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We use a numerical method, the finite-mode approach, to study inhomogeneous condensation in
effective models for QCD in a general framework. Former limitations of considering a specific Ansatz for
the spatial dependence of the condensate are overcome. Different error sources are analyzed and strategies
to minimize or eliminate them are outlined. The analytically known results for 1þ 1-dimensional models
(such as the Gross-Neveu model and extensions of it) are correctly reproduced using the finite-mode
approach. Moreover, the NJL model in 3þ 1 dimensions is investigated and its phase diagram is
determined with particular focus on the inhomogeneous phase at high density.
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I. INTRODUCTION

Quantum chromodynamics (QCD) cannot be solved
analytically at low energies. However, several aspects of
QCD can be understood by using effective models which
exhibit the same symmetries as QCD, most notably chiral
symmetry. Some models utilize exclusively hadronic
degrees of freedom (such as chiral σ models [1–5]), while
others feature constituent quarks [such as the Nambu–Jona-
Lasinio (NJL) model [6–11] and the Gross-Neveu (GN)
model [12]]. A model with both hadronic and quark
degrees of freedom has also been discussed [13,14].
All these effective descriptions of QCD include the

spontaneous breaking of chiral symmetry, which implies
the emergence of a chiral condensate at low temperatures
and densities denoted as σ. This quantity is represented by
a nonzero expectation value of a scalar-isoscalar mesonic
field in hadronic chiral models or, equivalently, by the
quark-antiquark expectation value hψ̄ψi in quark-based
models.
The chiral condensate is, in general, a function of

space, σ ¼ σð~xÞ. In principle, the determination of σð~xÞ
is straightforward: one has to find the field configuration
which minimizes the effective action at a given temperature
and density. In practice, this task is, however, very difficult.
This is why σ is often assumed to be spatially constant.
This assumption is usually valid in the vacuum and at low
densities, but not anymore at high densities. One of the
simplest nonconstant field configurations is the so-called
chiral density wave (CDW) which, in chiral hadronic
models, corresponds to a one-dimensional condensate of
the form σðx3Þ ¼ ϕ cosðpx3Þ together with pion conden-
sation, π0ðx3Þ ¼ ϕ sinðpx3Þ. Various studies have found
that the CDW is favorable compared to a constant con-
densate at sufficiently high densities [15–26]. Interestingly,
a CDW has recently also been obtained within the extended

linear sigma model [27], which is a general chiral had-
ronic model with (axial-)vector degrees of freedom [4,5].
Moreover, inhomogeneous phases were also investigated
in Refs. [28–41] in the framework of the NJL model as well
as in the quark-meson model and the skyrmion model.
A general method to determine space-dependent conden-

sates at nonzero temperature and density has not yet been
established. There are a few exploratory studies of such
methods in the context of the 1þ 1-dimensional GN model,
using either a lattice regularization [42] of the effective action
or an expansion in terms of plane waves or hatlike localized
basis functions [43,44], but quite often one uses a specific
Ansatz [31,45]. More evolved models including three spatial
dimensions and two-dimensional variations of the conden-
sates and corresponding general methods, which are also
based on expansions of fermionic fields and condensates
in terms of plane waves, have been discussed theoretically
in Refs. [34,46,47]. In practice, however, due to limited com-
putational resources, investigations have again been limited
to specific Ansätze, where only a selected set of Fourier
modes is considered, e.g., variations in only a single spatial
dimension. In this respect models for which analytic inho-
mogeneous solutions are known are extremely interesting.
This is the case for the 1þ 1-dimensional GN model
[48–52], where a solitonlike solution for the spatial depend-
ence of the condensate is found, which is mathematically
represented by a Jacobi elliptic function [48,49]. Further
interesting 1þ 1-dimensional models for which inhomoge-
neous phases have analytically been determined are exten-
sions of theGNmodel: the chiral Gross-Neveu (χGN)model
[53,54], which has a continuous chiral symmetry, and
the two-flavor NJL2 model [55]. These 1þ 1-dimensional
models are relevant, because at high densities QCD effec-
tively reduces from 3þ 1 to 1þ 1 dimensions [37,56,57].
Thus, while the existence of inhomogeneous phases has

been verified by several different approaches, it is highly
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desirable to develop a general and reliable numerical
method to study inhomogeneous condensation, which does
not require a specific Ansatz for the spatial dependence of
the condensate. This is the aim of the present work.
We adapt and extend techniques introduced and explored

in Refs. [43,44]. We first test the validity and reliability of
the resulting method, the finite-mode approach, by apply-
ing it to 1þ 1-dimensional models, the GN, the χGN,
and the NJL2 models. We correctly reproduce both soliton-
like and CDW modulations without supplying any specific
Ansatz.
Then we apply the finite-mode approach to study the

phase structure of the 3þ 1-dimensional NJL model.
Recent findings [31] concerning one-dimensional modu-
lations are confirmed. In addition, we determine the shape
of the so-called inhomogeneous “continent” at high density
[58,59]: in agreement with these works, the phase boundary
between chirally restored and inhomogeneous phases first
increases with temperature. However, for larger chemical
potential μ, it decreases. Thus, the inhomogeneous phase
exhibits a shape which is surprisingly similar to that of the
crystal phase of the GN model.
The paper is organized as follows. In Sec. II quark-based

effective models for QCD in 1þ 1 and 3þ 1 dimensions
are introduced. In Secs. III, IV, V, and VI the phase
diagrams of these models are investigated numerically
using the finite-mode approach, with particular focus on
inhomogeneous condensation. Finally, we present conclu-
sions and an outlook in Sec. VII.

II. QUARK-BASED EFFECTIVE MODELS

In this section we introduce the Lagrangians of the
models that we use to investigate inhomogeneous con-
densation. We start with 1þ 1-dimensional models and
then turn to the 3þ 1-dimensional NJL model.

A. 1þ 1 dimensions: The GN model and its extensions

1. GN model

The GN model [12,48,49,60] is a fermionic model that
contains only a single quark flavor. In the large-N limit
(where N is the number of colors) it exhibits QCD-like
features such as asymptotic freedom, dynamical chiral
symmetry breaking and its restoration, dimensional trans-
mutation, and meson and baryon bound states [61–64]. The
Lagrangian of the GN model in Euclidean space is

LGN ¼
XN
j¼1

ψ̄ jðγμ∂μ þm0Þψ j −
g2

2

�XN
j¼1

ψ̄ jψ j

�
2

; ð1Þ

with γ0 ¼ σ1 and γ1 ¼ σ3 implying γμ ¼ γ†μ ¼ γ�μ and
fγμ; γνg ¼ 2δμν. Chiral symmetry is realized in a discrete
way, ψ j → γ5ψ j. The term proportional to m0 breaks chiral
symmetry explicitly (it is analogous to a quark mass term).

Therefore, in this work it is always set to zero, m0 ¼ 0
(similar choices are also implemented for the other models
studied by us).
Spontaneous symmetry breaking is only realized in the

limit N → ∞ [12], since for any finite N spontaneous
symmetry breaking is excluded in 1þ 1 dimensions
[65,66]. The chiral condensate arises upon condensation
of the scalar-isoscalar field combination ψ̄ jψ j, i.e.,
σ ¼ hψ̄ jψ ji (where a sum over j is implied).
In the limit N → ∞ analytic solutions for thermody-

namical quantities including inhomogeneous condensation
have been found [64] (see also the discussion in Sec. III).

2. χGN model

A straightforward extension of the GN model is obtained
by adding a pseudoscalar term. The Lagrangian of the
χGN model is

LχGN ¼
XN
j¼1

ψ̄ jγμ∂μψ j

−
g2

2

��XN
j¼1

ψ̄ jψ j

�
2

þ
�XN

j¼1

ψ̄ jιγ5ψ j

�
2
�
: ð2Þ

This model contains a scalar field combination ψ̄ jψ j, which
corresponds to a σ-like particle, and a pseudoscalar field
combination ψ̄ jιγ5ψ j, which corresponds to an η-like par-
ticle. It is invariant under continuousUAð1Þ chiral symmetry
transformations, ψ j → eιθγ5ψ j, and has certain similarities
to one-flavor QCD (when the chiral anomaly is excluded).
The χGN model is particularly interesting, because

both the scalar and the pseudoscalar field configurations
condense when the temperature exceeds a critical value.
The ground state is then a CDW [67,68].

