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We revisit the medium-induced coherent radiation associated to hard and forward (small-angle)
scattering of an energetic parton through a nuclear medium. We consider all 1 → 1 hard forward processes
(g → g, q → q, q → g and g → q), and derive the energy spectrum of induced coherent radiation rigorously
to all orders in the opacity expansion and for the specific case of a Coulomb scattering potential. We obtain
a simple general formula for the induced coherent spectrum, which encompasses the results corresponding
to previously known special cases.
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I. INTRODUCTION AND SUMMARY

The theory of medium-induced gluon radiation has
received a lot of attention over the last 20 years, as it
became clear that parton energy loss is most likely
responsible for the quenching of large-p⊥ hadrons and
jets in heavy-ion collisions, first observed at RHIC [1,2]
and then at the LHC [3–5].
Multiple scatterings of a high-energy parton propagating

in a medium1 of length L induce the emission of gluons, a
process occurring on a typical time tf ∼ kþ=k2, where kþ is
the light-cone momentum of the radiated gluon, and

k≡ ~k⊥. It is useful to recall the three regimes identified
in Ref. [6] depending on the value of the gluon formation
time tf (for a more detailed discussion in QED and in QCD,
see Ref. [7]):

(i) Bethe-Heitler, tf ≪ λ, where λ is the parton mean
free path in the medium. In this regime, each
scattering center acts as an independent source of
radiation. The induced gluon spectrum is thus
proportional to the (Bethe-Heitler) gluon spectrum
induced by a single scattering. This regime is at
work for very soft gluons, kþ ≪ μ2λ, where μ is the
typical transverse momentum exchange in a single
scattering.

(ii) Landau-Pomeranchuk-Migdal (LPM), λ ≪ tf ≪ L,
for which a group of ðtf=λÞ scattering centers acts as
a single radiator, leading to a relative suppression of
the gluon radiation intensity with respect to that in

the Bethe-Heitler regime. The above condition on tf
translates into μ2λ ≪ kþ ≪ hk2iL ∼ q̂L2, where
q̂ ¼ μ2=λ is the so-called medium transport coef-
ficient. (In a large medium, hk2i turns out to be on
the order of q̂L, the transverse momentum ex-
changed over the length L.)

(iii) Long formation time, tf ≫ L. In this regime (also
known as the “factorization regime”), all scattering
centers in the medium act coherently as a source
of radiation. It occurs at large gluon momenta,
kþ ≫ q̂L2.

The region of large formation time leads to “large” mean
parton energy loss, Δpþ ∝ pþ (with pþ the parton light-
cone momentum), coming from the broad time interval for
gluon radiation. However, because of the weak dependence
of Δpþ on the medium length, it is often considered that
radiation of gluons with long formation times does not
contribute to the medium-induced energy loss. As a
consequence, gluon radiation in the LPM regime would
dominate the induced spectrum, leading to an average
parton energy loss Δpþ ∼ q̂L2, independent of pþ.
However, it was shown in Ref. [8] that the latter holds

when the energetic parton is suddenly created (or annihi-
lated) in the medium, but does not hold in the case of an
“asymptotic” parton prepared long before the medium,
undergoing small-angle scattering through the medium,
and hadronizing long after. In this case, the explicit
calculation shows that the medium-induced spectrum is
dominated by gluons with large formation time tf ≫ L,
being thus fully coherent over the medium. This leads to an
induced parton energy loss proportional to the parton
energy, Δpþ ∝ pþ. (In particular, this demonstrates that
the induced energy loss in a finite-length medium is not

1Here the medium refers either to cold nuclear matter or to a
quark-gluon plasma, even though the theoretical setup discussed
in Sec. III applies more naturally to the former case.
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bounded at high energy). In light-cone gauge, the
medium-induced coherent radiation spectrum arises from
the interference between gluon emission in the “initial
state” (i.e., before the medium) and in the “final state”
(after the medium) [8]. As discussed in Ref. [8], coherent
parton energy loss is expected to play an important
role in the phenomenology of hadron production in
proton-nucleus collisions. The effects of coherent energy
loss on quarkonium nuclear suppression were studied in
Refs. [9–11].
The kinematical setup used in Ref. [8] where fully

coherent radiation occurs is as follows: a parton of high
energy (large pþ) and with p≡ ~p⊥ ¼ ~0⊥ experiences a
single hard scattering (with transverse momentum
exchange q≡ ~q⊥) off a nuclear target and is tagged with
p0 ≃ q at small angle jp0j=pþ≪ 1. In addition to such 1→ 1
hard and forward scattering, the parton undergoes multiple
soft scattering in the finite-size target, and thus receives a
transverse momentum kick Δq⊥ ≪ q⊥.
In this setup, Ref. [8] (see also Ref. [9]) considered the

g → QQ̄ hard process (mediated by single-gluon exchange
in the t channel), with the final QQ̄ pair being massive (of
massM) and in a compact color-octet state. The associated
induced coherent spectrum was derived in a Feynman
diagram calculation and at first order in the opacity
expansion, i.e., with the transverse momentum broadening
Δq⊥ across the medium modeled by a single rescattering
l⊥. The result at all orders in the opacity expansion was
obtained by identifying l2⊥¼Δq2⊥ðLÞ¼ q̂L (where q̂ ¼
μ2=λg, with λg the gluon mean free path in the medium).
The induced spectrum found in this semiheuristic way
reads [8,9]

x
dI
dx

¼ Nc
αs
π
log

�
1þ Δq2⊥ðLÞ

x2M2⊥

�
; ð1Þ

when defined with respect to a zero-size target, or
equivalently

x
dI
dx

����
pA−pp

¼ Nc
αs
π
log

�
x2M2⊥ þ Δq2⊥ðLAÞ
x2M2⊥ þ Δq2⊥ðLpÞ

�
; ð2Þ

when defined in p–A vs. p–p collisions. We denote x≡
kþ=pþ and M⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ q2⊥
p

.
Medium-induced coherent radiation was also studied

using a semiclassical method in Refs. [12,13], at first order
[12] and all orders [13] in opacity and in a similar kine-
matical setup as that of Ref. [8], however for the q → q case
of a massless quark experiencing a hard scattering mediated
by a color-singlet exchange in the t channel. Although no
compact form of the coherent energy spectrum is given in

Refs. [12,13], the integral over ~k⊥ of the ~k⊥-differential
spectrum found in Ref. [13] can be worked out analytically
and reads (with Qsp ¼ q̂Lp, QsA ¼ q̂LA)

x
dI
dx

����
pA−pp

¼ 2CF
αs
π

Z
x2q2⊥=Q2

sp

x2q2⊥=Q2
sA

du
u
e−u

¼ 2CF
αs
π

�
Ei

�
−
x2q2⊥
Q2

sp

�
− Ei

�
−
x2q2⊥
Q2

sA

��
:

ð3Þ
This can be checked to have the same parametric limits as
the spectrum (2), up to the replacements M → 0 and
Nc → 2CF in Eq. (2).
In the present paper, we revisit induced coherent radi-

ation and consider all 1 → 1 hard forward processes,
namely g → g, q → q, q → g and g → q, assuming the
hard exchange in the t channel to be color octet (for g → g
and q → q) or color triplet (for q → g and g → q). We work
in the same setup as Ref. [8], but derive the induced
coherent spectrum in full rigor, to all orders in the opacity
expansion and for the specific case of a Coulomb rescatter-
ing potential.
As a main result, we find that the induced coherent

spectrum associated to 1 → 1 hard forward processes is
given by the general (approximate) expression (100) [or
equivalently Eq. (102)], with CR, CR0 the color charges of
the incoming and outgoing partons, Ct the color charge of
the t-channel exchange, and Δq⊥ðLÞ the typical transverse
momentum broadening induced by multiple Coulomb
rescatterings. The results obtained previously for the
spectra associated to g → QQ̄ [8,9] and q → q [12,13]
are simply interpreted as particular cases of Eq. (100),
corresponding respectively to fCR ¼ CR0 ¼ Nc;Ct ¼ Ncg
and fCR ¼ CR0 ¼ CF;Ct ¼ 0g.
Our paper is organized as follows.
First, the case of an asymptotic parton of color charge CR

scattering at small angle off a pointlike target through
single-gluon exchange is studied in Sec. II. The radiation
spectrum associated to this process is determined in the soft
radiation (x≡ kþ=pþ ≪ 1) and high-energy limit; see
Eq. (8). This allows one to recover the Gunion-Bertsch
spectrum, Eq. (12), in the eikonal limit (scattering angle
θs → 0) as well as the spectrum in the hard scattering limit
(jqj ≫ jkj), Eq. (14). The k-integrated spectrum xdI=dx is
discussed in Sec. II E, where we note that the variation of
the spectrum with respect to the hard exchange q arises
from gluon emission in the “soft” (jkj ∼ xjqj) and “hard”
(jkj ∼ jqj) transverse momentum regions. We argue that the
color factor of the soft contribution heralds that of the
induced spectrum in a finite-size target.
The gluon spectrum associated to the scattering of an

asymptotic parton off a finite-size target is investigated in
detail in Sec. III, for the case of a Coulomb rescattering
potential. The medium-induced gluon spectrum is deter-
mined rigorously in the soft (x ≪ 1) and large formation
time (tf ≫ L) limits. Calculations are carried out at first
order in the opacity expansion, r≡ L=λg ≪ 1, Eq. (32),
and to all orders, r ≫ 1, Eqs. (51)–(52). We observe that
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the radiation spectrum is given by the overlap between the
initial parton-gluon wave function (“evolved” by soft
rescatterings, and thus medium dependent) and the
wave function of the outgoing parton-gluon system.
When r ≫ 1 the induced spectrum can be approximated
by a simple expression, Eq. (60), which in the case
CR ¼ Nc coincides with Eq. (1) derived semiheuristically
in Refs. [8,9], provided Δq2⊥ðLÞ in Eq. (1) is understood
as the typical exchange in multiple Coulomb scattering,
Δq2⊥ðLÞ ¼ μ2r log r.
The results obtained in Sec. III for the scattering of a fast

asymptotic parton (i.e. q → q or g → g) are generalized to
other processes in Sec. IV. The case of an incoming fast
quark scattered to an outgoing fast gluon (q → g) is first
examined. We find that the associated medium-induced
spectrum is identical to that obtained in the case of an
asymptotic gluon (g → g), despite the different color charge
in the initial state. The case of a fast gluon scattered to a
pointlike color octet of massM (like for instance a compact
heavy QQ̄ pair) is also treated. As for g → g, the medium-
induced gluon spectrum associated to g → QQ̄ can be
accurately approximated by a simple expression [Eq. (87)
to all orders in the opacity expansion], which has been used
for phenomenological applications in Refs. [10,11].
We also discuss in Sec. V the purely initial-state

