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The quark propagator is studied under a truncation scheme beyond the rainbow approximation by
dressing the quark-gluon vertex nonperturbatively. It is found that, in the chiral limit with dynamical
symmetry breaking, the dynamical quark mass and the quark condensate are significantly enhanced due to
the non-Abelian contribution arising from the three-gluon interaction compared to those under the rainbow
approximation, and the critical strength of the dynamical chiral symmetry breaking is much lowered. The
Abelian contribution is much smaller than the non-Abelian contribution. A technical issue on removing the
ultraviolet divergences, including the overlapping divergences, is discussed.
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I. INTRODUCTION

Understanding nonperturbative phenomena of QCD,
such as the dynamical chiral symmetry breaking (DCSB),
confinement, and the low-lying hadrons spectra, is one of the
most challenging tasks in theoretical physics. Continuous
efforts have been made in this area. The quark propagator, a
basic ingredient of QCD, has close connections to these
nonperturbative phenomena (the dynamical generation
of the running quark mass from a chiral symmetric
Lagrangian indicates DCSB, confinement related to the
analytic property of the quark propagator, and the quark
propagator that plays an important part through the wave
functions for hadrons) and thus deserves a nonperturbative
investigation. The Dyson-Schwinger equations (DSEs) are
fundamental coupled integral equations for the Green
functions of the underlying quantum field theory, and thus
provide a natural way for such a study.
The DSE for the quark propagator is usually called the

gap equation. It involves the gluon propagator and the
quark-gluon vertex (QGV) as parts of the integrand. A
typical approximation to truncate the DSEs that has been
extensively employed is the rainbow approximation (RA),
which replaces the quark-gluon vertex (QGV) with the bare
one γμ (with a color matrix) [1–8]. In some of these works,
the Bethe-Salpeter equation (BSE) under the ladder
approximation, which, together with the rainbow approxi-
mation, forms a chiral symmetry preserving truncation of
the DS-BS equations, was taken to study meson properties.
In spite of the achievements that have been made with the
rainbow(-ladder) approximation, the need of going beyond

the rainbow (BR) approximation has already been recog-
nized [9,11–13]. Indeed, since the full quark-gluon vertex
includes 12 independent form factors embodying the
dynamical information of the underlying theory, replacing
the full vertex with γμ implies loss of this dynamical
information. Especially the gluon self-interaction contri-
butions (to the quark-gluon vertex), which characterize the
non-Abelian feature of QCD, will be lost if one takes the
rainbow approximation (the vertex would be the same up to
a color matrix for QED and QCD under the RA).
Going beyond the rainbow approximation can be done

either by using the gauge invariance (and other constraints)
to constrain the fermion-gauge-boson vertex and modeling
it, or by dressing the vertex according to its own equation.
The former method was first developed in QED by
applying the Ward-Takahashi identity (WTI) to construct
the fermion-gauge-boson vertex in terms of the fermion
propagator. The BC vertex [14] and the CP vertex [15]
formed in this manner are extensively applied [16–21]. For
QCD, the Slavnov-Taylor identity (STI) for the QGV,
which also involves the ghost propagator and the ghost-
quark scattering kernel, is used to model the quark-gluon
vertex [22–24]. These identities only constrain the longi-
tudinal part of the fermion-gauge-boson vertex, while
the transverse part cannot be totally fixed. So along this
direction, further efforts have been made [25,26]. The
vertices modeled in this manner, reflect the symmetries
and/or other physical requirements; however, how the
dynamics of the underlying theory dresses the vertex is
hard to be traced. For example, in a non-Abelian theory,
how the gauge boson’s self-interaction affects the dressed
fermion-gauge-boson vertex is hidden. Another method,
dressing the vertex by using its own equation, offers an
opportunity to discuss this kind of issue. In QCD, the QGV
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satisfies its own DSEs and the equation of motion [27]. In a
certain sense of loop expansion, where the propagators are
all fully dressed (the situation about the vertices in the
expansion are complicated and will be specified in the next
section), the three-gluon interaction comes into the dressed
QGVat a one loop level as the “next order correction” to the
bare vertex, thus providing a good opportunity to directly
test the effects of this non-Abelian type interaction.
Another correction comes from a loop diagram including
only the quark-gluon vertices. Because this type of diagram
also appears in the Abelian theory-QED, the corresponding
diagram is referred as the Abelian diagram. On the other
hand, the diagram including the three-gluon vertex is called
the non-Abelian diagram. Comparison of the non-Abelian
diagram and the Abelian diagram’s contributions makes it
possible to dig the differences in the gap equation between
the non-Abelian and the Abelian theory.
The method, i.e., going beyond the rainbow approxima-

tion by dressing the QGV according to its own equation,
has already drawn some attentions [9–12,27,28]. In
Ref. [9], the authors employed a truncation scheme based
on Refs. [29,30] and took the Munczek-Nemirovsky model
[31] for the gluon propagator, which is proportional to a
Delta function in the momentum space. In such a model,
they can iterate the QGV, which is a good aspect for using
the MN model, but they can only calculate the Abelian
contribution directly, and they took the non-Abelian con-
tribution into account by rescaling the Abelian part.
However, it is the non-Abelian contribution that gives
the dominant correction to the QGV [12,28], and the
rescaling procedure ignored the difference between the
kinematics dependence of the non-Abelian part and that
of the Abelian part of the QGV. A direct calculation of the
non-Abelian contribution is desired and was made in
Refs. [11,12] with a Gaussion type interaction model.
Those works were more focused on meson observables
rather than the DCSB. Besides, the model they used does
not respect the ultraviolet (UV) behavior of QCD. It is the
major purpose of this work to investigate the impacts of
dressing the QGV on the quark propagator and the DCSB
(such as consequences on the dynamical quark mass
generation, the quark condensate, the critical strength of
symmetry breaking, and so on). We are more concentrated
on the dominant non-Abelian contribution arising from
the three-gluon self-interaction, while a comparison to the
Abelian contribution is also made. Another important non-
Abelian type interaction, the four-gluon interaction, comes
into the dressed QGVat the two loop level. In this work, we
ignored contributions from two and higher loops, so the
four-gluon interaction is ignored. To specify, we invoke the
equation of motion for the QGV to dress it and make a
truncation beyond the rainbow approximation. For the
problem to be tractable, the gluon propagator is treated
as an input and modeled respecting its UV behavior. We
have found that the three-gluon interaction in the QGV

