P;V can be written as

ϕiðsÞ ¼
πffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − ðm2

1 −m2Þ2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − ðm1 −mÞ2

p wiðk2Þ
s3=4

;

k2 ¼ λðs;m2
1; m

2Þ=4s; ð5:1Þ

with wiðk2Þ normalized as follows:

Z
w2
i ðk2Þk2dk ¼ 1: ð5:2Þ

The meson weak transition form factors from the disper-
sion approach reproduce correctly the structure of the

heavy-quark expansion in QCD for heavy-to-heavy and
heavy-to-light meson transitions, as well as for the meson-
photon transitions, if the radial wave functions wðk2Þ are
localized in a region of the order of the confinement scale,
k2 ≤ Λ2 [8].
Following Ref. [9], we make use of a simple Gaussian

parametrization of the radial wave function

wiðk2Þ ∝ expð−k2=2β2i Þ; ð5:3Þ

which satisfies the localization requirement for β≃ ΛQCD
and proves to provide a reliable picture of a large family of
the transition form factors [9].
In Ref. [9], we fixed the parameters of the quark model—

constituent quark masses and the wave-function parameters
βi of the Gaussian wave functions—by requiring that the
dispersion approach reproduces (i) meson decay constants
and (ii) some of the well-measured lattice QCD results for
the form factors at large q2. The analysis of Ref. [9]
demonstrated that a simple Gaussian ansatz for the radial
wave functions allows one to reach this goal (to great extent
due to the fact that the dispersion representations satisfy
rigorous constrains fromnonperturbativeQCD in the heavy-
quark limit).With these fewmodel parameters, Ref. [9] gave
predictions for a great number of weak-transition form
factors in the full kinematical q2-region of weak decays;
these results were shown to agree with the available results
from lattice QCD and QCD sum rules within 10% accuracy
in the full q2-region. We therefore assign a 10% uncertainty
to our form-factor estimates in this work.
We use here the same values of the constituent quark

masses as obtained in Ref. [9]:

md ¼ mu ¼ 0.23 GeV; ms ¼ 0.35 GeV;

mc ¼ 1.45 GeV; mb ¼ 4.85 GeV: ð5:4Þ

With the quark masses (5.4) and the meson wave-function
parameters β quoted in Table I, the decay constants from
our dispersion approach reproduce the best-known decay
constants of pseudoscalar and vector mesons also summa-
rized in Table I.

B. B → γ and γ → V form factors

Before turning to the numerical estimates, let us empha-
size that, as obvious from (3.11),(3.15), (4.11), and (4.7),
the photon emission from the V-loop and from the B-loop
have the same scaling behavior in the heavy-quark limit.
Therefore, a priori, there is no valid reason to neglect the
V-loop contributions. We shall see that indeed the photon
emission from the vector-meson loop gives the contribution
of a similar size as the photon emission from the B-meson
loop. Our numerical estimates for the necessary form
factors are summarized in Tables II and III.
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C. Decay rates

We have now everything for the calculation of the
amplitudes and the decay rates. We consider several
annihilation-type B decays which have the highest prob-
abilities; the weak-annihilation quark diagrams which
induce these decays are shown in Fig. 10.
The corresponding FPC and FPV and the decay rates are

summarized in Table IV. To highlight the contribution to
the amplitudes coming from the photon emission from the
V-meson loop, we multiply it by a coefficient r which is set
to unity in the decay-rate calculations. Obviously, for some
modes, the photon emission from the vector-meson loop is
comparable or even exceeds the photon emission from the
B-meson loop and thus should be taken into account.
For the scale-dependent Wilson coefficients CiðμÞ and

a1;2ðμÞ at the renormalization scale μ≃ 5 GeV, we use

the following values [12]: C1 ¼ 1.1, C2 ¼ −0.241,
a1 ¼ C1 þ C2=Nc ¼ 1.02, and a2 ¼ C2 þ C1=Nc ¼ 0.15.
Similar values are used for numerical estimates in
Ref. [5]: e.g., for BðsÞ → J=ψγ decay, a2 ¼ 0.15 in our
analysis corresponds to the effective Wilson coeffi-
cient āq ¼ 0.163.