3. NJL2 model

A further extension of the GN model is obtained by
considering, in addition to the scalar-isoscalar field combi-
nation, three pionlike field combinations. In this respect
the model is similar to two-flavor QCD. The Lagrangian
of this so-called NJL2 model is

LNJL2
¼
X2
f¼1

XN
j¼1

ψ̄ j;fγμ∂μψ j;f −
g2

2

X2
f¼1

��XN
j¼1

ψ̄ j;fψ j;f

�
2

þ
�XN

j¼1

ψ̄ j;f~τιγ5ψ j;f

�
2
�
; ð3Þ

where f ¼ 1, 2 is the flavor index. The model is invariant
under chiral symmetry transformations SULð2Þ × SURð2Þ,

ψ j;L → ULψ j;L; ψ j;R → URψ j;R; ð4Þ

with
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ψ j ¼
�
ψ j;1

ψ j;2

�
; ψ j;L ¼ PLψ j; ψ j;R ¼ PRψ j; ð5Þ

and PL and PR are projectors onto left- and right-handed
components, respectively.
In contrast to the χGN model the ground state is not a

CDW.Using the finite-mode approachwe find that the phase
diagram coincides with that of the GN model (cf. Sec. V).

B. 3þ 1 dimensions: The NJL model

The NJL model in 3þ 1 dimensions is one of the most
famous effective chiral approaches to QCD. It has been
extensively used in the vacuum and at nonzero temperature
and density to study the spontaneous breaking of chiral
symmetry and its restoration (cf., e.g., Refs. [69,70]). The
Lagrangian (in the chiral limit for N colors and two flavors)
is [8,10]

LNJL ¼
X2
f¼1

XN
j¼1

ψ̄ j;fγμ∂μψ j;f

−
3G
N

X2
f¼1

��XN
j¼1

ψ̄ j;fψ j;f

�
2

þ
�XN

j¼1

ψ̄ j;f~τιγ5ψ j;f

�
2
�
:

ð6Þ

Chiral symmetry is realized in the same way as in the NJL2

model [cf. Eqs. (4) and (5)].
In the vacuum, the quark field obtains an effective mass,

if the coupling constant G exceeds a critical value,

m�
0 ¼ −

6G
N

X2
f¼1

XN
j¼1

hψ̄ j;fψ j;fi > 0: ð7Þ

This effective mass is proportional to the chiral condensate
in the vacuum, i.e., σ0 ¼ −ðN=6

ffiffiffi
2

p
GÞm�

0 [8,10], where the
chiral condensate is defined according to

σ ¼ 1ffiffiffi
2

p
X2
f¼1

XN
j¼1

hψ̄ j;fψ j;fi: ð8Þ

In other words, the field combination which gives rise to
a nonzero condensate is again ψ̄ j;fψ j;f. When restricting
this condensate to be constant, chiral symmetry restoration
at high densities occurs via a first-order phase transition
[71–75]. However, when allowing for an inhomogeneous
condensate, the latter occurs at slightly smaller chemical
potentials than the first-order phase transition. This is in
agreement with the extended linear sigma model results
of Ref. [27].
Contrary to the 1þ 1-dimensional models of Sec. II A,

the NJL model is not renormalizable. The equation for σ
takes the form

σ0 ¼ −2
ffiffiffi
2

p
Nm�

0I

with I ¼ i
Z

d4p
ð2πÞ4

2

p2 −m�2
0

¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm�2

0

p ;

ð9Þ

where the integral I corresponds to a closed quark loop, i.e.,
to a tadpole diagram arising from the quartic NJL inter-
action of Eq. (6), which affects the quark propagator at the
resummed one-loop level in the Hartree-Fock approxima-
tion (see Refs. [8–10] for a detailed derivation).
The integral I is, however, quadratically divergent. Indeed,

the NJLmodel is properly defined only after a regularization
scheme has been chosen and a corresponding high-energy
scale enters as a new parameter. Strictly speaking, each
choice of regularization corresponds to a different version
of the NJL model. Once the regularization has been fixed,
the quantity m�

0 in Eq. (7) and, as a consequence, all the
relevant thermodynamical quantities are finite.
Especially in studies of the NJL model at nonzero

density, it is common to implement a three-dimensional
cutoff (see, e.g., Ref. [11]) according to which

I → IΛ ¼
Z

Λ

0

dj~pj
2π2

~p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm�2

0

p : ð10Þ

Note that the use of a four-dimensional covariant cutoff is
possible for studies of the vacuum [8,10], but it is not easy
to implement at nonzero temperatures and densities.
However, a three-dimensional cutoff strongly suppresses

the appearance of inhomogeneous phases. Namely, in an
inhomogeneous phase such as a CDW, the quark propagator
is not diagonal and the ingoing and outgoing momenta can
differ by a full wavelength. This hardly takes place when
the momentum j~pj is limited by the cutoff Λ [76]. Hence, in
order to realize a CDW, other regularization approaches
must be used, such as the Pauli-Villars scheme [59] or the
proper-time regularization scheme [9,10,77].
In this work we use the Pauli-Villars approach, which is a

Lorentz (and gauge) invariant regularization procedure
[8,78]. It amounts to introducing NPV additional fictitious
heavy fermions with mass Mk in such a way that the
tadpole integral of Eq. (9) is modified according to

I → IPV ¼
Z

~p2dj~pj
2π2

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þm�2
0

p þ
XNPV

k¼1

Ckffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

k

q
!
;

ð11Þ
with the masses given by

M2
k ¼ m�2

0 þ αkΛ2
PV; ð12Þ

where ΛPV is the so-called Pauli-Villars high-energy scale.
The constants Ck and αk are real dimensionless numbers,

INHOMOGENEOUS CONDENSATION IN EFFECTIVE … PHYSICAL REVIEW D 93, 014007 (2016)

014007-3



which are chosen in such a way that IPV is finite. Let us show this explicitly for the case NPV ¼ 2. For large values of ~p2 the
quantity in parentheses in Eq. (11) can be approximated by a Taylor expansion,

ð…Þ ¼ 1

j~pj
�
1þ C1 þ C2 −

1

2

m�2
0 ð1þ C1 þ C2Þ þ Λ2

PVðα1C1 þ α2C2Þ
j~pj2 þOðj~pj−4Þ

�
: ð13Þ

Then, by requiring

1þ C1 þ C2 ¼ 0 and α1C1 þ α2C2 ¼ 0 ð14Þ

the integrand of Eq. (11) falls off as j~pj−3 and is, therefore,
convergent (although it explicitly depends on the scale
ΛPV). Once IPV is finite, the quark condensate and the
quark mass, as well as all other relevant quantities are also
finite. The conditions in Eq. (14) are met for α1 ¼ 2 and
α2 ¼ 1 with C1 ¼ 1 and C2 ¼ −2.
The procedure can be easily generalized to an arbitrary

number of heavy fermions NPV,

1þ
XNPV

k¼1

Ck ¼ 0;
XNPV

k¼1

αkCk ¼ 0: ð15Þ

For the caseNPV ¼ 3 the previous equations are fulfilled by
α1 ¼ 1, α2 ¼ 2, α3 ¼ 3 and C1 ¼ −3, C2 ¼ 3, C3 ¼ −1.
In Sec. VI we will compute the phase diagram of the NJL
model with inhomogeneous condensation using the Pauli-
Villars regularization with two and three heavy fermions.

III. FINITE-MODE REGULARIZATION OF THE
1þ 1 DIMENSIONAL GN MODEL

In the following we discuss the finite-mode approach in
detail, in particular, its technical aspects, in the context
of the 1þ 1-dimensional GN model in the large-N limit
(cf. also Refs. [43,44,79–81]). We reproduce the analyti-
cally known phase diagram, which exhibits an inhomo-
geneous crystal phase.