makes significant contributions to the dynamical generated
the quark mass; meanwhile, the critical strength of DCSB
is overestimated under the rainbow approximation. These
results imply that the non-Abelian effects can not be
ignored in the dynamical symmetry breaking and employ-
ing approximation that drops the non-Abelian feature in
QCD may cause large errors.
We also address a technical issue in this work: the

renormalization of the gap equation with a dressed QGV.
For the method we use, two-loop integrals appear in the gap
equation, which generate the overlapping divergences, so it
is not a trivial task and deserves a detailed discussion.
References [9] used a Delta function type model for the
gluon propagator and Refs. [11,12] used a Gaussion type
model, so both of them are free from the UV divergence;
meanwhile, both do not respect the UV behavior of QCD.
Since the asymptotically freedom is a significant feature
of QCD, for completeness, this feature should be realized in
a realistic model. In this work, we take a model for the
gluon propagator respecting its leading log order UV
behavior. Quite recently, several papers [32–34] appeared
and improved the studies made in Refs. [11,12] in several
aspects including that the UV behavior of the gluon
propagator is restored.
This paper is organized as follows. In Sec. II, we develop

a beyond-the-rainbow truncation scheme which deals with
the overlapping divergence in the gap equation properly. In
Sec. III, we solve the gap equation numerically and explore
the impacts of going beyond the RA. A summary is given in
the last section.

II. THE GAP EQUATION BEYOND THE
RAINBOW APPROXIMATION

In this section, we illustrate the beyond-the-rainbow
scheme we used for the gap equation. The final result is
expressed in Eq. (26). It picks up the contributions from the
three-gluon interaction, and the overlapping divergences
are properly removed. The overlapping divergence is well
treated in the perturbation theory; however, for the non-
perturbative integral equations, it has not been discussed in
detail. In the perturbation theory, up to a given order, the
counter terms (or the renormalization constants) always
exactly match the need to cancel the divergences; for the
nonperturbative equations, this is not always the case. For
example, the equation employed in Ref. [11] has more
renormalization constants than needed if they were using an
interaction model that can generate UV divergences. The
QGV satisfies several different forms of equations carrying
different types and numbers of the renormalization con-
stants, so the equation and the truncation scheme should be
chosen carefully so as to make the renormalization con-
stants exactly absorb all the UV divergences. Otherwise,
either the divergences are not totally canceled, or the QGV
becomes the bare one again (this point will be illustrated in
detail later).
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In this context, we use the phrase “truncation scheme”
differently from its usual sense. Usually, a truncation
scheme is a systematic way to truncate the DS equations,
which allows an “order by order improvement” to a present
truncation. In this work, we use the phrase “truncation
scheme” (or “beyond-the-rainbow scheme") to emphasize
that there are various ways to make a truncation beyond
the rainbow approximation, and each way is referred as a
“scheme”.

A. The gap equation

The gap equation reads1

δαγSðp; μÞ−1 ¼ Z2ðμ;ΛÞδαγðipþmbðΛÞÞ

þ Z1Fðμ;ΛÞ
Z

Λ d4q
ð2πÞ4 gðμÞγμT

i
αβ

× Sðq; μÞGμνðp − q; μÞgðμÞΓi
ν;βγðp; q; μÞ;

ð1Þ

where the quark propagator δαβSðp; μÞ, the gluon propa-
gator δαβGμνðp; μÞ, the quark-gluon vertex Γi

ν;αβðp; q; μÞ,
and the strong coupling gðμÞ are all renormalized quan-
tities; μ is the renormalization point, and Λ is an UV cutoff
to regularize the theory. α, β, γ ¼ 1, 2, 3 are color indices of
the fundamental representation, and the superscript i is
the color index of the adjoint representation of the color
SU(3) group; Ti is the generator. mbðΛÞ is the bare quark
mass. Z2 and Z1F are the renormalization constants of the
quark field and quark-gluon vertex, respectively. The
renormalization constant for the quark mass Zm will appear
if we express the equation with the renormalized mass
mðμÞ. It is defined as Z2ðμ;ΛÞmbðμ;ΛÞ ¼ Z4ðμ;ΛÞmðμÞ ¼
Z2ðμ;ΛÞZmðμ;ΛÞmðμÞ, where the renormalization constant
Z4 has been introduced. The gap equation can be expressed
diagrammatically as shown in Fig. 1.
After taking the trace over the color SU(3) space, we

have

Sðp; μÞ−1 ¼ Z2ðμ;ΛÞðipþmbðΛÞÞ þ Σðp; μ;ΛÞ;

Σðp; μ;ΛÞ ¼ Z1Fðμ;ΛÞCF

Z
Λ d4q
ð2πÞ4 gðμÞγμSðq; μÞ

×Gμνðp − q; μÞgðμÞΓνðp; q; μÞ; ð2Þ

where Γi
ν;αβðp; q; μÞ ¼ Ti

αβΓνðp; q; μÞ has been used. The

constant CF ¼ N2
c−1
2Nc

, where Nc ¼ 3 is the color number.
The quark propagator can be written as

Sðp; μÞ ¼ Zðp2; μ2Þ
ipþMðp2Þ ;

with Mðp2Þ called the running quark mass function.

