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We study the transverse-momentum-dependent (TMD) evolution of the Collins azimuthal asymmetries
in eþe− annihilations and semi-inclusive hadron production in deep inelastic scattering processes. All
the relevant coefficients are calculated up to the next-to-leading-logarithmic-order accuracy. By applying
the TMD evolution at the approximate next-to-leading-logarithmic order in the Collins-Soper-Sterman
formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions
from current experimental data by a global analysis of the Collins asymmetries in back-to-back dihadron
productions in eþe− annihilations measured by BELLE and BABAR collaborations and semi-inclusive
hadron production in deep inelastic scattering data from HERMES, COMPASS, and JLab HALL A
experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We
further discuss the TMD interpretation for our results and illustrate the unpolarized quark distribution,
transversity distribution, unpolarized quark fragmentation, and Collins fragmentation functions depending
on the transverse momentum and the hard momentum scale. We make detailed predictions for future
experiments and discuss their impact.
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I. INTRODUCTION

The transversity distribution function is one of the three
leading-twist quark distributions of a nucleon that describe
completely a spin-1=2 nucleon [1–4]. Different from the
other two, unpolarized and helicity distributions, the quark
transversity is difficult to measure in experiment because of
its chiral-odd nature [2]. In order to study it in a physical
process, one has to couple it to another chiral-odd function.
The first moments (integral over the longitudinal momen-
tum fraction) of the quark transversity distributions lead to
the quark contributions to the nucleon tensor charge, which
is a fundamental property of the nucleon.
An important channel to investigate the quark trans-

versity distribution is to measure the Collins azimuthal spin
asymmetries in semi-inclusive hadron production in deep
inelastic scattering (SIDIS) [5]. Measurements have been
made by the HERMES Collaboration [6,7], the COMPASS
Collaboration [8], and JLab HALL A [9] experiments.
However, the extraction of the quark transversity distribu-
tions requires knowledge of the Collins fragmentation
functions, which are different from the usual unpolarized
fragmentation functions. It was further suggested to mea-
sure the Collins fragmentation functions from the azimuthal
angular asymmetries of two back-to-back hadron

productions in eþe− annihilations [10]. Recently both
the BELLE and BABAR collaborations have studied these
asymmetries at the B-factories at a center of mass energy
around

ffiffiffi
s

p ≃ 10.6 GeV [11–13]. Thanks to the universal-
ity of the Collins fragmentation functions [14], we will be
able to combine the analyses of these two processes to
constrain the quark transversity distributions. The effort to
extract
the transversity distributions and Collins fragmentation
functions has been carried out by the Torino-Cagliari-
JLab group extensively in the last few years [15–17].
Transversity coupled to the so-called dihadron interference
fragmentation functions is employed to study transversity
in its collinear version in Ref. [18]. These results have
demonstrated the powerful capability of the Collins asym-
metry measurements in constraining the quark transversity
distributions and hence the nucleon tensor charge in high
energy scattering experiments. In this study we will imple-
ment, for the first time, the appropriate QCD evolution for
the phenomenological studies of Refs. [15–17] and thus
improve significantly our understanding of transversity
distribution and Collins fragmentation functions. We will
also show the consistency with previous phenomenological
results. A brief summary of our results has been published
in Ref. [19].
The appropriate QCD evolution for these low transverse-

momentum hard processes is the so-called transverse-
momentum-dependent (TMD) evolution, which follows
from factorization theorems and has been well developed
in recent years, following the pioneering works by Collins-
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Soper-Sterman (CSS) [20,21]. In particular, the Collins
2011 formalism of Ref. [22] constructs a well-defined
universal Transverse Momentum Dependent distribution
(TMD) that “absorbs” effects of soft gluon radiation which
was traditionally signed out in a separate factor in
Refs. [20,21] and defines a hard part function that contains
the process dependence. This allows for an explicit uni-
versality of the TMD evlolutions in the phenomenological
applications of the hard scattering processes men-
tioned above.
The TMD evolution effects in the Collins asymmetries

in the above processes have been estimated in Refs. [23].
The TMD factorization is an important step to derive the
results for the physical observables we are interested in
and has been shown to be valid for processes with two
separate measured momentum scales QT ≪ Q, such as
SIDIS, Drell-Yan and eþe− annihilation into back-to-back
hadrons. Here the small scale QT corresponds to the
measured transverse momentum of, for instance, produced
hadron in SIDIS or lepton pair in Drell-Yan. TMD
factorization is formulated in such a way that one can
calculate cross sections up to the values QT ∼ ΛQCD and
thus incorporates nonperturbative information on the
hadron structure. Schematically the TMD factorization
expresses the transverse-momentum-dependent differential
cross section as a convolution of a so-called hard part H,
which is specific for the process and thus process depen-
dent, and universal TMD parton distributions and/or TMD
parton fragmentation functions, collectively called TMDs.
These TMDs are universal (for the “naively time reversal
odd” functions such as the Sivers function [24,25] and
Boer-Mulders function [26], the universality is generalized
[27,28]) and can be associated with properties of specific
hadrons. In this sense TMDs represent the three-
dimensional partonic structure of the incoming nucleons
as well as outgoing hadrons. Evolution equations are used
to calculate the dependence of TMDs on the hard scale Q.
Since the definition of TMDs contains the so-called light-
cone singularity [20], the detailed calculations depend on
the scheme to regulate this singularity [20–22,29–35],
which leads to the scheme dependence in the TMD
factorization. Although there are different ways to formu-
late the TMD factorization and to define the TMD
distribution and fragmentation functions, the energy evo-
lution (historically called “resummation”) for the physical
observables (including the transverse-momentum-
dependent differential cross sections and spin asymmetries)
will take the same form in all schemes. In particular, after
solving the evolution equations, the final results are
identical to each other in all TMD factorization schemes,
where the TMDs are expressed in terms of their collinear
counterparts with perturbatively calculable coefficients,
and the evolution effects are included in the exponential
factor—the so-called Sudakov-like form factors [36].
Therefore, in terms of a phenomenological study, all

TMD factorization and evolution calculations will be
identical to that originally proven in the form of CSS
[21]. Interpretation of results and individual functions
depends of course on the scheme, and one should be very
careful when giving interpretations.
TMD evolution is performed in coordinate b space,

where b is conjugate to the k⊥ in momentum space
through the Fourier transformation and corresponds to
the transverse distance separating the quark/gluon fields.
The usage of b space highly simplifies the expressions for
the cross sections which become simple products of b-
dependent TMDs in contrast to convolutions in k⊥ space.
In order to calculate the measured cross sections (and
individual TMDs) one performs a two-dimensional
Fourier transform to the physical QT (or k⊥) space. A
very unique feature of TMD/CSS formalism is the fact
that the evolution kernel becomes nonperturbative at large
separation distances b; while at small b ≪ 1=ΛQCD it is
perturbative and can be calculated order by order in strong
coupling constant αsð1=bÞ. Over short transverse distance
scales, 1=b becomes a legitimate hard scale, and the b
dependence of TMDs can be calculated in perturbation
theory and related to their collinear counterparts, such
as collinear parton distribution (PDFs), fragmentation
functions (FFs), or multiparton correlation functions.
The important nonperturabrive part of the so-called soft
factor that corresponds to the vacuum expectation value of
Wilson loops is predicted [22] to be process independent,
soft factor is also universal for distribution and fragmen-
tation TMD and independent of the particular value of
momentum fractions xB or zh measured. It may depend on
the parton type, quark, or a gluon; in this paper we are
going to consider only quark distribution and fragmenta-
tion TMDs. The information on the intrinsic nonpertur-
bative motion of partons associated with the hadron wave
function is encoded in nonperturbative inputs for TMD
PDFs and FFs and in turn universal in different processes
but in principle dependent on the parton/hadron type and
on the value of xB or zh.
The implementation of the TMD formalism requires

parametrization of the nonperturbative inputs [37–43] for
the TMDs. The growth of αsð1=bÞ at large values of b can
be tamed by the so-called b� prescription (which we will
follow in this paper) originally introduced in the CSS
formalism [21] that allows one to avoid the Landau pole
in the strong coupling constant and provides a smooth
transition from perturbative to nonperturbative regimes.
Fits of experimental data utilizing the b� prescription have
been well developed in the literature, in particular, in the
publications of the Brock-Landry-Nadolsky-Yuan (BLNY)
type of parametrizations [37,44]. Other choices have been
made in the literature; see, for example, Refs. [38,45–48].
However, in all these implementations of the TMDs in the
CSS formalism, an important step is to verify that they
provide a robust method of treating nonperturbative physics
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and can describe well the existing experimental
data [39,41].
For the Collins asymmetries studied in this paper, we

extend the CSS formalism to the azimuthal angular
asymmetries and in the relevant hard processes. This
involves the Collins-Soper (CS) evolution equation for
the k⊥-odd distribution and fragmentation functions, which
were derived in Refs. [40,49–54]. In our calculations, we
apply the TMD evolution at the approximate next-to-
leading-logarithmic order (NLL) as specified below. The
formalism follows the CSS procedure for the unpolarized
cross section and is similar to that of Sivers asymmetries in
SIDIS and Drell-Yan processes [40–42,55]. We will derive
the perturbative coefficients at one-loop order as well.
There exists a freedom (scheme dependence) to separate

out the so-called hard factor from the splitting function
contribution in the CSS formalism [46]. This provides a
useful way to interpret the final results in terms of the
TMDs [22,56,57]. It allows one to interpret a part of the
splitting functions in CSS as a universal TMDs splitting
functions, and the difference in the coefficients can be
regarded as a part of hard factors. Once rigorously defined,
we shall have a unique interpretation of the CSS formalism
in terms of TMDs. We will elaborate this interpretation in
detail in our paper.
In applying the CSS evolution at the NLL order, we

relate transversity TMD and Collins FF to the collinear
quark transversity distribution and the collinear twist-3
fragmentation function and include the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP)-type scale evolution of
the latter two collinear distributions. The evolution of the
transversity distribution is very well known [58–61], while
the evolution of the twist-3 fragmentation function involves
multiparton correlation functions [52,62], as a common
feature of higher-twist correlation functions. In the follow-
ing calculations, we will only keep the homogenous terms
in the splitting kernel, which is an approximation to the
complete evolution equation. To differentiate from the
complete NLL computation, we denote it as NLL0 (an
approximate NLL). To achieve this precision, we include
the most recent developments from both the theory and
phenomenology sides [22,40–42,44,52,54,62–64].
The quark transversity distributions are important ingre-

dients for several other spin related asymmetries. For
example, they contribute to the azimuthal asymmetries
of two-hadron fragmentation processes in SIDIS and eþe−
annihilations [65] and single inclusive hadron production
at large transverse momentum in pp collisions [66–68].
Future Relativistic Heavy Ion Collider measurements [69]
are going to explore more phenomena related to
the transverse spin and ultimately to the partonic three-
dimensional structure of the nucleon. Our results will
provide important cross checks and a step further toward
a global analysis to all these spin asymmetries associated
with the quark transversity distributions.

The rest of the paper is organized as follows. In Sec. II,
we review the theoretical framework for the Collins
azimuthal asymmetries in SIDIS and eþe− annihilations
and derive the associated TMD evolution results and the
relevant perturbative coefficients. We also reformulate the
resummation formalism in an appropriate way to better
connect to the recently developed TMD formalism in
Sec. III F. In Sec. III, we perform the phenomenological
studies and focus on the global fit of the quark transversity
distribution and Collins fragmentation functions from the
existing experimental data. We make predictions for future
experiments and compare our results with previous analy-
ses. Finally, we conclude our paper in Sec. IV.

II. COLLINS AZIMUTHAL ASYMMETRIES
IN SIDIS AND eþe− ANNIHILATION

In this section, we discuss the asymmetries generated
by transversity and Collins fragmentation functions in
SIDIS and eþe− annihilation. We apply TMD evolution
and represent the differential cross sections, spin-dependent
and spin-independent ones, in a compact form.

A. Collins azimuthal asymmetries in SIDIS

In the SIDIS, see Fig. 1, a lepton scatters on the nucleon
target and produces a hadron in the final state,

eðlÞ þ pðPÞ → eðl0Þ þ hðPhÞ þ X; ð1Þ

by exchanging a virtual photon qμ ¼ lμ − l0
μ with invariant

mass Q2 ¼ −q2. We adopt the usual SIDIS variables [70],

Sep ¼ ðPþ lÞ2; xB ¼ Q2

2P · q
;

y ¼ P · q
P · l

¼ Q2

xBSep
; zh ¼

P · Ph

P · q
; ð2Þ

with Sep ¼ ðlþ PÞ2 the center of mass energy square.
The differential SIDIS cross section that includes the

FIG. 1. SIDIS in the γ�P center of mass frame.

EXTRACTION OF QUARK TRANSVERSITY DISTRIBUTION … PHYSICAL REVIEW D 93, 014009 (2016)

014009-3



Collins effect, the sin ðϕh þ ϕsÞ modulation, can be written
as [71,72]

d5σðS⊥Þ
dxBdydzhd2Ph⊥

¼ σ0ðxB; y; Q2Þ
�
FUU þ sinðϕh þ ϕsÞ

×
2ð1 − yÞ

1þ ð1 − yÞ2 F
sin ðϕhþϕsÞ
UT þ � � �

�
; ð3Þ

where σ0 ¼ 2πα2em
Q2

1þð1−yÞ2
y and ϕs and ϕh are the azimuthal

angles for the nucleon spin and the transverse momentum

of the outgoing hadron, respectively. FUU and FsinðϕhþϕsÞ
UT

are the spin-averaged and transverse spin-dependent struc-
ture functions. The latter is related to the convolution of
transversity distribution and the Collins fragmentation
function. Ellipses in Eq. (3) denote other structure functions
that we do not consider in this paper.
The Collins asymmetry measured experimentally are

related to the structure functions as follows:

AsinðϕhþϕsÞ
UT ≡ 2hsin ðϕh þ ϕsÞi

¼ σ0ðxB; y;Q2Þ
σ0ðxB; y;Q2Þ

2ð1 − yÞ
1þ ð1 − yÞ2

Fsin ðϕhþϕsÞ
UT

FUU
: ð4Þ

Note that sometimes experimental results (for instance for
the COMPASS Collaboration) are presented by factoring
out the so-called depolarization factor DNN :

DNN ¼ 2ð1 − yÞ
1þ ð1 − yÞ2 : ð5Þ

Both structure functions, i.e., FUT and Fsin ðϕhþϕsÞ
UT , depend

on kinematical variables and on the hard scale Q2 in the
reaction. It is important to realize that in order to have
reliable calculations of corresponding structure functions
one needs to take into account appropriate scale depend-
ence which is generated by QCD evolution of TMD
distribution and fragmentation functions.
Historically the solution of TMD evolution equa-

tions [21] is presented in the b space, where in SIDIS ~b

is the Fourier conjugate variable to ~Ph⊥=zh. The Ph⊥-
dependent structure functions can be formulated in terms of
the TMD factorization, and they can be (omitting xB, z
dependencies) written as

FUUðQ;Ph⊥Þ

¼ 1

z2h

Z
d2b
ð2πÞ2 e

i~Ph⊥·~b=zh ~FUUðQ; bÞ þ YUUðQ;Ph⊥Þ; ð6Þ

Fα
collinsðQ;Ph⊥Þ

¼ 1

z2h

Z
d2b
ð2πÞ2 e

i~Ph⊥·~b=zh ~Fα
collinsðQ; bÞ þ Yα

collinsðQ;Ph⊥Þ;

ð7Þ

where Fα
collins is related to the spin-dependent structure

function Fsin ðϕhþϕsÞ
UT as follows,

sinðϕh þ ϕsÞFsin ðϕhþϕsÞ
UT ¼ ϵαβSα⊥½gβρ⊥ − 2êβxê

ρ
x�Fρ

collins; ð8Þ

with the unit vector êx defined in Fig. 1. In Eqs. (6) and (7),
the first TMD term dominates in the Ph⊥ ≪ Q region, and
the second so-called Y-factor term dominates in the region
of Ph⊥ ≳Q and assures the accuracy of the formula in the
wide region of Ph⊥. We will neglect the corresponding Y
factors as we will consider only the region of low ~Ph⊥=z,
and thus for spin-averaged and transverse spin-dependent
structure functions, one has

FUUðQ;Ph⊥Þ ¼
1

z2h

Z
d2b
ð2πÞ2 e

i~Ph⊥·~b=zh ~FUUðQ; bÞ; ð9Þ

FsinðϕhþϕsÞ
UT ðQ;Ph⊥Þ¼

1

z2h

Z
d2b
ð2πÞ2 e

i~Ph⊥·~b=zh P̂α
h⊥ ~Fα

collinsðQ;bÞ;

ð10Þ
and one notices that while spin-independent structure
function is a scalar quantity, the spin-dependent structure
function depends on the transverse direction α ¼ 1, 2; see
Eqs. (8) and (10).