A. Partition function and Euclidean action

The partition function of the 1þ 1-dimensional GN
model (1) in Euclidean spacetime is

Z ¼
Z �YN

j¼1

Dψ̄ jDψ j

�
e−SE½ψ j;ψ̄ j�; ð16Þ

with the action

SE½ψ̄ j;ψ i� ¼
Z

d2x

�XN
j¼1

ψ̄ jðγμ∂μ þ γ0μÞψ j

−
g2

2

�XN
j¼1

ψ̄ jψ j

�
2
�
; ð17Þ

where μ is the chemical potential. One can get rid of the
four-fermion term by introducing a real scalar field σ,

Z ¼
Z

Dσ

�YN
j¼1

Dψ̄ jDψ j

�

× exp

�
−
Z

d2x

�
1

2g2
σ2 þ

XN
j¼1

ψ̄ jQψ j

��
; ð18Þ

with the Dirac operator

Q ¼ γμ∂μ þ γ0μþ σ: ð19Þ
Performing the integration over the fermionic fields
results in

Z ¼
Z

DσðdetQÞN exp

�
−

1

2g2
σ2
�
: ð20Þ

Since detQ is real [82], ðdetQÞ2 ¼ detðQ†QÞ ≥ 0.
Consequently, for even N

Z ¼
Z

Dσe−SE;eff ½σ�;

SE;eff ½σ� ¼ N
Z

d2x

�
1

2λ
σ2 −

1

2
ln½detðQ†QÞ�

�
; ð21Þ

where λ ¼ Ng2. Due to numerical reasons discussed
in detail in Ref. [43], when using the finite-mode
approach, it is highly advantageous to regularize the
effective action expressed in terms of detðQ†QÞ instead
of the mathematically equivalent expression contain-
ing detQ.

B. Finite-mode regularization, homogeneous
condensate σ ¼ constant

For numerical calculations it is convenient to work
exclusively with dimensionless quantities. Therefore, we
express all dimensionful quantities in units of σ0 which is
the nonvanishing value of the constant condensate σ
at temperature T ¼ 0 and chemical potential μ ¼ 0. The
resulting dimensionless quantities are denoted by a hat ^,
e.g., x̂μ ¼ xμσ0, T̂ ¼ T=σ0, μ̂ ¼ μ=σ0, σ̂ ¼ σ=σ0, etc.
We consider a finite spacetime volume with temporal

extension L̂0 ¼ L0σ0 (corresponding to the inverse temper-
ature 1=T̂ ¼ L̂0) and spatial extension L̂1 ¼ L1σ0. The
fermionic fields are expressed as superpositions of plane
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waves with periodic boundary conditions in the spatial direction and antiperiodic boundary conditions in the temporal
direction,

ψ̂ jðx̂0; x̂1Þ ¼
ψ jðx0; x1Þffiffiffiffiffi

σ0
p ¼

X
n0;n1

ηj;n0;n1
e−ιðk̂0x̂0þk̂1x̂1Þffiffiffiffiffiffiffiffiffiffiffi

L̂0L̂1

p ; ð22Þ

ˆ̄ψ jðx̂0; x̂1Þ ¼
ψ̄ jðx0; x1Þffiffiffiffiffi

σ0
p ¼

X
n0;n1

η̄j;n0;n1
eþιðk̂0x̂0þk̂1x̂1Þffiffiffiffiffiffiffiffiffiffiffi

L̂0L̂1

p ; ð23Þ

with discrete momenta

k̂0 ¼
2π

L̂0

�
n0 −

1

2

�
; k̂1 ¼

2π

L̂1

n1; n0; n1 ∈ N;

where ηj;n0;n1 and η̄j;n0;n1 are dimensionless Grassmann variables.
For a homogeneous condensate σ ¼ constant, ln½detðQ̂†Q̂Þ� can be expressed as a product over the modes ðk̂0; k̂1Þ,

ln½detðQ̂†Q̂Þ� ¼ ln

�Y
k̂0;k̂1

det½ðþιγμk̂μ − γ0μ̂þ σ̂Þð−ιγμk̂μ þ γ0μ̂þ σ̂Þ�
�

¼ ln

�Y
k̂0;k̂1

½ðk̂20 þ k̂21 þ σ̂2 − μ̂2Þ2 þ ð2μ̂k̂0Þ2�
�
: ð24Þ

Considering only a finite number of modes n0¼−N0þ1;−N0þ2;…;N0−1;N0 and n1¼−N1;−N1þ1;…;N1−1;N1,
i.e., introducing momentum cutoffs

k̂cut0 ¼ 2π

L̂0

N0; k̂cut1 ¼ 2π

L̂1

�
N1 þ

1

2

�
ð25Þ

(chosen to be π=L̂0;1 larger than the largest momenta considered) yields the finite-mode regularized effective action,

SE;effðσ̂Þ
N

¼ L̂0L̂1σ̂
2

2λ
−
1

2

XN0

n0¼−N0þ1

XN1

n1¼−N1

ln

���
2π

L̂0

�
n0 −

1

2

��
2

þ
�
2π

L̂1

n1

�
2

þ σ̂2 − μ̂2
�

2

þ
�
2μ̂

2π

L̂0

�
n0 −

1

2

��
2
�

¼ 2π2N0ðN1 þ 1=2Þσ̂2
λk̂cut0 k̂cut1

−
XN0

n0¼1

XN1

n1¼−N1

ln

���
k̂cut0

n0 − 1=2
N0

�
2

þ
�
k̂cut1

n1
N1 þ 1=2

�
2

þ σ̂2 − μ̂2
�
2

þ
�
2μ̂k̂cut0

n0 − 1=2
N0

�
2
�
; ð26Þ

which is suitable for numerical evaluation. Minimizing this effective action with respect to σ̂ for various μ̂ and T̂ yields
σ̂ðμ̂; T̂Þ, i.e., the “homogeneous phase diagram of the GN model” [60].
Infinite-volume continuum results are obtained in the limit L̂1 → ∞, k̂cut0 → ∞, and k̂cut1 → ∞, which implies an infinite

number of modes. Numerically one is, of course, restricted to a finite number of modes. In the following we discuss how to
determine the parameters λ, N0, N1, k̂

cut
0 , and k̂cut1 [L̂0 and L̂1 are then given by Eq. (25)] in an optimal way, i.e., how to

obtain numerical results with a finite and rather limited number of modes, which are nevertheless very close to infinite-
volume continuum results.

C. Choosing and determining suitable parameters λ, N0, N1, k̂
cut
0 , and k̂cut1

The condensate σ̂ minimizes the effective action (26). For μ ¼ 0 it is the solution of

0 ¼ d
dσ̂

SE;effðσ̂Þ
N

¼ 2σ̂

�
2π2N0ðN1 þ 1=2Þ

λk̂cut0 k̂cut1

− 2
XN0

n0¼1

XN1

n1¼−N1

��
k̂cut0

n0 − 1=2
N0

�
2

þ
�
k̂cut1

n1
N1 þ 1=2

�
2

þ σ̂2
�
−1
�
: ð27Þ
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An obvious solution is σ̂ ¼ 0. It corresponds to a minimum
for T > Tc and to a maximum for T ≤ Tc. For the latter
case there are two additional solutions (corresponding to
minima), which can be obtained from

0 ¼ 2π2N0ðN1 þ 1=2Þ
λk̂cut0 k̂cut1

− 2
XN0

n0¼1

XN1

n1¼−N1

��
k̂cut0

n0 − 1=2
N0

�
2

þ
�
k̂cut1

n1
N1 þ 1=2

�
2

þ σ̂2
�
−1
: ð28Þ

To appropriately determine the parameters λ, N0, N1,
k̂cut0 , and k̂cut1 , we consider and relate computations at μ ¼ 0
and a low temperature T ≈ 0, where σðTÞ ≈ σ0, and at
μ ¼ 0 and the critical temperature T ¼ Tc, where σ just
vanishes, i.e., σðT − ϵÞ > 0 and σðTÞ ¼ 0. The parameters
λ, N1, k̂

cut
0 , and k̂cut1 are the same for both simulations, while

N0 ¼ N00 for T ≈ 0 and N0 ¼ N0c ≪ N00 for T ¼ Tc.
The parameters N0c, N00, N1, and k̂cut1 can be chosen

independently. The maximum number of modes ∝ N00N1

is, of course, limited by the available computer resources.
Strategies for choosing these four parameters in an optimal
way, i.e., where systematic errors due to the finite spatial
extension and the finite number of modes are minimized,
are discussed in Secs. III C 1, III C 2, and III C 3 below.
In contrast to that, k̂cut0 and λ cannot be chosen inde-

pendently: k̂cut0 ¼ 2πN0cT̂c [which follows from Eq. (25)];
i.e., k̂cut0 is related to N0c. Since T̂c is a priori unknown,
setting k̂cut0 to an appropriate value is a nontrivial task.
Similarly, λ depends on N0c, N1, k̂

cut
0 , and k̂cut1 via Eq. (28)

at T ¼ Tc, where σ̂ ¼ 0,

π2ðN1 þ 1=2Þ
λk̂cut0 k̂cut1

¼ 1

N0c

XN0c

n0¼1

XN1

n1¼−N1

��
k̂cut0

n0 − 1=2
N0c

�
2

þ
�
k̂cut1

n1
N1 þ 1=2

�
2
�
−1
: ð29Þ

To determine k̂cut0 (without knowing T̂c), we consider
Eq. (28) also for T ≈ 0, where σ̂ ≈ 1, i.e.,

π2ðN1 þ 1=2Þ
λk̂cut0 k̂cut1

¼ 1

N00

XN00

n0¼1

XN1

n1¼−N1

��
k̂cut0

n0 − 1=2
N00

�
2

þ
�
k̂cut1

n1
N1 þ 1=2

�
2

þ 1

�
−1
: ð30Þ

Since the left-hand sides of Eqs. (29) and (30) are identical,
we can equate their right-hand sides and eliminate λ,

XN1

n1¼−N1

�
1

N0c

XN0c

n0¼1

��
k̂cut0

n0−1=2
N0c

�
2

þ
�
k̂cut1

n1
N1þ1=2

�
2
�
−1

−
1

N00

XN00

n0¼1

��
k̂cut0

n0−1=2
N00

�
2

þ
�
k̂cut1

n1
N1þ1=2

�
2

þ1

�
−1
�
¼0: ð31Þ

For given N0c, N00, N1, and k̂cut1 one has to solve this
equation to obtain k̂cut0 . Then, λ can be calculated using
either Eq. (29) or (30).