B. The equation for the quark-gluon vertex

The quark-gluon vertex satisfies its own DS equation,
which can be formulated in several different ways [27].
One can also derive an equation of motion for the QGV
from a three-particle irreducible (3PI) effective action [36].
In principle, one may choose any of them to dress the QGV,
and of course, they all need to be truncated in practice. For
example, in the self-consistent three-loop approximation of
the three-point irreducible effective action, the equation for
the QGV reads (see Fig. 2)

Γνðp; qÞ ¼ Z1Fγν þ Λ̄A
ν ðp; qÞ þ Λ̄NA

ν ðp; qÞ; ð3Þ
where

Λ̄A
ν ðp;qÞ¼

g2

2Nc

Z
d4k
ð2πÞ4ΓβSðq−pþkÞΓνSðkÞΓαGαβðp−kÞ;

ð4Þ

Λ̄NA
ν ðp; qÞ ¼ iNcg2

2

Z
d4k
ð2πÞ4 Gασðp − kÞ

× Γ3g
νστðp − k; k − qÞGτβðk − qÞΓβSðkÞΓα;

ð5Þ

where we have omitted the renormalization point μ and
the UV cutoff Λ. fabcΓ3g

νστðp − k; k − qÞ is the three-gluon
vertex with fabc the asymmetric structure constant of SU(3)
group. All the internal propagators and vertices are dressed.
The superscripts “A” and “NA” denote Abelian diagram
(the first triangle loop diagram in Fig. 2) and the non-
Abelian diagram (the second triangle loop diagram in
Fig. 2), respectively.
The Abelian diagram has a color factor proportional to

−1=2Nc, and the non-Abelian diagram has a color factor
proportional to Nc=2, so the Abelian contribution is sup-
pressed by a factor of 1=N2

c compared to the non-Abelian
one; thus, it is subleading. It is also justified by direct
calculations made in Refs. [12,27,37]. In this work, we will
check this point later and make further discussions. Now,
for simplicity, we ignore the Abelian diagram in the
following deduction. A similar expression can be easily

FIG. 1. The gap equation, i.e., the DS equation for the quark
propagator. The bolded lines and vertex are dressed.

1We use the Euclidean metric convention in this work. The
details of this convention can be found in Ref. [35], Chap. 4.
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obtained for the Abelian diagram. The equation for the
QGV now reads:

Γνðp; qÞ ¼ Z1Fγν þ Λ̄NA
ν ðp; qÞ: ð6Þ

We shall omit the superscript NA on Λ̄ν to simplify
notations.
As mentioned above, for a proper treatment of the

renormalization, we need to choose the truncation scheme
carefully. To make this point clear, we take a closer look at
the truncation scheme used in Ref. [11] and compare it with
the one originated from Eq. (3). In Ref. [11], the authors
take a truncated DSE for the QGV as

Γνðp; qÞ ¼ Z1Fγν þ Z2
1FZ1Λνðp; qÞ; ð7Þ

where Z1 is the renormalization constant of the three-gluon
vertex, and Λνðp; qÞ is Eq. (5) with all the vertices replaced
by the bare ones:

Λνðp; qÞ ¼
iNcg2

2

Z
d4k
ð2πÞ4 Gασðp − kÞΓ0;3g

νστ ðp − k; k − qÞ

×Gτβðk − qÞγβSðkÞγα: ð8Þ

An important difference of Eq. (7) to Eq. (6) is the
appearance of the renormalization constants in front of Λν.
Usually, the divergence of Λν (Λ̄ν) appears as a local
divergence in the γν part of the vertex (the meaning of
“local divergence” can be found in Ref. [38], Chap. 10,
p. 337.), and suppose it is XðΛÞγν, where XðΛÞ diverges as
Λ goes to infinity. In the case of Eq. (6), we have

Γνðp; qÞ ¼ Z1Fγν þ XðΛÞγν þ Fνðp; qÞ; ð9Þ

where Fν denotes the finite part of Λ̄ν. Renormalization can
be easily performed by absorbing XðΛÞ into Z1F. On the
other hand, in the case of Eq. (7), where Λν comes with a
factor Z2

1FZ1, we have

Γνðp; qÞ ¼ Z1Fγν þ Z2
1FZ1XðΛÞγν þ Z2

1FZ1Fνðp; qÞ:
ð10Þ

Since Z1 is the renormalization constant of the three-gluon
vertex, it should be determined elsewhere. Suppose it is 1
for simplicity. To fill the requirement that Γν is finite, Z1F

has to behave as XðΛÞ−1=2 in the limit Λ → ∞ (up to an
irrelevant finite constant) to cancel XðΛÞ, then the first and
the third terms in Eq. (10) vanish, and Γν just equals to γν

(multiplied by a constant). This is against our intention of
going beyond the rainbow approximation. So, Eq. (7) is not
adequate when UV divergences appear (which is indeed the
case in our study), and we choose Eq. (6) as our starting
point for a beyond-the-rainbow scheme. In Ref. [11], the
model they used makes the integrals convergent, so Eq. (7)
works well in their study.
The three-gluon vertex is taken as an input in this work,

and we take it as the bare vertex for simplicity:

Γ0;3g
νστ ðp− k;k−qÞ
¼ ðqþ k− 2pÞτδνσ þðpþq− 2kÞνδστ þðkþp− 2qÞσδντ:

ð11Þ

C. The gap equation in our beyond-the-rainbow scheme

Now Eqs. (2), (6), and (5) form self-contained coupled
equations as long as the gluon propagator is given.
However, due to the complexity, backfeeding the QGV
into its own equation is out of our capabilities now (this
difficulty is also recognized in Refs. [27,32–34]). So we
need to do a further approximation to make the whole
method attainable. This needs be done carefully because
the overlapping divergence in the gap equation should be
properly subtracted.
To this end, we use Z1F ¼ 1þ C1F, where C1F is the

counter term, in Eq. (2) and replace the first Γν with Eq. (6):

SðpÞ−1 ¼ Z2ðipþmbÞ

þ CF

Z
d4q
ð2πÞ4 g

2γμSðqÞGμνðp − qÞðZ1Fγν þ Λ̄νÞ

þ C1FCF

Z
d4q
ð2πÞ4 g

2γμSðqÞGμνðp − qÞΓνðp; qÞ:

ð12Þ
This doesn’t change anything. Now we take the approxi-
mation by replacing Γν in Eq. (12) and in Λ̄ν with the bare
one γν. Then we have