1. Unpolarized structure function with evolution

The factorization formula for unpolarized structure
function FUUðQ;Ph⊥Þ is well known and has the following
interpretation (we choose the Ji-Ma-Yuan [29,73] scheme
for the moment) in terms of unpolarized distribution and
fragmentation functions in the b space [49],

~FUUðQ; bÞ ¼
X
q

e2q ~f
q
1ðxB; b; ρ; ζ; μÞ ~Dh=qðzh; b; ρ; ζ̂; μÞ

×HðQ=μ; ρÞSðb; ρ; μÞ; ð11Þ

where ~fq1 is the unpolarized TMD distribution; ~Dh=q is
the unpolarized TMD fragmentation function; and ζ2¼
2ðv ·PAÞ2=v2, ζ̂2 ¼ ð2~v · PhÞ2=~v2, and ρ2 ¼ ð2v · ~vÞ2=v2 ~v2
represent the light-cone singularity regulation parameters.
H is the hard factor associated with hard scattering, and S is
the so-called soft function associated with the emission of
soft gluons. The renormalization group scale μ is arbitrary
in full QCD; however, in truncated perturbative series, it is
chosen to optimize the convergence in such a way that H
does not have large logarithmic contributions, logðQ=μÞ,
and generically μ ¼ C1Qwith C1 a parameter of order of 1.
We will utilize C1 ¼ 1 and thus μ ¼ Q in our calculations.
Depending on different schemes, such as Ji-Ma-Yuan
[29,73], CSS [20,21], or Collins-11 [22], the dependence
on these parameters will be different. However, the final
results for the structure functions are independent of the
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schemes, as the actual cross sections do not depend on the
auxiliary parameters. Note that historically the H factor is
absorbed in the CSS formulation into the definition of
Wilson coefficient functions that relate TMDs to the
corresponding collinear distributions. The final results
for the cross sections are the same in all schemes.
However, a slight difference stems from the fact that H
functions contain αsðμÞ with renormalization group scale μ
while coefficient functions, as will be explained below,
contain αsðμbÞ with a dynamical scale μb. At each order of
perturbation series, these differences are of a higher order in
αs. We will dedicate the separate Sec. III F where we will
discuss the TMD interpretation of our results and give
explicit TMD formulas in TMD Collins-11 [22] formu-
lation for all functions and structure functions considered in
this paper.
Let us review the definition and the need of different

factors. The TMD quark distributions in SIDIS is defined
through the following matrix,

Mαβ ¼ Pþ
Z

dξ−

2π
e−ixξ

−Pþ
Z

d2b
ð2πÞ2 e

i~b·~k⊥

× hPSjψ̄βðξ−; 0; ~bÞL†
vð∞; ξÞLvð∞; 0Þψαð0ÞjPSi;

ð12Þ

with the gauge link

Lvð∞; ξÞ≡ exp

�
−ig

Z
∞

0

dλv · Aðλvþ ξÞ
�
: ð13Þ

This gauge link goes to þ∞, indicating that we adopt the
definition for the TMD quark distributions for the SIDIS
process. The unpolarized quark distribution is projected out
from the above matrix as

M ¼ 1

2
½fq1ðx; k⊥ÞγμPμ þ…�; ð14Þ

fq1ðx; k⊥Þ ¼
1

4Pþ Tr½γþM�: ð15Þ

However, the above definition of the quark distribution
contains a soft gluon contribution, which has to be
subtracted from the naive definition. In addition, there is
light-cone singularity if we take the gauge link along the
light-front direction v with v2 ¼ 0. The way to regularize
this singularity and subtract soft gluon contribution defines
the scheme for the TMD factorization.
In the Ji-Ma-Yuan scheme, the gauge link in the TMD

definition is chosen to be slightly off light cone, n ¼
ð1−; 0þ; 0⊥Þ → v ¼ ðv−; vþ; 0⊥Þ with v− ≫ vþ. Similarly,
for the TMD fragmentation function, ~v was introduced,
~v ¼ ð ~v−; ~vþ; 0⊥Þ with ~vþ ≫ ~v−. Because of the additional
directions v and ~v, there are additional invariants:

ζ2 ¼ ð2v · PÞ2=v2, ζ̂2 ¼ ð2~v · PhÞ2=~v2, and ρ2 ¼
ð2v · ~vÞ2=v2 ~v2. Accordingly, the soft factor is defined as

Sv;v̄ðbÞ ¼ h0jL†
~vcb0 ðbÞL†

vb0aðbÞLvabð0ÞL ~vbcð0Þj0i: ð16Þ

With soft factor subtraction, the TMD factorization for the
unpolarized structure function can be rewritten as

FUUðQ; bÞ ¼
X
q

e2q ~f
q ðsubÞ
1 JMY ðxB; b; ρ; ζ; μÞ

× ~DðsubÞ
q JMYðzh; b; ρ; ζ̂; μÞHJMY

UU ðQ=μ; ρÞ; ð17Þ

where the subtracted quark distribution and fragmentation
functions are defined as

~fq ðsubÞ1 JMY ðxB; b; ρ; ζ; μÞ ¼
~fq1ðzh; b; ρ; ζ; μÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sðb; ρ; μÞp ; ð18Þ

~DðsubÞ
q JMYðzh; b; ρ; ζ̂; μÞ ¼

~Dqðzh; b; ρ; ζ̂; μÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðb; ρ; μÞp ; ð19Þ

with the soft factor S subtracted from the original TMDs.
After solving the evolution equations and expressing the
TMDs in terms of the integrated parton distributions,
the final expressions for TMDs are obtained by setting
ζ2 ¼ ζ̂2 ¼ ρQ2. Note that in Eqs. (18) and (19) we
understand the square root in the perturbative sense;
i.e., for any quantity A ¼ 1þ a1αs þ…, one has 1=

ffiffiffiffi
A

p ¼
1 − 1=2a1αs −….
On the other hand, as explained in the Introduction the

new Collins-11 approach [22] is an important improvement
of the original CSS formalism and includes now the
operator definition of TMDs, and the soft factor subtraction
is taken to ensure the absence of light-cone singularities in
the TMDs and the self-energy divergencies of the soft
factors. According to this new scheme, the TMD distribu-
tion is defined as

~fq1
JCCðx; b; ζF; μÞ ¼ ~fq1ðx; b; ζF; μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn̄;vðbÞ

Sn;n̄ðbÞSn;vðbÞ

s
;

ð20Þ

where ζ2F ¼ x2ð2v · PAÞ2=v2 ¼ 2ðxPþ
A Þ2e−2yn with yn the

rapidity cutoff in the Collins-11 scheme. Fragmentation
functions are defined analogously. The unpolarized struc-
ture function takes the form

FUUðQ;bÞ ¼
X
q

e2q ~f
q JCC
1 ðxB; b; ζF; μÞ

× ~DJCC
q ðzh; b; ζD; μÞHJCC

UU ðQ=μÞ: ð21Þ
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One can see from Eqs. (17) and (21) that the formal
expression for structure functions takes a very simple
“parton model”-like form. The underlying TMDs, however,
unlike the parton model expression are computed with
an appropriate QCD evolution procedure. In spite of
differences in the schemes to define TMDs in Eqs. (17)
and (21), the final result for the structure functions and the
cross sections is scheme independent and reduces to that
of the original CSS. One of the advantages of the TMD
schemes, such as the Collins-11 [22] or Ji-Ma-Yuan
approaches [29,73], is a possibility to define process-
independent unpolarized TMDs or account for process
dependence in k⊥-odd TMDs directly and study individual
TMD functions. Important process-independent universal
nonperturbative contributions [43] can be also studied,
and global TMD fits that include different processes are
possible.
The corresponding TMDs depend on two scales, ζF

(or ζD) and μ, with their dependence encoded in the TMD
evolution equations. The rapidity evolution with respect
to ζ is given by the CS equation [20],

∂ ln ~fqðxB;b;ζ;μÞ
∂ ln ffiffiffiffiffi

ζF
p ¼∂ ln ~Dqðzh;b;ζD;μÞ

∂ ln ffiffiffiffiffiffi
ζD

p ¼ ~Kðb;μÞ; ð22Þ

where ~Kðb; μÞ is the so-called CS kernel [20]. It can
be computed perturbatively for small values of b. The
dependence on the scale μ arises from renormalization
group equations for ~fq, ~Dq, and ~K,

d ~Kðb; μÞ
d ln μ

¼ −γKðαsðμÞÞ; ð23Þ

d ln ~fðxB; b; ζ; μÞ
d ln μ

¼ γFðαsðμÞ; ζF=μ2Þ; ð24Þ

d ln ~Dqðzh; b; ζD; μÞ
d ln μ

¼ γDðαsðμÞ; ζD=μ2Þ; ð25Þ

where functions γK , γF, and γD are anomalous dimensions
of ~K, ~fq, and ~Dq, respectively. Note that the solution of
these evolution equations does not depend on the scheme to
define TMDs.
The equations and solutions are discussed at length in

Refs. [20–22,29,43,73]. Here we will present and discuss
the final solution. At low values of b ≪ 1=ΛQCD, 1=b
becomes a legitimate hard scale. One introduces [20] an
auxiliary scale μb ¼ c0=b, with c0 ¼ 2e−γE and γE ≈ 0.577
the Euler constant. The b dependence of TMDs can be
computed in the perturbative 1=Q ≪ b ≪ 1=ΛQCD region
in terms of the collinear parton distribution and
fragmentation functions. This region corresponds to the
transverse momentum which is large compared to hadronic
scale but still small compared to the hard scale

(i.e., ΛQCD ≪ k⊥ ≪ Q). That is, TMDs in this region
are expressed in terms of collinear distributions. This sort
of relation will be explained later in the paper. Let us
mention that the usage of such a relation helps to obtain a
reliable description of the experimental data.
The energy evolution of TMDs from the scale μb to the

scale Q is encoded in the exponential factor, exp½−S�, with
the so-called Sudakov-like form factor, the perturbative part
of which can be written as

SpertðQ; bÞ ¼
Z

Q2

μ2b

dμ̄2

μ̄2

�
Aðαsðμ̄ÞÞ ln

Q2

μ̄2
þ Bðαsðμ̄ÞÞ

�
;

ð26Þ

where the A- and B-coefficients can be expanded as
perturbative series A ¼ P∞

n¼1 A
ðnÞðαs=πÞn and B ¼P∞

n¼1 B
ðnÞðαs=πÞn. In our calculations, we will take Að1Þ,

Að2Þ, and Bð1Þ for the NLL accuracy. Because this part is
spin independent as explained in the Introduction, these
coefficients are the same as those in unpolarized cross
sections [21] and are given by [21,37,38,40,56,74]

Að1Þ ¼ CF;

Að2Þ ¼ CF

2

�
CA

�
67

18
−
π2

6

�
−
10

9
TRnf

�
;

Bð1Þ ¼ −
3

2
CF: ð27Þ

One can see from Eqs. (9) and (10) that in order to
reconstruct the measured cross section one needs to
perform the Fourier transform over all values of b. The
accuracy of the perturbative solution will deteriorate for
large values of b. In fact αsðμbÞ will hit the so-called
Landau pole, which is a good indication of the presence of
the nonperturbative physics. Thus, one needs to take into
account the nonperturbative behavior of TMDs. The
original CSS approach [21] proposed the so-called b�
prescription that introduces a cutoff value bmax and allows
for a smooth transition from perturbative to nonperturbative
regions and avoids the Landau pole singularity in αsðμbÞ,

b⇒ b� ¼ b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb2=b2max

q
; bmax < 1=ΛQCD; ð28Þ

where bmax is a parameter in the prescription. From the
above definition, b� is always in the perturbative region
where bmax is normally chosen to be around 1 GeV−1.
With the introduction of b� in the Sudakov form factor, the
total Sudakov-like form factor can be written as the sum
of perturbatively calculable part and nonperturbative
contribution

SsudðQ;bÞ ⇒ SpertðQ; b�Þ þ SNPðQ; bÞ; ð29Þ
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where SNPðQ; bÞ is defined as the difference from the
original form factor and the perturbative one. This differ-
ence should vanish as b → 0, i.e., in the perturbative region,
and thus SNPðQ; bÞ has the following generic form:

SNPðQ; bÞ ¼ g2ðbÞ lnQ=Q0 þ g1ðbÞ: ð30Þ
The nonperturbative generic functions g2 and g1 have very
unique interpretations. In particular g2 includes the infor-
mation on the large b behavior of the evolution kernel ~K.
This function does not depend on the particular process; it
does not depend on the scale and has no dependence on
momentum fractions xB, z. This contribution should be
parametrized phenomenologically, and an often-used para-
metrization is

g2ðbÞ ¼ g2b2; ð31Þ
which proved to be very reliable to describe Drell-Yan data
and W�; Z boson production in the BLNY type of para-
metrizations [37]. This Gaussian-type parametrization
suggests that the large b region is strongly suppressed
[39] and in principle can be unreliable to describe data from
lower energies which are more sensitive to moderate-to-
high values of b. Other parametrizations were proposed in
Refs. [39] and [44]. For instance that of Ref. [44] has the
form

g2ðbÞ ¼ g2 ln

�
b
b�

�
; ð32Þ

and allows us to describe simultaneously unpolarized
multiplicities from SIDIS measurements by HERMES,
low energy Drell-Yan as well as Z boson production up
to LHC energies. In this paper we will follow the para-
metrization of Ref. [44] for g2ðbÞ.
The function g1ðbÞ contains information on the intrinsic

nonperturbative transverse motion of bound partons; in
case of a distribution TMD, it depends on the type of
hadron and quark flavor as well as potentially on xB. In case
of a fragmentation TMD, it can depend on zh and the type
of the hadron produced and quark flavor. In other words,
g1ðbÞ is tied to the particular TMD. Parameters in functions
g2ðbÞ and g1ðbÞ depend on the cutoff value bmax in case b�
prescription is used. The nonperturbative factors could
be also defined using different prescriptions, such as, for
example, matching to perturbative form factors of Ref. [75]
or using the complex b plane integration method of
Ref. [76]. In this paper we use the standard CSS b�
prescription method that allows us to compare easily with
existing phenomenology.
Therefore, with the TMD evolution, TMDs can be

expressed as [22,56,57],

~fqðsubÞ1 ðxB; b;Q2; QÞ ¼ e−
1
2
SpertðQ;b�Þ−Sf1NPðQ;bÞ ~F qðαsðQÞÞCq←i ⊗ fi1ðxB; μbÞ; ð33Þ

~DðsubÞ
q ðzh; b;Q2; QÞ ¼ e−

1
2
SpertðQ;b�Þ−SD1

NP ðQ;bÞ ~DqðαsðQÞÞĈj←q ⊗ Dh=jðzh; μbÞ; ð34Þ

where we explicitly embed the scheme dependence of
TMDs from Eqs. (18) and (19) in the coefficients ~F q and
~Dq. Details on these functions are given in Ref. [57]. In the
Ji-Ma-Yuan scheme,

~F q ¼ 1þ αs
2π

CF

�
ln ρ −

1

2
ln2ρ −

π2

2
− 2

�
; ð35Þ

~Dq ¼ 1þ αs
2π

CF

�
ln ρ −

1

2
ln2ρ −

π2

2
− 2

�
; ð36Þ

while in the Collins-11 scheme, ~F q ¼ 1þOðα2sÞ and
~Dq ¼ 1þOðα2sÞ. The final result for the structure function
is ρ independent for the Ji-Ma-Yuan scheme, so we set
ρ ¼ 1. In Eqs. (33) and (34), ⊗ represents the convolution
in the momentum fraction of x or z,

Cq←i ⊗ fi1ðxB; μbÞ≡
X
i

Z
1

xB

dx
x
Cq←i

�
xB
x
; μb

�
fi1ðx; μbÞ;

ð37Þ

Ĉj←q⊗Dh=jðzh;μbÞ≡
X
j

Z
1

zh

dz
z
Ĉj←q

�
zh
z
;μb

�
Dh=jðz;μbÞ:

ð38Þ
The same convolutions will be used for transversity and
Collins fragmentation functions with appropriate coeffi-
cient functions later in the paper. The above coefficient
functions are

Cq←q0 ðx; μbÞ ¼ δq0q

�
δð1 − xÞ þ αs

π

�
CF

2
ð1 − xÞ

��
; ð39Þ

Cq←gðx; μbÞ ¼
αs
π
TRxð1 − xÞ; ð40Þ
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Ĉq0←qðz; μbÞ

¼ δq0q

�
δð1 − zÞ þ αs

π

�
CF

2
ð1 − zÞ þ Pq←qðzÞ ln z

��
;

ð41Þ

Ĉg←qðz; μbÞ ¼
αs
π

�
CF

2
zþ Pg←qðzÞ ln z

�
;ð42Þ

with the usual splitting functions Pq←q and Pg←q given by

Pq←qðzÞ ¼ CF

�
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
; ð43Þ

Pg←qðzÞ ¼ CF
1þ ð1 − zÞ2

z
: ð44Þ

The C-functions are chosen to be universal among different
TMD schemes, whereas the functions ~F q and ~Dq depend
on the schemes. In Collins-11 schemes, both factors are
equal to 1 up to one-loop order. In the Ji-Ma-Yuan scheme,
they will depend on ρ. Again, this ρ dependence in
individual TMDs will be cancelled out by the associated
ρ dependence in the hard factor H in Eq. (17) when we
calculate the structure function FUUðb;QÞ.
Substituting the results of Eqs. (33) and (34) into the

factorization formula Eq. (17), we can write down the
structure function ~FUU in the b space as

~FUUðQ; bÞ ¼ e−SpertðQ;b�Þ−SSIDISNP ðQ;bÞ ~FUUðb�Þ; ð45Þ

with the nonperturbative form factor decomposed into the
distribution and fragmentation contributions,

SSIDISNP ðQ; bÞ ¼ Sf1NPðQ; bÞ þ SD1

NPðQ; bÞ; ð46Þ

which should be determined from the global fit to the
SIDIS, eþe−, and Drell-Yan data. In the standard CSS

resummaton which we will follow in this paper, together
with the hard factor in the TMD factorization of Eq. (17),
the functions ~Fq and ~Dq are absorbed into the C-functions
by applying the renormalization group equation for the
running coupling constant in these two factors [46]. With
that, we can write down ~FUUðb�Þ as

~FUUðb�Þ ¼
X
q

e2qðCðSIDISÞ
q←i ⊗ fi1ðxB; μbÞÞ

× ðĈðSIDISÞ
j←q ⊗ Dh=jðzh; μbÞÞ; ð47Þ

where
P

q runs over both quark and antiquark flavors and
fi1ðxB; μbÞ and Dh=jðzh; μbÞ are the usual unpolarized
collinear parton distribution function and fragmentation
function at the scale μb ¼ c0=b�. We emphasize that the
above C-coefficients are the same for all TMD schemes if
hard factors H, ~Fq, and ~Dq are absorbed in their definition.
In particular, in the Ji-Ma-Yuan scheme, the ρ dependence
in H of Eq. (17), ~Fq in Eq. (33), and ~Dq in Eq. (34) are
cancelled out. In the Collins-11 scheme when the hard
factor H is absorbed in the definition of C-functions,
C-functions become process dependent and equal to those
of the standard CSS scheme. The final expressions for
CSIDIS and ĈSIDIS do not depend on ρ, and they are the same
in the Collins-11 scheme, which are also the same as those
used in the CSS literature [77–79],

CðSIDISÞ
q←q0 ðx; μbÞ

¼ δq0q

�
δð1 − xÞ þ αs

π

�
CF

2
ð1 − xÞ − 2CFδð1 − xÞ

��
;

ð48Þ

CðSIDISÞ
q←g ðx; μbÞ ¼

αs
π
TRxð1 − xÞ; ð49Þ

ĈðSIDISÞ
q0←q ðz; μbÞ ¼ δq0q

�
δð1 − zÞ þ αs

π

�
CF

2
ð1 − zÞ − 2CFδð1 − zÞ þ Pq←qðzÞ ln z

��
; ð50Þ

ĈðSIDISÞ
g←q ðz; μbÞ ¼

αs
π

�
CF

2
zþ Pg←qðzÞ ln z

�
: ð51Þ

Of course, there is a freedom to have a separate hard factor
in Eq. (45), so that the above C-coefficients will be
modified accordingly; compare to Eqs. (39), (40), (41),
and (42). This is referred to as scheme dependence [46] in
the CSS resummation.

For the nonperturbative form factors, we will follow the
parametrization of Ref. [44],

SSIDISNP ðQ; bÞ ¼ g2 ln

�
b
b�

�
ln

�
Q
Q0

�
þ
�
gq þ

gh
z2h

�
b2; ð52Þ

where Q2
0 ¼ 2.4 GeV2, for the spin-averaged contribution.

In the above parametrization, the parameters gq ¼ g1=2 ¼
0.106, g2 ¼ 0.84, and gh ¼ 0.042 ðGeV2Þ have been
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determined from the analysis of SIDIS and Drell-Yan
processes in Ref. [44]. In the fit of Ref. [44], it was found
that the nonperturbative form factors do not depend on x.
We will use the nonperturbative factor of Eq. (52) in
this paper.