1. Optimizing N0c

The numerically obtained critical temperature T̂c ¼
k̂cut0 =2πN0c should be insensitive with respect to variations
of N0c, when keeping the other parameters fixed, in
particular, N00. The corresponding optimal Nopt

0c is, there-
fore, defined as the value of N0c which minimizes				 ∂

∂N0c
T̂c

				 ð32Þ

(sinceN0c ∈ N, the derivative ∂=∂N0c has to be understood
as a finite difference).
To study this optimization of N0c independently of

any error due to the finite spatial momentum cutoff k̂cut1

and the finite spatial extension L̂1 ¼ 2πðN1 þ 1=2Þ=k̂cut1 ,
we consider for a moment the limit k̂cut1 → ∞ and L̂1 → ∞
(implying N1 → ∞). In this limit

k̂cut1

n1
N1 þ 1=2

→ k̂1;
k̂cut1

N1 þ 1=2
→ dk̂1;

N1

k̂cut1

XN1

n1¼−N1

k̂cut1

N1 þ 1=2
→

N1 þ 1=2

k̂cut1

Z
dk̂1: ð33Þ

Inserting these relations into Eq. (31) and solving the
integral results in

1

N0c

XN0c

n0¼1

�
k̂cut0

n0 − 1=2
N0c

�
−1

−
1

N00

XN00

n0¼1

��
k̂cut0

n0 − 1=2
N00

�
2

þ 1

�
−1=2

¼ 0: ð34Þ

As for Eq. (31) this equation has to be solved to obtain k̂cut0 ,
which now only depends on N0c and N00.
In Fig. 1 we study the corresponding T̂c ¼ k̂cut0 =2πN0c as

a function of N0c (left panel) and N0c=N00 (right panel)
for N00 ∈ f64; 128; 256g:

(i) For sufficiently large N00 and a suitably chosen N0c

the resulting T̂c should be close to the analytically
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known infinite-volume continuum result T̂c ¼
eC=π ≈ 0.566 (where C denotes Euler’s constant)
[60]. One can clearly see that there are plateaulike
regions, where this is the case.

(ii) For a small number of temporal modes N0c there are
strong deviations, because the temporal momentum
cutoff is rather small, k̂cut0 ¼ 2πN0cT̂c (for smallN0c,
curves obtained with different N00 fall on top of
each other when plotted versus N0c ∝ k̂cut0 ).

(iii) For N0c=N00 ≳ 0.2 there are also strong deviations,
because the temperature corresponding to N00 tem-
poral modes, T̂0 ¼ T̂cN0c=N00, is a poor approxi-
mation of zero temperature (for N0c=N00 ≳ 0.2,
curves obtained with different N00 fall on top of
each other when plotted versus N0c=N00 ¼ T̂0=T̂c).

In other words, to obtain accurate results, 1 ≪ N0c ≪
N00 has to be fulfilled, which is only possible if a
sufficiently large number of temporal modes N00 are used.
According to the definition (32) the optimal N0c for given
N00 is the minimum of the corresponding curves in Fig. 1.
In Table I one can see the accuracy 1 − T̂c=ðeC=πÞ of the

numerically obtained T̂c, for various values of N00. Note
that even with a comparatively small number of N00 ¼ 32

temporal modes, the error is less than 0.1%. Also listed in
Table I are Nopt

0c , the corresponding temporal momentum
cutoff k̂cut;opt0 ¼ 2πNopt

0c T̂c, and the corresponding temporal
extension L̂opt

00 ¼ N00=T̂cN
opt
0c approximating T ¼ 0. When

increasing N00, there is a similar increase in the temporal
momentum cutoff k̂cut;opt0 , but only a slight increase in the
temporal extension L̂opt

00 . This is typical for lattice calcu-
lations, where cutoff effects are only polynomially sup-
pressed, while finite-volume effects are exponentially
suppressed.

2. Optimizing k̂cut1

In the following we investigate the error associated
with a finite spatial momentum cutoff k̂cut1 ; i.e., instead
of Eq. (34) we return to Eq. (31) and solve this equation
to obtain k̂cut0 for given N0c, N00, N1, and k̂cut1 . Similarly
to Sec. III C 1 we define the optimal k̂cut;opt1 as the value of
k̂cut1 which minimizes 				 ∂

∂k̂cut1

T̂c

				 ð35Þ

for given N0c, N00, and N1.
We choose N00 ¼ 256, the corresponding optimal

N0c ¼ 36 (cf. Table I) and various numbers of spatial
modes N1. In Fig. 2 we study T̂c ¼ k̂cut0 =2πN0c as a
function of k̂cut1 (left panel) and k̂cut1 =ðN1 þ 1=2Þ (right
panel) obtained from Eq. (31) for N1 ∈ f64; 128; 256g:

(i) For sufficiently large N1 and a suitably chosen k̂cut1

the resulting T̂c should be close to the analytically
known infinite-volume continuum result T̂c ¼
eC=π ≈ 0.566. Again one can observe plateaulike
regions, where this is the case.

(ii) For a small spatial momentum cutoff k̂cut1 there are
strong deviations (for small k̂cut1 , curves obtained

0 10 20 30 40 50 60 70
N0 c0.565

0.566

0.567

0.568

0.569

0.570

0.571

0.572
Tc

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

N0 c

N00
0.565

0.566

0.567

0.568

0.569

0.570

0.571

0.572
Tc

FIG. 1. T̂c as a function of N0c (left panel) and N0c=N00 (right panel) for N00 ¼ 64 (green dots), N00 ¼ 128 (red dots), and N00 ¼ 256

(blue dots) obtained from Eq. (34) (the black lines indicate the infinite-volume continuum result T̂c ¼ eC=π).

TABLE I. Accuracy of the numerically obtained T̂c for various
values of N00.

N00 1 − T̂c=ðeC=πÞ Nopt
0c k̂cut;opt0 L̂opt

00

32 −6.320 × 10−4 6 2.139 × 101 9.401
64 −1.981 × 10−4 11 3.919 × 101 10.26
128 −6.158 × 10−5 20 7.125 × 101 11.29
256 −1.881 × 10−5 36 1.282 × 102 12.54
512 −5.650 × 10−6 66 2.350 × 102 13.68
1024 −1.672 × 10−6 120 4.275 × 102 15.05
2048 −4.886 × 10−7 222 7.908 × 102 16.27
4096 −1.413 × 10−7 412 1.468 × 103 17.53
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with different N1 fall on top of each other, when
plotted versus k̂cut1 ).

(iii) For k̂cut1 =ðN1 þ 1=2Þ ≳ 1.0 there are also strong
deviations, because the extent of the periodic spatial
dimension L̂1 ¼ 2πðN1 þ 1=2Þ=k̂cut1 is quite small
and, therefore, a poor approximation for infinitely
extended space [for k̂cut1 =ðN1 þ 1=2Þ≳ 1.0, curves
obtained with different N1 fall on top of each other,
when plotted versus k̂cut1 =ðN1 þ 1=2Þ ∝ 1=L̂1].