(respectively, final-state) radiation, associated to hard
processes where the color charge of the outgoing particle
(respectively, incoming particle) vanishes and coherent
radiation between initial and final states is thus absent.
In those cases, we explicitly verify that radiation with tf ≫
L does not contribute to the induced gluon spectrum. The
purely initial-state (or final-state) induced spectrum xdI=dx
arises from radiation with tf ∼OðLÞ, leading to the known
result Δpþ ∼ q̂L2, independent (up to logarithms) of the
parton energy.
Finally, we summarize our main results in Sec. VI,

where we state and discuss the general (approximate)
formulas (100) [or equivalently Eq. (102)] for the
induced coherent spectrum associated to hard forward
1 → 1 processes, at all orders in the opacity expansion. In
this final section we also discuss the connection of our
study with a previous study of gluon production in the
saturation formalism [14].

II. SMALL-ANGLE SCATTERING OF AN
“ASYMPTOTIC PARTON” OFF A POINTLIKE

TARGET AND ASSOCIATED GLUON RADIATION

A. Soft radiation amplitude and spectrum

Here we briefly review the radiation spectrum associated
to small-angle scattering of an asymptotic parton off a
pointlike target. Consider a massless quark of large
momentum p ¼ ðpþ; 0; ~0⊥Þ2 acquiring the transverse
momentum ~q⊥ ≡ q via single-gluon exchange; see
Fig. 1(a). We focus on small-angle scattering, jqj ≪ pþ.
The gluon emission amplitude induced by the latter
scattering is given by the diagrams of Fig. 1(b), and was
first derived by Gunion and Bertsch [15]. Denoting
the radiated gluon momentum k ¼ ðkþ; k2=kþ; kÞ and
focusing on soft (x≡ kþ=pþ ≪ 1) and small-angle
(k⊥ ≪ kþ) radiation, the gauge-invariant radiation ampli-
tude reads [15]

Mrad ¼ M̂el · ð2gÞ

·

�
C1

k
k2

þ C2

k − q
ðk − qÞ2 − C3

k − xq
ðk − xqÞ2

�
· ε: ð4Þ

In this expression g is the QCD coupling, ε≡ ~ε⊥ stands for
the (real) physical polarization of the radiated gluon,3 and
C1, C2, C3 are the full color factors associated to the
diagrams (i), (ii), (iii) of Fig. 1(b). Hence M̂el corresponds
to the Lorentz part of the elastic amplitudeMel of Fig. 1(a),
i.e., Mel ¼ CelM̂el with Cel the “elastic” color factor.
In light-cone perturbation theory and in light-cone gauge

Aþ ¼ 0, it is easy to check that the first two terms on the rhs
of Eq. (4) correspond to initial-state radiation [diagrams (i)
and (ii) of Fig. 1(b)], and the last term to final-state
radiation [diagram (iii)]. The Gunion-Bertsch amplitude
is then very simply interpreted, since ψðx; kÞ ∝ gk · ε=k2 is
nothing but the light-cone wave function (in light-cone
gauge) of the quark-gluon fluctuation in the incoming

FIG. 1. (a) Elastic scattering amplitudeMel of an energetic parton off a pointlike target. (b) Induced gluon radiation amplitudeMrad.

2We use light-cone variables, p ¼ ðpþ; p−; pÞ, with p� ¼
p0 � pz and p≡ ~p⊥.

3Since ε formally disappears after squaring the amplitude and
summing over the two physical polarization states, it will be
implicit in the following.
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quark state [16]. The radiated gluon with kþ ¼ xpþ and
~k⊥ ¼ k can thus arise directly from the incoming quark-
gluon fluctuation ψðx; kÞ [diagram (i)], from the incoming
fluctuation ψðx; k − qÞ followed by gluon scattering [dia-
gram (ii)], or from the quark-gluon fluctuation in the quark
after the scattering [diagram (iii)]. The latter fluctuation has
a total transverse momentum q and thus a wave function
∼ψðx; k − xqÞ, as dictated by Lorentz transformation laws
of light-cone wave functions [17].
The general structure of the Gunion-Bertsch amplitude

(4) is actually independent of the incoming parton type, as

well as of the target type. In the following we consider an
energetic parton of color charge CR, with CR ¼ CA ¼ Nc

for a gluon and CR ¼ CF ¼ ðN2
c − 1Þ=ð2NcÞ for a quark.

The gluon radiation intensity dI is obtained from
Eq. (4) as

dI ¼ dσrad
σel

¼
�P jMradj2P jMelj2

�
dkþd2k
2kþð2πÞ3 ; ð5Þ

where jMradj2 and jMelj2 are summed over initial and final
color indices. This gives the radiation spectrum

ð6Þ

where we use a pictorial representation defined as follows. For each diagram appearing in the numerator of Eq. (6), the
upper (lower) part arises from one of the three contributions to the emission amplitude (conjugate amplitude) given in
Eq. (4) or in Fig. 1(b). The Lorentz part of each diagram follows from the rules depicted in Fig. 2(a), and the color factor
from the rules of Fig. 2(b).4 The diagram in the denominator of Eq. (6) is simply the color factor associated to the elastic
cross section. We can thus rewrite Eq. (6) explicitly as

x
dI

dxd2k
¼ αs

π2

�
CR

���� k − xq
ðk − xqÞ2

����
2

þ CR

���� kk2
����
2

þ Nc

���� k − q
ðk − qÞ2

����
2

− 2
Nc

2

k · ðk − qÞ
k2ðk − qÞ2 − 2

�
CR −

Nc

2

�
k · ðk − xqÞ
k2ðk − xqÞ2 − 2

Nc

2

ðk − qÞ · ðk − xqÞ
ðk − qÞ2ðk − xqÞ2

	
: ð7Þ

Grouping together the terms ∝ CR and those ∝ Nc we obtain

x
dI

dxd2k
¼ αs

π2

�
CR

x2q2

k2ðk − xqÞ2 þ Nc
k · ðk − xqÞ
k2ðk − xqÞ2 ·

ð1 − xÞq2
ðk − qÞ2

	
: ð8Þ

The latter expression for the radiation spectrum induced by a single transverse momentum exchange q is exact (within the
soft radiation and high-energy limit defined above), and will be used in the following to review several limiting cases.

FIG. 2. Pictorial rules for (a) emission vertices and (b) color factors. The energetic parton of color charge CR is denoted by the
solid line.

4For the pictorial representation of color factors, see for instance Ref. [18] or Appendix B of Ref. [6].
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B. Abelian-like contribution

In Eq. (8) the term ∝ CR is the Abelian-like con-
tribution to the spectrum. Indeed, in QED color factors
as well as the diagram (ii) of Fig. 1(b) are absent, and
the photon emission amplitude off an electron is of the
form

MQED
rad ∝ e

�
k
k2

−
k − xq

ðk − xqÞ2
�
; ð9Þ

which square reproduces the first term of Eq. (8). This
amplitude vanishes in the limit xq⊥ ≪ k⊥, i.e., when the
scattering angle of the incoming electron θs ≃ 2q⊥=pþ
is negligible compared to the photon emission angle
θ≃ 2k⊥=kþ. In QED, a nonzero scattering angle θs is
necessary to perturb the electron quantum state and thus
to induce radiation. As a consequence, the Abelian-like
contribution to the k-integrated spectrum xdI=dx arises
from k⊥ ≲ xq⊥. Explicitly,

x
dI
dx

����
Abelian

¼ CRαs
π

Z
d2k
π

x2q2

k2ðk − xqÞ2

¼ 2
CRαs
π

log

�
x2q2

Λ2
IR

�
; ð10Þ

where we introduced an infrared cutoff ΛIR to regularize
the singularities at k ¼ 0 and k ¼ xq.5 Those singular-
ities contribute equally to Eq. (10), the logarithm arising
either from the domain ΛIR ≲ jkj ≪ xjqj (singularity at
k ¼ 0), or from the domain ΛIR ≲ jk − xqj ≪ xjqj (sin-
gularity at k ¼ xq). This corresponds to the two well-
known cones, centered at k ¼ 0 and k ¼ xq and of
opening θs, of Abelian-like radiation.