SðpÞ−1¼Z2ðipþmbÞþCF

Z
d4q
ð2πÞ4g

2γμSðqÞGμνðp−qÞγν

þ2C1FCF

Z
d4q
ð2πÞ4g

2γμSðqÞGμνðp−qÞγν

þCF

Z
d4q
ð2πÞ4g

2γμSðqÞGμνðp−qÞΛνðp;qÞ; ð13Þ

FIG. 2. The equation of motion for the
quark-gluon vertex from the three-point
irreducible effective action. The propa-
gators and vertices in the loops are fully
dressed.
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where Λνðp; qÞ can be expressed diagrammatically as
in Fig. 3.
Strictly speaking, this approximation breaks the multi-

plicative renormalizability, which means that the physical
quantities and the bare quantities are in general no longer μ
independent. However, we checked that the dependence of
these quantities on μ is ignorable in practice. We will be
back to this point later. On the other hand, Eq. (13) does
provide exactly counter terms to cancel the overlapping
divergence in the gap equation, and we discuss this point in
the next subsection.
In a viewpoint of Feynman diagrams, any truncation

scheme can be served by picking up specific (infinite
number of) diagrams. The last approximation leading us to
Eq. (13) can be understood in this way, and Eq. (13)
specifies our truncation scheme and the diagrams we
picked.

D. UV divergences and the renormalization

In this subsection, we discuss the UV divergences in
detail to show how the divergences (overlapping and
overall) can be canceled in Eq. (13). In the integrals, the
propagators are all dressed and their UV behavior can be
known according to the renormalization group theory. First,
for Λνðp; qÞ, by differentiating the integral with respect to
one external momentum, it is not difficult to check that
Λνðp; qÞ has a constant term (which may be divergent)
proportional to γν, and the remaining terms are finite. The
integral contributing to the constant term behaves as

∼
Z

d4q
q4

ðln qÞs ¼
Z

dq
q
ðln qÞs ð14Þ

at a large internal momentum. The integral will diverge if
s ≥ −1. The remaining part behaves as

∼
Z

d4q
q5

ðln qÞs0 ¼
Z

dq
q2

ðln qÞs0 ¼
Z

d ln q
q

ðln qÞs0

¼
Z

dxe−xxs
0 ð15Þ

at large internal momentum and always converges for
any s0.
The UV behavior of the quark propagator up to the

leading log order is [39,40]

SðkÞ ∼
�
1

2
lnðk2Þ

�
−dS 1

ik
; ð16Þ

where the quark anomalous dimension

dS ¼ −4ξ=ð33 − 2NfÞ: ð17Þ

Nf is the number of flavors involved in the theory. To the
leading log order, the transverse part of the gluon propa-
gator behaves as

Gtr
μνðqÞ ∼

�
δμν −

qμqν
q2

�
1

q2

�
1

2
lnðq2Þ

�
−dG

; ð18Þ

where dG ¼ ð39 − 9ξ − 4NfÞ=½2ð33 − 2NfÞ�. In this work,
we use the Landau gauge (ξ ¼ 0) which is also usually
adopted by other DSE studies. In the Landau gauge, only
the transverse part of gluon propagator contributes, so
s¼−2dG−dS¼−ð39−4NfÞ=ð33−2NfÞ¼−0.92, where
we have taken Nf ¼ 4.
Finally, we find that Λνðp; qÞ has a similar structure as in

the perturbation theory, i.e., it has a term given as γν
multiplied by a divergent constant, and the remaining part
is finite. The divergence can be canceled by the counterterm
C1F. Similar analysis can be made to the integrals in
Eq. (13). The second, the third, and the last terms on the rhs
of Eq. (13) all have overall divergences which can be
absorbed into Z2 and Z4; in addition, the last term has
overlapping divergences as can be seen in Fig. 4. The
second term is just what we need to cancel the overlapping
divergence, and the factor of 2 in front of the C1F plays an
important role.
It should be emphasized that since we do not have prior

knowledge about the nonperturbative loop integrals, the
analysis of the structures of the integrals is necessary. For
example, if we choose the number of flavor Nf to be 2

FIG. 3. The non-Abelian loop diagram Λνðp; qÞ in Eq. (13).
The propagators are dressed. The vertices are bare ones.

FIG. 4. Overlapping diagram and its
divergent terms. Crosses represent diver-
gent constants.
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rather than 4, we would have s ¼ −31=29 and have no UV
divergence in the loop integral.
We need to specify the renormalization conditions for the

quark propagator and the QGV to perform the renormal-
ization. Λνðp; qÞ can be decomposed into 12 Lorentz
invariant functions multiplying independent tensors formed
by γ matrices and the external momenta:

Λνðp; qÞ ¼ f1ðp; qÞγν þ ~Λνðp; qÞ; ð19Þ

where ~Λν denotes all the other terms with other tensors. The
renormalization condition for the QGV is chosen to be

Z1F þ f1ðp;−pÞjp2¼μ2 ¼ 1; ð20Þ

which implies

C1F ¼ −f1ðp;−pÞjp2¼μ2 : ð21Þ

The renormalization condition for the quark propagator is

SðpÞ−1jp2¼μ2 ¼ ipþmðμÞ: ð22Þ

The quark self-energy part ΣðpÞ [see Eq. (2)] can be
decomposed as

ΣðpÞ ¼ Σvðp2Þpþ Σsðp2Þ; ð23Þ

where we have

Z2 þ Σvðp2Þjp2¼μ2 ¼ 1; ð24Þ

and

Z2mb þ Σsðp2Þjp2¼μ2 ¼ mðμÞ: ð25Þ

In the chiral limit, Σs converges, and we do not need
Eq. (25). After all, we have