2. Collins structure function with evolution

Now, we turn to the Collins effects contribution to the
single transverse spin asymmetry in SIDIS. We start again
from the factorized TMD expression in the b space [49,80],

~Fα
collinsðQ; bÞ ¼

X
q

e2q ~h
qðsubÞ
1 ðxB; b; ρ; ζ; μÞ

× ~H⊥αðsubÞ
1h=q ðzh; b; ρ; ζ̂; μÞHðρ; Q=μÞ; ð53Þ

where ~hq1 is the TMD quark transversity distribution and
~H⊥
1h=q is the Collins fragmentation function in the b space

and is defined (omitting scale dependence) as

~H⊥α
1h=qðzh; bÞ ¼

Z
d2p⊥e−ip⊥·bpα⊥H⊥

1h=qðzh; p⊥Þ: ð54Þ

HereH⊥
1h=qðzh; p⊥Þ is the quark Collins function as defined

in Ref. [52], which differs by a factor of ð−1=zhÞ from the
so-called “Trento convention” [81],

H⊥
1h=jðzh; p⊥Þ ¼ −

1

zh
H⊥

1h=jðzh; p⊥ÞjTrento; ð55Þ

with p⊥ the transverse component of the hadron with
respect to the fragmenting quark momentum.
The following model-independent relation of Collins

fragmentation function H⊥
1h=qðzh; p⊥Þ and a twist-3 frag-

mentation function of quark flavor q to hadron h, Ĥð3Þ
h=qðzhÞ,

can be obtained [52]:

Ĥð3Þ
h=jðzhÞ ¼

Z
d2p⊥

jp2⊥j
Mh

H⊥
1h=jðzh; p⊥Þ: ð56Þ

One often defines the following so-called first moment of
the Collins fragmentation function:

H⊥ð1Þ
1h=jðzhÞjTrento ≡

Z
d2p⊥

jp⊥j2
2z2hM

2
h

H⊥
1h=jðzh; p⊥ÞjTrento:

ð57Þ

We thus find that

Ĥð3Þ
h=jðzhÞ ¼ −2zMhH

⊥ð1Þ
1h=jðzhÞjTrento: ð58Þ

It is straightforward to show that Ĥð3Þ
h=jðzhÞ can be written as

Ĥð3Þ
h=jðzhÞ ¼ nþz2h

Z
dξ−

2π
eik

þξ− 1

2

�
Trσαþh0j

�
iDα⊥ þ

Z þ∞

ξ−
dζ−gFαþðζ−Þ

�
ψðξÞjPhXihPhXjψ̄ð0Þj0i þ H:c:

�
; ð59Þ

where we have chosen the gauge link in Eq. (59) going
to þ∞ and Fμν is the gluon field strength tensor and we
have suppressed the gauge links between different fields
and other indices for simplicity. Since the Collins function
is the same under different gauge links [14,82,83], we shall
obtain the same result if we replace þ∞ by −∞ in the
above equation.

The TMD evolution for the quark transversity and
Collins fragmentation functions have been derived in the
literature [21,29,40,49,54]. When expressed in terms of
the collinear transversity distribution hq1ðxBÞ and the

twist-3 fragmentation function Ĥð3Þ
h=qðzhÞ, they can be

written as

~hqðsubÞ1 ðxB; b; ρ;Q2; QÞ ¼ e−
1
2
SpertðQ;b�Þ−Sh1NPðQ;bÞ ~H1qðαsðQÞÞδCq←q0 ⊗ hq

0
1 ðxB; μbÞ; ð60Þ

~HðsubÞ⊥α
1h=q ðzh; b; ρ;Q2; QÞ ¼

�
−ibα

2zh

�
e−

1
2
SpertðQ;b�Þ−SD1

NP ðQ;bÞ ~HcðαsðQÞÞδĈq0←q ⊗ Ĥð3Þ
h=q0 ðzh; μbÞ; ð61Þ

where again the scheme dependence is in the functions ~H1qðαsðQÞÞ and ~HcðαsðQÞÞ. They equal 1 up to one-loop order in
the Collins-11 scheme. The C-coefficient functions are found to be

δCq←q0 ðx; μbÞ ¼ δq0q½δð1 − xÞ þOðα2sÞ�; ð62Þ
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δĈðSIDISÞ
q0←q ðz; μbÞ ¼ δq0q

�
δð1 − zÞ þ αs

π
ðP̂c

q←qðzÞ ln zÞ
�
;

ð63Þ

where the function P̂c
q←qðzÞ has the following form, see

Eq. (A6):

P̂c
q←qðzÞ ¼ CF

�
2z

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
: ð64Þ

Substituting the above results into the factorization
formula, we obtain the final result for ~Fα

collins as
[21,29,40,49,54]

~Fα
collinsðQ; bÞ ¼

�
−ibα

2zh

�
e−SpertðQ;b�Þ−SSIDISNP collinsðQ;bÞ ~Fcollinsðb�Þ;

ð65Þ

with ~Fcollinsðb�Þ given by

~Fcollinsðb�Þ ¼
X
q

e2qðδCq←i ⊗ hi1ðxB; μbÞÞ

× ðδĈðSIDISÞ
j←q ⊗ Ĥð3Þ

h=jðzh; μbÞÞ: ð66Þ

The convolutions are defined in Eqs. (37) and (38), and the
relevant coefficient functions up to the first order in αs
[compare to Eq. (63) to determine the relation to hard factor
H] are given by [52,54,64,79]

δCðSIDISÞ
q←q0 ðz;μbÞðx;μbÞ¼δq0q

�
δð1−xÞþαs

π
ð−2CFδð1−xÞÞ

�
;

ð67Þ

δĈðSIDISÞ
q0←q ðz; μbÞ

¼ δq0q

�
δð1 − zÞ þ αs

π
ðP̂c

q←qðzÞ ln z − 2CFδð1 − zÞÞ
�
;

ð68Þ

where again the above C-coefficients contain the contri-
butions from the hard factors in the TMD factorization. The
hard factor is given in Eq. (A19) for the Ji-Ma-Yuan scheme
and in Eq. (A20) for the Collins-11 scheme.
To achieve the evolution at the NLL order, we have to

evaluate both the transversity hq1ðxB; μbÞ and twist-3 frag-

mentation function Hð3Þ
h=qðz; μbÞ up to the scale μb ¼ c0=b�.

The evolution for the quark transversity is well known
[84–87], and we will use the leading-order result

∂
∂ ln μ2 h

q
1ðxB; μÞ ¼

αs
2π

Z
1

xB

dx̂
x̂
Ph1
q→qðx̂Þhq1ðxB=x̂; μÞ; ð69Þ

where the splitting kernel

Ph1
q→qðx̂Þ ¼ CF

�
2x̂

ð1 − x̂Þþ
þ 3

2
δð1 − x̂Þ

�
: ð70Þ

Note that, since gluon transversity distribution for nucleons
does not exist [3], the quark transversity hq1 does not mix
with gluons in its evolution and it evolves as a nonsinglet

quantity. On the other hand, the evolution equation for Ĥð3Þ
h=j

was derived in Refs. [52,62] and has a more complicated
form. However, if we keep only the homogenous term, we
can write down the evolution equation as [52,62]

∂
∂ ln μ2 Ĥ

ð3Þ
h=qðzh; μÞ ¼

αs
2π

Z
1

zh

dẑ
ẑ
P̂c
q←qðẑÞĤð3Þ

h=qðzh=ẑ; μÞ;

ð71Þ

where the splitting kernel P̂c
q←q of the homogenous term

is given in Eqs. (A6) and (64) and is the same as that for
the evolution of the quark transversity function, as pointed
out in Ref. [62]. We will take this approximation in our
numerical studies below. In order to differentiate from the
complete NLL accuracy, we will call it NLL0 or approxi-
mate NLL.
For the nonperturbative form factors, we follow the

parametrizations of Ref. [44],

SSIDISNPcollinsðQ;bÞ ¼ g2 ln

�
b
b�

�
ln

�
Q
Q0

�
þ
�
gq þ

gh − gc
z2h

�
b2;

ð72Þ

where we assume that the quark transversity follows the
same parametrization as unpolarized TMD but introduce an
additional parameter to constrain the p⊥ dependence in the
Collins fragmentation. Therefore, gc will be a free param-
eter in the fit. It is also worthwhile to emphasize that
the lnQ=Q0-dependent part [i.e., g2 ln ðb=b�Þ in our for-
malism above] is universal for all processes in the initial
CSS formalism [20,21] as well as in the recent TMD
formalism of Ref. [22]. The other contributions in the
nonperturbative Sudakov form factor are Q independent
and can be associated with corresponding TMD distribu-
tion and fragmentation functions at an initial scale; see,
e.g., Refs. [22,42].
Finally performing Fourier transforms in Eqs. (9) and

(10), we obtain the expressions for both spin-averaged
and spin-dependent structure functions in the transverse-
momentum space as
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FUUðQ;Ph⊥Þ ¼
1

z2h

Z
∞

0

dbb
ð2πÞ J0ðPh⊥b=zhÞe−SpertðQ;b�Þ−SSIDISNP ðQ;bÞ ~FUUðb�Þ; ð73Þ

Fsin ðϕhþϕsÞ
UT ðQ;Ph⊥Þ ¼

1

z2h

�
−

1

2zh

�Z
∞

0

dbb2

ð2πÞ J1ðPh⊥b=zhÞe−SpertðQ;b�Þ−SSIDISNP collinsðQ;bÞ ~Fcollinsðb�Þ; ð74Þ

with J0;1 the usual Bessel functions.
Let us comment at this point about the usage of relations

to collinear distributions in the structure functions ~F in
Eqs. (47) and (66). One could in principle solve evolution
equations starting at a particular scale Q0 instead of
introducing dynamical scale μb ∝ 1=b and try to extract
unknown functions, such as the Collins fragmentation
function or transversity, directly from the data without
relying on collinear or twist-3 functions. However, such a
method has certain difficulties, both theoretically and
phenomenologically. The theoretical difficulty consists in
the fact that if one starts from a fixed scale Q0 then the ~F
function will have potentially large logarithms of the type
lnðbQ0Þ which are obviously not present in the μb method
due to the choice of μb ∼ 1=b. Phenomenologically it might
also be difficult to model the unique x, z, and b dependence
as contained in the collinear function fðx; μbÞ, which
further builds in some dependence on the collision energy
[38]. Presently there are no successful descriptions of
experimental observables simultaneously at both low and
high energies that use the method with fixed starting scale
Q0. The method with the fixed starting scale can be applied
for processes where the measured scale Q is similar to Q0,
namely for processes where the most important contribu-
tion in the cross section comes from b ∼ 1=Q ∼ 1=Q0. An
example of such a description is a fit of Sivers functions in
Refs. [41,88]. In our case, the characteristic scales of SIDIS,
Q2 ∼ 2.4 GeV2, and eþe−, Q2 ∼ 110 GeV2, are substan-
tially different. It means that the regions of b explored are
different and one needs to accurately take into account the
correct b dependence of TMDs. That is why in this
extraction we will use relations to collinear distributions,
fragmentation functions, and twist-3 functions.
By applying the CSS formalism, we utilize the well-

established framework of the collinear parton distribution
and fragmentation functions to parametrize the TMDs at
the input scale. For the unpolarized case, this is an obvious
advantage because of the existing global fits for the
integrated PDFs. For the Collins fragmentation function
case, it is also easier to parametrize TMDs in terms of the
collinear twist-3 function, for which the usual DGLAP
evolution can be applied. Another important point we want
to emphasize is that there are DGLAP-type logarithms in
the TMD formalism when b is small. The CSS formalism is
the best way to resum these logarithms, by applying the
relevant scales (μb) in the associated integrated parton
distribution and fragmentation functions. This is an

important step to help the theory convergence in the
perturbative calculations.

B. Collins azimuthal asymmetries in eþe−

In this section we present the formulas for the Collins
azimuthal asymmetries in back-to-back dihadron produc-
tions in eþe− annihilations,

eþ þ e− → h1 þ h2 þ X; ð75Þ

with center of mass energy S ¼ Q2 ¼ ðPeþ þ Pe−Þ2 and the
two final state hadrons with momenta Ph1 and Ph2,
respectively. We further identify the longitudinal momen-
tum fractions: zhi ¼ 2jPhij=Q. Therefore, zhi represent the
momentum fractions in the fragmentation functions which
describe the fragmentation processes. Ideally, at leading
order these two hadrons are produced in a back-to-back
configuration. However, the gluon radiation and transverse-
momentum dependence in the fragmentation processes will
generate a nonzero imbalance between the two hadrons.
To describe the near-back-to-back imbalance between

the two hadrons in eþe− annihilations, the TMD factori-
zation can be used to calculate the differential cross
sections. In particular, the Collins fragmentation function
will lead to cos 2ϕ azimuthal angular asymmetries between
these two hadrons. In the literature, there are two proposed
experimental methods to investigate the Collins effects in
this process: (1) one is to define a thrust axis in eþe−
annihilation and measure the relative azimuthal angular
correlation between the two hadrons in the two back-to-
back jets, which is referred to as A12 asymmetries; (2) the
other is to use one hadron as a reference to define the
azimuthal angle of another hadron (in the back-to-back
configuration), which is referred to as A0 asymmetries. In
the former case, we will have to measure two azimuthal
angles ϕ1 and ϕ2, and the Collins effects lead to an
azimuthal asymmetry proportional to cosðϕ1 þ ϕ2Þ,
whereas in the latter case only one azimuthal angle ϕ0 is
measured, and the Collins asymmetry appears as cosð2ϕ0Þ.
In the naive TMD factorization (Born level), both asym-
metries can be formulated in terms of the Collins frag-
mentation functions for the hadrons. However, only for the
second case, we can immediately generalize a QCD
factorization in terms of the TMDs. For the first case, a
certain modification has to be made to have a QCD
factorization formula. The reason for this complication is
that, in order to describe the case of method 1, one has to
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define the jet direction, which is beyond the usual situation
of the TMD factorization such as the TMD factorization in
SIDIS and Drell-Yan lepton pair production.
In this paper, as a first step, we only consider the second

case for the Collins asymmetries in eþe− annihilations. In
this measurement, see Fig. 2, the transverse-momentum
dependence is measured for the hadron (h1) relative to the
direction of hadron (h2). The total transverse-momentum
dependence comes from the TMD fragmentation functions
for hadron h1 and hadron h2, plus the soft factor generated
from the soft gluon radiation. Again, we focus on the low
transverse-momentum region, where TMD factorization is
appropriate and reads [89,90]

d5σe
þe−→h1h2þX

dzh1dzh2d2Ph⊥d cos θ

¼ Ncπα
2
em

2Q2
½ð1þ cos2θÞZh1h2

uu þ sin2θ cosð2ϕ0ÞZh1h2
collins�;

ð76Þ

where θ is the polar angle between the hadron h2 and the
beam of eþe−; ϕ0 is defined as the azimuthal angle of
hadron h1 relative to that of hadron h2, i.e., of the plane
containing hadrons h1 and h2 relative to the plane con-
taining hadron h2 and the lepton pair (see Fig. 2); and Ph⊥
is the transverse momentum of hadron h1 in this frame. We
can rewrite the contribution corresponding to Zh1h2

collins in
Eq. (76) in the following form,

sin2θ cosð2ϕ0ÞZh1h2
collins ¼ sin2θð2êαxêβx − gαβ⊥ ÞZh1h2αβ

collins ; ð77Þ

where the unit vector êx represents the transverse direction
of the hadron in the hadron frame and is defined in Fig. 2.
The tensor structure of this term leads to cos 2ϕ0 azimuthal
asymmetries between the two hadrons.

The structure functions Zh1h2
uu and Zh1h2

collins have the
following form,

Zh1h2
uu ðQ;Ph⊥Þ ¼

1

z2h1

Z
d2b
ð2πÞ2 e

i~Ph⊥·~b=zh1 ~Zh1h2
UU ðQ; bÞ

þ YuuðQ;Ph⊥Þ; ð78Þ

Zh1h2αβ
collins ðQ;Ph⊥Þ ¼

1

z2h1

Z
d2b
ð2πÞ2 e

i~Ph⊥·~b=zh1 ~Zh1h2αβ
collins ðQ; bÞ

þ Yαβ
collinsðQ;Ph⊥Þ; ð79Þ

where the first term depends on the TMD fragmentation
functions for the two hadrons and dominates in the
Ph⊥=zh1 ≪ Q region and the second term dominates in
the region of Ph⊥=zh1 ≳Q. For cos 2ϕ0 asymmetries, we
have an additional contribution from gluon radiation [89]
associated with spin-averaged fragmentation functions.
This contribution does not depend on the Collins fragmen-
tation function and is proportional to P2

h⊥=Q2. It will
become important at relatively large transverse momentum
and should be included in the above Y terms. However,
in the following, we only consider the low transverse-
momentum region Ph⊥ ≪ Q, where this contribution is
power suppressed as compared to the Collins contributions.
In addition, in the experimental measurements, the double
ratio of the cos 2ϕ asymmetries are reported for dihadron
correlations in eþe− annihilations, where this contribution
is cancelled out. Therefore, in the following analysis, we
will include neither the contribution from gluon radiation
independent of the Collins FF nor the Y term.