C. Eikonal limit—Gunion-Bertsch spectrum

In QCD, gluon radiation can occur even in the
eikonal limit where the energetic parton trajectory is
approximated as a straight line (θs → 0), due to the
parton color rotation in the elastic scattering. Indeed, in
the limit xq⊥ ≪ k⊥ the amplitude (4) remains finite,

Mrad ∝ g½Ta
R; T

b
R�
�
k
k2

−
k − q

ðk − qÞ2
�
; ð11Þ

where Ta
R are color matrices in the representation of the

parton, Ta
RT

a
R ¼ CR1. The eikonal limit allows one to

single out the purely non-Abelian contribution to the
radiation amplitude, as reflected by the commutator in
Eq. (11). The resulting spectrum, obtained by neglecting

xq compared to k in Eq. (8), is the so-called Gunion-
Bertsch spectrum [15] in the same k range,

x
dI

dxd2k
≃ Ncαs

π2
q2

k2ðk − qÞ2 ðxq⊥ ≪ k⊥Þ: ð12Þ

D. Hard scattering limit

We now consider the “hard scattering limit,” defined
as q⊥ ≫ k⊥, but still keeping a small scattering angle,
q⊥ ≪ pþ. In this limit the second term of Eq. (4)
[diagram (ii) of Fig. 1(b)] can be neglected, leading to

Mrad ∝ g

�
Ta
RT

b
R
k
k2

− Tb
RT

a
R

k − xq
ðk − xqÞ2

�
: ð13Þ

The associated spectrum can be read off from Eq. (8),

x
dI

dxd2k
≃ αs

π2

�
CR

x2q2

k2ðk − xqÞ2 þ Nc
k · ðk − xqÞ
k2ðk − xqÞ2

	

ðk⊥ ≪ q⊥Þ: ð14Þ

In addition to the two narrow “Abelian cones” of
opening θs (term ∝ CR), there is a non-Abelian term
∝ Nc

6 arising from emission angles larger than the
scattering angle θs [19]. The latter property follows from
averaging the non-Abelian contribution over the azimu-
thal angle of a≡ xq using the identity

Z
dφa

2π

k − a
ðk − aÞ2 ¼

k
k2

Θðk2 − a2Þ: ð15Þ

Effectively, Eq. (14) can thus be written as

x
dI

dxd2k
≃ αs

π2

�
CR

x2q2

k2ðk − xqÞ2 þ Nc
Θðk2 − x2q2Þ

k2

	

ðk⊥ ≪ q⊥Þ: ð16Þ

When xq⊥ ∼ k⊥, the Abelian-like and non-Abelian
contributions have similar magnitudes. In the region
xq⊥ ≪ k⊥ ≪ q⊥, the non-Abelian contribution domi-
nates, and the spectrum (16) obviously coincides with
the Gunion-Bertsch spectrum (12),

x
dI

dxd2k
≃ Ncαs

π2
·
1

k2
ðxq⊥ ≪ k⊥ ≪ q⊥Þ: ð17Þ

5The integral in Eq. (10) is regularized by replacing k2 →
k2 þ Λ2

IR and ðk − xqÞ2 → ðk − xqÞ2 þ Λ2
IR in the denominator of

the integrand. Taking then the limit ΛIR → 0 yields the rhs of
Eq. (10).

6In Eq. (14) the non-Abelian contribution is ∝ Nc due to
our assumption of a single-gluon exchange. In general the
purely non-Abelian contribution is proportional to the color
charge exchanged in the t channel of the elastic scattering
[19]. The same remark applies to the Gunion-Bertsch spec-
trum (12).
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E. k-integrated radiation spectrum

In situations where only the final energetic parton is
tagged, the relevant quantity is the total, k-integrated
spectrum xdI=dx. Strictly speaking, the integral over k
of Eq. (8) is ill-defined due to singularities at k ¼ 0, k ¼ xq
and k ¼ q, and is not a physical observable. In particular it
includes collinear radiation with respect to the initial
(k ¼ 0) and final (k ¼ xq) parton directions. However,
what usually matters in practice is the variation of the total
spectrum with q, which variation is infrared safe and
physical.
Here we discuss the total radiation spectrum associated

to a single scattering q, and the variation of the total
spectrum with q. The main goal of this discussion is to
provide some insight to the medium-induced spectrum in a
finite-size target studied in Sec. III. In particular, we will
show in Sec. III that the induced spectrum off a parton of
color charge CR has a color factor 2CR − Nc, i.e. Nc for an
energetic gluon, and −1=Nc for a quark. A negative
induced energy loss of a quark is somewhat unusual, but
can be intuitively understood from the case of a pointlike
target. Indeed, we show below that the factor 2CR − Nc is
precisely the color factor of the contribution to the total
spectrum arising from the “soft” k⊥ domain, which turns
out to be the only domain contributing to the induced loss.
In the following we regularize the k-integral by intro-

ducing an infrared cutoff ΛIR, as was done in Sec. II B for
the Abelian-like contribution (see footnote 5). The same
results can be obtained using dimensional regularization.
With the exact k-differential spectrum (8) being approxi-

mated by Eq. (12) for xq⊥ ≪ k⊥ and by Eq. (16) for
k⊥ ≪ q⊥, the total spectrum can be simply obtained to
logarithmic accuracy by introducing an arbitrary separation
scale ΛS satisfying xq⊥ ≪ ΛS ≪ q⊥. The contribution to
the total spectrum arising from k⊥ ≤ ΛS is obtained from
Eqs. (10) and (16),7

x
dI
dx

����
k⊥≤ΛS

≃ αs
π

�
2CR log

�
x2q2

Λ2
IR

�
þ Nc log

�
Λ2
S

x2q2

��
:

ð18Þ

The contribution from k⊥ ≥ ΛS follows from Eq. (12),

x
dI
dx

����
k⊥≥ΛS

≃ Ncαs
π

Z
d2k
π

q2

k2½ðk − qÞ2 þ Λ2
IR�

Θðk2 − Λ2
SÞ;

ð19Þ

where the singularity at k ¼ q is screened by the infrared
cutoff. To logarithmic accuracy, the integral in Eq. (19) is
dominated by two logarithmic intervals, namely ΛS ≪
jkj ≪ jqj and ΛIR ≪ jk − qj ≪ jqj, and thus reads8

x
dI
dx

����
k⊥≥ΛS

≃ Ncαs
π

�
log

�
q2

Λ2
S

�
þ log

�
q2

Λ2
IR

��
: ð20Þ

When adding the contributions (18) and (20), the
dependence on the arbitrary scale ΛS cancels out, as
expected. Second, as already mentioned, the total spectrum
diverges in the limit ΛIR → 0 but its variation when jqj is
shifted to jq0j ∼ jqj is infrared safe,

x
dI
dx

����
q0
− x

dI
dx

����
q

≃ αs
π

�
ð2CR − NcÞ log

�
q02

q2

�
þ 2Nc log

�
q02

q2

��
; ð21Þ

where the first and second terms arise respectively from
the “soft” (k⊥ ∼ xq⊥ ≪ ΛS) and “hard” (k⊥ ∼ q⊥ ≫ ΛS)
domains.
The modification of the soft contribution (k⊥ ≪ ΛS)

with respect to an increase of jqj is proportional to
2CR − Nc. Indeed, in the soft part (18) the Abelian-like
radiation at angles smaller than the scattering angle
[k⊥ ≤ xq⊥, first term of Eq. (18)] increases with a rate
∝ 2CR, but the purely non-Abelian radiation arising from
larger angles [k⊥ ≥ xq⊥, second term of Eq. (18)],
decreases with a rate ∝ Nc; hence there is a net variation
∝ 2CR − Nc. In the particular case of an asymptotic quark,
we have 2CF − Nc ¼ −1=Nc < 0, implying that the num-
ber of gluons (of a given energy) radiated into a cone of
fixed size decreases with increasing momentum transfer
from the target. At the same time, the total number of
radiated gluons increases with a rate ∝ 2CF þ Nc, due to
radiation of gluons with jkj ∼ jqj.
Although the spectrum at zeroth order in opacity

receives contributions from both soft and hard k⊥
domains, we will see in Sec. III that in the medium-
induced spectrum, the gluon k⊥ is constrained to be soft,
the additional scale l⊥ ∼ Δq⊥ ≪ q⊥ coming into play in
a finite-size target acting as an upper cutoff. We thus
expect the induced radiation to correspond to the
medium modification of the soft part of the total
spectrum, and to have the same color factor 2CR − Nc.

7Let us note that when restricted to the domain k⊥ ≤ ΛS, the
Abelian-like contribution (10) is modified by terms
∼Oðx2q2=Λ2

SÞ which are negligible compared to the dominant
logarithmic term. Similarly, since Eq. (16) is an approximation at
k⊥ ≪ q⊥, there are corrections ∼OðΛ2

S=q
2Þ (which can also be

dropped) to the term ∝ Nc in Eq. (18).