VI. DISCUSSION AND CONCLUSIONS

We have analyzed the annihilation-type radiative B
decays in the naive factorization approximation, taking
into account both the photon emission from the B-meson
loop and the vector-meson loop (V-loop). The latter
contribution was not taken into account in all previous
analyses and is therefore the novel feature of this paper. We
have shown that, in general, the photon emission from the
V-loop is not suppressed compared to the photon emission
from the B-loop and gives a comparable contribution. Our
main results are as follows:

(i) We calculated the form factors FA and FV describing
the photon emission from the B-loop and the form
factors HP and HS describing the photon emission
from the V-loop, making use of the relativistic
dispersion approach based on the constituent quark
picture. The form factors from this method satisfy all

TABLE I. Meson masses from Ref. [18], leptonic decay constants, and the corresponding wave-function parameters β [19].

B Bs D� D�
s J=ψ

M (GeV) 5.279 5.370 2.010 2.11 3.097
f (MeV) 192� 8 [20] 226� 15 [20] 248� 2.5 [21] 311� 9 [21] 405� 7 [18,22]
β (GeV) 0.565 0.62 0.48 0.54 0.68

TABLE II. The form factors FAðM2
VÞ and FVðM2

VÞ describing the B → γ and Bs → γ transition for V ¼ J=ψ ; D�
s ; D�.

Bs → γ M2
V ¼ M2

ψ M2
V ¼ M2

D�
s

M2
V ¼ M2

D� B → γ M2
V ¼ M2

ψ M2
V ¼ M2

D�
s

M2
V ¼ M2

D�

FðbÞ
V ðM2

VÞ −0.060 −0.048 −0.046 FðbÞ
V ðM2

VÞ −0.054 −0.044 −0.043

FðsÞ
V ðM2

VÞ −0.410 −0.328 −0.322 Fðu;dÞ
V ðM2

VÞ −0.388 −0.316 −0.310

FðbÞ
A ðM2

VÞ 0.074 0.059 0.058 FðbÞ
A ðM2

VÞ 0.066 0.052 0.050

FðsÞ
A ðM2

VÞ 0.324 0.279 0.276 Fðu;dÞ
A ðM2

VÞ 0.304 0.268 0.264

TABLE III. The form factors HPðp2Þ and HSðp2Þ, describing the γ → V transition (V ¼ J=ψ ; D�
s ; D�) for p2 ¼ M2

B. The difference
between the form factors at p2 ¼ M2

B and p2 ¼ M2
Bs

is negligible and may be safely ignored. One finds ImHP;VðM2
BÞ ≪ ReHP;VðM2

BÞ,
and thus ImHP;VðM2

BÞ may be safely neglected for the decay-rate calculations.

γ → J=ψ γ → D�
s (q ¼ s) γ → D� (q ¼ u; d

p2 ¼ M2
B p2 ¼ M2

Bs
p2 ¼ M2

B p2 ¼ M2
Bs

p2 ¼ M2
B p2 ¼ M2

Bs

HðcÞ
P ðM2

BÞ −0.196 −0.183 −0.044 −0.042 −0.032 −0.030

HðqÞ
P ðM2

BÞ … … −0.096 −0.092 −0.081 −0.078

HðcÞ
S ðM2

BÞ 0 0 0.016 0.015 0.014 0.013

HðqÞ
S ðM2

BÞ … … −0.007 −0.006 −0.002 −0.001

sc

cs

b bc c

cd d u cu

bb

(a) (b) (c) (d)

FIG. 10. Four-quark operators inducing the annihilation B
decays listed in Table IV. (a) B̄0

s → J=ψγ; (b) B̄0
d → J=ψγ;

(c) B̄0
d → D�0γ; (d) B− → D�−

s γ.
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rigorous constraints from QCD in the heavy-quark
limit for heavy-to-heavy, heavy-to-light, and heavy-
meson-photon transition form factors. The numeri-
cal parameters of the model such as the effective
constituent quark masses and the nonperturbative
meson wave functions have been fixed in Ref. [9]
by fitting to well-known leptonic decay constants
of heavy mesons and a few well-measured form
factors from lattice QCD. The predictions from the
dispersion approach to the transition form
factors were then tested in many B and D decays
and agree quite well with the available results
from lattice QCD and QCD sum rules with the
accuracy of a few percent [7]. So, we assign a 10%
uncertainty in the decay rate related to the form-
factor uncertainties.
We emphasize that the photon emission from the

V-loop has no parametric suppression compared to
the photon emission from the B-loop and therefore
cannot be neglected. Moreover, the numerical im-
pact of the photon emission from the V-loop is
substantial; for instance, in the case of the B̄s →
J=ψγ decay, taking into account the photon emission
from both s- and b-quarks in the B-loop and the
photon emission from the V-loop leads to a strong
60% suppression of the decay rate compared to the
result based on merely the photon emission by the
light quark of the B-meson.