1. Experimentally measured Collins azimuthal
asymmetries in eþe−

Let us now discuss the definitions of the asymmetries
associated with Collins fragmentation functions in the
actual experimental measurements. The Collins function
generates cos 2ϕ0 modulation in the eþe− cross section; let
us rewrite Eq. (76) as follows:

d5σe
þe−→h1h2þX

dzh1dzh2d2Ph⊥dcosθ

¼πNcα
2
em

2Q2
ð1þcos2θÞZh1h2

uu ·Rh1h2ðzh1;zh2;θ;Ph⊥Þ; ð80Þ

Rh1h2ðzh1;zh2;θ;Ph⊥Þ≡1þcosð2ϕ0Þ
sin2θ

1þcos2θ
Zh1h2
collins

Zh1h2
uu

:

ð81Þ

One could also define analogously the Ph⊥-integrated
modulation

FIG. 2. eþ þ e− → h1 þ h2 þ X process in the frame of
method 2.
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Rh1h2ðzh1; zh2; θÞ≡ 1þ cosð2ϕ0Þ
sin2θ

1þ cos2θ

R
dPh⊥Ph⊥Zh1h2

collinsR
dPh⊥Ph⊥Zh1h2

uu
: ð82Þ

In order to eliminate false asymmetries, BELLE and BABAR consider the ratios of unlike-sign “U” (πþπ− þ π−πþ) over
like-sign “L” (πþπþ þ π−π−) or charged “C” (πþπþ þ π−π− þ πþπ− þ π−πþ) pion pairs. In our formalism, they can be
written as follows,

RUðzh1; zh2; θ; Ph⊥Þ
RLðzh1; zh2; θ; Ph⊥Þ

≃ 1þ cosð2ϕ0Þ
hsin2θi

h1þ cos2θi
�
ZU
collins

ZU
uu

−
ZL
collins

ZL
uu

�
; ð83Þ

RUðzh1; zh2; θ; Ph⊥Þ
RCðzh1; zh2; θ; Ph⊥Þ

≃ 1þ cosð2ϕ0Þ
hsin2θi

h1þ cos2θi
�
ZU
collins

ZU
uu

−
ZC
collins

ZC
uu

�
; ð84Þ

and likewise for the Ph⊥-integrated modula,

RUðzh1; zh2; θÞ
RLðzh1; zh2; θÞ

≃ 1þ cosð2ϕ0Þ
hsin2θi

h1þ cos2θi
�R

dPh⊥Ph⊥ZU
collinsR

dPh⊥Ph⊥ZU
uu

−
R
dPh⊥Ph⊥ZL

collinsR
dPh⊥Ph⊥ZL

uu

�
; ð85Þ

RUðzh1; zh2; θÞ
RCðzh1; zh2; θÞ

≃ 1þ cosð2ϕ0Þ
hsin2θi

h1þ cos2θi
�R

dPh⊥Ph⊥ZU
collinsR

dPh⊥Ph⊥ZU
uu

−
R
dPh⊥Ph⊥ZC

collinsR
dPh⊥Ph⊥ZC

uu

�
; ð86Þ

where the relevant functions are given by

ZU
uu ≡ Zπþπ−

uu þ Zπ−πþ
uu ; ZL

uu ≡ Zπþπþ
uu þ Zπ−π−

uu ; ZC
uu ≡ ZU

uu þ ZL
uu; ð87Þ

ZU
collins ≡ Zπþπ−

collins þ Zπ−πþ
collins; ZL

collins ≡ Zπþπþ
collins þ Zπ−π−

collins; ZC
collins ≡ ZU

collins þ ZL
collins: ð88Þ

Experimentally measured asymmetries AUL
0 and AUC

0 are then given by

AUL
0 ðzh1; zh2; θ; Ph⊥Þ≡ hsin2θi

h1þ cos2θi
�
ZU
collins

ZU
uu

−
ZL
collins

ZL
uu

�
; ð89Þ

AUC
0 ðzh1; zh2; θ; Ph⊥Þ≡ hsin2θi

h1þ cos2θi
�
ZU
collins

ZU
uu

−
ZC
collins

ZC
uu

�
; ð90Þ

AUL
0 ðzh1; zh2; θÞ≡ hsin2 θi

h1þ cos2 θi
�R

dPh⊥Ph⊥ZU
collinsR

dPh⊥Ph⊥ZU
uu

−
R
dPh⊥Ph⊥ZL

collinsR
dPh⊥Ph⊥ZL

uu

�
; ð91Þ

AUC
0 ðzh1; zh2; θÞ≡ hsin2 θi

h1þ cos2 θi
�R

dPh⊥Ph⊥ZU
collinsR

dPh⊥Ph⊥ZU
uu

−
R
dPh⊥Ph⊥ZC

collinsR
dPh⊥Ph⊥ZC

uu

�
: ð92Þ

2. Structure functions in eþe− with QCD evolution

Corresponding structure functions Zh1h2
uu and Zh1h2

collins are defined as Fourier transforms of structure functions in b space,

Zh1h2
uu ðQ;Ph⊥Þ ¼

1

z2h1

Z
d2b
ð2πÞ2 e

i~Ph⊥·~b=zh1 ~Zh1h2
uu ðQ; bÞ; ð93Þ

Zh1h2
collinsðQ;Ph⊥Þ ¼

1

z2h1

Z
d2b
ð2πÞ2 e

i~Ph⊥·~b=zh1ð2P̂α
h⊥P̂

β
h⊥ − gαβ⊥ Þ ~Zh1h2αβ

collins ðQ; bÞ; ð94Þ
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where we only keep the term dominant in the low transverse-momentum region. According to the TMD factorization, we
can write down

~Zh1h2
uu ðQ; bÞ ¼

X
q

e2qD
ðsubÞ
h1=q

ðzh1; b; ζ1; μÞDðsubÞ
h2=q̄

ðzh2; b; ζ2; μÞHeþe−
uu ðQ; μÞ; ð95Þ

~Zh1h2αβ
collins ðQ; bÞ ¼

X
q

e2q ~H
⊥αðsubÞ
1h1=q

ðzh1; b; ζ1; μÞ ~H⊥βðsubÞ
1h2=q̄

ðzh2; b; ζ2; μÞHeþe−
collinsðQ; μÞ; ð96Þ

where again ζi and ρ are parameters to regulate the light-cone singularities in the TMD fragmentation functions:
ζ2i ¼ ð2vi · PhiÞ2=v2i and ρ2 ¼ ð2v1 · v2Þ2=v21v22. One-loop calculations can be performed for the above observables, and
the relevant hard factors shall follow those in SIDIS calculations. In particular, for the Zuu term, the hard factor is the
same as that for Drell-Yan lepton pair production, which differs from SIDIS. This happens because in eþe− annihilation,
the virtual photon is timelike q2 > 0, the same as that in Drell-Yan process, whereas in SIDIS, the virtual photon is
spacelike q2 < 0. Because of the spin independence of hard interaction in perturbative QCD, the hard factor Zcollins will
be the same as Zuu,

Heþe−ðJMYÞ
collins ðQ; μÞ ¼ Heþe−ðJMYÞ

uu ðQ; μÞ ¼ 1þ αsðμÞ
2π

CF

�
ln
Q2

μ2
þ ln ρ2 ln

Q2

μ2
− ln ρ2 þ ln2ρþ 2π2 − 4

�
; ð97Þ

in the Ji-Ma-Yuan scheme. For the Collins-11 scheme, we will obtain similar results:

Heþe−ðJCCÞ
collins ðQ; μÞ ¼ Heþe−ðJCCÞ

uu ðQ; μÞ ¼ 1þ αsðμÞ
2π

CF

�
3 ln

Q2

μ2
− ln2

�
Q2

μ2

�
þ π2 − 8

�
: ð98Þ

Following the previous section, we first derive the
evolution results for the TMD unpolarized and Collins
fragmentation functions and substituting the results into
the above factorization formulas of Eqs. (95) and (96) and
obtain

~Zh1h2
uu ðQ; bÞ ¼ e−SpertðQ;b�Þ−Seþe−

NP ðQ;bÞ ~Zh1h2
uu ðb�Þ; ð99Þ

~Zh1h2αβ
collins ðQ; bÞ

¼
�
−ibα

2zh1

��
−ibβ

2zh2

�
e−SpertðQ;b�Þ−Seþe−

NP collinsðQ;bÞ ~Zh1h2
collinsðb�Þ:

ð100Þ

Again, the energy evolution effects are explicit in ex-
ponential factors, and

~Zh1h2
uu ðb�Þ ¼

X
q

e2qðĈðeþe−Þ
i←q ⊗ Dh1=iðzh1; μbÞÞ

× ðĈðeþe−Þ
j←q̄ ⊗ Dh2=jðzh2; μbÞÞ; ð101Þ

~Zh1h2
collinsðb�Þ ¼

X
q

e2qðδĈðeþe−Þ
i←q ⊗ Ĥð3Þ

h1=i
ðzh1; μbÞÞ

× ðδĈðeþe−Þ
j←q̄ ⊗ Ĥð3Þ

h2=j
ðzh2; μbÞÞ; ð102Þ

where the convolution is defined in Eq. (38) and the
coefficient functions read

Ĉðeþe−Þ
q0←q ðz; μbÞ ¼ δq0q

�
δð1 − zÞ þ αs

π

�
CF

2
ð1 − zÞ þ Pq←qðzÞ ln zþ

CF

4
ðπ2 − 8Þδð1 − zÞ

��
; ð103Þ

Ĉðeþe−Þ
g←q ðz; μbÞ ¼

αs
π

�
CF

2
zþ Pg←qðzÞ ln z

�
; ð104Þ

δĈðeþe−Þ
q0←q ðz; μbÞ ¼ δq0q

�
δð1 − zÞ þ αs

π

�
P̂c
q←qðzÞ ln zþ

CF

4
ðπ2 − 8Þδð1 − zÞ

��
; ð105Þ

with the functions Pq←q, Pg←q, and P̂c
q←q given in Eqs. (43), (44), and (64), respectively. Again, the above C-coefficient

functions contain the contributions from the associated hard factors in the TMD factorization, similar to the case of SIDIS in
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the last section (see the Appendix for detailed derivations).
On the other hand, the nonperturbative form factors are
parametrized as

Se
þe−
NP ðQ; bÞ ¼ g2 ln

�
b
b�

�
ln

�
Q
Q0

�
þ
�
gh
z2h1

þ gh
z2h2

�
b2;

ð106Þ

Se
þe−
NP collinsðQ; bÞ ¼ g2 ln

�
b
b�

�
ln

�
Q
Q0

�

þ
�
gh − gc
z2h1

þ gh − gc
z2h2

�
b2; ð107Þ

where we have utilized the universality arguments for these
parameters. Performing Fourier transforms in Eqs. (93) and
(94), we have

Zh1h2
uu ðQ;Ph⊥Þ ¼

1

z2h1

Z
∞

0

dbb
ð2πÞ J0ðPh⊥b=zh1Þ

× e−SpertðQ;b�Þ−Seþe−
NP ðQ;bÞ ~Zh1h2

uu ðb�Þ; ð108Þ

Zh1h2
collinsðQ;Ph⊥Þ ¼

1

z2h1

1

4zh1zh2

Z
∞

0

dbb3

ð2πÞ J2ðPh⊥b=zh1Þ

× e−SpertðQ;b�Þ−Seþe−
NP collinsðQ;bÞ ~Zh1h2

collinsðb�Þ;
ð109Þ

with J2 the associated Bessel function.

III. GLOBAL FIT WITH TMD EVOLUTION

A. Parametrizations

As we have seen in previous sections, we have two
unknown functions to be extracted from experimental data:
collinear transversity distribution hq1 and collinear twist-3

fragmentation function Ĥð3Þ
h=q. The QCD evolution of both

functions is known, and the x dependence of hq1 and z

dependence of Ĥð3Þ
h=q at the initial scale Q0 should be

parametrized.
In the global fit, we parametrize the quark transversity

distributions as

hq1ðx;Q0Þ ¼ Nh
qxaqð1 − xÞbq ðaq þ bqÞaqþbq

a
aq
q b

bq
q

×
1

2
ðfq1ðx;Q0Þ þ gq1ðx;Q0ÞÞ; ð110Þ

at the initial scale Q0, for up and down quarks q ¼ u; d,
respectively, where fq1 are the unpolarized CT10 next-to-
leading-order (NLO) quark distributions [91] and gq1 are the

NLO de Florian, Sassot, Stratmann, Vogelsang (DSSV)
quark helicity distributions [92]. In our parametrization
we enforce the so-called Soffer positivity bound [93] of
transversity distribution at the initial scale. This bound is
known to be valid [60,61] up to NLO order in pertur-
bative QCD. A possible violation of the Soffer bound
was predicted in Ref. [94], so it is very interesting to
determine phenomenologically if there are signs of such
violation in experimental data. Many extractions of
transversity, for instance those of Refs. [17,18], indeed
show saturation of the Soffer bound for d-quark trans-
versity. These possible violations happen in the region of
large x, and thus future Jefferson Lab 12 data will allow
us to shed light on the validity of the Soffer bound.
In this study, we assume that all the sea quark trans-

versity distributions are negligible. With more data avail-
able in the future, we hope we can constrain the sea quark
as well, in particular, with the Electron-Ion Collider. We
leave estimates on possible nonzero sea quarks transversity
distributions for future publications.
Similarly, we parametrize the twist-3 Collins fragmen-

tation functions in terms of the unpolarized fragmentation
functions,

Ĥð3Þ
favðz;Q0Þ ¼ Nc

uzαuð1 − zÞβuDπþ=uðz;Q0Þ; ð111Þ

Ĥð3Þ
unfðz;Q0Þ ¼ Nc

dz
αdð1 − zÞβdDπþ=dðz;Q0Þ; ð112Þ

which correspond to the favored and unfavored Collins
fragmentation functions, respectively. We also utilize the
newest NLO extraction of fragmentation functions [95].
The new de Florian, Sassot, Stratmann (DSS) FF set is
capable of describing pion multiplicities measured by
COMPASS and HEMRES collaborations. In fact it is the
only set of fragmentation functions that accurately
describes COMPASS and HERMES data. The quality
of the global fit improved from χ2=d:o:f:≃ 2.2 for the
previous DSS NLO fit [96] to χ2=d:o:f:≃ 1.2 for the new
NLO fit [95]. Extractions of leading-order (LO) FFs [96]
have yielded a much less satisfactory description of the
available pion data, and thus NLO sets ought to be used in
extractions of TMDs. NLL accuracy allows us to utilize
this set at NLO. We have verified that results presented
here are in complete agreement with the previously
published extraction of Ref. [19].
The rest can be obtained by applying the isospin

relations. We also neglect the possible difference of the
favored/unfavored fragmentation function of ū; d̄ and u; d:

Ĥð3Þ
πþ=ūðz;Q0Þ ¼ Ĥð3Þ

π−=uðz;Q0Þ
¼ Ĥð3Þ

π−=d̄
ðz;Q0Þ

¼ Ĥunfðz;Q0Þ; ð113Þ
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Ĥð3Þ
πþ=d̄ðz;Q0Þ ¼ Ĥð3Þ

π−=dðz;Q0Þ
¼ Ĥð3Þ

π−=ūðz;Q0Þ
¼ Ĥfavðz;Q0Þ: ð114Þ

Strange quark fragmentation deserves additional attention.
Fragmentation of strange quarks to hadrons is different
from just “unfavored” fragmentation functions, such as
Dπþ=ū, and in order to take this into account, we will
parametrize the strange quark unfavored Collins fragmen-
tation function as

Ĥð3Þ
unfsðz;Q0Þ≡ Ĥð3Þ

π�=s;s̄ðz;Q0Þ
¼ Nc

dz
αdð1 − zÞβdDπþ=s;s̄ðz;Q0Þ: ð115Þ

We would like to emphasize that in the fit, we will solve
the DGLAP evolution equations for both the transversity
and Collins FF to the scale μb ¼ c0=b�, in order to be
complete at the NLL0 order. The numerical solution of
DGLAP equations is performed in x space by the HOPPET
evolution package [97]. The original code of HOPPET is
modified by us so that transversity splitting functions are
included, the initial scale for the evolution is chosen to
be Q2

0 ¼ 2.4 GeV2. and the HOPPET code is executed
using αsðQ0Þ ¼ 0.327. In our numerical calculations, we
consistently use the two-loop order result for αsðμÞ with
nf ¼ 5 effective quark flavors and ΛQCD ¼ 0.225 GeV
such that αsðMZÞ ¼ 0.118.
For the nonperturbative form factors, we use the follow-

ing parameters from Ref. [44]: gq ¼ g1=2 ¼ 0.106,
g2 ¼ 0.84, and gh ¼ 0.042 ðGeV2Þ. The NLL formula
has a large negative contribution coming from
Cð1Þ ∝ −2CFδð1 − xÞ, see Eq. (48), and Hð1Þ ∝ −8CF,
see Eq. (139); this makes the need for potentially large
K factors in the description of the data. We assume that K
factors will be largest in the lowest Q2 region where αs is
relatively large. In fact the fits of SIDIS and Drell-Yan data
of Ref. [44] revealed KSIDIS ∼ 2 for COMPASS and
HERMES and KDY ∼ 1 for Drell-Yan data. In asymmetry
K factors cancel, so we will not use them in present
analysis.
The existing experimental data do not allow us to

determine precisely shapes of all polarized distributions
in coordinate space, and we make a simplifying assumption
and allow for the Collins fragmentation function to modify
its shape with respect to unpolarized fragmentation dis-
tributions and have gc as a free parameter in the fit.
Therefore, we have total of 13 parameters in our global

fit: Nh
u, Nh

d, au, ad, bu, bd, N
c
u, Nc

d, αu, αd, βd, βu, and
gc (GeV2).

B. Experimental data

Let us also discuss available experimental data. In this
paper we extract Collins fragmentation functions for pions
and transversity distributions for u, d and favored/unfa-
vored Collins fragmentation functions for pions. Thus, we
will select the data involving pion production only.
The HERMES Collaboration measured Collins asym-

metries in electron proton scattering at the laboratory
electron beam energy 27.5 GeV in production of πþ, π−,
and π0 [98]. The data are presented in bins of xB, zh, and
Ph⊥, respectively. Clear nonzero asymmetries were found
for both πþ and π−. Large negative asymmetry for π−

suggests that unfavored Collins fragmentation function is
big and not suppressed with respect to the favored one.
The COMPASS Collaboration uses a muon beam of

energy 160 GeV and have measured Collins asymmetries
on both NH3 (proton) [99] and LiD (deuterium) [100]
targets. The data are presented as a function of xB, zh, and
Ph⊥. Results on the proton target are compatible with
HERMES findings, and asymmetries are found to be
compatible with zero on the deuteron target. The beam
energy of COMPASS is higher than the energy of
HERMES, and thus COMPASS reaches lower values of
xB ∼ 10−3. For each point in xB, the scale Q2 is higher at
COMPASS as one has Q2 ¼ sxy. Both experiments con-
siderQ2 > 1 GeV2 in order to be in the perturbative region.
The energies of γ�p are also constrained as: W2 >
10 GeV2 for HERMES and W2 > 25 GeV2 for
COMPASS in order to be outside of the resonance region.
The COMPASS Collaboration considers the zh > 0.2
region, and the HERMES Collaboration uses 0.2 < zh <
0.7 in order to minimize both target fragmentation effects
and the exclusive reaction contribution. All other exper-
imental cuts are described in Refs. [98–100].
Jefferson Lab’s HALL A published data of π� pion

production in 5.9 GeV electron scattering on the 3He
(effective neutron) target [9]. Jefferson Lab operates at
relatively low energy and reaches higher values of xB ∼ 0.35.
Information on Collins fragmentation functions is con-

tained in eþe− at the energy
ffiffiffi
s

p ≃ 10.6 GeV data of the
BELLE [12] and BABAR [101] collaborations. Note that a
usual feature of TMD evolution is widening of distributions
with the increase of the hard scale. Thus, it is very
important to check our knowledge against available data
on Ph⊥ distributions and corresponding Ph⊥ dependencies
of asymmetries. For this reason, we include BABAR [101]
data on Ph⊥ dependence in our fit. We will also present
predictions of Ph⊥ dependence of the unpolarized cross
section that will be the ultimate test of the model. As we
mentioned in Sec. II B, we will use A0 data on Collins
asymmetries in eþe− in our fit. Both the BELLE and
BABAR collaborations require the momentum of the virtual
photon Ph⊥=zh1 < 3.5 GeV in order to remove contribu-
tions from hadrons assigned to the wrong hemisphere, and
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it also helps to remove the contribution from gluon
radiation. The analysis of BELLE is performed in
(zh1,zh2) bins with boundaries at zhi ¼ 0.2, 0.3, 0.5, 0.7,
and 1.0. The BABAR Collaboration chooses 6 zhi bins:
½0.15 − 0.2�, ½0.2 − 0.3�, ½0.3 − 0.4�, ½0.4 − 0.5�, ½0.5 − 0.7�,
and ½0.7 − 0.9�. A characteristic feature of the asymmetry is
growth with zhi, which is compatible with the zhi depend-
ence of the theoretical formula, and the asymmetry should
vanish in the limit zhi → 0.