8Alternatively, the integral in Eq. (19) can be calculated
analytically for any fixed jqj, ΛS and ΛIR. Taking then the limit
ΛIR → 0, we obtain Eq. (20) up to corrections ∼OðΛ2

S=q
2Þ.
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III. SMALL-ANGLE SCATTERING OF AN
ASYMPTOTIC PARTON OFF A FINITE-SIZE

TARGET: FULLY COHERENT
MEDIUM-INDUCED RADIATION

A. Setup: single hard scattering plus soft rescatterings

We now consider the case where the energetic parton
crosses a nuclear target of thickness L, still assuming a
small deviation angle θs ≪ 1 and a negligible longitudinal
momentum transfer to the medium. The parton can undergo
several soft scatterings li in the target, leading to nuclear
transverse momentum broadening hl2i, with l≡P

li.
We focus on the kinematics where the final parton is
“tagged” with a transverse momentum p0 much larger than

nuclear broadening. Thus p0 must arise dominantly from a
single hard scattering jqj≃ jp0j ≫ jlj.
We want to derive the medium-induced gluon radiation

spectrum associated to such a hard scattering accompanied
by any number of soft rescatterings. We focus on soft radia-
tion as compared to the hard process, i.e., x≡ kþ=pþ ≪ 1
but also jkj ≪ jqj. The latter assumption will be justified
a posteriori, when verifying that the k-integrated medium-
induced spectrum arises dominantly from jkj ∼ jlj.9
The medium-induced radiation spectrum can be derived in

an opacity expansion [20]. At zeroth order, i.e., in the absence
of soft rescattering, the spectrum associated to the hard
scattering q⊥ is given by Eq. (14) and cancels in the induced
radiation spectrum. At a generic order n, the latter reads10

ð22Þ

using the pictorial rules defined in Sec. II (see Fig. 2). The
“elastic” color factor Fn reads

ð23Þ

where dR is the dimension of the parton color representation,
with dR ¼ Nc for a quark and dR ¼ N2

c − 1 for a gluon. In
Eq. (22) λR is the parton elasticmean free path andVðlÞ is the
probability distribution for the transverse momentum transfer
in the elastic scattering. Modeling each scattering center as a
static center creating a screened Coulomb potential [6,21],
we have

VðlÞ ¼ μ2

πðl2 þ μ2Þ2 ;
Z

d2lVðlÞ ¼ 1: ð24Þ

AsinRef.[6],wechooseλR andthescreeninglength1=μofthe
scattering potential as the model parameters and assume
1=μ ≪ λR, implying that successive soft scatterings can be
treated as independent. They can thus be ordered in light-cone
time xþ ¼ tþ z, which in the high-energy limit is equivalent
to ordering in usual time t or longitudinal position, i.e.,
0 < z1 < z2 < … < zn < L in Eq. (22). The longitudinal

position of the hard scattering q⊥ will be denoted as zh,
with 0 < zh < L.
The sum of diagrams in Eq. (22) is in general compli-

cated to evaluate. However, anticipating that the medium-
induced radiation spectrum xdI=dx is dominated, in the
present case of small-angle scattering, by large gluon
formation times tf ≫ L, the calculation can be greatly
simplified by working in this limit from the beginning.
When tf ≫ L, the dominant diagrams are those where

the gluon emission times in the radiation amplitude and
conjugate amplitude, denoted respectively by t and t�,
occur either before or after the nuclear target. The diagrams
where t (or t�) occurs within the target, zi < t < ziþ1, are
proportional to the difference ∼ðeiφiþ1 − eiφiÞ between two
“phase factors,” where φi ∝ zi=tf (see Ref. [6] and Sec. V
below), and vanish when tf ≫ L. The dominant diagrams
in the sum of Eq. (22) can thus be classified into three
classes, namely (i) t; t� > L (final-state radiation),
(ii) t; t� < 0 (initial-state radiation) and (iii) t < 0 and
t� > L (interference).11

Another simplification arises from our assumption
q⊥ ≫ k⊥. In this limit the diagrams where the hard gluon
q connects to the radiated gluon are negligible, similarly to
the case of a pointlike target (Sec. II D).
Finally, let us stress that in the limit tf ≫ L, the radiation

cannot probe the target structure, but this does not imply
that the radiation spectrum is medium independent. Indeed,
the spectrum may depend on the target size L through the
amount of soft rescattering l2 (or through the probability

9For the calculation at first order in the opacity expansion, see
Eq. (30) and the discussion after Eq. (33). For the calculation at
all orders in opacity, see the final comments of Sec. III C 2.

10See Appendix A for a simple derivation of Eq. (22) in the
limit of large formation time tf ≫ L.

11The generic diagram drawn in Eq. (22) belongs to the latter
class.
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for such rescattering) suffered by the incoming parton-
gluon fluctuation across the target. This results in a non-
vanishing medium-induced radiation, as confirmed in the
following sections by an explicit calculation, at first and all
orders in the opacity expansion.

B. First order in the opacity expansion

1. QCD case

At order n ¼ 1, and within the limit tf ≫ L and
q⊥ ≫ k⊥, the spectrum (22) is of the form

x
dI
dx

¼ αs
π2

Z
d2k

Z
dz1
λR

Z
d2l1Vðl1Þ

1

F1

½Aþ Bþ C�;
ð25Þ

where the sets of diagrams A, B and C are shown in Fig. 3.
When tf ≫ L one may approximate zh ≃ z1 → 0 in those
diagrams, which thus become independent of zh and z1 and
in particular of their precise ordering. As a consequence
we have

R
dz1 ¼ L in Eq. (25).

(i) set A: t; t� > L
The set A of diagrams shown in Fig. 3(a) corresponds to

the class (i) defined in Sec. III A, namely t; t� > L (final-
state radiation), and is obtained from the rules of Fig. 2 asZ

d2k
A
F1

¼
Z

d2k

�
CR

���� k − xðqþ l1Þ
ðk − xðqþ l1ÞÞ2

����
2

þ 2 · ð−1Þ · 1
2
CR

���� k − xq
ðk − xqÞ2

����
2
	

¼ 0: ð26Þ

The virtual contribution [right diagram of Fig. 3(a)] exactly
cancels the real one [left diagram of Fig. 3(a)]. The relative
weights of virtual corrections have been discussed pre-
viously; see for instance Ref. [22]. They contribute a
factor ð−1Þ, and a symmetry factor 1

2
when the two gluon

lines (li and −li) connect to the same parton line
(energetic parton or radiated gluon). The associated color
factor is obtained from the rules of Fig. 2(b).
The vanishing of the set A can be understood as follows.

When t; t� > L, the gluon is effectively produced after the
nuclear medium. Gluon radiation should thus be similar to
that in vacuum, up to the change in the direction of the final
partondue to the rescatteringl1.When integratingoverk, the
shift in the final parton direction becomes irrelevant, and the
contribution to the medium-induced radiation spectrum
vanishes.12 In general we expect no contribution to the k-
integrated, medium-induced spectrum when t and t� belong
to the same time interval where no rescattering happens.
(ii) set B: t; t� < 0
We now turn to the set B of diagrams [see Fig. 3(b)],

corresponding to the class (ii) t; t� < 0 (initial-state radi-
ation). Applying the rules of Fig. 2, the sum of the six
diagrams of the set B simplifies toZ

d2k
B
F1

¼ Nc

Z
d2k

�
1

ðk − l1Þ2
−

1

k2

�
¼ 0: ð27Þ

The general property mentioned above is at work. When
t; t� < 0, the gluon is effectively radiated before the nuclear
target, and the following soft rescatterings cannot affect the
total (k-integrated) radiation rate.
(iii) set C: t < 0 and t� > L
In the limit tf ≫ L, the only nonvanishing contribution

to xdI=dx arises from the set C of interference diagrams
with t < 0 and t� > L; see Fig. 3(c). Applying the
diagrammatic rules we obtain (l≡ l1)

FIG. 3. Sets A, B, C of diagrams, at first order in the opacity expansion, which may contribute to the radiation spectrum in the limit
tf ≫ L; see Eq. (25). Only set C turns out to be nonvanishing.

12In the limit jqj ≫ jlj considered here, which amounts to
neglecting the deviation angle of the energetic parton due to soft
rescatterings, the vanishing of the set A occurs at fixed k, i.e., at
the integrand level in Eq. (26).
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Z
d2k

C
F1

¼ 2CR − Nc

CR

Z
d2k

�
CR

k
k2

·

�
k − xq

ðk − xqÞ2 −
k − xðqþ lÞ

ðk − xðqþ lÞÞ2
�

þ Nc

2

�
k
k2

−
k − l

ðk − lÞ2
�
·

�
k − xq

ðk − xqÞ2 þ
k − xðqþ lÞ

ðk − xðqþ lÞÞ2
�	

: ð28Þ

When jlj ≪ jqj, the latter expression simplifies and
the medium-induced spectrum (25) becomes (use
CRλR ¼ Ncλg)

x
dI
dx

¼ ð2CR − NcÞ
αs
π2

L
λg

Z
d2k

Z
d2lVðlÞ

×

�
k − l

ðk − lÞ2 −
k
k2

�
·
−ðk − xqÞ
ðk − xqÞ2 : ð29Þ

The last factor in the integrand of Eq. (29) is proportional to
the (conjugate) wave function ψ�ðx; k − xqÞ of the final
parton-gluon fluctuation; see Sec. II A. The other factor in
between brackets can be interpreted as the incoming
“medium-induced wave function.” Indeed, this factor is
given by the incoming wave function “evolved” by
rescatterings ∼ðk − lÞ=ðk − lÞ2, from which the “vac-
uum” wave function ∼k=k2 is subtracted. This interpreta-
tion of the radiation spectrum as the overlap between initial
and final wave functions of the parton-gluon fluctuation
holds to all orders in opacity, as we will see in Sec. III C
[see Eq. (45)].
The expression (29) can be simplified by averaging over

the azimuthal angles of l and q. Using Eq. (15) we get

Z
dφl

2π

Z
dφq

2π

�
k
k2

−
k − l

ðk − lÞ2
�
·

k − xq
ðk − xqÞ2

¼ Θðl2 − k2ÞΘ ðk2 − x2q2Þ
k2

; ð30Þ

leading to

x
dI
dx

¼ ð2CR − NcÞ
αs
π

L
λg

Z
∞

x2q2
dl2

μ2

ðl2 þ μ2Þ2 log
l2

x2q2
:

ð31Þ

The integral over l2 can be performed using a simple
integration by parts, giving the final expression for the
medium-induced spectrum at first order in the opacity
expansion,

x
dI
dx

¼ ð2CR − NcÞ
αs
π

L
λg
log

�
1þ μ2

x2q2

�
: ð32Þ

The associated average energy loss is proportional to pþ,

Δpþ ≡ pþ
Z

dxx
dI
dx

¼ ð2CR − NcÞαs
L
λg

μ

q⊥
pþ: ð33Þ

Due to the fast decrease of the spectrum (32) as 1=x2 when
x¼kþ=pþ≫μ=q⊥, the energy loss (33) is dominated by
x∼μ=q⊥≪1. Using Eqs. (30) and (31) we infer
l2∼k2∼μ2, and the energy loss is thus dominated by
gluon formation times

tf ∼
kþ

k2
∼

pþ

q⊥μ
ð34Þ

which scale as pþ when pþ → ∞. This justifies our
working assumption of large formation times tf ≫ L.
The radiative energy loss (33) arises from gluon radiation
which is fully coherent over the medium size L.
The overall color factor 2CR − Nc of the energy loss (33)

equals Nc for an energetic gluon, and −1=Nc for a quark.
The latter suppression in the large-Nc limit is simply
understood, since in the quark case the relevant diagrams
[Fig. 3(c)] are nonplanar [23]. The fact that the quark
induced loss is negative is reminiscent of the case of a
pointlike target; see the discussion in Sec. II E. We have
seen there that the total radiation spectrum induced by a
single hard scattering q acquires its q dependence from two
domains of k⊥, the soft k⊥ ∼ xq⊥ and hard k⊥ ∼ q⊥
domains [see Eq. (21)], with associated color factors 2CR −
Nc and 2Nc respectively. In the case of medium-induced
radiation studied here, the rescattering l effectively pro-
vides an upper cutoff on the radiated gluon transverse
momentum, k2 ≤ l2; see Eq. (30). This justifies the
dominance of soft k⊥ for medium-induced radiation, and
elucidates the origin of the overall color factor.

2. QED case and the Brodsky-Hoyer bound

It is instructive to state the result for the medium-induced
radiation spectrum in QED. Replacing Nc → 0, CR → 1 in
Eq. (28) and substituting it into Eq. (25) we obtain
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x
dI
dx

����
QED

¼ 2α

π2
L
λe


Z
d2k

k
k2

·
�

k − xq
ðk − xqÞ2 −

k − xðqþ lÞ
ðk − xðqþ lÞÞ2

��
l

¼ α

π2
L
λe


Z
d2k

��
k
k2

−
k − xðqþ lÞ

ðk − xðqþ lÞÞ2
�
2

−
�
k
k2

−
k − xq

ðk − xqÞ2
�
2
	�

l
; ð35Þ

with λe the electron mean free path and hf…gil ≡R
d2lVðlÞf…g. The interpretation of the latter spectrum

as a medium-induced spectrum is clear from the second line
of Eq. (35), which is the difference between Abelian-like
spectra (10) for single effective scatterings qþ l and q
respectively. In QED the medium-induced spectrum van-
ishes when the electron scattering angle is the same with or
without rescattering, jqþ lj=pþ ¼ jqj=pþ.
In Ref. [24], the medium-induced spectrum in QED was

derived assuming both tf ≫ L and qþ l ¼ q (in our
notations), and was found to vanish. This led the authors
to conclude that the assumption tf ≫ L is invalid, leaving
only radiation with small formation time tf ≲ L, resulting
in some bound on induced energy loss, ΔE < cst · L2

when E → ∞.
We stress here that it is instead the approximation

qþ l ¼ q which is too drastic. Indeed, relaxing the latter
and keeping tf ≫ L, a nonzero medium-induced spectrum
follows. Shifting k → xk in the first line of Eq. (35), we see
that the spectrum is actually independent of x, and thus
given by the same expression with x set to unity. Changing
then k → kþ q, the integral over k becomes identical to the
integral in Eq. (29) evaluated at x ¼ 1. We can thus read off
the result from Eq. (32),

x
dI
dx

����
QED

¼ 2α

π

L
λe

log

�
1þ μ2

q2⊥

�
; ð36Þ

leading to the medium-induced energy loss (use μ ≪ q⊥)

ΔpþjQED ∝ α
L
λe

·
μ2

q2⊥
pþ: ð37Þ

To summarize, the Brodsky-Hoyer bound does not apply
to the case under study of small-angle scattering of an
energetic charge, neither in QED [see Eq. (37)] nor in QCD
[see Eq. (33)]. In both cases the scaling Δpþ ∝ pþ
originates from radiation with large formation times
tf ≫ L, i.e., which is fully coherent over the medium size.
In QED the medium-induced spectrum arises from the
electron scattering angle being affected by in-medium
rescatterings (jqþ lj ≠ jqj), whereas in QCD a nonvanish-
ing spectrum is found even in the limit qþ l≃ q, due to
the parton color rotation.
Finally, let us note that the Brodsky-Hoyer argument

does apply to purely initial- or purely final-state radiation,
both in QED and QCD. Indeed, in those cases radiation
with large formation time cancels out; see Eqs. (26)

and (27). As we will review in Sec. V, this leads to a
medium-induced energy loss satisfying [up to logarithms;
see Eq. (96)] the Brodsky-Hoyer bound.

C. All orders in the opacity expansion

1. Exact derivation of the medium-induced spectrum

Here we derive the radiation spectrum to all orders in the
opacity expansion. At any order n, it is clear that in the limit
tf ≫ L the dominant diagrams are the interference dia-
grams corresponding to t < 0 and t� > L, as in the case
n ¼ 1; see Fig. 3(c). It is convenient to rewrite Eq. (22) as

x
dIðnÞ

dx
¼ αs

π2

Z
d2k f n ðk; LÞ · −ðk − xqÞ

ðk − xqÞ2 ; ð38Þ

f nðk; LÞ≡ 1

n!

�
L
λR

�
n
�Yn
i¼1

Z
d2liVðliÞ

�
Cnðk; fl1…lngÞ

Fn
;

ð39Þ

where the quantity Cn corresponds to the set of diagrams
of Fig. 4(a), defined by the rules of Fig. 2 but with the
emission factor in the conjugate amplitude −ðk − xqÞ=
ðk − xqÞ2 removed.
The medium-induced spectrum to all orders in the

opacity expansion is obtained by summing Eq. (38) over n,

x
dI
dx

¼
X∞
n¼1

x
dIðnÞ

dx

¼ αs
π2

Z
d2k½ f ðk; LÞ − f 0ðkÞ� ·

−ðk − xqÞ
ðk − xqÞ2 ; ð40Þ

f ðk; LÞ≡X∞
n¼0

f nðk; LÞ;

f 0ðk; LÞ≡ f 0ðkÞ ¼ ð2CR − NcÞ
k
k2

: ð41Þ

The function f ðk; LÞ can be derived by noticing that at
order nþ 1, the set of diagrams Cnþ1 is given by the
recurrency relation [see Fig. 4(b)]

Cnþ1ðk; fl1…lnþ1gÞ ¼ −NcCnðk; fl1…lngÞ
þ NcCnðk − lnþ1; fl1…lngÞ;

ð42Þ
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where the first term arises from the first four diagrams, and
the second term from the last two diagrams of Fig. 4(b).
From Eqs. (39) and (42) we obtain

∂f nþ1ðk;LÞ
∂L ¼−

Nc

CRλR

Z
d2lVðlÞ½f nðk;LÞ− f nðk−l;LÞ�:

ð43Þ
Using CRλR ¼ Ncλg and defining r≡ L=λg, we easily
show that f ðk; LÞ defined in Eq. (41) satisfies the equation

∂f ðk; rÞ
∂r ¼ −f ðk; rÞ þ

Z
d2lVðlÞf ðk − l; rÞ;

f ðk; r ¼ 0Þ ¼ f 0ðkÞ: ð44Þ

Rescaling f ðk; rÞ by the factor 2CR − Nc, the spectrum (40)
becomes

x
dI
dx

¼ð2CR−NcÞ
αs
π2

Z
d2k½f ðk;rÞ−f 0ðkÞ� ·ð−f 0ðk−xqÞÞ;

ð45Þ
where f ðk; rÞ is the solution of Eq. (44) with the rescaled
initial condition f 0ðkÞ ¼ k=k2. We easily check that by
keeping in Eq. (45) only the n ¼ 1 term of the opacity
expansion, we recover the result (29) obtained in
Sec. III B 1.13

As is explicit from Eq. (45), the spectrum is given by
the overlap between the (conjugate) wave function
∼ − f 0ðk − xqÞ of the final-state parton-gluon fluctuation
and the “medium-induced wave function” f ðk; rÞ − f 0ðkÞ,

where f ðk; rÞ is obtained by evolving the incoming wave
function f 0ðkÞ according to Eq. (44). The latter equation
accounts for the modification of the radiated gluon trans-
verse momentum k due to multiple soft rescatterings, and is
identical to the equation satisfied by the gluon transverse
momentum probability distribution ρðk2; tÞ after a “time”
t ¼ z=λg traveled in the medium; see Ref. [25].
By going to the impact parameter space,

~f ðb; rÞ ¼
Z

d2k f ðk; rÞe−ik·b; ð46Þ

the set of equations (44) and (45) becomes

∂ ~f ðb; rÞ
∂r ¼ −ð1 − ~VðbÞÞ~f ðb; rÞ;

~f ðb; r ¼ 0Þ ¼ ~f 0ðbÞ ¼ −2iπ
b
b2

; ð47Þ

x
dI
dx

¼ ð2CR − NcÞ
αs
π2

Z
d2b
ð2πÞ2 ½

~f ðb; rÞ − ~f 0ðbÞ�

· ð−~f 0ð−bÞÞeixq·b: ð48Þ

The solution of Eq. (47) is

~f ðb; rÞ ¼ ~f 0ðbÞ exp ½−ð1 − ~VðbÞÞr�; ð49Þ

and Eq. (48) can be rewritten as

x
dI
dx

¼ ð2CR − NcÞ
αs
π2

×
Z

d2b
b2

f1 − exp ½−ð1 − ~VðbÞÞr�geixq·b: ð50Þ

Finally, using ~VðbÞ ¼ bμK1ðbμÞ for the Coulomb potential
(24), performing the azimuthal integral in Eq. (50) and
changing variable B ¼ bμ, we obtain

x
dI
dx

¼ ð2CR − NcÞ
αs
π
S½Ω; r�;

Ω≡ xjqj
μ

; r≡ L
λg
; ð51Þ

S½Ω; r�≡ 2

Z
∞

0

dB
B

J0ðΩBÞf1 − exp ½−rð1 − BK1ðBÞÞ�g:

ð52Þ

The medium-induced spectrum to all orders in the opacity
expansion given by Eqs. (51)–(52) is one of the main
results of our study.
Let us emphasize that the factor 1 − ~VðbÞ ¼

1 − bμK1ðbμÞ in the exponential’s argument is (up to a
normalization factor) the dipole scattering cross section of a

FIG. 4. (a) Set of diagrams Cn contributing to Eq. (39). The
shaded area denotes all possible attachments of the lines
l1;…;ln, and the cross in the conjugate amplitude means that
the emission vertex −ðk − xqÞ=ðk − xqÞ2 is not included in the
definition of Cn. (b) Diagrammatic expression of Cnþ1 in terms of
Cn, leading to Eq. (42).