SðpÞ−1 ¼ ipþmðμÞ − Σvðμ2Þip − Σsðμ2Þ þ CF

Z
d4q
ð2πÞ4 g

2γμSðqÞGμνðp − qÞγν

þ CF

Z
d4q
ð2πÞ4 g

2ðf1ðp; qÞ − 2f1ðp;−pÞjp2¼μ2ÞγμSðqÞGμνðp − qÞγν

þ CF

Z
d4q
ð2πÞ4 g

2γμSðqÞGμνðp − qÞ ~Λνðp; qÞ: ð26Þ

In the chiral limit, we just drop mðμÞ − Σsðμ2Þ in
Eq. (26). To sum up, the overlapping divergence from
the integral including f1ðp; qÞ is canceled by subtracting
2f1ðp;−pÞjp2¼μ2 , and there is no other overlapping diver-
gence. In addition, all the integrals in Eq. (26) have overall
divergences, and they are canceled by Σvðμ2Þ and Σsðμ2Þ.
In this section, we presented our beyond-the-rainbow

truncation scheme and worked out the renormalization of
the gap equation in detail. In the previous works [9,11,12],
the authors dressed the QGVwith interaction models which
make the integrals convergent, so they did not encounter
the problem we are facing here.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. The interaction model

Equation (26) can be solved by a numerical iteration
procedure as long as the gluon propagator is treated as an
input. In the Landau gauge, the gluon propagator can be
expressed as

Gμνðk2Þ ¼
�
δμν −

kμkν
k2

�
Dðk2Þ
k2

: ð27Þ

The model used in the present work is

g2
Dðk2Þ
k2

¼ 4π2Dk2

ω6
e−k

2=ω2

þ 4π2γm lnðμ2=Λ2
QCDÞdG−1

ð1
2
ln fe2 − 1þ ð1þ k2=Λ2

QCDÞ2gÞdG
Fðk2Þ;

ð28Þ

Fðk2Þ ¼ f1 − expð−k2=ð4m2
t ÞÞg=k2; ð29Þ

where mt, ω and D are all parameters. We denote this
model as model 1 for convenience, and unless otherwise
indicated, calculations are all performed with this model.
The model’s form is inspired by a popular model first used
in Ref. [5], which is a DS-BS study under the rainbow-
ladder approximation and is only different from it by the
power of the logarithm (if one sets dG ¼ 1, the two models
would be equivalent). In their case, the model respects
the large momentum behavior of the strong coupling αsðk2Þ
in accordance of the rainbow approximation, while in our
case, the model respects the large momentum behavior of
the gluon propagator. We have checked that this difference
only causes less than a 5% deviation on quantities which
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we are interested in. So we follow Ref. [5] and take

mt ¼ 0.5 GeV, Nf ¼ 4, Λ
Nf¼4

QCD ¼ 0.234 GeV, and
μ ¼ 19 GeV. For parameters D and ω, where D measures
the strong interaction strength at low momentum region
and 1=ω measures the range of this strong interaction, we
take ω ¼ 0.5 GeV and D ¼ 0.74 GeV2. This choice gives
ωD ≈ ð0.72 GeVÞ3 which is a typical value in the DS-BS
studies under the rainbow-ladder approximation. There
have been several works investigating the dependence of
observables on ω with ω ×D ¼ constant, and it was found
that observables of the pseudoscalar- or vector-meson
ground states are insensitive to ω in the range ω ∈
½0.3; 0.5� GeVas long as the combination ωD is a constant,
while for (radial or orbital) excited states, the observables
are usually sensitive to ω, reflecting that the exited states
are more sensitive to the long range features of the strong
interaction than the ground states [41–43]. However, in this
work, we do not intend to investigate the dependence of the
effects of dressing the QGV on ω; rather, we use a fixed
value of ω as given before and leave this interesting topic to
a future study. We also need the quark masses as inputs for
the explicit chiral symmetry breaking case. We consider the
u, d, and s quarks and follow Ref. [5] to take

mu=dðμÞjμ¼19 GeV ¼ 3.7 MeV;

msðμÞjμ¼19 GeV ¼ 85 MeV:

For the heavy charm quark, its running mass function is
much less effected by the dynamical symmetry breaking,
so for our purpose, we do not consider the c quark. g2 also
needs specification. If we take g2 at the renormalization
point μ, we have

g2 ¼ 4π2γm
lnðμ2=Λ2

QCDÞ
: ð30Þ

On the other hand, Eq. (28) is indeed a model, it is also
reasonable to take g2 ¼ 4π to account for the strong
coupling at the low energy region.2 Both of the values
are used and compared in this work.
The difference between the model used in Ref. [5]

and the one used in the present work is related to the
“Abelian approximation” and needs further discussions. In
the studies under the rainbow approximation, the “Abelian
approximation” is usually adopted, which replaces the
g2Dðk2Þ with the effective running coupling times free
gluon propagator 4παðk2ÞDfreeðk2Þ. This replacement is
exact in QED, so with this approximation, the gap equation
in QCD is the same as that in QED, except that the running
coupling and the color factor are different. Then the non-
Abelian contribution can only get into the equation through

the running coupling (and the color factor). The running
coupling’s behavior can be put in by hand and the large
momentum behavior can be restored. Intuitively, it is like
QED in an antiscreen medium, while the complexity of the
dynamics caused by gauge boson’s self-interactions is
missing. Our study picks up part of the non-Abelian
contributions (the three-gluon interaction) through the
quark-gluon vertex, as an improvement, while non-
Abelian contributions from four-gluon interactions, from
ghost-gluon interaction which come into the equation
through higher order Green functions are still missing.
Reference [5] took the “Abelian approximation”, so the
model they used behaves as ∼½lnðq2=Λ2

QCDÞ�−1 at large
momentum in accordance with the strong running coupling
constant. In this work, we do not take the “Abelian
approximation”, so the model we used behaves as
∼½lnðq2=Λ2

QCDÞ�−dG at large momentum in accordance with
the gluon propagator. This is why our model is a little
different from the one used in Ref. [5].
The first term of the rhs of Eq. (28) dominates at low

momentum and the second term dominates at the large
momentum. In the UV limit, the model gives

Dðk2Þ
k2

→
1

k2
lnðμ2=Λ2

QCDÞdG
lnðk2=Λ2

QCDÞdG
; ð31Þ

which is the asymptotic behavior of the gluon propagator.
If we drop the second term in Eq. (28), we would have

g2
Dðk2Þ
k2

¼ 4π2Dk2

ω6
e−k

2=ω2

: ð32Þ

This model is the same as the one used in Ref. [11], and we
denote it as model 2. Model 2 will be considered later for a
comparison.