C. Fitting procedure

We proceed with a global fit of SIDIS and eþe− data
using the MINUIT package [102,103] by minimizing the
total χ2,

χ2ðfagÞ ¼
XN
i¼1

XNi

j¼1

ðTjðfagÞ − EjÞ2
ΔE2

j
; ð116Þ

for i ¼ 1;…; N data sets each containing Ni data points.
Experimental measurement of each point is Ej, experi-
mental uncertainty is ΔEj, and the theoretical estimate, Tj,
is calculated for a given set of parameters fag ¼ fNh

u; Nh
d;

au; ad; bu; bd; Nc
u; Nc

d; αu; αd; βd; βu; gcg. We include both
statistical and systematical experimental uncertainties in
quadrature. Normalization uncertainties are not included in
this fit. We have in total N ¼ 26 sets, of which NSIDIS ¼ 20
sets for SIDIS and Neþe− ¼ 6 sets in eþe−. The formalism
is valid for low values of Ph⊥=z ≪ Q, so we include
only SIDIS data for Ph⊥ dependence using a conservative
choice, Ph⊥ < 0.8 GeV. We also limit Ph⊥=zh1 < 3.5 GeV
from BELLE [12] and BABAR [101] data following the
experimental cuts. The number of points is NSIDIS

total ¼ 140

and Neþe−
total ¼ 122. The number of fitted parameters, 13, is

adequate for fitting the total number of data points,
Ntotal ¼ 262. More flexible parametrizations will be
explored in future publications. In the fit we use the
average values of hxBi,hzhi,hyi,hPh⊥i for each bin in
SIDIS and hzh1i,hzh2i,hPh⊥i, hsin2 θi=h1þ cos2θi for each
bin in eþe−.
We present an estimate at the 90% C.L. interval for the

nucleon tensor charge contributions and estimate errors on
our results using the strategy outlined in Refs. [104,105].
The method consists of exploring the parameter space faig
by exploring possible values of χ2 so that

χ2ðfaigÞ ≤ χ2min þ Δχ2; ð117Þ

where Δχ2 corresponds to the so-called fit tolerance
T ≡ ffiffiffiffiffiffiffiffi

Δχ2
p

. In the ideal case of uncorrelated measurements
without unknown sources of error and Gaussian errors of the
measured observables, the 68% C.L. corresponds to Δχ2 ¼
1 and 90% C.L to Δχ2 ¼ 2.71. In the typical measurement
of asymmetries or other observables, one encounters either

correlated measurements or some inconsistent data sets due
to uncontrolled experimental and/or theoretical errors. In
order to deal with those issues, the tolerance is changed with
respect to the standard values.
A very rough idea of a good fit of the data set that

contains N points is the resulting χ2 being in the range of
N � ffiffiffiffiffiffiffi

2N
p

. A more precise quantification of the allowed
tolerance or Δχ2 can be estimated by assuming that the
calculated χ2 follows the χ2-distribution for N degrees of
freedom with the probability density function

1

2ΓðN=2Þ
�
χ2

2

�
N=2−1

exp

�
−
χ2

2

�
: ð118Þ

The most probable value is the 50th percentile ξ50 (compare
to the goodness of fit):

Z
ξ50

0

dχ2
1

2ΓðN=2Þ
�
χ2

2

�
N=2−1

exp

�
−
χ2

2

�
¼ 0.5: ð119Þ

This percentile is of order of N. The 90th percentile, ξ90, is
accordingly

Z
ξ90

0

dχ2
1

2ΓðN=2Þ
�
χ2

2

�
N=2−1

exp

�
−
χ2

2

�
¼ 0.9: ð120Þ

The Δχ2 is defined then as

Δχ2 ≡ ξ90 − ξ50: ð121Þ

Analogously we can define

Δχ268 ≡ ξ68 − ξ50; ð122Þ

for 68% C.L. In our particular case with 13 fitting
parameters, we have N ¼ Ntotal − 13 ¼ 249, ξ50 ¼ 248.3,
and ξ90 ¼ 278.0, and thus Δχ2 ¼ 29.7. It is comparable toffiffiffiffiffiffiffi
2N

p ¼ 22.3. We also have Δχ268 ¼ 10.6.
For each set of experimental data i, the 90% C.L. is

defined as in Ref. [105],

χ2i ≤
�
χ2i min

ξ50

�
ξ90; ð123Þ

note that the value of ξ90 is renormalized by χ2i min=ξ50 due
to the fact that in the total global minimum χ2min ¼

P
iχ

2
i min

the value of χ2i min may be away from the possible
minimal value.
In order to estimate errors on parameters and on the

calculation of asymmetries, we will utilize a Monte Carlo
sampling method explained in Ref. [72]. We are going to
generate samples of parameters faig in the vicinity of the
minimum found by MINUIT fa0g that defines the minimal
value of total χ2min. In order to account for correlations in
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parameters and improve numerical performance, we will
generate correlated parameter samples using CERNLIB’s1

Monte Carlo generators CORSET and CORGEN utilizing
the correlation matrix found by MINUIT. We generate 135
sets of parameters faig that satisfy

χ2ðfaigÞ ≤ χ2min þ Δχ2; ð124Þ

with Δχ2 from Eq. (121). By definition these sets corre-
spond to the hypervolume in parameter space that defines
the 90% C.L. region. Any observable then will be calcu-
lated using these sets, and the maximum and minimal value
found will define our 90% C.L. estimate. This Monte Carlo
method underestimates the errors due to the limited number
of generated parameter sets (135). The errors on asymme-
tries and functions that we quote are thus estimates, and we
will use a more robust method to estimate the errors on the
tensor charge. Errors on the tensor charge will be calculated
using the evaluation of the χ2-profile by varying parameters
of the model and careful analysis of the possible values.

D. Results

The resulting parameters after the minimization pro-
cedure are presented in Table I. Only the relative sign of
transversity can be determined, and we present here
a solution with positive u quark transversity as in
Refs. [15–17,65,106]. Indeed transversity and helicity
distributions can be related via the boost and rotation of
corresponding operators; however, boost and rotation do
not commute in quantum theory, and thus these two
distributions are independent and in principle different. It
is unlikely that they differ by sign, and thus we choose the
same sign for u-quark transversity and u-quark helicity
distribution [92], which is positive. Transversity of the d
quark is negative. Favored and unfavored Collins FFs are of
opposite signs, indeed Nc

u < 0, Nc
d > 0, and of approx-

imately the same magnitudes. It means that the favored
Collins fragmentation function is positive and the unfa-
vored Collins fragmentation function is negative; see
Eq. (58). The corresponding sum rule [107,108] for
Collins fragmentation functions reads

X
h

X
Sh

Z
1

0

dzhzhH
⊥ð1Þ
1h=jðzhÞjTrento ¼ 0; ð125Þ

which suggests the compensation of favored and unfavored
Collins fragmentation functions.
We observe that parameters that define the z dependence

of Collins FFs αu and αd are different, and thus the z-shapes
of the favorite and unfavorite Collins FFs are different. The
same is true for transversity distributions; both the large-x
region controlled by bu and bd and the low-x region
controlled by au and ad indicate that the x-shapes of

transversity for u and d quarks are different. It might be
well possible that the k⊥-shape of transversity and Collins
fragmentation functions is also flavor dependent; however,
the current experimental data do not allow us to determine
whether it is true or not.
The total χ2min ¼ 218.407, and χ2=nd:o:f: ¼ 218.407=

249 ¼ 0.88. We calculate the goodness of fit using the
well -known formula [109]:

Pðχ2min; nd:o:f:Þ ¼ 1 −
Z

χ2min

0

dχ2
1

2Γðnd:o:f:=2Þ

×

�
χ2

2

�
nd:o:f:=2−1

exp

�
−
χ2

2

�
: ð126Þ

The goodness of fit describes how well it fits a set of
observables. In principle if the model adequately describes
the data, then one would expect χ2=nd:o:f: ≃ 1. In case
χ2=nd:o:f: ≫ 1, the model fails to describe the data, and
χ2=nd:o:f: ≪ 1 means that the model starts fitting the
statistical noise in the data. Notice that in our fit we
obtained χ2=nd:o:f: ¼ 0.88, which means that the number of
parameters is adequately chosen. An attempt to extract
more information from the data, such as flavor dependence,
etc., would lead to χ2=nd:o:f: ≪ 1. One of course can
estimate a number of different hypotheses, and we leave
those estimates for further publications.
We obtain that the probability that the fit indeed is the

underlying mechanism for the measured asymmetries is
Pð218.407; 249Þ ¼ 92%. This gives us full confidence in
the presented results. It is very important to note that
we have used the data from two different processes
implementing appropriate factorization and evolution.
Thus, we have also presented phenomenological proof
that these processes, SIDIS and eþe−, are consistent with
TMD factorization.
The results of the fit including partial values of χ2

are presented in Table II for SIDIS experiments and in
Table III for eþe− experiments. One observes that χ2 values
are quite satisfactory and homogeneous for both SIDIS,
χ2SIDIS=N

SIDIS
total ¼ 0.93, and eþe−, χ2eþe−=N

eþe−
total ¼ 0.72. The

TMD factorization approach is describing data of both
SIDIS and eþe− adequately.

TABLE I. Fitted parameters of the transversity quark distribu-
tions for u and d and Collins fragmentation functions. The fit is
performed by using the MINUIT minimization package. Quoted
errors correspond to the MINUIT estimate.

Nh
u ¼ 0.85� 0.09 au ¼ 0.69� 0.04 bu ¼ 0.05� 0.04

Nh
d ¼ −1.0� 0.13 ad ¼ 1.79� 0.32 bd ¼ 7.00� 2.65

Nc
u ¼ −0.262� 0.025 αu ¼ 1.69� 0.01 βu ¼ 0.00� 0.54

Nc
d ¼ 0.195� 0.007 αd ¼ 0.32� 0.04 βd ¼ 0.00� 0.79

gc ¼ 0.0236� 0.0007 ðGeV2Þ
χ2min ¼ 218.407 χ2min=n:d:o:f ¼ 0.88

1http://cernlib.web.cern.ch/cernlib/.
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The description of SIDIS data is very good. The data
span the energy range starting from PJLAB

lab ¼ 5.9 to
PHERMES
lab ¼ 27.5, and to PCOMPASS

lab ¼ 160 GeV. The
resolution scale changes also in a relatively wide region,
1≲ hQ2i ≲ 6 ðGeV2Þ for HERMES and 1≲ hQ2i ≲
21 ðGeV2Þ for COMPASS. One can see from Table II that
the description of the individual subsets is also very
satisfactory.
As we mentioned in Sec. I, it is very important to include

appropriate QCD evolution in order to be able to have a
controlled accuracy and adequate description of eþe− data
that is measured at Q2 ≃ 110 GeV2. One can see from
Table III that both the BELLE [12] and BABAR [101] data
sets on A0 are described well. Both methods UC and UL
from BELLE [12] and BABAR [101] appear to be consistent
with our description, and alsothe Ph⊥ dependence of

asymmetry is well described. We will give predictions
for Ph⊥-dependent unpolarized cross sections in eþe− in
the following section.

E. Transversity, Collins fragmentation functions,
and tensor charge

We plot transversity and the Collins fragmentation
function in Fig. 3 at two different scales, Q2 ¼ 10 and
1000 GeV2. In order to evaluate functions, we solve
appropriate DGLAP equations for transversity, Eq. (69),
and twist-3 collins functions, Eq. (71). Due to the fact that
neither of the functions mixes with gluons, these distribu-
tions do not change drastically in the low-x region due to
DGLAP evolution.
Transversity enters directly in SIDIS asymmetry, and we

find that the main constraints come from SIDIS data only;

TABLE II. Partial χ2 values of the global best fit for SIDIS experiments.

Experiment Hadron Target Dependence ndata χ2 χ2=ndata

COMPASS [100] πþ LiD x 9 11.16 1.24
COMPASS [100] π− LiD x 9 9.08 1.01
COMPASS [100] πþ LiD z 8 3.26 0.41
COMPASS [100] π− LiD z 8 7.29 0.91
COMPASS [100] πþ LiD Ph⊥ 6 4.19 0.70
COMPASS [100] π− LiD Ph⊥ 6 4.50 0.75
COMPASS [99] πþ NH3 x 9 21.46 2.38
COMPASS [99] π− NH3 x 9 6.23 0.69
COMPASS [99] πþ NH3 z 8 7.80 0.98
COMPASS [99] π− NH3 z 8 10.29 1.29
COMPASS [99] πþ NH3 Ph⊥ 6 3.82 0.64
COMPASS [99] π− NH3 Ph⊥ 6 3.85 0.64
HERMES [98] πþ H x 7 5.37 0.77
HERMES [98] π− H x 7 12.61 1.80
HERMES [98] πþ H z 7 3.04 0.43
HERMES [98] π− H z 7 3.23 0.46
HERMES [98] πþ H Ph⊥ 6 1.60 0.27
HERMES [98] π− H Ph⊥ 6 4.82 0.80
JLAB [9] πþ 3He x 4 3.90 0.98
JLAB [9] π− 3He x 4 3.11 0.78

140 130.65 0.93

TABLE III. Partial χ2 values of the global best fit for eþe− experiments.

Experiment Observable Dependence ndata χ2 χ2=ndata

BELLE [12] AUL
0

z 16 13.02 0.81

BELLE [12] AUC
0

z 16 11.54 0.72

BABAR [101] AUL
0

z 36 34.61 0.96

BABAR [101] AUC
0

z 36 15.17 0.42

BABAR [101] AUL
0

Ph⊥ 9 9.09 1.01

BABAR [101] AUC
0

Ph⊥ 9 4.33 0.48

122 87.76 0.72
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its correlations with errors of the Collins FF turn out to be
numerically negligible. We thus vary only χ2SIDIS and use
Δχ2SIDIS ¼ 22.2 for 90% C.L. and Δχ2SIDIS ¼ 6.4 for
68% C.L. calculated using Eq. (123). Since the experi-
mental data have only probed the limited region
0.0065 < xB < 0.35, we define the following partial con-
tribution to the tensor charge:

δq½xmin;xmax�ðQ2Þ≡
Z

xmax

xmin

dxhq1ðx;Q2Þ: ð127Þ

In Fig. 4, we plot the χ2 Monte Carlo scanning of SIDIS
data for the contribution to the tensor charge from such a
region and find [19]

δu½0.0065;0.35� ¼ þ0.30þ0.08
−0.12 ; ð128Þ

δd½0.0065;0.35� ¼ −0.20þ0.28
−0.11 ; ð129Þ

at 90% C.L. at Q2 ¼ 10 GeV2. Analogously in Fig. 5, we
plot the χ2 Monte Carlo scanning of SIDIS data at
68% C.L. at Q2 ¼ 10 GeV2 and find

δu½0.0065;0.35� ¼ þ0.30þ0.04
−0.07 ; ð130Þ

δd½0.0065;0.35� ¼ −0.20þ0.12
−0.07 : ð131Þ

We notice that this result is comparable with previous TMD
extractions without evolution [15–17] and the dihadron
method [65,106].
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FIG. 3. Extracted transversity distribution (a) and Collins regimentation function (b) at three different scales, Q2 ¼ 2.4 (dotted lines),
Q2 ¼ 10 (solid lines), and Q2 ¼ 1000 (dashed lines) GeV2. The shaded region corresponds to our estimate of the 90% C.L. error band
at Q2 ¼ 10 GeV2.
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FIG. 4. χ2 profiles for up and down quark contributions to the tensor charge. The errors of points correspond to the 90% C.L. interval
at Q2 ¼ 10 GeV2.
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Existing experimental data cover a limited kinematic
region, and thus a simple extension of our fitted para-
metrization to the whole range of 0 < xB < 1 will signifi-
cantly underestimate the uncertainties, in particular, in the
dominant large-xB regime. It is extremely important to
extend the experimental study of the quark transversity
distribution to both large and small xB to constrain the
total tensor charge contributions. This requires future

experiments to provide measurements at the Jefferson
Lab 12 GeV upgrade [110] and the planned Electron-Ion
Collider [4,111,112]. Nevertheless for completeness let us
present our results on the tensor charge calculated over the
whole kinematical region δq½0;1�,

δu½0;1� ¼ þ0.39þ0.16
−0.20 ; ð132Þ

2 χ
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FIG. 5. χ2 profiles for up and down quark contributions to the tensor charge. The errors of points correspond to the 68% C.L. interval
at Q2 ¼ 10 GeV2.
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FIG. 6. χ2 profiles for up and down quark contributions to the tensor charge in the whole kinematical region. The errors of points
correspond to the 90% C.L. interval.
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FIG. 7. χ2 profiles for up and down quark contributions to the tensor charge in the whole kinematical region. The errors of points
correspond to the 68% C.L. interval.
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δd½0;1� ¼ −0.22þ0.31
−0.10 ð133Þ

at 90% C.L. and

δu½0;1� ¼ þ0.39þ0.07
−0.11 ; ð134Þ

δd½0;1� ¼ −0.22þ0.14
−0.08 ð135Þ

at 68% C.L., both at Q2 ¼ 10 GeV2, as shown in Figs. 6
and 7. The tensor charge for the u quark can have a bigger
contribution with respect to the d quark from the unex-
plored region of x according to our estimates.