13To do this, replace f ðk; rÞ − f 0ðkÞ → f 1ðk; rÞ in the bracket
of Eq. (45), and get f 1ðk; rÞ from Eq. (43).
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color singlet qq̄ pair on a color center; see for in-
stance Ref. [26].

2. Limiting behaviors of the coherent spectrum

Here we focus on the parametric dependence of the exact
spectrum (51) [i.e. of the function S½Ω; r� defined in
Eq. (52)] in various limits. For simplicity we however
assume a medium of large size, r≡ L=λg ≫ 1, and derive
the limits at fixed r ≫ 1 of S½Ω; r� at small and large Ω.
Small-x limit
First, we note that at large r≡ L=λg ≫ 1, the integral

over B in Eq. (52) is dominated by small B ≪ 1, and we
can thus approximate 1 − BK1ðBÞ at small B, giving

S½Ω; r� ≃
r≫1

Z
1

0

dB2

B2
J0ðΩBÞ

�
1 − exp

�
−r

B2

4
log

1

B2

�	
:

ð53Þ
In order to extract the small-Ω limit of the latter

expression (the precise meaning of “small Ω” to be defined
shortly), we first note that when Ω → 0, the integral (53) is
dominated by B2 ∼ 1=r. To logarithmic accuracy
(log r ≫ 1), we can thus replace log ð1=B2Þ → log r in
the exponential of Eq. (53), and after the change of variable
u ¼ ðr log rÞB2 we obtain

S½Ω; r�≃
Z

∞

0

du
u
J0

�
Ωffiffiffiffiffiffiffiffiffiffiffiffi
r log r

p ffiffiffi
u

p �
ð1 − e−u=4Þ

¼ −Ei
�
−

Ω2

r log r

�
; ð54Þ

where we have set r log r → ∞ in the upper bound of the u
integral, and EiðxÞ≡ −

R∞
−x

e−t
t dt. Thus, at “small Ω,”

S½Ω; r� has an approximate scaling with the variable

Ω0 ≡ Ω=
ffiffiffiffiffiffiffiffiffiffiffiffi
r log r

p
, as illustrated in Fig. 5 (left). This very

fact implies that the “small Ω” limit should be defined as
Ω0 ≪ 1. Since Eq. (54) strictly holds only in this limit, we
can use, without loss of generality, −Eið−Ω02Þ≃
log ð1=Ω02Þ on the rhs of Eq. (54), leading to

S½Ω; r�≃ log

�
r log r
Ω2

�
when Ω ≪

ffiffiffiffiffiffiffiffiffiffiffiffi
r log r

p
: ð55Þ

This yields the limiting behavior of the spectrum (51) at
small x,

x
dI
dx

≃ ð2CR − NcÞ
αs
π
log

�
μ2r log r
x2q2

�

when x ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2r log r

p
jqj : ð56Þ

We stress that in order to obtain the small-x limit, we
have replaced log ð1=B2Þ → log r in the exponential of
Eq. (53), which amounts to neglecting the logarithmic
dependence on b of the dipole scattering cross section at
small b, and thus to approximating the latter as an
exactly quadratic function of b, namely 1 − ~VðbÞ ¼
1 − bμK1ðbμÞ ∝ b2. In other words, the so-called harmonic
oscillator approximation (see e.g. Ref. [26]) allows one to
access the correct small-x limit of the coherent spectrum.
We also note that our initial working assumption

jkj ≪ jqj was legitimate in order to derive Eq. (56).
Indeed, from the above discussion [following Eq. (53)],
the behavior (56) arises from impact parameters
b2 ¼ B2=μ2 ∼ ðμ2r log rÞ−1, i.e., from gluon transverse
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FIG. 5. Left: Approximate scaling of the function S½Ω; r� defined in Eq. (52) with Ω0 ¼ Ω=
ffiffiffiffiffiffiffiffiffiffiffiffi
r log r

p
, for various values of r. Right:

S½Ω; r� (solid lines) compared to Sappr½Ω; r� (dashed lines) for various values of r. For clarity the curves at a given r are multiplied by a
factor 5n.
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momenta k2 ∼ 1=b2 ∼ μ2r log r ∼ l2, with jlj ≪ jqj
within the setup defined in Sec. III A.
Large-x limit
When Ω0 ≳ 1 visible deviations to the scaling of S½Ω; r�

in Ω0 appear; see Fig. 5 (left). Indeed, at large Ω the above
derivation does not hold, due to the rapid oscillations of
J0ðΩBÞ in Eq. (53). At large Ω, we show in Appendix B
that S½Ω; r� scales with Ω=

ffiffiffi
r

p
(rather than with

Ω0 ¼ Ω=
ffiffiffiffiffiffiffiffiffiffiffiffi
r log r

p
) and behaves as

S½Ω; r�≃ r
Ω2

when Ω ≫
ffiffiffi
r

p
: ð57Þ

This gives the limiting behavior of the coherent spectrum
(51) at large x,

x
dI
dx

≃ ð2CR − NcÞ
αs
π

μ2r
x2q2

when x ≫
ffiffiffiffiffiffiffi
μ2r

p
jqj : ð58Þ

It can be easily verified (see Appendix B) that obtaining
the large-x behavior (58) requires keeping the exact b
dependence of the dipole scattering cross section at small b,
namely 1 − ~VðbÞ ¼ 1 − bμK1ðbμÞ ∝ b2 log ð1=b2Þ. This
can be simply understood as follows. At large Ω ≫

ffiffiffi
r

p
,

the integral (53) is not dominated by B2 ∼ 1=r any longer,
but by smaller values B2 ≲ 1=Ω2 ≪ 1=r, and hence the
importance of keeping the log ð1=B2Þ factor in the expo-
nential when Ω → ∞. The harmonic oscillator approxima-
tion would not be adequate to derive the parametric
behavior of the coherent spectrum in the “large”-x domain
x ≫

ffiffiffiffiffiffiffi
μ2r

p
=jqj.

Although Eq. (58) arises from smaller impact parameters
than those contributing to Eq. (56), we can still verify the
consistency of the assumption jkj ≪ jqj used throughout
our study. Indeed, here we have b2 ¼ B2=μ2∼
1=ðμ2Ω2Þ ∼ 1=ðx2q2Þ, implying k2 ∼ x2q2 ≪ q2.
A simple approximation
Although S½Ω; r� is not exactly a scaling function of Ω0

(in particular when Ω0 ≳ 1), we consider the function

Sappr½Ω0�≡ log

�
1þ 1

Ω02

�
¼ log

�
1þ r log r

Ω2

�
ð59Þ

as a simple approximation to S½Ω; r�. In the small-Ω limit,
Eq. (59) has the same parametric behavior as S½Ω; r� [see
Eq. (55)]. At large Ω, both Sappr½Ω0� and S½Ω; r� behave as
1=Ω2, with however the normalization of Sappr½Ω0� being
enhanced (by a factor log r) when compared to S½Ω; r�
[see Eq. (57)].
The numerical accuracy of Eq. (59) is illustrated in

Fig. 5 (right). The deviations of Sappr½Ω0� (dashed lines)
with respect to S½Ω; r� (solid lines) are limited to roughly a
percent when Ω0 ≤ 10−1 and to ∼10% at Ω0 ¼ 1. When
Ω0 ≫ 1, Sappr½Ω0� has a correct shape but not the correct

normalization, and the exact expression (52) should be
preferred.
In summary, when r ¼ L=λg is large enough, Sappr½Ω0� is

a good approximation to S½Ω; r� up to values Ω0 ≲Oð1Þ,
and the spectrum (51) can thus be approximated by

x≲
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2r logr

p
jqj ⇒x

dI
dx

≃ð2CR−NcÞ
αs
π
log

�
1þμ2r logr

x2q2

�
:

ð60Þ

Let us remark that the logarithm in the expression (60) at
all orders in opacity (r ≫ 1) can be formally obtained from
the logarithm in the spectrum (32) at first order in opacity
(r ≪ 1) by replacing the typical transverse exchange in a
single scattering μ2 by the typical exchange acquired in
multiple Coulomb rescattering, given by μ2r log r when
r ≫ 1 [25].14

As already mentioned in Sec. I, in Refs. [8,9] the result
(1) was obtained (in the case CR ¼ Nc) from a calculation
at first order in opacity, by a similar formal replacement.
The above calculation shows that this procedure actually
yields a correct approximation to the exact coherent
spectrum (51) at moderate x, provided Δq2⊥ðLÞ in
Eq. (1) is understood as the typical exchange in multiple
Coulomb scattering Δq2⊥ðLÞ ¼ q̂L log ðL=λgÞ. At large x
however, the result (1) [with Δq2⊥ðLÞ ¼ q̂L log ðL=λgÞ]
overestimates by a factor log ðL=λgÞ the limiting behavior
(58) of the exact spectrum (51).
As already mentioned, deriving the large-x limit (58)

requires working beyond the harmonic oscillator approxi-
mation. In particular, the spectrum (3) (corresponding to the
case of q → q scattering mediated by color-singlet t-
channel exchange), which can be shown to ensue from
Ref. [13] where the harmonic oscillator approximation is
used, does not capture the proper large-x limit of the
spectrum. Note that Eq. (3) coincides15 with Eq. (54),
which as we discussed holds only in the small-x region [see
the discussion after Eq. (54)].