B. Justifying the renormalization scheme explicitly

We solved Eq. (26) in the chiral limit and for the u=d and
the s quarks. We shall check explicitly with the numerical
results that the renormalization scheme described in the
previous section indeed works before proceeding to study
the physics of the equation. There are two points that need
to be justified; first, the renormalized quantities should
be independent of the UV cutoff and free from UV
divergences; and second, physical observables should be
independent of the renormalization point μ.
By varying the UV cutoff from Λ2 ¼ 105 to Λ2 ¼ 1011,

we have observed that, before renormalization, there are
indeed UV divergences and after renormalization, the
resulted quark propagator is independent of the UV cutoff;
thus, it is free from the UV divergences. The factor of
2 in front of f1ðp;−pÞjp2¼μ2 in Eq. (26) is important to
guarantee all the overlapping divergences are removed.

2Taking g2 ¼ 4π is suggested by Professor Richard. Williams
(private communication), and we are grateful for this.
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The independence of the UV cutoff is not sufficient
for renormalization, it is also required that the physical
observables are independent of the renormalization point μ.
At least, for practical purposes, the dependence of observ-
ables on the renormalization point μ should be under
control. Strictly speaking, the μ independence does not
hold exactly in the procedure described above. It is the last
approximation [which brings us from Eq. (12) to Eq. (13)]
that breaks this feature of renormalization. However,
one may expect the results are approximately μ indepen-
dent up to some certain precision. We have examined the μ
dependence of some quantities, i.e., pion decay constant,
the renormalization independent quark condensate, the
renormalization independent current quark mass as shown
in Table I, and the running quark mass in the chiral limit
as shown in Fig. 5, which should be exactly μ independent
in QCD. Since the BS equation is not employed in this
work, the pion decay constant is calculated with an
approximated formula in the chiral limit [given as
Eq. (35) in Subsec. III D], which only requires information
from the quark propagator. The renormalization indepen-
dent quark condensate and the renormalization independent
current quark mass are extracted from the large momentum
behaviors of the quark propagators in the chiral limit and
for the u=d quark, respectively. From Table I and Fig. 5, we
find that these quantities are insensitive to μ for large

enough μ (μ≳ 19 GeV). On the other hand, the renorm-
alization point in this work should be chosen large enough
to ensure the renormalization constants are approximately
flavor independent [4]. To sum up, our renormalization
scheme does work with an uncertainty (caused by μ
dependence) under control.

C. The running quark mass MðQ2Þ and the
renormalization function ZðQ2Þ

1. Impacts of the three-gluon interaction
on MðQ2Þ and ZðQ2Þ

Now we turn to discuss the impacts of dressing the
quark-gluon vertex in the gap equation. All the information
of the quark propagator is contained in the running quark
mass MðQ2Þ and the function ZðQ2Þ. The running quark
mass functions in the chiral limit and for u=d and s quarks
are shown in Figs. 6 and 7; ZðQ2Þ in the chiral limit and for
u=d and s quarks are shown in Figs. 8 and 9. “BR1” and
“BR2” denote the results in the beyond-the-rainbow
scheme with g2 taken as in Eq. (30) and as g2 ¼ 4π,
respectively; “R” denotes the results under RA. It is found
that, at the low momentum region, the running quark
masses of “BR’s” are as ∼2–3 times as large as the results
of “R”, and ZðQ2Þ of “BR’s” are as ∼1=3–1=2 times as
large as those of “R”. Our results for the u=d quark are in
accordance to those in Ref. [12]. Dressing the QGV
changes the propagator at the low momentum region
considerably and implies significant impacts on the quan-
tities dominated by the low momentum behavior, such as
the pion decay constant, the quark condensate, etc.
Dynamical chiral symmetry breaking takes place in the

chiral limit.MðQ2 ¼ 0Þ can be taken as a quantitymeasuring

FIG. 5. The running quark mass at different renormalization
points μ.

FIG. 6. The running quark mass function MðQ2Þ in the
chiral limit. “BR1” represents the beyond-the-rainbow scheme
with g2 taken as in Eq. (30); “BR2” represents the beyond-the-
rainbow scheme with g2 ¼ 4π; “R” represents the rainbow
approximation.

TABLE I. Decay constant fπ , quark condensate −hq̄qi0, and
the renormalization independent current quark mass m̂u=d at
different renormalization points μ.

fπ (MeV) −hq̄qi0 ðMeVÞ3 m̂u=d (MeV)

μ ¼ 5 GeV 122 ð250Þ3 3.9
μ ¼ 19 GeV 123 ð289Þ3 7.2
μ ¼ 100 GeV 128 ð311Þ3 7.5
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the dynamical generated quarkmass. In the rainbow approxi-
mation,Mð0Þ ¼ 0.29 GeV,while in the beyond-the-rainbow
scheme, Mð0Þ ¼ 0.60 GeV in “BR2” and Mð0Þ ¼
0.85 GeV in “BR1”. Dressing the QGV makes over 50%
contributions to dynamical quark mass according to our
calculation, and these contributions are due to the three-gluon
interaction in the QGV part. So using rainbow approximation
underestimates the dynamical quark mass.

2. Non-Abelian contributions vs Abelian contributions

The large deviations between the “BR’s” results and “R”
results (at the low momentum region) may be understood

by observing that the loop diagram to the QGV has two
gluon propagators which enhance the interaction strength a
lot at the low momentum region. And this is due to the non-
Abelian three-gluon interaction.
To make this point more clear, we compare the results

with non-Abelian diagram contribution to the results with
only the Abelian diagram contribution. First, we take Γν ¼
Z1fγν þ ΛA

ν and recalculate the gap equation beyond the
RA. The results shown in Fig. 10 are denoted as “BR-A1”
(we take the gap equation in the chiral limit as an example).
It can be seen from the figure that the Abelian contribution

FIG. 8. ZðQ2Þ in the chiral limit. “BR1” represents the beyond-
the-rainbow scheme with g2 taken as in Eq. (30); “BR2”
represents the beyond-the-rainbow scheme with g2 ¼ 4π; “R”
represents the rainbow approximation.