F. TMD interpretations of our results

As we mentioned in the Introduction and elaborated in
Sec. II, there exists a TMD interpretation of CSS results. In
particular the equations of the previous section that
represent the solution of evolution equations are quite
complicated. One might formulate the solutions of TMD
evolution equations for TMD functions directly, in such a
way that expressions will look very much like an extension
of a simple partonlike model, for instance used in
Ref. [113].
Let us start with writing the cross sections in terms of the

individual TMDs,

FUUðQ;Ph⊥Þ ¼ HSIDISðQ; μ ¼ QÞ
X
q

e2q

Z
k⊥;p⊥

fq1ðxB; k2⊥;QÞDh=qðzh; p2⊥;QÞ;

Fsin ðϕhþϕsÞ
UT ðQ;Ph⊥Þ ¼ −HSIDISðQ; μ ¼ QÞ

X
q

e2q

Z
k⊥;p⊥

hq1ðxB; k2⊥;QÞ P̂h⊥ · p⊥
Mh

H⊥
1h=qðzh; p2⊥;QÞ;

Zh1h2
uu ðQ;Ph⊥Þ ¼ Heþe−ðQ; μ ¼ QÞ

X
q

e2q

Z
p1⊥;p2⊥

Dh=qðzh1; p2
1⊥;QÞDh=q̄ðzh2; p2

2⊥;QÞ;

Zh1h2
collinsðQ;Ph⊥Þ ¼ Heþe−ðQ; μ ¼ QÞ

X
q

e2q

Z
p1⊥;p2⊥

ð2P̂α
h⊥P̂

β
h⊥ − gαβ⊥ Þ p

α
1⊥

Mh1
H⊥

1h=qðzh1; p2
1⊥;QÞ p

α
2⊥

Mh2
H⊥

1h=q̄ðzh2; p2
2⊥;QÞ;

ð136Þ

where we have set the factorization scale μ ¼ Q, the
evolution effects have been fully taken into account in the
TMDs; and fq1ðxB;k2⊥;QÞ, hq1ðxB;k2⊥;QÞ, Dh=qðz; p2⊥;QÞ,
and H⊥

1h=q̄ðz; p2⊥;QÞ are the transverse-momentum-
dependent unpolarized parton distribution function, quark
transversity, unpolarized fragmentation function, and the
Collins function at the scale μ ¼ Q and ζ ¼ Q2, respec-
tively. These TMDs are also understood as the soft factor
subtracted TMDs.
The short-hand notations for the integrations have the

following explicit forms:

Z
k⊥;p⊥

≡
Z

d2k⊥d2p⊥δ2ðzh~k⊥ þ ~p⊥ − ~Ph⊥Þ; ð137Þ

Z
p1⊥;p2⊥

≡
Z

d2p1⊥d2p2⊥δ2
�
~Ph⊥ − ~p1⊥ − ~p2⊥

zh1
zh2

�
:

ð138Þ

As discussed in Sec. II, the TMDs and the associated hard
factors depend on the scheme to regulate the light-cone
singularities. However, in the final results for the structure
functions, this scheme dependence cancels out between the
TMDs and the hard factors. In the following, we present the
results in the Collins-11 scheme [22]. The functions that

encode scheme dependence from Eqs. (33), (34), (60), and
(61) are ~F qðαsðQÞÞ ¼ 1, ~DqðαsðQÞÞ ¼ 1, ~H1qðαsðQÞÞ ¼
1, and ~HcðαsðQÞÞ ¼ 1 at one loop. For all other schemes,
the results can be obtained accordingly.
In the Collins-11 scheme, the associated hard factors can

be written using Eqs. (A20) and (98) as

HSIDISðQ; μ ¼ QÞ ¼ 1þ αsðQÞ
2π

CFð−8Þ;

Heþe−ðQ; μ ¼ QÞ ¼ 1þ αsðQÞ
2π

CFðπ2 − 8Þ: ð139Þ

The TMDs are Fourier transformations of the relevant
expressions in b space in Sec. II, Eqs. (33), (34), (60),
and (61),

fq1ðx; k2⊥;QÞ ¼
Z

∞

0

dbb
ð2πÞ J0ðk⊥bÞC

f1
q←i ⊗ fi1ðx; μbÞ

× e−
1
2
SpertðQ;b�Þ−Sf1NPðQ;bÞ; ð140Þ

hq1ðx; k2⊥;QÞ ¼
Z

∞

0

dbb
ð2πÞ J0ðk⊥bÞδCq←i ⊗ hi1ðx; μbÞ

× e−
1
2
SpertðQ;b�Þ−Sh1NPðQ;bÞ; ð141Þ
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Dh=qðz; p2⊥;QÞ ¼ 1

z2

Z
∞

0

dbb
ð2πÞ J0ðp⊥b=zÞĈD1

i←q ⊗ Dh=iðz; μbÞe−1
2
SpertðQ;b�Þ−SD1

NP ðQ;bÞ; ð142Þ

p⊥
Mh

H⊥
1h=qðz; p2⊥;QÞ ¼ 1

z2

Z
∞

0

dbb2

ð4πzÞ J1ðp⊥b=zÞδĈcollins
i←q ⊗ Ĥð3Þ

h=iðz; μbÞe−
1
2
SpertðQ;b�Þ−ScollinsNP ðQ;bÞ; ð143Þ

where the TMD evolution has been taken into account and one-loop results of ~F q, ~Dq, ~H1q, and ~Hc equal to 1 in the
Collins-11 scheme have been applied, and C-functions are given in Eqs. (39), (40), (41), (42), (62), and (63). Using the
relation to Trento conventions of Eq. (58), we can write

p⊥
Mh

H⊥
1 h=qðz; p2⊥;QÞ ¼ −

1

z2

Z
∞

0

db b2

ð2πÞ J1ðp⊥b=zÞδĈcollins
i←q ⊗ Ĥ⊥ð1Þ

1 h=jðzÞjTrentoðz; μbÞe−
1
2
SpertðQ;b�Þ−ScollinsNP ðQ;bÞ; ð144Þ

p⊥
zMh

H⊥
1 h=qðz; p2⊥;QÞjTrento ¼

1

z2

Z
∞

0

db b2

ð2πÞ J1ðp⊥b=zÞδĈcollins
i←q ⊗ Ĥ⊥ð1Þ

1h=jðzÞjTrentoðz; μbÞe−
1
2
SpertðQ;b�Þ−ScollinsNP ðQ;bÞ: ð145Þ

We can also write explicitly the nonperturbative Sudakov
form factor SNPðQ; bÞ for all the TMDs discussed in our
paper,

Sf1NPðQ; bÞ ¼ Sh1NPðQ; bÞ ¼ g2
2
ln

�
b
b�

�
ln

�
Q
Q0

�
þ gqb2;

ð146Þ

SD1

NPðQ; bÞ ¼ g2
2
ln

�
b
b�

�
ln

�
Q
Q0

�
þ gh

z2
b2; ð147Þ

ScollinsNP ðQ; bÞ ¼ g2
2
ln

�
b
b�

�
ln

�
Q
Q0

�
þ gh − gc

z2
b2; ð148Þ

where we have assumed that the nonperturbative Sudakov
form factors are the same for fq1 and hq1 as a first study
following Ref. [17]. With the expressions for individual
TMDs given in Eqs. (140), (141), (142), and (145), and the

fitted parameters in this section, we are now ready to
present all these TMDs as a function of both the longi-
tudinal momentum fraction (x or z) and the transverse
component (k⊥ or p⊥).
In Fig. 8 we present the unpolarized u-quark distribution

f1 at x ¼ 0.1 as a function of b (left) and k⊥ (right). We plot

fq1ðx; b;QÞ≡ b
ð2πÞC

f1
q←i ⊗ fi1ðx; μbÞe−

1
2
SpertðQ;b�Þ−Sf1NPðQ;bÞ;

ð149Þ

while the k⊥ dependence is defined in Eq. (140). The
distribution is calculated at three different scales: Q2 ¼ 2.4
(dotted lines), Q2 ¼ 10 (solid lines), and Q2 ¼ 1000

(dashed lines) GeV2. As one can see, at large scale
Q2 ¼ 1000 GeV2, the distribution is highly dominated
by the perturbative region of b < bmax, while at lower
scales Q2 ¼ 2.4 and 10 GeV2, the distribution is shifted
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FIG. 8. Unpolarized u-quark distribution as a function of b (a) and as a function of k⊥ (b) at three different scales, Q2 ¼ 2.4 (dotted
lines), Q2 ¼ 10 (solid lines), and Q2 ¼ 1000 (dashed lines) GeV2.
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toward large values of b ∼ 2 ÷ 3 GeV−1; in this region of b,
one needs to carefully account for nonperturbative effects
of the TMD evolution and intrinsic motion of quarks.
The distribution in k⊥ space is becoming wider with the
growth ofQ2 and has developed a perturbative tail, while at
low values of Q2, it resembles Gaussian-type parametriza-
tion used in tree-level extractions, for instance that of
Refs. [17,113].
The same observation is true for transversity distribution.

We present transversity u-quark distribution h1 at x ¼ 0.1
as a function of b and k⊥ in Fig. 9. We plot

hq1ðx; b;QÞ≡ b
ð2πÞ δCq←i ⊗ hi1ðx; μbÞe−

1
2
SpertðQ;b�Þ−Sh1NPðQ;bÞ;

ð150Þ

while k⊥ distribution is defined in Eq. (141). Note that
coefficient functions for transversity distribution δCq←i

are different from those of unpolarized distribution. This
difference affects the shape of distributions in b and k⊥
space. Moreover the width of transversity can be different
from that of unpolarized distribution as well; however,

features of TMD evolution are very similar in both cases.
Generic results on the transversity TMD evolution were
also presented in Ref. [64].
Unpolarized fragmentation TMD as a function of b is

defined as

Dh=qðz;b;QÞ

≡ 1

z2
b

ð2πÞĈ
D1

i←q⊗Dh=iðz;μbÞe−1
2
SpertðQ;b�Þ−SD1

NP ðQ;bÞ; ð151Þ

and as function of p⊥, it can be calculated using Eq. (142).
In Fig. 10 we present an unpolarized TMD FF at z ¼ 0.4
and at three different scales, Q2 ¼ 2.4 (dotted lines),
Q2 ¼ 10 (solid lines), and Q2 ¼ 1000 (dashed lines)
GeV2. Again as in the case of other TMDs above, one
observes the widening of distributions in p⊥ and shift
toward lower values b of the maximum of the distribution
with the increase of Q2. In the relatively low Q2 region, the
effects of TMD evolution are quite moderate.
The Collins fragmentation function with evolution is

presented for the first time in this paper. The b-dependent
function can be defined as
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FIG. 9. Transversity u-quark distribution as a function of b (a) and as a function of k⊥ (b) at three different scales, Q2 ¼ 2.4 (dotted
lines), Q2 ¼ 10 (solid lines), and Q2 ¼ 1000 (dashed lines) GeV2.
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FIG. 10. Unpolarized FF u → πþ as a function of b (a) and as a function of p⊥ (b) at three different scales, Q2 ¼ 2.4 (dotted lines),
Q2 ¼ 10 (solid lines), and Q2 ¼ 1000 (dashed lines) GeV2.

ZHONG-BO KANG et al. PHYSICAL REVIEW D 93, 014009 (2016)

014009-24



H⊥
1 h=qðz; b;QÞjTrento ≡ 1

z2
b2

ð2πÞ δĈ
collins
i←q ⊗ Ĥ⊥ð1Þ

1 h=jðzÞjTrentoðz; μbÞe−
1
2
SpertðQ;b�Þ−ScollinsNP ðQ;bÞ; ð152Þ

and the p⊥-dependent function is in Eq. (145). In Fig. 11
we present the TMD Collins FF at z ¼ 0.4 and at three
different scales, Q2 ¼ 2.4 (dotted lines), Q2 ¼ 10 (solid
lines), and Q2 ¼ 1000 (dashed lines) GeV2. One observes
the widening of distributions in p⊥ and shift toward lower
values b of the maximum of the distribution with the
increase of Q2. Note that the TMD Collins FF has a
kinematical zero due to the prefactor p⊥=zMh.
It is very important to make results of global fits

available for usage in various applications. Some progress

has been made, for example, by the TMDlib project; see

Ref. [114]. The results of this analysis will be available in a
form of a computer package.

G. Description of the experimental data

The description of the HERMES data [98] is shown in
Fig. 12. One can see that the description is good for all xB,
z, and Ph⊥ dependencies. The formalism that we use is
appropriate in the region of low Ph⊥, and we limit our
description by Ph⊥ < 0.8 GeV. The data are in the region
of 1≲ hQ2i ≲ 6 ðGeV2Þ. The estimate of the error band is
presented as the shaded region.
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FIG. 11. Collins FF u → πþ as a function of b (a) and as a function of p⊥ (b) at three different scales,Q2 ¼ 2.4 (dotted lines),Q2 ¼ 10

(solid lines), and Q2 ¼ 1000 (dashed lines) GeV2.
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FIG. 12. Description of Collins asymmetries measured by the HERMES Collaboration [98] as a function of xB, z, and Ph⊥ on the
proton target. The shaded region corresponds to our estimate of the 90% C.L. error band.
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One can see from Fig. 12 that both the data and the
model obey the kinematical suppression of asymmetries at
low zh and Ph⊥. Additionally the data indicate that
asymmetry becomes smaller in the region of small xB,
and thus transversity becomes small in the small-xB region
as well, as can be seen in Fig. 3(a). Positive asymmetry of
πþ production implies that the product of u-quark trans-
versity and the favored Collins fragmentation function is
positive. We choose the solution with positive u-quark
transversity (the same sign as u-quark helicity distribution)
and obtain that the favored Collins fragmentation function
is positive; see Fig. 3(b). Large negative asymmetry of π−

production indicates that the so-called unfavored Collins
fragmentation function is large and negative, and indeed it
is the case; see Fig. 3(b). Measurements on proton targets
are dominated by u-quark functions as far as e2u=e2d ¼ 4,
and thus we have better precision for the extraction of the
u-quark transversity and tensor charge δu.
The COMPASS data [99,100] extend the region of the

resolution scale by a factor of 3, hQ2i≲ 21 ðGeV2Þ. We
present results of our description in Fig. 13. Again we
exclude the region of Ph⊥ > 0.8 GeV where the relation
Ph⊥=hzi < Q is not satisfied. The COMPASS data extend
the region of xB up to xB ∼ 10−2, and the measured
asymmetry indicates that transversity is rather small in
the small-x region. Indeed the extracted transversity
shown in Fig. 3(a) becomes small in the small-x region.
The COMPASS data on the effective deuterium target,
Fig. 13(b), indicate that the sum of u-quark and d-quark
transversities is small, and thus both functions are approx-
imately of the same size, as can be seen in Fig. 3(a).
A description of JLab’s HALL A data [9] is shown in

Fig. 14. The data extend the region of xB toward large x,
and one can see that our fit is compatible with the data.
The measurement on the effective neutron target (3He)
is sensitive to d-quark functions; however, the current

experimental errors are too big to allow a better extraction
of d-quark transversity.
Both the BELLE [12] and BABAR [101] collaborations

measured the Collins asymmetries in eþe− at
ffiffiffi
s

p ≃
10.6 GeV. Comparison of the BELLE data [12] on A0

asymmetries for both the UL and UC methods is presented
in Fig. 15. The data are measured in four different bins of
zh1; zh2, and one can see that the description of the data is
very good. The asymmetry becomes small when zh1; zh2
become small due to kinematical suppression, and one can
see from Fig. 15 that our calculations are compatible with
this behavior.
In Fig. 16 we present a description of the BABAR data

[101] on A0 asymmetries for both theUL andUCmethods.
The data are in six bins of zh1; zh2 with six points in each
bin. This allows for better extraction of the shape of Collins
fragmentation functions. One can see that also in this case
the description is very good. The large-z region deserves a
special comment. One expects that the formalism will
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FIG. 13. Description of Collins asymmetries measured by the COMPASS Collaboration as a function of xB, z, and Ph⊥ on (a) NH3

proton [99] and (b) LiD deuterium [100] targets. The shaded region corresponds to our estimate of a 90% C.L. error band.
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become unreliable when zh1 → 1 and/or zh2 → 1 due to the
influence of exclusive pion production. Indeed one can see
from Figs. 15 and 16 that in large-z bins the quality of the
description deteriorates. Nevertheless both the magnitude
and the shape of the data are reproduced perfectly in the
plot. It is achieved by allowing parameters that describe the
shape of favored and unfavored Collins fragmentation
functions be different and independent of each other.
Additionally the correct Q2 evolution reproduces the shape
much better compared to the case of the absence of the
evolution. Note that we have not attempted to fit the data
without TMD evolution, and thus our conclusion is valid
only for a comparison of results with and without evolution
using parameters of the NLL fit.

Even though a priori it is very difficult to expect a perfect
description of the data in thewhole z region, our fit indeed is
capable of reproducing the dataverywell. BothAUL

0 andAUC
0

are described very well and we observe no tension between
the measurements, which indicates the robustness of the
method. AUL

0 and AUC
0 have slightly different sensitivity to

different combinations ofCollins fragmentation functions as
can be seen from Eq. (8), and the usage of both measure-
ments helps to constrain the functions better.We believe that
favoredCollins fragmentation functions arewell determined
and future experimental data could test our findings.
Finally we present a comparison of our calculations with

the Ph⊥ dependence of eþe− asymmetries in Fig. 17. Both
AUL
0 and AUC

0 are described very well.
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FIG. 15. Collins asymmetries in eþe− at
ffiffiffi
s

p ¼ 10.6 GeV measured by the BELLE Collaboration [12] as a function of zh2 in different
bins of zh1, (a)UL and (b)UC. Calculations are performed with parameters from Table I. The shaded region corresponds to our estimate
of a 90% C.L. error band.
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FIG. 16. Collins asymmetries in eþe− at
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s

p ¼ 10.6 GeV measured by the BABAR Collaboration [101] as a function of zh2 in different
bins of zh1, (a)UL and (b)UC. Calculations are performed with parameters from Table I. The shaded region corresponds to our estimate
of a 90% C.L. error band.
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From the comparisons of the data and theoretical
computations, we can deduce that the TMD evolution at
NLL0 can describe both the eþe− and SIDIS data
adequately well. The highest resolution scale in our
analysis is quite big, Q2 ¼ s≃ 110 GeV2, and we found
that using appropriate QCD evolution was essential in
order to describe the data. It allows us to have a controlled
theoretical precision of our computations. Let us study the
sensitivity of our results to the theoretical precision of
computations. We will fix the parameters to the NLL0 fit
results presented in Table I and calculate asymmetries in
different kinematical configurations using tree-level
approximation, i.e., without TMD evolution, leading log-
arithmic accuracy (LL), and NLL0 accuracy. As far as
parameters are defined by fitting at NLL0, we expect that

NLL0 will describe the data better than the LL or tree
approximation. We will not attempt to fit data at either the
tree approximation or LL, even though such fits can be well
performed and may give reasonable descriptions of the
data. By computing results with three different precisions
with fixed parameters, we will be able to answer two
different questions:
(1) How big are the effects of inclusion of higher orders

in the calculation of a particular asymmetry in a
particular kinematical region?

(2) How sensitive are experimental data to the inclusion
of higher orders in perturbative expansion?

We show NLL0, LL, and no TMD evolution results for
asymmetry as a function of xB, z, and Ph⊥ for HERMES in
Fig. 18. The computation at LL is done by using only Að1Þ
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FIG. 17. Collins asymmetries in eþe− at
ffiffiffi
s

p ¼ 10.6 GeV measured by the BABAR Collaboration [101] as a function of Ph⊥,
(a) UL and (b) UC. Calculations are performed with parameters from Table I. The shaded region corresponds to our estimate of
90% C.L. error band.
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in the perturbative Sudakov form factor andCð0Þ-coefficient
function. No TMD evolution implies that the perturbative
Sudakov form factor and parameter g2 are set to zero;
accordingly we use DSS LO for fragmentation functions
and CTEQ6LO for distribution functions and set the scale
to Q2

0 ¼ 2.4 GeV2. The dotted line in Fig. 18 shows the
result without TMD evolution. One can see that at low
energy the results are quite similar for all three calculations.
This happens due to the fact that in ratios most of the
numerical effects of evolution cancel out. The precision
of existing SIDIS experimental data is such that it does
not allow us to distinguish among different theoretical

accuracies used to calculate TMDs. It happens due to the
fact that both the energy and Q2 are quite low for SIDIS.
The difference grows as we consider COMPASS data in
Fig 19, and the data become sensitive to the choice of
accuracy. One can also see from Fig. 18 that the difference
in different precisions (no evolution, LL, NLL’) is com-
parable with the error band of the NLL’ extraction. One
can conclude that results of phenomenological extraction
using different precisions will be very similar if low energy
experiments are used. In fact low energy experimental data
are dominated by nonperturbative physics, and even tree-
level approximation (no TMD evolution) grasps well the
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features of the underlying physics. We will in fact see that
our results compare very well to the results of the Torino-
Cagliari-JLab group [17].
In Fig. 20 we show theoretical computations for eþe−

without TMD evolution (dotted line), LL accuracy (dashed
line), and the complete NLL0 accuracy (solid line). The
difference between these computations diminishes when
we include higher orders, which means that the theoretical
uncertainty improves. We conjecture that the difference
between NLL0 and next-to-next-to-leading-logarithmic
(NNLL) will be smaller than the difference between
NLL0 and LL and thus be comparable to experimental
errors. One can also observe that asymmetry at Q2 ¼
110 GeV2 is suppressed by a factor 2–3 with respect to
tree-level calculations due to the Sudakov form factor. One
can also conclude that NLL accuracy is essential for eþe−
data. Notice that we present calculations with fixed
parameters determined by the NLL0 fit. The difference
between different curves shows sensitivity to the theoretical
accuracy and to the inclusion of higher order. The obser-
vation that calculation without TMD evolution or LL
cannot describe the data with these parameters does not
mean that a fit of the data without TMD evolution or LL is
impossible. In fact such fits are most probably possible and
could yield results of similar quality of the description of
the data. There is no doubt, however, that higher-order
computations such as NLL have the advantage of having
better control of theoretical uncertainty. The fact that we
utilize NLO collinear distributions is very encouraging,
and these distributions describe inclusive data sets much
better than LO distributions. We also observe that eþe−

experiments are very sensitive to the inclusion of higher-
order corrections. This can be clearly seen from Fig. 21
where we compute Collins asymmetries measured by the
BABAR [101] Collaboration as a function of zh2 in different
bins of zh1. One can see that the importance of higher
orders increases with the increasing value of zh.