(ii) Making use of our results for the form factors and
employing naive factorization for the complicated
amplitudes of the four-quark operators, we obtain
predictions for the annihilation-type decays with the
largest branching fractions:

BðB̄0
s → J=ψγÞ ¼ 1.43 × 10−7

�
a2
0.15

�
2

; ð6:1Þ

BðB̄0
d → J=ψγÞ ¼ 7.54 × 10−9

�
a2
0.15

�
2

; ð6:2Þ

BðB̄0
d → D0�γÞ ¼ 4.33 × 10−8

�
a2
0.15

�
2

; ð6:3Þ

BðB− → D̄�−
s γÞ ¼ 1.68 × 10−7

�
a1
1.02

�
2

: ð6:4Þ

We would like to emphasize a relatively large
branching ratio of the B̄− → D̄�−

s γ decay which
makes this mode a prospective candidate for the
experimental studies in the near future.

(iii) Uncertainties in our predictions listed above come
from the two sources: (a) as just mentioned above,
an approximate model for the form factors which
yields an error in the decay rate at the level of 10%–
15% and (b) naive factorization of the complicated
four-quark operators. The accuracy of the naive
factorization for the decay rates may be probed to
some extent by variations of the scale μ in the scale-
dependent Wilson coefficients CiðμÞ (recall that the
amplitudes APV and APC are scale independent).
Another way to access the size of the nonfactoriz-
able corrections was indicated in Ref. [3], where the
nonfactorizable corrections in heavy-to-heavy radi-
ative decays have been related to nonfactorizable
corrections in the B − B̄ oscillations. The latter
have been found to be at the level of a few percent
[23]. On the basis of these arguments, one does not
expect corrections to factorization larger than
5%–10%. We therefore assign here a 10% uncer-
tainty to the branching ratios related to nonfactor-
izable contributions.

In view of this argument, huge negative correc-
tions to factorization in B0

s → J=ψγ reported in
Ref. [5], which lead to a suppression of the decay
rate by almost a factor 30, seem unrealistic. The
correction to naive factorization in Ref. [5] has been
calculated within the formalism of Ref. [24]. Refer-
ence [5] reported a strong cancellation between the
factorizable contribution and the radiative correction
calculated using QCD factorization [24]. However,
the authors of Ref. [5] have not taken into account
several other contributions to the amplitude (e.g., the
photon emission from the charm loop). Therefore,
the huge reduction of the branching ratio reported in
Ref. [5] does not seem to us trustable, and the
analysis of nonfactorizable effects should be revised.
Reference [5] reports also the branching ratios
based on factorization approximation; however,
the factorization results of Ref. [5] neglect several
effects (photon emission from the heavy quark of the
B-loop and photon emission from the V-loop) which

TABLE IV. The amplitudes and the branching ratio for the annihilation-type decay of B and Bs.

Reaction CKM factor FPC (GeV) FPV (GeV) Br

B̄0
s → J=ψγ a2VcbV�

cs 0.036 − 0.052r 0.020 1.43 × 10−7ð a2
0.15Þ2

B̄0
d → J=ψγ a2VcbV�

cd 0.035 − 0.050r 0.021 7.54 × 10−9ð a2
0.15Þ2

B̄0
d → D�0γ a2VcbV�

ud 0.012 − 0.014r 0.007þ 0.002r 4.33 × 10−8ð a2
0.15Þ2

B− → D�−
s γ a1VubV�

cs −0.025þ 0.001r −0.014þ 0.002r 1.68 × 10−7ð a1
1.02Þ2
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lead to a visible suppression of the branching ratio.
So we also do not confirm the factorization results of
Ref. [5].
Reference [6] reported another estimate for B̄s →

J=ψγ based on naive factorization, neglecting the
photon emission from the V-loop.1 However, the
huge form factors FA;V reported in Ref. [6] clearly
contradict the results from the large-energy effective
theory [13,15], and therefore the results of Ref. [6]
cannot be trusted.

In conclusion, we believe that in comparison with the
existing estimates [5,6] credit should be given to our
results. First, we take into account those contributions

which have been neglected in Refs. [5,6] but which are
shown to give sizeable contributions to the amplitude.
Second, our calculation of the form factors is based on a
more detailed model for the B-meson structure than the
models employed in Refs. [5,6]. Taking into account the
uncertainties mentioned above (the scale in the Wilson
coefficients, making use of the factorization approximation
for the weak-annihilation amplitude, and uncertainties in
the form factors), we estimate the accuracy of our theo-
retical predictions for the branching ratios (6.1)–(6.4) to be
at the level of 20%.
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