FIG. 9. ZðQ2Þ for the u=d and s quarks. “BR1” represents the
beyond-the-rainbow scheme with g2 taken as in Eq. (30); “BR2”
represents the beyond-the-rainbow scheme with g2 ¼ 4π; “R”
represents the rainbow approximation.

FIG. 10. Comparisons of non-Abelian contribution and Abelian
contribution toMðQ2Þ. “BR-NA” represents using Γν ¼ Z1fγν þ
ΛNA
ν in the beyond-the-rainbow scheme; “BR-A1” represents

using Γν ¼ Z1fγν þ ΛA
ν ; “BR-A2” represents using Γν ¼ Z1fγν −

N2
cΛA

ν with the −N2
c put in by hand.

FIG. 7. The running quark mass function MðQ2Þ for the u=d
and s quarks. “BR1” represents the beyond-the-rainbow scheme
with g2 taken as in Eq. (30); “BR2” represents the beyond-the-
rainbow scheme with g2 ¼ 4π; “R” represents the rainbow
approximation.
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suppresses the mass function at a low energy since the color
factor of the Abelian diagram has the opposite sign to the
color factor of the non-Abelian diagram. This feature is in
accordance to that in Ref. [12]. Unlike the non-Abelian
case, the Abelian contribution modifiesMðQ2Þ only a little
from their RA values and is negligible. This is not a big
surprise because the Abelian diagram is −1=N2

c suppressed
compared to the non-Abelian diagram. However, this color
suppression is not the only reason for this situation, and the
difference between the non-Abelian interaction and the
Abelian interaction is another reason, as we shall see. To
show this, we put a −N2

c factor in front of the ΛA
ν by hand,

i.e., we take Γν ¼ Z1fγν − N2
cΛA

ν , such that the color factors
are the same for the non-Abelian and the Abelian diagrams,
and recalculate the gap equation beyond the RA. The
resulted MðQ2Þ is shown in Fig. 10 denoted as “BR-A2”.
The comparison between “BR-NA” [with g2 taken as in
Eq. (30)] with “BR-A2” in the figure clearly shows that
non-Abelian interaction has great impacts on the gap
equation in the beyond-the-rainbow scheme because the
interaction is greatly enhanced at the low momentum region
due to the fact that the non-Abelian diagram of the QGV
includes two gluon propagators in the loop integral.
It is already known that the non-Abelian diagram is the

dominant diagram compared to the Abelian diagram
[12,27,37]; however, we make it clear that the difference
in the color factors is only one of the reasons. Another
important reason is that the non-Abelian diagram includes
two gluon propagators which arises from the three-gluon
interaction.

3. The large momentum behavior

At the large momentum region, since we use an
interaction model with correct UV behavior of the gluon
propagator, our results should reproduce the correct UV
behavior for the quark propagator (approximately, not
exactly, because the beyond-the-rainbow gap equation is
not the exact equation for the quark propagator). The
running quark mass at a large momentum in the chiral limit
behaves as [4]

Mðp2Þ ⟶
largep2 2π2γmð−hq̄qi0Þ

3p2½1
2
lnðp2=Λ2

QCDÞ�1−γm
; ð33Þ

where hq̄qi0 is the renormalization point independent quark
condensate. In the explicit chiral symmetry breaking case,
it is dominated by the current quark mass and behaves, at
one loop order of the renormalization group equations, as

Mðp2Þ ⟶
largep2 m̂

½1
2
lnðp2=Λ2

QCDÞ�γm
; ð34Þ

where m̂ is the renormalization independent current quark
mass. γm ¼ 12=ð33 − 2NfÞ is the anomalous dimension at

this order. We can see from Figs. 6 and 7 that our results
are consistent with these two UV behaviors at the large
momentum region. It would be interesting to compare the
results with the interaction model having the correct UV
behavior to the one not having it. So we also calculated the
gap equation with model 2 described by Eq. (32). In
Fig. 11, we show MðQ2Þ resulted from models 1 and 2 for
comparison. For model 2,MðQ2Þ in the chiral limit falls off
to 0 obviously faster than 1=p2 as p2 → ∞; andMðQ2Þ for
ms quark becomes flat at the large momentum region. They
clearly do not obey the behavior described by Eqs. (33) and
(34); thus, one can not extract the renormalization point
independent quark condensate and current quark mass
from them.
We have another interesting observation. Perturbative

QCD usually applies at large momentum region due to the
asymptotic freedom; however, as already known, in the
chiral limit and when the chiral symmetry is dynamically
broken, perturbation theory fails. Our observation is that in
the chiral limit, the quantity Q2MðQ2Þ from the beyond-
the-rainbow scheme and the rainbow approximation remain
different at large momentum (see Fig. 6). This is a non-
perturbative effect, and this observation indicates that
nonperturbative effects may be revealed at a large momen-
tum region. This feature has not been mentioned in
previous studies.