3. Average energy loss

The average coherent energy loss associated to the exact
spectrum (51) reads

Δpþ ¼ pþ
Z

∞

0

dxx
dI
dx

¼ ð2CR − NcÞ
αs
π

μ

q⊥
pþ

Z
∞

0

dΩS½Ω; r�: ð61Þ

14Note also that when r ≪ 1 the overall factor L=λg in Eq. (32)
can be interpreted as the rescattering probability, L=λg ¼
r≃ 1 − e−r, which becomes unity when r ≫ 1.

15Putting aside the overall color factor, and identifying Q2
sA in

Eq. (3) as the typical transverse exchange in the target nucleus A.
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When r ≫ 1, the first moment of S½Ω; r� is obtained
starting from Eq. (53) and using the identitiesR
∞
0 dΩJ0ðΩBÞ ¼ 1=B and

R
∞
0

du
u
ffiffi
u

p ð1 − e−u=4Þ ¼ ffiffiffi
π

p
,

Z
∞

0

dΩS½Ω; r�≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πr log r

p
: ð62Þ

We thus obtain

Δpþ ≃
r≫1

ð2CR − NcÞ
αsffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2r log r

p
q⊥

pþ: ð63Þ

Similarly to the result (33) obtained at first order in
opacity, the average energy loss is proportional to pþ. The
integral in Eq. (61) is dominated by Ω ∼Oð ffiffiffiffiffiffiffiffiffiffiffiffi

r log r
p Þ, i.e.,

x ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2r log r

p
=q⊥. This stresses that our calculation

assuming soft radiation (x ≪ 1) is consistent provided
the accumulated transfer jlj ¼ jPlij ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2r log r

p
is

smaller than q⊥. Note that the calculation of the average
loss using the approximation (59) instead of S½Ω; r� would
overestimate the exact result (63) by a factor

ffiffiffi
π

p
. This is

because in the region Ω ∼Oð ffiffiffiffiffiffiffiffiffiffiffiffi
r log r

p Þ [equivalently
Ω0 ∼Oð1Þ], deviations of Sappr½Ω0� with respect to
S½Ω; r� are formally of order Oð1Þ.

IV. FULLY COHERENT MEDIUM-INDUCED
RADIATION IN OTHER PROCESSES

Up to now the hard process was chosen as the small-
angle (but large enough q⊥) scattering of a fast parton
(either a quark or a gluon); see Fig. 1(a). In this case the
fully coherent induced radiation derived above can be
interpreted as the radiative energy loss of an asymptotic
quark or gluon. The coherent radiation originates domi-
nantly from the interference between initial- and final-state
radiation [see Fig. 3(c)], and should arise independently of
the hard process as long as the energetic incoming and
outgoing particles are colored.
To illustrate this, we study in this section two examples

where the nature of the charged particle is modified by the
hard process. First, we consider the case of an incoming fast
quark being scattered at small angle (in the target rest
frame) to an outgoing fast gluon through color-triplet
t-channel exchange; see Fig. 6(a). Second, we study the
scattering of a fast gluon to a fast pointlike color-octet state

of mass M via single-gluon exchange; see Fig. 6(b). This
case is suited to the production of an octet heavy quark pair
in gluon-gluon fusion, gg → ½QQ̄�8, in the approximation
where the QQ̄ pair is compact. In those examples the
coherent radiation arises from the interference between
emission amplitudes off different objects, and cannot be
interpreted as the energy loss of a well-defined particle. It
might be called “parton energy loss” by abuse of language,
but it is simply the medium-induced radiation associated to
a given hard process.

A. Fast quark scattered to a fast gluon

Focussing as before on radiation with large formation
time tf ≫ L, the medium-induced radiation spectrum
associated to the hard process of Fig. 6(a) is given, at first
order in opacity, by some sets A, B, C of diagrams
analogous to those of Fig. 3. When tf ≫ L, the sets A
and B corresponding to purely final- and initial-state
radiation vanish, and what remains is the set C of
interference diagrams.
In the present situation we must distinguish the cases

where the rescattering center located at z1 is before or after
the hard scattering vertex. For z1 > zh, what rescatters is a
color octet [see Fig. 6(a)], giving a contribution to the
spectrum similar to Eq. (25),

x
dI
dx

����
z1>zh

¼ αs
π2

Z
d2k

Z
L

zh

dz1
λg

Z
d2lVðlÞCa

Fa
; ð64Þ

where the set Ca is given in Fig. 7(a) and Fa ¼ N2
cCF. For

z1 < zh, what rescatters is a color triplet, yielding the
contribution

x
dI
dx

����
z1<zh

¼ αs
π2

Z
d2k

Z
zh

0

dz1
λq

Z
d2lVðlÞCb

Fb
; ð65Þ

where the set Cb is given in Fig. 7(b) and Fb ¼ NcC2
F. Note

the proper normalization with respect to the quark mean
free path λq in Eq. (65).
Applying the pictorial rules of Fig. 2 we easily obtain

1

Nc

Ca

Fa
¼ CF

N2
c

Cb

Fb
¼

�
k
k2

−
k − l

ðk − lÞ2
�
·

k − xq
ðk − xqÞ2 : ð66Þ

Using CFλq ¼ Ncλg, the contributions from z1 > zh and
z1 < zh add up to

x
dI
dx

¼ Nc
αs
π2

L
λg

Z
d2k

Z
d2lVðlÞ

�
k
k2

−
k − l

ðk − lÞ2
�

·
k − xq

ðk − xqÞ2 : ð67Þ

The medium-induced spectrum associated to the hard
process of Fig. 6(a) is thus identical to the spectrum (29)

FIG. 6. (a) Scattering of an energetic quark to an energetic
gluon via color-triplet t-channel exchange. (b) Scattering of an
energetic gluon to an energetic massive pointlike color-octet state
(denoted by the dashed line) via single-gluon exchange.
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associated to the hard scattering of an asymptotic gluon.16

The spectrum (67) and associated radiative loss were
evaluated analytically in Sec. III B 1 [see Eqs. (32)
and (33)]. As expected, a fully coherent radiative loss pro-
portional to pþ arises despite different (but nonzero) initial
and final color charges in the process of Fig. 6(a). The
above results trivially extend to all orders in opacity, as well
as to the process of a fast gluon scattered to a fast quark.

B. Fast gluon scattered to a compact massive color octet

We now consider a hard process where an octet state of
massM is produced in gluon-gluon fusion; see Fig. 6(b). For
soft gluon radiationwith tf ≫ L, the precise partonic content
of the octet state (QQ̄, QQQ,...) as well as the internal
structure of the hard process producing it [the blob in
Fig. 6(b)] is irrelevant as long as the octet state is compact
enough.Within this assumption the amplitude for soft gluon
emission off the final state is effectively the same as off a
pointlike, massive gluon [the dashed line in Fig. 6(b)].
The calculation of the fully coherent radiation spectrum

is thus identical to the case of an asymptotic gluon, up to
the replacement

k − xq
ðk − xqÞ2 →

k − xq
ðk − xqÞ2 þ x2M2

ð68Þ

to account for the mass dependence of the gluon emission
vertex off the final state.

1. First order in opacity

At first order in the opacity expansion, we start from the
expression (29) modified accordingly,

x
dI
dx

¼ Nc
αs
π2

L
λg

Z
d2k

Z
d2lVðlÞ

�
k
k2

−
k − l

ðk − lÞ2
�

·
k − xq

ðk − xqÞ2 þ x2M2
: ð69Þ

The explicit calculation is performed along the same lines
as in Sec. III B 1. We first average over the azimuthal angles
of l and q,

Z
dφl

2π

�
k
k2

−
k − l

ðk − lÞ2
�
¼ Θðl2 − k2Þ k

k2
; ð70Þ

Z
dφq

2π

k − xq
ðk − xqÞ2 þ x2M2

¼ 1

2

�
1þ k2 − x2M2⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2 − x2M2⊥Þ2 þ 4x2M2k2
p

�
k
k2

≡ Φðk2Þ k
k2

;

ð71Þ

where M⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

p
, to obtain

x
dI
dx

¼ Nc
αs
π

L
λg

Z
∞

0

dl2πVðlÞ
Z

l2

0

dk2

k2
Φðk2Þ: ð72Þ

Integrating by parts yields

x
dI
dx

¼ Nc
αs
π

L
λg

Z
∞

0

dl2
μ2

l2ðl2 þ μ2ÞΦðl
2Þ: ð73Þ

With the change of variable u ¼ l2=ðx2M2⊥Þ we arrive at

FIG. 7. Sets Ca and Cb of diagrams contributing to the radiation spectrum when z1 > zh and z1 < zh respectively [see Eqs. (64) and
(65)], as well as color factors Fa and Fb.