H. Predictions for unpolarized multiplicities
in SIDIS and eþe−

We predict an unpolarized cross section of charged pion
production to be measured by the BELLE, BABAR, and
BESIII collaborations and given by the formula

dσC0
dP2

h⊥
≡ 1

h1þ cos2θi
d3σe

þe−→h1h2þX

dzh1dzh2dP2
h⊥

¼ Ncπ
2α2em

2Q2
Zh1h2
uu ;

ð153Þ

where h1; h2 can be any charged pion, z1 ¼ z2 ¼ 0.3. The
prediction is given in Fig. 22. As one can see, we predict
that the measured cross section will be wider for the
BELLE and BABAR collaborations Q2 ¼ 110 GeV2 with
respect to the BESIII Collaboration Q2 ¼ 13 GeV2. At the
same time, the BESIII Collaboration Q2 ¼ 13 GeV2 cross
section will be larger than that measured by the BELLE and
BABAR collaborations at Q2 ¼ 110 GeV2. In Fig. 22 we
divide the predicted cross section for the BESIII collabo-
ration by a factor 110 in order to compare widths with the
expected cross section at the BELLE and BABAR collab-
orations. Effective widening of the cross section with the
growth of Q2 is a sign of TMD evolution, and the future
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FIG. 21. Collins asymmetries measured by the BABAR [101] Collaboration as a function of zh2 in the production of unlike sign “U”
over like sign “L” pion pairs at Q2 ¼ 110 GeV2. The solid line corresponds to the full NLL0 calculation, the dashed line to the LL
calculation, and the dotted line to the calculation without TMD evolution. Calculations are performed with parameters from Table I. The
shaded region corresponds to our estimate of a 90% C.L. error band.

ZHONG-BO KANG et al. PHYSICAL REVIEW D 93, 014009 (2016)

014009-30



data from the BELLE and BABAR collaborations will be
crucial for our understanding of the evolution.
Similar behavior is shown in Fig. 23 of the unpolarized

cross section predicted for Electron-Ion Collider (EIC) atffiffiffi
s

p ¼ 70 GeV and atQ2 ¼ 10 GeV2 andQ2 ¼ 100 GeV2,
choosing hzhi ¼ 0.36 and hyi ¼ 0.53. We plot

d4σ
dxBdydzhd2Ph⊥

¼ πσ0ðxB; y; Q2ÞFUU: ð154Þ

The ultimate test of the TMD evolution will be in
measurements of unpolarized cross sections. We highly
encourage the BELLE, BABAR, and BESIII collaborations
to perform the analysis of the data on unpolarized cross
sections. Such measurements will allow us to test predic-
tions of TMD evolution and will allow for a better under-
standing of unpolarized TMD fragmentation functions that
can be measured directly only at eþe− facilities.

The universality of TMD evolution will be further tested
in future measurements at the Electron-Ion Collider. EIC
can easily span several decades in Q2 and allow for a much
better understanding of the nucleon 3D structure. The data
of EIC combined with that of Jefferson Lab 12 will cover a
very wide region of x and provide multibinning data needed
for future phenomenological analysis. We plan to study
the impact of EIC and Jefferson Lab 12 data in future
publications.

I. Predictions for future experiments
in SIDIS and eþe−

BESIII is collecting data [115] in eþe− atQ2≃13GeV2.
The preliminary reults are compatible with bigger asym-
metries predicted by two of us in Ref. [41]. Here we present
updated predictions assuming the same binning as BABAR
and the following values of hsin2 θi=h1þ cos2 θi ¼ 0.65 at
each bin; we also integrate the result in the region of
Ph⊥ < 1.5 GeV. Actual values of asymmetry will depend
on the details of binning and kinematics. The predictions
are presented in Fig. 24. We give predictions for AUL

0

asymmetries, and we predict enhancement of the asym-
metry by a factor 2–3; compare to Fig. 16(a). Note that our
predictions from Fig. 24 will have to be scaled with actual
experimental values of hsin2 θi=h1þ cos2 θiexp from
BESIII. The predictions for the BESIII measurements
are compared to BESIII data in Ref. [116]; one can see
from Figs. 3 and 4 of Ref. [116] that predictions match the
data perfectly well.
Measurements of Collins asymmetries are going to be

performed at the Jefferson Lab 12 GeV upgrade [110] and
the planned Electron-Ion Collider [4,111,112]. The high
precision of Jefferson Lab 12 measurements will eventually
allow for better determination of transversity distributions
in the high-x region and low-x region along with a higher
span in Q2 being covered by EIC.
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The Electron-Ion Collider is going to allow studies of
evolution in Q2 and energy

ffiffiffi
s

p
of single spin asymmetries.

It is going to provide a big leverage arm in Q2 and will
have a variable center of mass energy

ffiffiffi
s

p
. We present

here predictions of Collins asymmetry as a function of xB
for two different values of Q2 ¼ 10 GeV2 and Q2 ¼
100 GeV2 in Fig. 25 (left panel). Note that xB and Q2

are correlated via Q2 ¼ sxBy; we also fix average values of
zh and Ph⊥, hzhi ¼ 0.36 and hPh⊥i ¼ 0.4 GeV. One can
see from Fig. 25 that we predict a moderate decrease of the
asymmetry with Q2. Measurements in the low-x region are
going to provide information on sea quark transversity. Our
current extraction neglects sea quarks, so the asymmetry
becomes very small in the low-x region.
Suppression of asymmetries with the growth of Q2

due to TMD evolution has been the subject of investigation
of numerous papers; see, for instance, Refs. [23,41,42,
88,117]. The choice of the nonperturbative Sudakov factor
is essential for the accurate description of the data and the
reliable prediction of the Q2 dependence of the asymme-
tries. We present our predictions for the Q2 dependence of
the Collins asymmetry to be measured at EIC in Fig. 25
(right panel). Note that Q2 suppression is to be studied at
fixed values of xB. The asymmetry itself depends strongly
on the value of xB. In Fig. 25 (right panel), we show our
predictions for hxBi ¼ 0.3 and hxBi ¼ 0.1; in both cases the
future data will constrain parameters that define nonper-
turbative input for the TMD evolution. One can see that our
choice of a nonperturbative Sudakov factor results in a
moderate Q2 dependence; the asymmetry is suppressed
only by a factor of ∼2 at fixed xB in a wide region of Q2

from 2.4 up to 50 GeV2. This behavior is consistent with
results of Ref. [41].
The Jefferson Lab 12 GeV program is going to extend

our knowledge of the underlying distributions in the large-x
region. Both proton and neutron (3He) targets will provide
information of distributions of u and d quarks. We present

predictions for JLab 12 at the 11 GeV incident electron
beam on proton and 3He (effective neutron) targets in
Fig. 26. One can see that we predict sizable asymmetries of
the order of 10%; future data are going to highly improve
the knowledge of transversity in the large-x region.
Currently the error band is very big; see Fig. 26. In order
to give predictions in Fig. 26, we fixed the average
kinematical variables, hyi ¼ 0.57, hzhi ¼ 0.5, and
hPh⊥i ¼ 0.38 GeV.

J. Comparison to other extractions

Tree-level extraction of transversity and Collins frag-
mentation functions was performed by the Torino-Cagliari-
JLab group in papers [15–17]. In Fig. 27(a) we present a
comparison of extracted transversity at NLL and the
result of Ref. [17]. We also compare to the extraction of
transversity via the dihadron fragmentation method [18]
Fig. 27(b). One can see that all three extractions give
consistent results in the explored region of xB. Within error
bands of each extraction, results are compatible with each
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p ¼ 70 GeV. One can see that we predict rather moderate suppression of asymmetries with the growth of Q2.
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other. One can see that the experimental data indeed show
some tension with the Soffer bound for the d quark in the
high-x region as predicted in Ref. [94]. This saturation
happens in the region not explored by the current exper-
imental data, so future data from Jefferson Lab 12 will be
very important to test the Soffer bound and to constrain the
transversity and tensor charge.
The functions themselves are slightly different as can be

seen by comparing solid and dashes lines in Fig. 27(a). In
fact Ref. [17] uses the tree-level TMD expression (no TMD
evolution) for extraction, and we use the NLL TMD
formalism. Results should be different even though in
asymmetries, as we saw, at low energies results with NLL
TMD are comparable with the tree level. At higher energies
and Q2, the situation changes, and extracted functions
must be different. At the same time, one should remember
TMD evolution does not act as a universal Q2 suppression
factor. A complicated Fourier transform should be per-
formed that mixes Q2 and b dependence, and thus the
resulting functions are different in shape but comparable in
magnitude. It is also very encouraging that tree-level TMD
extractions yielded results very similar to our NLL extrac-
tion. This makes the previous phenomenological results
valid even though the appropriate TMD evolution was not
taken into account. It also means that we need to have
experimental data on unpolarized cross sections differential
in Ph⊥. As we have seen, the effects of evolution should be
evident in the data, and those measurements will help to
establish the validity of the modern formulation of TMD
evolution.
We compare extracted Collins fragmentation functions

−zHð3ÞðzÞ in Fig. 28 at Q2 ¼ 2.4 GeV2 with the extraction
of Torino-Cagliari-JLab 2013 [17]. The resulting Collins
FFs have the same signs, but shapes and sizes are slightly
different. Indeed one could expect it as far as Q2 of eþe− is
different, and the evolution effect must be more evident. At
the same time, those functions for both tree-level and NLL

TMD give the same (or similar) theoretical asymmetries
that are well compared to the experimental data of SIDIS
and eþe−. The favored Collins fragmentation function is
much better determined by the existing data, as one can
see from Fig. 28 that the functions at Q2 ¼ 2.4 GeV2 are
compatible within error bands. The unfavored fragmenta-
tion functions are different; however, those functions are
not determined very well by existing experimental data.
We also compare the tensor change from our and other

extractions in Fig. 29. The contribution to the tensor charge
of Ref. [18] is found by extraction using the so-called
dihadron fragmentation function that couples to the col-
linear transversity distribution. The corresponding func-
tions have DGLAP-type evolution known at LO and were
used in Ref. [18]. The results plotted in Fig. 29 correspond
to our estimates of the contribution to the u quark and d
quark in the region of x½0.065; 0.35� at Q2 ¼ 10 GeV2 at
68% C.L. (label 1) and the contribution to the u quark and
d quark in the same region of x and the same Q2 using the
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FIG. 27. (a) Comparison of extracted transversity (solid lines and vertical-line hashed region) Q2 ¼ 2.4 GeV2 with the Torino-
Cagliari-JLab 2013 extraction [17] (dashed lines and shaded region). (b) Comparison of extracted transversity (solid lines and shaded
region) at Q2 ¼ 2.4 GeV2 with Pavia 2015 extraction [18] (shaded region).
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so-called flexible scenario, αsðM2
ZÞ ¼ 0.125, of Ref. [18].

One can see that our extraction has excellent precision for
both the u quark and d quark. The fact that the central
values and errors of extracted tensor charges are in good
agreement in both methods, ours and Ref. [18], is very
positive and allows for future investigations of transversity
including all available data in a global fit.
Our results compare well with extractions from

Ref. [17]. Even though correct TMD evolution was not
used in Ref. [17], the effects of DGLAP evolution of
collinear distributions were taken into account, and the
resulting fit is of good quality, χ2=d:o:f: ¼ 0.8 for the so-
called standard parametrization of Collins fragmentation
functions. In fact the probability that the model of Ref. [17]
correctly describes the data is Pð0.8 · 249; 249Þ ¼ 99%.
The tensor charge was estimated at 95% C.L. using two
different parametrizations for Collins fragmentation func-
tions. In Fig. 30 we compare our results with calculations
from Ref. [17] at 95% C.L. at Q2 ¼ 0.8 GeV2 and

calculations at 68% at Q2 ¼ 1 GeV2 of Ref. [18]. Even
though we compare the tensor charge at different values of
Q2, its evolution is quite slow, so the good agreement of all
three methods is a good sign. We conclude that the tensor
charge perhaps is very stable with respect to evolution
effects that are included in phenomenological extractions.
It also means that phenomenological results of Ref. [17]
and other extractions without TMD evolution are valid
phenomenologically. One should remember, of course,
that TMD evolution is more complicated if compared to
DGLAP evolution (even though formal solutions are
simpler in TMD case). The usage of nonperturbative
kernels makes it very important to actually demonstrate
that the proper evolution is indeed exhibited by the
experimental data. Once the correct evolution
and nonperturbative Sudakov factor are established, the
results of Ref. [17] should be improved by utilizing the
appropriate TMD evolution that we have formulated in
this paper.
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FIG. 29. Comparison of tensor charge δq½0.0065;0.35� for the u quark and d quark from this paper at 68% C.L. and the result from
Ref. [18] at 68% C.L. Both results are at Q2 ¼ 10 GeV2.
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FIG. 30. Comparison of tensor charge δq½0;1� for the u quark and d quark in the whole region of x from this paper at 90% C.L. at
Q2 ¼ 10 GeV2 and the result from Ref. [18] at 68% C.L. and Q2 ¼ 1 GeV2, and Ref. [17] at the 95% C.L. standard and polynomial fit
at Q2 ¼ 0.8 GeV2.
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In Fig. 31 we compare tensor charge δq½0;1� for u and d
quarks from this paper at 90% C.L. at Q2 ¼ 10 GeV2

and the results from various model estimates of Refs. [118–
122]. One can see that our results are close to results of
Ref. [119] that actually used the approximate mass degen-
eracy of the light axial vector mesons [a1ð1260Þ, b1ð1235Þ
and h1ð1170Þ] and pole dominance to calculate the tensor
charge. Dyson Schwinger Equation (DSE) calculations of
the tensor charge of Ref. [118] are also close to our results.
Finally we present our estimates for the isovector

nucleon tensor charge gT ¼ δu − δd,

gT ¼ þ0.61þ0.26
−0.51 ; ð155Þ

at 90% C.L. and

gT ¼ þ0.61þ0.15
−0.25 ð156Þ

at 68% C.L. atQ2 ¼ 10 GeV2. This result can be compared
to lattice QCD calculations.
In Fig. 32 we compare our results on isovestor nucleon

tensor charge with extractions of Radici et al. [18] at
Q2 ¼ 4 GeV2, Anselmino et al. [17] standard and poly-
nomial at Q2 ¼ 0.8 GeV2, and a series of lattice compu-
tations. Bali et al. [123] estimate gT at mπ ≃ 150 MeV
using RQCD with two-flavor NPI Wilson-clover fermions,
Gupta et al. [124] use 2þ 1þ 1-flavor HISQ lattices
generated by the MILC Collaboration with the lowest
mπ ¼ 130 MeV, Green et al. [125] use 2þ 1-flavor
BMW clover-improved Wilson action with pion masses
between 149 and 356 MeV, Aoki et al. use gauge
configurations generated by the RBC and UKQCD col-
laborations with (2þ 1)-flavor QCD with domain wall
fermions, and Bhattacharya et al. [126] use two ensembles
of highly improved staggered quarks lattices generated by
the MILC Collaboration with 2þ 1þ 1 dynamical flavors
at a lattice spacing of 0.12 fm and with light-quark masses
corresponding to pions with masses 310 and 220 MeV.

References to other calculations of gT on the lattice can be
found, for instance, in Ref. [126]. Reference [127] uses
nf ¼ 2 lattice QCD, based on clover-improved Wilson
fermions. One can see from Fig. 32 that all phenomeno-
logical extractions indicate small values for the isovector
nucleon tensor charge compared to lattice QCD. DSE
computations of gT at Q2 ¼ 4 GeV2 were performed in
Ref. [118], and the result is different from most of the
lattice computations and closer to the phenomenological
extraction from the data. Earlier DSE calculations of the
tensor charge were performed in Ref. [128] in the QCD-like
theory with the Landau gauge, and the quark tensor charge
in the nucleon was estimated as δu≃ 0.8 and δd≃ −0.2
at Q ¼ 2 GeV.
The value of gT extracted from the data may influence

searches of Beyond the Standard Model (BSM) physics
that depend on gT [130–132]. In particular the precision of
determination of the elementary BSM tensor coupling
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FIG. 31. Comparison of tensor charge δq½0;1� for the u quark and d quark in the whole region of x from this paper at 90% C.L. at
Q2 ¼ 10 GeV2 and the results from Refs. [118–122].
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FIG. 32. Comparison of the isovector nucleon tensor
charge gT from this paper at 68% C.L. at Q2 ¼ 10 GeV2 and
the result from Ref. [18] at 68% C.L. and Q2 ¼ 4 GeV2, and
Ref. [17] at the 95% C.L. standard and polynomial fit at
Q2 ¼ 0.8 GeV2. Other points are lattice computation at Q2 ¼
4 GeV2 of Refs. [123–127,129]. Reference [118] is a DSE
calculation at Q2 ¼ 4 GeV2.
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ϵT ∝ m2
W=Λ

2
T allows us to determine the lower limit for the

possible BSM physics scale ΛT . The most recent limit
[132] is jϵTgT j < 6.4 × 10−4 at 90% C.L.. An analysis of
the precision of ϵT as a function of the precision of the
extraction of the tensor charge, the central value of gT , and
relative error ΔgT=gT was presented in Ref. [132].
Presently lattice QCD calculations have the best precision;
however, the tensor charge computed must be confirmed by
the extraction from the experimental data.
One can see that our determination of gT is the most

precise existing extraction from experimental data; it turns
out to be different from lattice QCD computations. Future
experimental data will allow both to improve our extrac-
tions and test the reliability of lattice QCD calculations.
The isoscalar nucleon tensor charge g0T ¼ δuþ δd can

be readily computed using our results. We present the result
for g0T for completeness,

g0T ¼ þ0.17þ0.47
−0.30 ; ð157Þ

at 90% C.L. at Q2 ¼ 10 GeV2.
References [133–135] explore the large-Nc behavior of

parton distributions in QCD and predict that

jhu1ðxÞ − hd1ðxÞj ≫ jhu1ðxÞ þ hd1ðxÞj; ð158Þ

we indeed observe that transversities for u and d quarks are
of similar magnitude and opposite signs and gT > g0T , and
thus our results are compatible with large-Nc predictions.