D. Quark condensate, pion decay constant,
and pion mass

It is important to discuss the effects of dressing the QGV
on the quark condensate, which measures the dynamical
symmetry breaking and some typical physical observables.
We consider the pion decay constant and the pion mass
here. The pion decay constant can be calculated approx-
imately using the equation given by [3],

FIG. 11. Comparing MðQ2Þ resulted from models 1 and 2.
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f2π ¼
3

4π

Z
dp2

p2Zðp2ÞMðp2Þ
ðp2 −M2ðp2ÞÞ2

�
Mðp2Þ − p2

2

dM
dP2

�
;

ð35Þ

which followed from making an assumption on the
pseudoscalar vertex’s structure in the soft pion limit and
the chiral limit. fπ calculated with this equation under the
rainbow approximation is 75 MeV, while the fπ obtained
with the (almost) same parameters in Ref. [5] gave the value
in accordance with the experimental value fexpπ ≃ 92 MeV.
So Eq. (35) underestimates fπ for about ∼17 MeV. [It was
also indicated in Ref. [22] that Eq. (35) underestimates fπ.]
The error due to using Eq. (35) does not provide any
interesting information. Since we are interested in compar-
ing the beyond-the-rainbow results with the RA results, we
add up with 17 MeV on all the fπ calculated in the BR
scheme and in the rainbow approximation, so that the fπ
under RA is readjusted to the experimental value.
The quark condensate at the renormalization point μ can

be obtained by integrating the propagator’s scalar part over
the momentum, and we have

−hq̄qi0μ ≡ NcZ4

Z
d4p
ð2πÞ4 Tr½Sðp; μÞ�: ð36Þ

The superscript “0” indicates the quantity is taken in the
chiral limit. The renormalization point independent quark
condensate is extracted from the data of the running quark
mass from Eq. (33). Having the decay constant and the
quark condensate, one can obtain the mass of pion from the
Gell-Mann-Oakes-Renner relation up to Oðm̂Þ order.
Comparisons of fπ , mπ , and the quark condensates

between the rainbow approximation and the BR scheme
are shown in Table II. It is found that dressing the QGV
enhances these quantities a lot as compared to the results
under RA, which justifies the conclusions about the quark
propagators on the same topic. Quantitatively, the decay
constant is enhanced by ∼13–31 MeV as g2 varies. This
result is in accordance with Ref. [11]. Similar conclusions
may be drawn to the quark condensate.
The large enhancement of the quark condensate implies a

large suppression of the critical value of the interaction

strength for dynamical symmetry breaking. In the model
used here, the parameter that plays the role as the strength
of the interaction in the low momentum region is the
parameter “D”, which has been taken to be D ¼
0.74 GeV2. Now we vary this parameter [with g2 taken
as in Eq. (30)] and exhibit the quark condensate and the
pion decay constant, both of which characterize the
dynamical chiral symmetry breaking in the chiral limit,
at differentD’s in Fig. 12. It can be seen from the figure that
the critical value of having the dynamical symmetry
breaking moves from D≃ 0.45 GeV2 in the rainbow
approximation to D≃ 0.12 GeV2 in the beyond-the-
rainbow scheme. And in the region where D is between
the two critical points, dressing the QGV has essential
effects.

TABLE II. Comparing the pion mass, pion decay constant, the
quark condensate at the renormalization point, and the renorm-
alization point independent quark condensate between the
beyond-the-rainbow scheme (denoted as “BR1” and “BR2”)
and the rainbow approximation (denoted as “R”).

fπ
(MeV)

mπ

(MeV)
−hq̄qi0μ¼19 GeV

ðMeVÞ3
−hq̄qi0
ðMeVÞ3

BR1 123 152 ð369Þ3 ð289Þ3
BR2 105 157 ð301Þ3 ð266Þ3
R 92 143 ð254Þ3 ð229Þ3

FIG. 12. Quark condensate and the pion decay constant vs D,
i.e., the strength of the interaction at a low momentum.

FIG. 13. Relative deviations [i.e., δX ≡ XBR−XR
XR

, where XRðBRÞ
represents quantity under the RA (BR scheme)]
of pion decay constant and the quark condensate vs D.
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Another observation is that, forD sufficiently larger than
0.45 GeV2, the relative deviations of fπ and the quark
condensate (actually the cube root of the minus quark
condensate) in the BR scheme from those in RA are
roughly constant with respect to D, which can be explicitly
seen in Fig. 13. This feature means that the contributions of
dressing the QGV (due to the three-gluon interaction) in the
gap equation will not approach to zero as the strength of
interaction varies as long as the chiral symmetry is
dynamically broken. What we would like to stress is that,
dressing the QGV has essential impacts on the dynamical
chiral symmetry breaking and the quantities relevant to it.

IV. SUMMARY

We studied the quark propagator and some relevant
quantities with the gap equation under a beyond-the-
rainbow scheme with an interaction model respecting the
asymptotic freedom behavior of QCD. The gap equation
has divergent integrals and the renormalization is per-
formed. Renormalizing the gap equation in the beyond-the-
rainbow truncation scheme is not a trivial task due to the
equation’s nonperturbative nature and the appearance of
overlapping divergences. The important point to solve this
problem is that the truncation scheme needs to be chosen
carefully to allow a suitable subtractive renormalization.
With this method, we analyzed the impacts of going

beyond the rainbow approximation. It is found that three-
gluon interaction contributions to the QGV in the gap
equation changes the quark propagators significantly. The
three-gluon interaction makes over a 50% contribution to
the dynamical quark mass; the pion decay constant is
enhanced by ∼13–31 MeV. We have taken different
parameters (g2 and D) to show how the results related to

model parameters. In a large region of parameters, the
three-gluon interaction in the QGV makes important
contributions. It is also found that going beyond the
rainbow approximation lowers the critical strength of
dynamical chiral symmetry breaking, which means using
the rainbow approximation overestimates the critical
strength of dynamical chiral symmetry breaking. These
results imply that the non-Abelian effects can not be
ignored in the dynamical symmetry breaking and employ-
ing an approximation that drops the non-Abelian feature in
QCD may cause large errors. The comparison of the non-
Abelian contribution and the Abelian contribution indicates
that the non-Abelian contribution is dominant even after
cutting off the effect of the color factor; the reason is that
the three-gluon interaction contributes two gluon propa-
gators in the loop integral of the QGVand largely enhances
the low energy strength.
We calculated hadron observables with approximated

expressions without invoking the BS equation, which
limited our abilities of giving faithful values of these
quantities and exploring more observables. In addition, a
complete nonperturbative treatment of the QGV requires
feeding back the vertices into the equations, which is not
performed in this study due to technical difficulties. Further
efforts should be devoted in these directions.
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