In other words, to obtain accurate results, 1 ≪ k̂cut1 ≪ N1

has to be fulfilled, which is only possible, if a sufficiently
large number of spatial modes N1 is used. According to
the definition (35) the optimal k̂cut1 for given N1 is the
maximum of the corresponding curves in Fig. 2.
In Table II one can see the accuracy 1 − T̂c=ðeC=πÞ of

the numerically obtained T̂c for various values of N1, again
for N00 ¼ 256 and the corresponding optimal N0c ¼ 36.
Note that errors due to the finite-mode regularization in the
temporal direction and in the spatial direction have opposite
sign (cf. Figs. 1 and 2). Consequently, one obtains the most
accurate result for T̂c not forN1 → ∞, but when both errors

almost cancel each other. This is the case forN1 ¼ 249, i.e.,
for N1 similar to N00 (for a more detailed discussion
cf. Sec. III C 3). Also listed in Table II are the spatial
momentum cutoff k̂cut;opt1 and the corresponding spatial
extension L̂opt

1 ¼ 2πðN1þ1=2Þ=k̂cut;opt1 . Again, when incre-
asing N1, there is a similar increase in the spatial momen-
tum cutoff k̂cut;opt1 , but only a slight increase in the spatial
extension L̂opt

1 approximating infinite volume. As already
mentioned this is typical for lattice calculations, where
cutoff effects are only polynomially suppressed, while
finite-volume effects are exponentially suppressed.

3. Optimizing the ratio of N00 and N1

As already mentioned the maximum number of modes
∝ N00N1 is limited by the available computer resources.
In the previous subsection it has been observed that for
N00 ¼ 256 and N1 ¼ 249 the errors in T̂c due to the finite-
mode regularization almost cancel. Also for other choices
of N00 such a nearly perfect cancellation is present for
N1 ≈ N00, as collected in Table III. Moreover, note that the

TABLE III. PairsN00 and N1, where the errors due to the finite-
mode regularization for T̂c almost cancel, and the corresponding
Nopt

0c , k̂
cut;opt
0 , and k̂cut;opt1 .

N00 N1 Nopt
0c k̂cut;opt0 k̂cut;opt1

32 30 6 2.137 × 101 2.190 × 101

64 62 11 3.919 × 101 3.932 × 101

128 125 20 7.124 × 101 7.034 × 101

256 249 36 1.282 × 102 1.261 × 102

512 497 66 2.351 × 102 2.287 × 102

1024 994 121 4.310 × 102 4.188 × 102

2048 1985 223 7.844 × 102 7.710 × 102

4096 3966 414 1.475 × 103 1.428 × 103

0 50 100 150 200 250 300
k1

cut
0.560

0.562

0.564

0.566

0.568

0.570
Tc

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

k1
cut

N1 0.5
0.560

0.562

0.564

0.566

0.568

0.570
Tc

FIG. 2. T̂c as a function of k̂cut1 (left panel) and k̂cut1 =ðN1 þ 1=2Þ (right panel) for N1 ¼ 64 (green curve), N1 ¼ 128 (red curve),
and N1 ¼ 256 (blue curve) obtained from (31) with N00 ¼ 256 and N0c ¼ 36 (the black lines indicate the infinite-volume
continuum result T̂c ¼ eC=π).

TABLE II. Accuracy of the numerically obtained T̂c for
N00 ¼ 256, N0c ¼ 36, and various values of N1.

N1 1 − T̂c=ðeC=πÞ k̂cut;opt1 L̂opt
1

32 þ5.789 × 10−4 2.273 × 101 8.99
64 þ1.766 × 10−4 3.991 × 101 10.15
128 þ4.324 × 10−5 7.138 × 101 11.31
249 −2.720 × 10−8 1.261 × 102 12.43
256 −1.003 × 10−6 1.291 × 102 12.48
512 −1.460 × 10−5 2.329 × 102 13.83
1024 −1.798 × 10−5 4.179 × 102 15.41
2048 −1.871 × 10−5 7.616 × 102 16.90
4096 −1.882 × 10−5 1.403 × 103 18.35
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temporal momentum cutoff k̂cut;opt0 and the spatial momen-
tum cutoff k̂cut;opt1 are close to each other.
Similarly, in Fig. 3 we compare the numerically obtained

T̂c for various N00 and N1 with the infinite-volume con-
tinuum result T̂c ¼ eC=π. The figure suggests choosing
N00 ¼ N1 as a simple rule, which obviously leads to very
accurate numerical results (the black filled circles in Fig. 3).
Unless mentioned otherwise, we will use N00 ¼ N1 in
the following. Of course, such a cancellation of errors
might not occur for quantities other than T̂c. Moreover,
when also considering the possibility of an inhomogeneous
condensate, as we will do in Sec. III D, it could be necessary
to have a finer resolution or a larger extent of the spatial
dimension, which might require a rather large N1 ≫ N00.

4. Summary

Based on these investigations we propose and adopt the
following strategy to determine the parameters N0c, N1,
k̂cut0 , k̂cut1 , and λ:

(1) Use N00 ¼ N1 as large as possible (limited by the
available computer resources).

(2) Determine the corresponding optimal N0c from a
computation in the limit N1 → ∞ and k̂cut1 → ∞ as
described in Sec. III C 1 (cf. also Table I, third
column). This computation also provides a value
for k̂cut0 (Table I, fifth column), which is a good
approximation for k̂cut0 at finite, but large N1 and k̂

cut
1 .

Assign this value to k̂cut1 (cf. Sec. III C 3).
(3) Solve Eq. (31) to determine k̂cut0 (now for finite N1

and k̂cut1 ) for the previously chosen N00 and N1 [step
(1)] and N0c and k̂cut1 [step (2)].

(4) Determine λ via Eq. (29) [or equivalently via
Eq. (30)].

For all further computations, e.g., when comp-
uting the phase diagram for a homogeneous cond-
ensate σ ¼ constant or an inhomogeneous condensate
σ ¼ σðx1Þ, the parameters N1, k̂cut0 , k̂cut1 , and λ are
not changed anymore. The temperature T̂ ¼ 1=L̂0 ¼
k̂cut0 =2πN0 can be adjusted by using different numbers
of temporal modes N0. N0c corresponds to the critical
temperature T̂c.

D. Computation of the phase diagram for a
homogeneous condensate σ ¼ constant

To determine the phase diagram for a homogeneous
condensate, i.e., σ as a function of the chemical potential μ
and the temperature T, one proceeds as in the previous
subsection. From

0 ¼ d
dσ̂

SE;effðσ̂Þ
N

ð36Þ

one can derive the generalization of Eq. (28) for arbitrary
μ ≥ 0,

0 ¼ 2π2N0ðN1 þ 1=2Þ
λk̂cut0 k̂cut1

− 2
XN0

n0¼1

XN1

n1¼−N1

ðk̂cut0
n0−1=2
N0

Þ2 þ ðk̂cut1
n1

N1þ1=2Þ2 þ σ̂2 − μ̂2

½ðk̂cut0
n0−1=2
N0

Þ2 þ ðk̂cut1
n1

N1þ1=2Þ2 þ σ̂2 − μ̂2�2 þ ð2μ̂k̂cut0
n0−1=2
N0

Þ2 : ð37Þ

If this equation has a solution σ̂2 ¼ A > 0 for given ðμ̂; T̂Þ,
and if SE;effð

ffiffiffiffi
A

p Þ < SE;effð0Þ, this solution is the value of
the chiral condensate, i.e., σ̂ ¼ � ffiffiffiffi

A
p

, and ðμ̂; T̂Þ is inside
the chirally broken phase. If there is no such solution,
or if SE;effð

ffiffiffiffi
A

p Þ ≥ SE;effð0Þ, then σ̂ ¼ 0 and ðμ̂; T̂Þ is a
point inside the chirally symmetric phase or on the phase
boundary.
The phase diagram for a homogeneous condensate

obtained with N00 ¼ N1 ¼ 192 (with corresponding
N0c ¼ 28, k̂cut0 ¼ 9.974 × 101, k̂cut1 ¼ 1.011 × 102 and

λ ¼ 0.3328) is shown in Fig. 4. It is in excellent

agreement with the infinite-volume continuum

result [60].