IV. SUMMARY

In this paper, we have performed a global analysis of the
Collins azimuthal asymmetries in eþe− annihilation and
SIDIS processes, for the first time, with full QCD dynamics
taken into account, including the appropriate TMD evolu-
tion effects at the NLL0 order and perturbative QCD
corrections at the NLO. The valence quark contributions
to the nucleon tensor charge were estimated based on our
analysis. Let us summarize the major results of this
comprehensive study.
First, the full QCD evolution effects are crucial to

describe the Collins asymmetries in the back-to-back
dihadron productions in eþe− annihilations, where current
data come from the B-factories at the center of mass energy
around 10.6 GeV. At this energy range, the TMD evolution
has a significant effect on the asymmetry distributions as
functions of the transverse momentum and the longitudinal
momentum fractions carried by the hadrons in the frag-
mentation processes. These features have been clearly
demonstrated in Figs. 20–21. In particular, the trans-
verse-momentum dependence illustrates the effects coming
from the Sudakov resummation form factors where the
perturbative part plays an important role due to the large
value of the resolution scale Q≃ 10.6 ðGeVÞ. The

associated scale evolution effects in the Ĥð3ÞðzÞ are another
important aspect in the calculations. The evolution kernel is
different from that of the unpolarized fragmentation func-
tion, and it changes the functional form dependence of zh1
and zh2. In addition, there is cancellation between favored
and unfavored Collins fragmentation functions; not only
the shape but also the size are modified with the full
evolution effects taken into account.
Second, because of the relative narrow Q2 range in the

current SIDIS data, the evolution effects are not so evident
as compared to those in eþe− annihilation processes. This
was shown in Figs. 18 and 19. However, we would like to
emphasize that, in order to precisely constrain the quark
transversity distributions, we need to perform the complete
QCD evolution in the theoretical calculations of the
asymmetries to compare to the experimental data. This
will become more important with high precision data from
future experiments at the Jefferson Lab 12 GeV upgrade
[110] and the planned Electron-Ion Collider [4,111,112].
Third, the quark transversity distributions from our

analysis are comparable to previous determinations, includ-
ing the leading-order analysis of the same Collins asym-
metries in SIDIS and eþe− annihilation processes and the
dihadron fragmentation channel in DIS and eþe− proc-
esses; see Fig. 27. In particular, the consistency between the
Collins asymmetry analysis and the dihadron fragmentation
analysis is a strong encouragement toward a future global
fit to include all experimental data to constrain the quark
transversity distributions.
We observe, however, the Collins fragmentation func-

tions from our analysis are quite different from those
determined from the leading-order analysis in Ref. [17],
although they are in the same order of magnitude. To
further test the evolution effects, we emphasize the impor-
tance of future experiment measurements, in particular, in
the energy range different from B-factories, such as those
from the BEPC II at the experiment BESIII. We have made
predictions for these experiments in Figs. 22 and 24. The
recent measurement of BESIII [116] has shown a rather
good agreement with our calculations. We encourage the
BELLE, BABAR, and BESIII collaborations to perform the
analysis of the data on unpolarized cross sections as such
data are a curtail for our understanding of TMD fragmen-
tation functions.
Finally, we summarize the nucleon tensor charge con-

tribution from our analysis,

δu½0.0065;0.35� ¼ þ0.30þ0.08
−0.12 ; ð159Þ

δd½0.0065;0.35� ¼ −0.20þ0.28
−0.11 ð160Þ

at 90% C.L. at Q2 ¼ 10 GeV2, in the kinematic range
covered by the current experiments, and

δu½0.0065;0.35� ¼ þ0.30þ0.04
−0.07 ; ð161Þ
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δd½0.0065;0.35� ¼ −0.20þ0.12
−0.07 ð162Þ

at 68% C.L. at Q2 ¼ 10 GeV2.
If we extend to the complete x range by assuming the

model dependence in our fit, we would obtain

δu½0;1� ¼ þ0.39þ0.16
−0.20 ; ð163Þ

δd½0;1� ¼ −0.22þ0.31
−0.10 ð164Þ

at 90% C.L. at Q2 ¼ 10 GeV2 and

δu½0;1� ¼ þ0.39þ0.07
−0.11 ; ð165Þ

δd½0;1� ¼ −0.22þ0.14
−0.08 ð166Þ

at 68% C.L. at Q2 ¼ 10 GeV2. We emphasize that the
above constraints depend on the functional form in our
analysis, and the numbers quoted here should be taken
cautiously. It is, nevertheless, interesting to compare to
previous determinations. In Fig. 27 we show the compar-
isons of the nucleon tensor charges between our results and
other determinations, together with some model calcula-
tions and the lattice computations.
Many improvements can be made in the future. First,

more experimental data are on the horizon from the 12 GeV
upgrade of Jefferson Lab experiments, which actually will
cover the large-x region and is of crucial importance to
constrain the quark transversity distribution in that region.
Since the nucleon tensor charge contribution is an integral
of the quark transversity distribution, future Jefferson
Lab data will be very important to reduce the uncertainties
quoted above, and the uncertainties we cannot address
at the moment, such as the kinematic extension to
obtain δq½0;1�.
The TMD evolution and the procedure to perform the

global analysis will be an important part in the future
analysis for other observables, for example, the Sivers
asymmetries in SIDIS. We plan to carry out this analysis in
a future publication.
A number of improvements can be pursued in the

theoretical part of the formalism. In this paper, we have
taken the approximate evolution kernel for the twist-3

quark-gluon-quark correlation contribution to the fragmen-
tation function Ĥð3ÞðzÞ. For a complete analysis, we should
include other terms in this evolution equation. Although it
may not be possible to have closed evolution equations for
both Ĥð3ÞðzÞ and the related twist-3 fragmentation func-
tions HDðz1; z2Þ, one should be able to estimate the
contributions from these additional terms. Second, with
more experimental data available, we shall include the
flavor dependence in the nonperturbative form factors in
the Collins fragmentation function in the CSS resummation
formalism. In this paper, we have assumed that they are
flavor independent. The flavor dependence of distribution
and fragmentation functions will be explored in the future
analysis with more data available, in particular, the data on
the transverse-momentum dependence of the asymmetries
in eþe− annihilation processes.
As a final remark, we would like to emphasize that our

results and the methodology in the analysis will play an
important role in phenomenological applications of per-
turbative QCD to the vast experimental data on SIDIS,
Drell-Yan, and eþe− and in the extraction of the relevant
TMD parton distributions of the nucleon.
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APPENDIX: ONE-LOOP CALCULATION OF
THE COLLINS ASYMMETRY IN SIDIS

To study the perturbative corrections and extract the
hard factor in Eq. (53), we need to carry out a calculation
for ~Fcollins at one-loop order. The leading-order expression
and the virtual diagram contributions follow those in the
previous calculations for, e.g., the Sivers single spin
asymmetry in SIDIS [40,53]. For the real gluon radiation,
we use the results in Ref. [52],

Fβ
collinsjPh⊥≪Q ¼ zhP

β
h⊥

ð~P2
h⊥Þ2

αs
2π2

CF

Z
1

xB

dx
x

Z
1

zh

dz
z

X
q

e2qh
q
1ðxÞðzÞ

�
Ĥð3Þ

h=qðzÞδðξ̂ − 1Þ
�

2ξ2

ð1 − ξÞþ

�

þ δðξ − 1Þ
�
−2ξ̂

�
z3

∂
∂z

Ĥð3Þ
h=qðzÞ
z2

�
þ Ĥð3Þ

h=qðzÞ
2ξ̂2

ð1 − ξ̂Þþ

�
þ2δðξ̂ − 1Þδðξ − 1ÞĤð3Þ

h=qðzÞ ln
z2hQ

2

~P2
h⊥

�
; ðA1Þ

where ξ ¼ xB=x, ξ̂ ¼ zh=z, and we only keep the most important diagonal contributions from Ĥð3Þ
h=qðzÞ, and the

contributions from ĤDðz1; z2Þ can be found from Ref. [52]. By applying the Fourier transform (some of the useful
integrals are listed in the Appendix of Ref. [40] and Eq. (42) of Ref. [136]), we obtain the following result for ~Fβ

collinsðQ; bÞ,
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~Fβ
collinsjreal ¼

αs
2π

CF

�
ibα

2

�Z
1

xB

dx
x

Z
1

zh

dz
z

X
q

e2qh
q
1ðxÞĤð3Þ

h=qðzÞ
��

−
1

ϵ
þ ln

c20ξ̂
2

b2μ2

�

×

�
δð1 − ξ̂Þ

�
2ξ

ð1 − ξÞþ

�
þ δð1 − ξÞ

�
2ξ̂

ð1 − ξ̂Þþ
þ 2δðξ̂ − 1Þ

��

þ 2δð1 − ξÞδð1 − ξ̂Þ
�
1

ϵ2
−
1

ϵ
ln
Q2

μ2
þ 1

2

�
ln
Q2

μ2

�
2

−
1

2

�
ln
Q2b2

c20

�
2

−
π2

12

�

− 2δð1 − ξÞδð1 − ξ̂Þ
�
−
1

ϵ
þ ln

c20
b2μ2

��
; ðA2Þ

where we have partially integrated out the derivative terms in the previous equation to simplify the above expression.
Clearly, the real diagrams contributions contain soft divergence (1=ϵ2), which will be cancelled by the virtual diagrams
contributions. The virtual diagram contributes to a factor,

αs
2π

CF

�
−

2

ϵ2
−
3

ϵ
þ 2

ϵ
ln
Q2

μ2
þ 1

6
π2 þ 3 ln

Q2

μ2
−
�
ln
Q2

μ2

�
2

− 8

�
ðA3Þ

After canceling out these divergences, we have the total contribution at one-loop order,

~Fβ
collins ¼

αs
2π

Z
1

xB

dx
x

Z
1

zh

dz
z

X
q

e2qh
q
1ðxÞĤð3Þ

h=qðzÞ
�
ibα

2

���
−
1

ϵ
þ ln

c20ξ̂
2

b2μ2

�
ðP̂c

q→qðξ̂Þδð1 − ξÞ þ Ph1
q→qðξÞδð1 − ξ̂ÞÞ

þδð1 − ξÞδð1 − ξ̂ÞCF

�
3 ln

Q2b2

c20
−
�
ln
Q2b2

c20

�
2

− 8

��
; ðA4Þ

where P represents the associated splitting kernels. They can be derived from the above results,

Ph1
q→qðξÞ ¼ CF

�
2ξ

ð1 − ξÞþ
þ 3

2
δð1 − ξÞ

�
; ðA5Þ

P̂c
q→qðξ̂Þ ¼ CF

�
2ξ̂

ð1 − ξ̂Þþ
þ 3

2
δð1 − ξ̂Þ þ � � �

�
; ðA6Þ

where we only list the part we have shown in the above from the contribution from the Ĥð3ÞðzÞ term. In general, the
evolution of twist-3 correlation functions involves multiple parton correlation contributions, for which there is no
homogenous form.
To demonstrate the TMD factorization and calculate the hard factor in the TMD factorization, we have to calculate the

transverse-momentum dependence in the quark transversity distribution and the Collins fragmentation function at one-loop
order. For the transversity distribution, we have

h1ðxB; k⊥Þjreal ¼
αs
2π2

CF
1

k2⊥

Z
1

xB

dx
x
h1ðxÞ

�
2ξ

ð1 − ξÞþ
þ δð1 − ξÞ

�
ln
x2Bζ

2

k2⊥
− 1

��
ðA7Þ

for the unsubtracted distribution in the Ji-Ma-Yuan (JMY) scheme. Adding the virtual contribution,

h1ðxB; k⊥Þjvirtual ¼ h1ðxBÞ
αs
2π

CF

�
−

1

ϵ2
−

5

2ϵ
þ 1

ϵ
ln
x2Bζ

2

μ2
þ x2Bζ

2

μ2
−
1

2
ln2

�
x2Bζ

2

μ2

�
−

5

12
π2 − 2

�
; ðA8Þ

we obtain the total contribution for the unsubtracted quark transversity TMD at the one-loop order,
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hunsub1 ðxB; b; ζ; μÞjαs ¼
αs
2π

Z
1

xB

dx
x
h1ðxÞ

��
−
1

ϵ
þ ln

c20
b2μ̄2

�
Ph1
q→qðξÞ − CFδð1 − ξÞ ln c20

b2μ2

þCFδð1 − ξÞ
�
3

2
ln
b2μ2

c20
þ ln

x2Bζ
2

μ2
−
1

2
ln2

�
x2Bζ

2b2

c20

�
− 2 −

π2

2

��
; ðA9Þ

in the JMY scheme. Therefore, the subtracted TMD quark transversity distribution can be written as

hsubðJMYÞ
1 ðxB; b; ζ; μÞjαs ¼

αs
2π

Z
1

xB

dx
x
h1ðx; μ̄Þ

�
ln

c20
b2μ̄2

Ph1
q→qðξÞ

þCFδð1 − ξÞ
��

3

2
þ ln ρ

�
ln
b2μ2

c20
þ ln

x2Bζ
2

μ2
−
1

2
ln2

�
x2Bζ

2b2

c20

�
− 2 −

π2

2

��
; ðA10Þ

where we have also applied the renormalization for the integrated transversity distribution. By setting x2Bζ
2 ¼ ρμ2b and

μ ¼ μb as the initial scales for the TMD evolutions, we obtain the C-coefficient and the hard function H1q of Eq. (60) as

~HðJMYÞ
1q ¼ 1þ αs

2π
CF

�
ln ρ −

1

2
ln2ρ −

π2

2
− 2

�
; δCq→qðξ; μbÞ ¼ δð1 − ξÞð1þOðα2sÞÞ: ðA11Þ

Similarly, we can carry out the calculations in the Collins 2011 (JCC) scheme, for which we have the TMD quark
transversity at one-loop order,

hsubðJCCÞ1 ðxB; b; ζ; μÞjαs ¼
αs
2π

Z
1

xB

dx
x
h1ðx; μ̄Þ

�
ln

c20
b2μ̄2

Ph1
q→qðξÞþCFδð1 − ξÞ

�
3

2
ln
b2μ2

c20
þ 1

2
ln2

�
ζ2c
μ2

�
−
1

2
ln2

�
ζ2cb2

c20

���
:

ðA12Þ

Applying the above result in Eq. (60) and setting ζc ¼ μ ¼ μb as the initial scales for the TMD evolutions, we have

~HðJCCÞ
1q ¼ 1þOðα2sÞ; δCq→qðξ; μbÞ ¼ δð1 − ξÞð1þOðα2sÞÞ: ðA13Þ

The above calculations can be extended to the Collins fragmentation function. The transverse-momentum dependence can
be calculated from perturbative QCD and written in terms of the twist-3 fragmentation function,

H⊥
1 ðzh; p⊥Þjreal ¼

αs
2π2

CF
1

ðp2⊥Þ2
Z

dz
z

�
−2ξ̂

�
z3

∂
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�
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�
ln

ζ2

p2⊥
− 2

���
: ðA14Þ

Fourier transforming into b space and adding the virtual diagram contribution [similar to that in Eq. (A8)], we obtain the
unsubtracted Collins fragmentation function at one-loop order,

~H⊥αunsub
1 ðxB; b; ζ; μÞjαs ¼

ibα

2
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2

��
; ðA15Þ

in the JMY scheme. For the subtracted Collins fragmentation function, we have

~H⊥αsubðJMYÞ
1 ðxB; b; ζ; μÞjαs ¼

ibα

2
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Ĥð3Þ
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: ðA16Þ

Similarly, we obtain the subtracted Collins fragmentation function in the JCC scheme,
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~H⊥αsubðJCCÞ
1 ðxB;b; ζ;μÞjαs ¼
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Ĥð3Þ

h=qðzÞ
�
ln
c20ξ̂

2

b2μ̄2
P̂c
q→qðξ̂ÞþCFδð1− ξ̂Þ

�
3

2
ln
b2μ2

c20
þ 1

2
ln2

�
ζ̂2c
μ2

�
−
1

2
ln2

�
ζ̂2b2

c20

���
:

ðA17Þ

From the above results, we derive the associated
C-functions,

~HðJMYÞ
c ¼ 1þ αs

2π
CF

�
ln ρ −

1

2
ln2ρ −

π2

2
− 2

�
;

δĈq→qðξ̂; μbÞ ¼ δð1 − ξ̂Þ þ αs
2π

CFP̂
c
q→qðξ̂Þ ln ξ̂2;

~HðJCCÞ
c ¼ 1þOðα2sÞ; δĈq→qðξ̂; μbÞ

¼ δð1 − ξ̂Þ þ αs
2π

CFP̂
c
q→qðξ̂Þ ln ξ̂2: ðA18Þ

Finally, we can obtain the hard factors in both schemes. For
example, in the Ji-Ma-Yuan scheme,

HðDISÞJMY
collins ðQ;μÞ

¼HðDISÞJMY
UU ðQ;μÞ

¼ 1þ αs
2π

CF

�
ln
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μ2
þ lnρ2 ln
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μ2
− lnρ2 þ ln2ρþ π2 − 4

�
:

ðA19Þ

Note that the hard part is the same for FUU and FUT , which
is why we used the same notation H in Eqs. (17) and (53).
Similarly, for the Collins-11 TMD scheme, we have

HðDISÞJCC
collins ðQ; μÞ ¼ HðDISÞJCC

UU ðQ; μÞ

¼ 1þ αs
2π

CF

�
3 ln

Q2

μ2
− ln2

�
Q2

μ2

�
− 8

�
:

ðA20Þ

These hard factors can be calculated from the factorization
of ~Fα

collins, or from simply the virtual graphs for both the
cross sections and the parton distribution and fragmentation
functions. We will get the consistent results.
In the end, the C-functions in Eq. (53) can be calculated

from the above results,

δCðSIDISÞðξÞ ¼ δCðξÞ × ~H1q ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðSIDISÞ

collins ðμ ¼ QÞ
q

; ðA21Þ

δĈðSIDISÞðξ̂Þ ¼ δĈðξ̂Þ × ~Hc ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðSIDISÞ

collins ðμ ¼ QÞ
q

; ðA22Þ

where the scheme dependence is cancelled out between

H1q and HðSIDISÞ
collins . In particular, the ρ dependence disap-

pears in the JMY scheme when applying the above
formulas to calculate the C-functions in the standard
CSS resummation. Similarly, we can calculate the
C-functions for the eþe− annihilation processes,

Ĉðeþe−Þðξ̂Þ ¼ Ĉðξ̂Þ × ~Dq ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðeþe−Þ

uu ðμ ¼ QÞ
q

; ðA23Þ

δĈðeþe−Þðξ̂Þ ¼ δĈðξ̂Þ × ~Hc ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðeþe−Þ

collins ðμ ¼ QÞ
q

: ðA24Þ

Again, the scheme dependence is cancelled out between
the last two factors in the above equations. Comparing
the SIDIS and eþe− processes, we also find out that the
difference comes from the hard factors.
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