E. Finite-mode regularization, spatially inhomogeneous
condensate σ ¼ σðx1Þ

To study the possibility of a spatially inhomogeneous

condensate, σ̂ is written as a superposition of a finite

number of plane waves,

N00 48

N00 72

N00 94
N00 120

N00 480

100 200 300 400
N1

0.56680

0.56685

0.56690

0.56695

0.56700

0.56705

0.56710

Tc

FIG. 3. T̂c as a function of N1 for several N00 (filled black
circles indicate symmetric choices N00 ¼ N1; the black line is the
infinite-volume continuum result T̂c ¼ eC=π).
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σ̂ðx̂1Þ¼
σðx1Þ
σ0

¼
XM

m¼−M
cm

e−ιp̂x̂1ffiffiffiffiffiffi
L̂1

p ; p̂¼ 2π

L̂1

m; cþm¼ðc−mÞ�;

ð38Þ

as done in Eqs. (22) and (23) for the fermionic fields ψ̂ j.
The resolution of σ̂ should be coarser than the resolution of
ψ̂ j, i.e., M ≪ N1, to obtain stable and meaningful numeri-
cal results (cf. Ref. [43] for a detailed discussion).

In the case of a spatially inhomogeneous condensate,
plane waves are no longer eigenfunctions of the Dirac
operator Q. Consequently, ln½detðQ̂†Q̂Þ� cannot be expre-
ssed as a product over modes as done in Eq. (24). One

has to represent Q̂†Q̂ as a matrix, where the rows and
columns correspond to the plane-wave basis functions

of the fermionic fields e∓ιðk̂0x̂0þk̂1x̂1Þ=
ffiffiffiffiffiffiffiffiffiffiffi
L̂0L̂1

p
[cf. Eqs. (22)

and (23)],

hk̂0; k̂1jQ̂†Q̂jk̂00; k̂01i ¼
1

L̂0L̂1

Z
L̂0

0

dx̂0

Z
L̂1

0

dx̂1eþιðk̂0x̂0þk̂1x̂1Þ
�
−γμ∂̂μ þ γ0μ̂þ

XþM

m¼−M
cm

e−ιp̂x̂1ffiffiffiffiffiffi
L̂1

p �

×

�
þγμ∂̂μ þ γ0μ̂þ

XþM

m0¼−M

cm0
e−ιp̂

0x̂1ffiffiffiffiffiffi
L̂1

p �
e−ιðk̂

0
0x̂0þk̂01x̂1Þ

¼
δk̂0;k̂00
L̂1

Z
L̂1

0

dx̂1eþιk̂1x̂1

�
þιγ0k̂0 þ ιγ1k̂1 þ γ0μ̂þ

XþM

m¼−M
cm

e−ιp̂x̂1ffiffiffiffiffiffi
L̂1

p �

×

�
−ιγ0k̂00 − ιγ1k̂

0
1 þ γ0μ̂þ

XþM

m0¼−M

cm0
e−ιp̂

0x̂1ffiffiffiffiffiffi
L̂1

p �
e−ιk̂

0
1x̂1 ð39Þ

with p̂ ¼ 2πm=L̂1 and p̂0 ¼ 2πm0=L̂1. These matrix ele-
ments can be calculated analytically. Note that this
matrix representation of detðQ̂†Q̂Þ has a block-diagonal
structure with 2N0 blocks of size 2ð2N1 þ 1Þ (the blocks
are labeled by k̂0 ¼ k̂00; the rows and columns of each block
correspond to the spatial momenta k̂1 and k̂01 and the two
spin components). Then, ln½detðQ̂†Q̂Þ� is the sum over
ln½detð…Þ� of the blocks, where each term of that sum
can be evaluated numerically, e.g., by means of an LU
decomposition.

F. Computation of the phase diagram for an
inhomogeneous condensate σ ¼ σðx1Þ

When allowing for a spatially inhomogeneous conden-
sate σ ¼ σðx1Þ, there are three phases:

(I) For small chemical potential μ̂ and low temperature
T̂ chiral symmetry is broken by a homogeneous
condensate σ̂ ¼ constant ≠ 0 [corresponding to
c0 ≠ 0, cm ¼ 0 for m ≠ 0 in Eq. (38)].

(II) For high temperature T̂ chiral symmetry is intact
and σ̂ ¼ 0 [corresponding to cm ¼ 0 for all m in
Eq. (38)].

(III) For large chemical potential μ̂ and low temperature
T̂ there is a spatially inhomogeneous condensate
σ̂ ¼ σ̂ðx̂1Þ [corresponding to cm ≠ 0 for at least one
m ≠ 0 in Eq. (38)].

The phase diagram for a spatially inhomogeneous
condensate obtained with N00 ¼ N1 ¼ 192 and M ¼ 10

(with corresponding N0c ¼ 28, k̂cut0 ¼ 9.974 × 101, k̂cut1 ¼
1.011 × 102 and λ ¼ 0.3328) is shown in Fig. 5. It is in
excellent agreement with the infinite-volume continuum
result [48,83].
The numerical determination of the phase boundaries

is discussed in detail in Ref. [43] and, therefore, only
summarized briefly in the following.

(i) Phase boundary I-II: The phase boundary between
σ̂ ¼ constant ≠ 0 (phase I) and σ̂ ¼ 0 (phase II)
can be determined as explained in Sec. III D for the
phase diagram for a homogeneous condensate.

(ii) Phase boundary I-III: To determine the phase boun-
dary between σ̂ ¼ constant ≠ 0 (phase I) and the

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.1

0.2

0.3

0.4

0.5

0.6
T

FIG. 4. Phase diagram of the GN model for a homogeneous
condensate σ ¼ constant for N00 ¼ N1 ¼ 192 (the light gray
curve is the infinite-volume continuum result [60]).

ACHIM HEINZ et al. PHYSICAL REVIEW D 93, 014007 (2016)

014007-10



inhomogeneous crystal phase (phase III), one again
has to find the minimum of SE;eff=N with respect to
σ̂ as a function of ðμ̂; T̂Þ. This time, however, σ̂ is
not a constant, but a superposition of plane waves
[cf. Eq. (38)]. The minimization has to be done
with respect to the coefficients cn.

(iii) Phase boundary II-III: To determine the phase
boundary between σ̂ ¼ 0 (phase II) and the inho-
mogeneous crystal phase (phase III), one can, in
principle, proceed as for the phase boundary I-III.
Note, however, that inside the crystal phase in the
vicinity of the phase boundary I-III the constant σ̂ of
the phase diagram for a homogeneous condensate is
a local minimum (the corresponding phase transition
is of first order), while in the vicinity of the phase
boundary II-III it is a saddle point (the correspond-
ing phase transition is of second order). Therefore, a
computationally simpler and cheaper way to deter-
mine the phase boundary II-III is to study the
smallest eigenvalue of the Hessian matrix

Hmm0 ¼ ∂
∂Cm

∂
∂Cm0

SE;effðσ̂Þ
N

				
σ̂¼0

;

C2m¼ReðcmÞ; C2mþ1 ¼ ImðcmÞ; ð40Þ

with 0<m;m0 ≤M. A negative eigenvalue amounts
to a direction of negative curvature and, therefore,
indicates the existence of an inhomogeneous
condensate.

Since the finite-mode approach allows us to determine
the condensate σ at given temperature T for arbitrary
chemical potential μ, it is straightforward to study and
reproduce the order of the transition along the phase
boundaries I-II, I-III, and II-III.

IV. PHASE DIAGRAM OF THE 1þ 1
DIMENSIONAL χGN model

We proceed in the same way as explained in detail in the
previous section for the GN model. After introducing
two real scalar fields σ and η, the partition function of
the χGN model can be written as

Z ¼
Z

DσDηe−SE;eff ½σ;η�;

SE;eff ½σ; η� ¼ N
Z

d2x

�
1

2λ
ðσ2 þ η2Þ − 1

2
ln½detðQ†QÞ�

�
;

ð41Þ
where

Q ¼ γμ∂μ þ γ0μþ σ þ ηιγ5:

We then apply the finite-mode regularization; i.e., in analogy
to Eq. (38) the scalar fields σ and η (the condensates) are
represented as a sum over a finite number of modes,

σ̂ðx̂1Þ ¼
σðx1Þ
Σ0

¼
XM

m¼−M
cm

e−ιp̂x̂1ffiffiffiffiffiffi
L̂1

p ; cþm ¼ ðc−mÞ�; ð42Þ

η̂ðx̂1Þ¼
ηðx1Þ
Σ0

¼
XM

m¼−M
dm

e−ιp̂x̂1ffiffiffiffiffiffi
L̂1

p ; dþm¼ðd−mÞ�; p̂¼2π

L̂1

m:

ð43Þ
Similarly, Q†Q is written as a matrix, where the rows
and columns correspond to plane-wave basis functions

e∓ιðk̂0x̂0þk̂1x̂1Þ=
ffiffiffiffiffiffiffiffiffiffiffi
L̂0L̂1

p
[cf. Sec. III E and Eqs. (22) and (23)

for details]. Since SE;eff is invariant under the transformation
ðσ; ηÞ → Rðσ; ηÞ with R ∈ Oð2Þ, dimensionful quantities
are expressed in units of Σ0, where

Σ0 ¼ ΣjT¼0;μ¼0; Σ ¼ ðσ2 þ η2Þ1=2; ð44Þ

and denoted by a hat ^.
We have studied the phase diagram of the χGN model

usingM ¼ 10 modes for the condensates and N00 ¼ N1 ¼
96 modes for the fermionic determinant.
For temperatures T̂ > T̂c ¼ eC=π and arbitrary chemical

potential μ, chiral symmetry is restored; i.e., the effective
action (41) is minimized for cj ¼ dj ¼ 0, which corre-
sponds to vanishing condensates σ ¼ η ¼ 0.
For T < Tc we find several local minima of SE;eff , which

are given by cm ¼ �idm ≠ 0 for a single mode m, while
cj ¼ dj ¼ 0 for all other modes, i.e., j ≠ m. The conden-
sates σ and η are harmonic functions, i.e., CDWs, with the
same amplitude, but with a relative phase shift �π=2,
implying Σ ¼ constant [cf. Eq. (44)]. The minimal values
of SE;eff are plotted in Fig. 6 as functions of the chemical
potential μ form ¼ 0, 1, 2, 3 and two different temperatures
T̂ ¼ 0.378, 0.189 (N0 ¼ 24, 48, while N00 ¼ N1 ¼ 96
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FIG. 5. Phase diagram of the GN model for a spatially
inhomogeneous condensate σ ¼ σðx1Þ for N00 ¼ N1 ¼ 192
and M ¼ 10 (the light gray curve is the infinite-volume con-
tinuum result [48,83]).
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and M ¼ 10). For μ ¼ 0 the absolute minimum of SE;eff
corresponds to m ¼ 0, i.e., σ; η ¼ const. The wavelength is
proportional to μ; i.e., for increasing μ the absolute
minimum of SE;eff corresponds to larger and larger m > 0.
Two examples of the resulting CDWs (T̂ ¼ 0.095 < T̂c
[N0 ¼ 96] and μ̂ ¼ 0.295, 0.875) are shown in Fig. 7.
The resulting phase diagram is, therefore, quite different

from the phase diagram of the GN model: there are only
two phases, for T < Tc a CDW, and for T > Tc chiral
symmetry is restored. This is in agreement with analytically
known results [49,67].

V. PHASE DIAGRAM OF THE NJL2 MODEL

Again the technical steps needed to compute the phase
diagram closely parallel those discussed for the GN model
and the χGN model. This time four real scalar fields σ and
πj, j ¼ 1, 2, 3 are required, where

Z¼
Z

Dσ

�Y3
j¼1

Dπj

�
e−SE;eff ½σ;πj�;

SE;eff ½σ;πj�¼N
Z
d2x

�
1

2λ

�
σ2þ

X3
j¼1

π2j

�
−
1

2
ln½detðQ†QÞ�

�
;

ð45Þ

with

Q ¼ γμ∂μ þ γ0μþ σ þ ιγ5
X3
j¼1

τjπj: ð46Þ

Then, σ and πj as well as detðQ†QÞ are finite-mode
regularized as done in Eqs. (38), (42), and (43) and
Sec. III E, respectively. Due to the invariance of SE;eff with
respect to ðσ; π1; π2; π3Þ → Rðσ; π1; π2; π3Þ with R ∈ Oð4Þ,
dimensionful quantities are expressed in units of

Σ0 ¼ ΣjT¼0;μ¼0; Σ ¼
�
σ2 þ

X3
j¼1

π2j

�
1=2

; ð47Þ

and denoted by a hat ^.
We have studied the phase diagram of the NJL2 model

using M ¼ 4 modes for the condensates and N00 ¼ N1 ¼
72 modes for the fermionic determinant. For any temper-
ature and chemical potential the four condensates are
proportional to each other, i.e., σ ∝ π1 ∝ π2 ∝ π3 ∝ Σ,
and also proportional to the chiral condensate σ of the
GN model. Consequently, we obtain exactly the same
phase diagram for the NJL2 model as for the GN model,
which is shown in Fig. 5. These findings extend existing
results, where only a CDW [σðxÞ ∝ cosð2bxÞ and
π3ðxÞ ∝ sinð2bxÞ] has been considered [84]. Our results
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FIG. 6. The χGN model. Local minimal values of SE;eff as functions of the chemical potential μ for m ¼ 0 (blue lines), m ¼ 1 (red
lines), m ¼ 2 (green lines) and m ¼ 3 (gray lines) and two different temperatures T̂ ¼ 0.378 (N0 ¼ 24, left panel) and T̂ ¼ 0.189
(N0 ¼ 48, right panel).
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show that an inhomogeneous phase is indeed present at
larger μ and not too large T. However, this inhomogeneous
phase exhibits solitonic structures and not a CDW. This
result is similar to those found for the NJL model in 3þ 1
dimensions, as discussed, e.g., in Sec. VI or Ref. [58].

VI. PHASE DIAGRAM OF THE NJL MODEL

We investigate the phase diagram of the NJL model at
nonzero temperature and density under the assumption that
only the chiral condensate σ defined in Eq. (8) condenses.
Thus, we do not take into account condensation of the
pionlike field combinations ψ̄ j;f~τιγ5ψ j;f appearing, e.g., in
Eq. (6). The chiral condensate σ is, in general, a function of
the three spatial coordinates ~x ¼ ðx1; x2; x3Þ, i.e., σ ¼ σð~xÞ.
However, previous investigations based on special ansätze
have shown that modulations in more than one dimension
are not favored energetically [36,59]. Thus, for the sake of
simplicity in the following we assume that σ depends only
on one of the three spatial coordinates, e.g., x3, i.e.,

σ̂ ¼ σ̂ðx̂3Þ ¼
σðx3Þ
σ0

¼
XM

m¼−M
cm

e−ιp̂x̂3ffiffiffiffiffiffi
L̂3

p ;

cþm ¼ ðc−mÞ�; p̂ ¼ 2π

L̂3

m: ð48Þ

Of course, a study of the NJL model in the context of the
finite-mode approach without this assumption is an inter-
esting topic which we plan to investigate in the future.
Proceeding as in Sec. III A for theGNmodelwe obtain the

partition function of the NJL model in 3þ 1 dimensions,

Z ¼
Z

Dσe−SE;eff ½σ�;

SE;eff ½σ� ¼ N
Z

d4x

�
6G
N2

σ2 − ln½detðQ†QÞ�
�
; ð49Þ

where Q ¼ γμ∂μ þ γ0μþm�
0. The Pauli-Villars regulariza-

tion can be implemented by adding heavy fermions as
explained in Sec. II B,

SE;eff;PV½σ� ¼ SE;eff½σ� − N
Z

d4x
XNPV

k¼1

Ck ln½detð ~Q†
k
~QkÞ�;

ð50Þ
with ~Qk ¼ γμ∂μ þ γ0μþMk.
For a convenient comparison with the existing literature

on the NJL model (and in contrast to the previous sections,
where we discussed 1þ 1-dimensional models) we express
our results in the following in units of GeV. To this end,
the two parameters of the NJL model, the coupling constant
G and the Pauli-Villars energy scale ΛPV, are fixed
by requiring that a certain effective mass m�

0 is realized
(we perform computations for three different choices,
m�

0 ∈ f250 MeV; 300 MeV; 350 MeVg) and that the pion
decay constant reproduces the correct value in the chiral
limit, fπ ¼ 88 MeV [31,58]. (For the evaluation of the
pion decay constant in the framework of the NJL model,
we refer to Ref. [8].)
The resulting phase diagrams for NPV ¼ 2 additional

heavy fermions, effective quark masses m�
0 ∈ f250 MeV;

300 MeV; 350 MeVg and M ¼ 5 and N00 ¼ N1 ¼ 120
modes are shown in Fig. 8. The corresponding
Pauli-Villars cutoffs are ΛPV ≡ f736.8 MeV; 647.4 MeV;
608.7 MeVg, and the maximum momentum used in
the expansion of the chiral condensate is approximately
ðM=NÞk̂cut1 ≈ 650 MeV, where k̂cut1 denotes the maximum
momentum in the expansion of the fermionic fields
[see Eq. (25)].
Let us discuss the role of the two energy scales ΛPV and

k̂cut1 in somewhat greater detail. As mentioned already in
Sec. II. B, the NJL model is nonrenormalizable. As a
consequence, the NJL model is only defined once the
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FIG. 8. Phase diagram of the NJL model for a spatially inhomogeneous condensate σ ¼ σðx3Þ for NPV ¼ 2,M ¼ 5, N00 ¼ N1 ¼ 120
and three different effective quark masses m�

0 ¼ 250 (red lines), m�
0 ¼ 300 (green lines) and m�

0 ¼ 350 MeV (black lines). There are
three phases: (I) a homogeneous chirally broken phase σ ¼ constant ≠ 0, (II) a chirally restored phase σ ¼ 0, and (III) an
inhomogeneous phase (the left panel is a zoomed-in version of the right panel).
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regularization has been fixed. Moreover, the corresponding
energy scale (the Pauli-Villars cutoff ΛPV in our imple-
mentation of the NJL model) should be regarded as a
physical parameter of the NJL model, with crucial impact
on all physical quantities. On the other hand, our numerical
approach also contains a cutoff due to the lattice regulari-
zation in momentum space, i.e., due to using a finite
number of modes [see Eq. (25)]. The cutoff k̂cut1 is purely
technical and should be taken as large as possible.
In particular, k̂cut1 should be much larger than ΛPV. In the
numerical calculations leading to Fig. 8 we have that
k̂cut1 =ΛPV ¼ 25.4, thus k̂cut1 is about 16 GeV. This is indeed
a very large value that assures that for all practical purposes
the results do not depend on k̂cut1 . Such a high value also
assures that the continent of Fig. 8 is not an artifact of
our numerical calculation. We have also verified that
relevant quantities, such as the critical temperature, do
not depend on k̂cut1 once it is chosen sufficiently large.
Quite remarkably, these phase diagrams are similar to

that obtained for the 1þ 1-dimensional GN model
(cf. Fig. 5). This result suggests that the 3þ 1-dimensional
NJL model, which represents a nonrenormalizable but, in
many aspects, realistic chiral model of QCD, generates
a phase diagram whose most salient features can be
understood in a simpler 1þ 1-dimensional field theory.
However, it should also be stressed that this result is

obtained in the specific case of the Pauli-Villars regulari-
zation and that the existence of an inhomogeneous con-
densate depends on the chosen regularization scheme.
Independent of the concrete choice of the effective

quark mass m�
0 there is an inhomogeneous phase for large

chemical potential μ and small temperature T, termed
“continent” in Ref. [58]. However, at smaller μ the detailed
shape of the phase diagram depends on the value of the
effective quark mass. While at smallm�

0 an inhomogeneous
“island” may be separated from the “continent,” at larger
m�

0 the island and the continent merge. Note that our results
in the region μ < 0.4 GeV are in agreement with the
findings of Ref. [31]. At somewhat larger μ they agree
with the results of Ref. [58], although the outlines of
the continent were not traced to very large μ in that work.
We find that, at even larger values of μ, the transition
temperature between the chirally restored and the inhomo-
geneous phase decreases with μ, which is similar to the
GN model.
We have repeated the study of the phase diagram of the

NJL model for different volumes and verified that the
results are very stable upon changing the volume. In
particular, the form of the continent remains practically
unchanged when N00 is modified. We have checked the
cases N00 ¼ N1 ¼ 48, 72, 96,120, and already for N00 ¼
N1 ¼ 48 the curves look just as in Figs. 8 and 9. We have
then selected for the plots the highest number of modes
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FIG. 9. Phase diagram of the NJL model for a spatially inhomogeneous condensate forNPV ¼ 2 (blue lines) andNPV ¼ 3 (black lines)
(further parameters chosen as in Fig. 8).
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(N00 ¼ N1 ¼ 120) with which we could perform our
numerical study in a reasonable computational time.
We have also compared regularizations using NPV ¼ 2

and NPV ¼ 3 additional heavy fermions (cf. Fig. 9). The
effect of NPV on the shape of the phase diagram is rather
mild: at intermediate chemical potential μ and temperature
T the inhomogeneous continent becomes somewhat larger
when using a larger number of regulators.
Although a detailed study of the order of phase tran-

sitions at the phase boundaries is, in principle, straightfor-
ward, it would require a substantial numerical effort,
especially in the case of a second-order phase transition,
as expected, for instance, at the II-III boundary. We have,
however, verified that hσ̂2i smoothly approaches zero at the
II-III boundary. On the other hand, for small and constant
temperature, hσ̂2i is a slowly decreasing function of the
chemical potential μ.

VII. SUMMARY AND OUTLOOK

In this work we have used the finite-mode approach to
investigate numerically the emergence of inhomogeneous
chiral condensation in effective quark models in 1þ 1 and
3þ 1 dimensions. The main aim has been the determi-
nation of inhomogeneous condensation in QCD-inspired
models without using a specific Ansatz.
We have shown that our method accurately reproduces

well-known analytical results concerning the phase dia-
gram and the inhomogeneous condensation of 1þ 1-
dimensional models, in particular, the Gross-Neveu and
chiral Gross-Neveu models. By applying the approach to
the NJL model in 3þ 1 dimensions we could reproduce
previous results based on specific ansätze for small chemi-
cal potential. In addition to that we were able to show that
the inhomogeneous continent of Ref. [58] extends to very
high densities, but not to arbitrarily large temperatures.
Due to the fact that our results for the NJL phase diagram
differ from previous ones at high density, it would be an
interesting task for future studies to confirm or to falsify the
presence of the continent using different approaches.
It is interesting to note that the GN model and the NJL2

model have the same phase diagram, which in turn is
also very similar to the NJL model in 1þ 3 dimensions. On
the contrary, the phase diagram of the χGN model is
completely different, showing that a different flavor struc-
ture has an impact on the phase diagram.
Our approach following Refs. [43,44] is based on

expanding fermionic fields and condensates in terms of
plane waves. In this respect it is quite similar to existing
general methods to compute inhomogeneous condensates
[34,46,47]. In other aspects it is, however, quite different.
For example, our method is based on a minimization of the
effective action, not the Hamiltonian. A detailed and direct
comparison regarding the computational efficiency of our
method and those discussed in Refs. [34,46,47] is difficult
and would require computations of the same quantities

within the same model using both types of methods. Since
the basic idea of expanding in terms of plane waves is
the same, we expect both types of methods to perform
on a quantitatively similar level. Therefore, further studies
would be necessary to clarify why the shape of the
“continent” (see Fig. 9) looks different in the two methods.
Note that within our approach it is straightforward to

replace the plane waves by another set of basis functions, as
discussed and numerically demonstrated in Refs. [43,44].
A first and straightforward step would be to still use a
plane-wave expansion for the condensate, but to focus
exclusively on higher modes in regions where the con-
densate is expected to exhibit strong oscillations (typically
in inhomogeneous regions at large chemical potential μ).
Using a small number of modes with suitably chosen wave
number might allow us to explore the phase diagram quite
extensively at rather moderate computational cost. The
choice of the wave numbers could even be automated, i.e.,
included in the minimization procedure for the effective
action. Another possibility within our numerical framework
is to study specific ansätze to identify a small set of highly
relevant degrees of freedom. This could not only provide
certain physical insights, but also reduce the computing
time significantly. The latter might be of particular impor-
tance when studying two- or three-dimensional variations
of the condensates.
In the future one could also apply the finite-mode

approach to study the phase diagram of purely hadronic
theories such as the extended linear sigma model [4,5]. This
approach is capable of correctly describing the vacuum
phenomenology as well as the nuclear matter ground state
properties [85]. As already shown in Ref. [27], an inho-
mogeneous condensate in the form of a chiral density wave
is favored with respect to a constant condensate at high
density (≳2ρ0, where ρ0 is the nuclear saturation density).
It is an open question whether other structures minimize the
effective potential even further. More generally, one could
also apply the finite-mode approach to quark-based sigma
models, e.g., Refs. [86,87].
Other interesting projects are the study of higher-

dimensional modulations beyond the Ansatz used in
Ref. [34] and, since there is also no limitation in the
number of inhomogeneous fields in the finite-mode
approach, the study of interweaving chiral spirals [38].
Further effects at high densities such as inhomogeneous
diquark condensation in 1þ 1 as well as 3þ 1 dimensions
can also be taken into account [50]. Moreover, the models
that we have studied were investigated in the chiral limit
only. Future work could thus include a nonzero bare quark
mass in the effective approaches.
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