16The fact that those spectra have an identical color factorNc is
simply understood as follows. In general, the overall color factor
of the fully coherent radiation, due to the structure of the
interference term, is of the form ∼2Ta

RT
a
R0 , where the incoming

and outgoing particles are in the color representations R and R0
respectively. Using 2Ta

RT
a
R0 ¼ ðTa

RÞ2 þ ðTa
R0 Þ2 − ðTa

R − Ta
R0 Þ2 ¼

CR þ CR0 − Ct, where Ct is the color charge of the t-channel
exchange, we recover the factor Nc þ Nc − Nc ¼ Nc in the case
of asymptotic gluon scattering considered in Sec. III, and the
factor CF þ Nc − CF ¼ Nc in the present case.
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x
dI
dx

¼ Nc
αs
π

L
λg
ΣðΩ⊥; δÞ; Ω⊥ ≡ xM⊥

μ
; δ≡ M

M⊥
;

ð74Þ

where the function Σ is defined as

ΣðΩ⊥; δÞ≡
Z

∞

0

du
2uðΩ2⊥uþ 1Þ

�
1þ u − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu − 1Þ2 þ 4uδ2
p

�
:

ð75Þ
The integral over u can be evaluated analytically, providing
an exact expression of the spectrum (74). However, a
simple approximation to the spectrum can be obtained by
examining the limiting behaviors of ΣðΩ⊥; δÞ.

(i) For Ω⊥ ≪ 1 and fixed δ (note that 0 ≤ δ ≤ 1), the
integral over u defining ΣðΩ⊥; δÞ is dominated by
the logarithmic interval 1 ≪ u ≪ 1=Ω2⊥, leading to

ΣðΩ⊥; δÞ ≃
Ω⊥≪1

log

�
1

Ω2⊥

�
: ð76Þ

(ii) When Ω⊥ ≫ 1, the u integral can be shown to be
dominated by 1=Ω2⊥ ≪ u ≪ 1,

ΣðΩ⊥; δÞ ≃
Ω⊥≫1

1

Ω2⊥

Z
1

1=Ω2⊥

du
2u2

½2δ2u�≃ δ2 logðΩ2⊥Þ
Ω2⊥

:

ð77Þ

Those limiting behaviors suggest the simple approximation

ΣðΩ⊥; δÞ≃ log

�
1þ 1

Ω2⊥

�
; ð78Þ

which reproduces the leading parametric behaviors of
ΣðΩ⊥; δÞ in the limits Ω⊥ ≪ 1 and Ω⊥ ≫ 1. The spectrum
(74) can thus be approximated as

x
dI
dx

≃ Nc
αs
π

L
λg
log

�
1þ μ2

x2M2⊥

�
: ð79Þ

This result is simply obtained from the spectrum (32) by
replacing the hard scale q⊥ (in the M ¼ 0 case of
Sec. III B 1) byM⊥. The spectrum (79) is not exact (except
when M ¼ 0), but as mentioned above exhibits a correct
parametric dependence. In particular it yields the average
radiative loss

Δpþ ≡ pþ
Z

dxx
dI
dx

¼ Ncαs
L
λg

μ

M⊥
pþ; ð80Þ

to be compared to the exact loss derived from Eq. (74),

Δpþ ¼ Ncαs
L
λg

μ

M⊥
pþΞðδÞ; ΞðδÞ≡

Z
∞

0

dy
π
Σðy; δÞ:

ð81Þ

Equations (80) and (81) differ only by the factor ΞðδÞ,
which can be checked to be a monotonous function of
δ ¼ M=M⊥, with values 1 and π=2 at δ ¼ 0 and δ ¼ 1
respectively. Thus, the factor ΞðδÞ does not affect the
parametric dependence of Eq. (80).
At first order in opacity, the medium-induced radiation

associated to the production of a heavy color-octet state
[Fig. 6(b)] is parametrically similar to that associated to the
scattering of an energetic (massless) gluon studied in
Sec. III B 1, up to the change in the hard scale,
q⊥ → M⊥. Below we verify that this statement still holds
when resumming all orders in opacity.

2. All orders in opacity

At all orders in opacity, the spectrum is given by the
expression (45) modified according to Eq. (68),

x
dI
dx

¼ Nc
αs
π2

Z
d2k½f ðk; rÞ − f 0ðkÞ� ·

−ðk − xqÞ
ðk − xqÞ2 þ x2M2

:

ð82Þ

The spectrum can be derived as in Sec. III C 1. Only one
additional identity is needed,

Z
d2k

k
k2 þ x2M2

e−ik·b ¼ ~f 0ðbÞxMbK1ðxMbÞ: ð83Þ

The final result is

x
dI
dx

¼ Nc
αs
π
S½Ω; r;ΩM�; Ω≡ xjqj

μ
;

r≡ L
λg
; ΩM ≡ xM

μ
; ð84Þ

S½Ω;r;ΩM� ¼ 2

Z
∞

0

dB
B

J0ðΩBÞf1− exp ½−rð1−BK1ðBÞÞ�g

×ΩMBK1ðΩMBÞ: ð85Þ
Comparing Eqs. (84) and (85) to Eqs. (51) and (52), we see
that the presence of the mass parameter M introduces the
factor ΩMBK1ðΩMBÞ, which as expected tends to unity
when M → 0.
Using the same procedure as in Sec. III C 2, we find that

at fixed r ≫ 1, the function S½Ω; r;ΩM� can be approxi-
mated by

S½Ω; r;ΩM�≃ Sappr½Ω; r;ΩM�≡ log

�
1þ r log r

Ω2⊥

�
; ð86Þ

where Ω⊥ ≡ xM⊥=μ ¼ ðΩ2 þΩ2
MÞ1=2 was introduced

before. Thus the spectrum (84) takes the simpler form
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x
dI
dx

≃ Nc
αs
π
log

�
1þ μ2r log r

x2M2⊥

�
: ð87Þ

As was the case at first order in opacity (see previous
section), at all orders in opacity the spectrum (87) is
obtained from that of an energetic massless gluon (60)
by replacing q⊥ → M⊥. The result (87) corresponds to the
spectrum derived semiheuristically in Refs. [8] and [9], and
used for phenomenology in Refs. [9–11].
The numerical accuracy of Eq. (86) is shown in Fig. 8

for various values of r and of the variable δ≡M=M⊥.
The case δ ¼ 0 (M ¼ 0) was studied in Sec. III C 2;
see Fig. 5.

V. PURELY INITIAL-/FINAL-STATE
MEDIUM-INDUCED RADIATION

In hard processes where either the incoming or the
outgoing energetic particle is colorless (see Fig. 9), the
interference responsible for the fully coherent radiation is
absent, and the induced radiation reduces to purely final- or
purely initial-state radiation.17 In the present section we
briefly review the latter contributions and recover known
results. For simplicity we work at first order in the opacity
expansion. The calculations at all orders in opacity
[6,20,28] do not bring any important qualitative change.

As we have seen in Sec. III B 1, initial- and final-state
radiation cancels out in the (k-integrated) radiation spec-
trum in the limit tf ≫ L; see Eqs. (26) and (27). This
means that assuming tf ≫ L is too drastic to derive
initial-/final-state radiation. The purely initial/final average
energy loss turns out to be dominated by tf ∼ L, scaling as
Δpþ ∝ L2 and independent of pþ (up to logarithms); see
Eq. (96). This type of energy loss, Δpþ ∝ L2, received
much attention in the last two decades. We emphasize that
in situations where the interference between initial- and
final-state radiation cannot be neglected (as studied in the
previous sections), Δpþ ∝ L2 is actually negligible at
large enough pþ, compared to the fully coherent
loss Δpþ ∝ pþ.

A. Final-state radiation

A toy model for a process where only final-state
radiation contributes is shown in Fig. 9(a). Here the hard
transfer q is irrelevant and we can choose a frame where the
final energetic quark has zero transverse momentum. At
order n ¼ 1 in the opacity expansion, the spectrum for
final-state radiation off an energetic quark is given by
[compare to Eq. (22)]

ð88Þ
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FIG. 8. The function S½Ω; r;ΩM� defined in Eq. (85) (solid lines) compared to the approximation Sappr defined in Eq. (86) (dashed
lines), as a function of the variable Ω0⊥ ≡ Ω⊥=

ffiffiffiffiffiffiffiffiffiffiffiffi
r log r

p
, for different values of r (r ¼ 3, 4, 5, 7, 10) and of δ≡M=M⊥: δ ¼ 0.2 (left),

δ ¼ 0.5 (middle), and δ ¼ 0.8 (right).

17In Ref. [27] where both incoming and outgoing energetic particles carry color, but the interference term is simply neglected, the
medium-induced radiation reduces to the incoherent sum of initial- and final-state radiation.
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where only one generic contribution is shown is the sum of
diagrams. Since we do not assume tf ≫ L any longer,
diagrams where the gluon emission time t in the amplitude

(or t� in the conjugate amplitude) occurs within the target,
zh < t < z1, cannot be neglected. Such diagrams are
proportional to a difference of phase factors ∼ðeiφðz1Þ −
eiφðzhÞÞ which can be derived in time-ordered perturbation
theory [6]. Taking into account those phase factors, the
rules of Fig. 2(a) for gluon emission vertices must be
modified to the rules defined in Fig. 10.
As can be easily verified, among the diagrams contrib-

uting to Eq. (88), those where t and t� belong to the same
time interval (i.e., either t; t� > z1 or 0 < t; t� < z1) give a
vanishing contribution to the k-integrated radiation spec-
trum. This property was already mentioned in Sec. III B 1.
The remaining diagrams sum up to18

ð89Þ

Inserting the latter result in Eq. (88) and shifting the
variable k → l − k in the first term we get

x
dI
dx

����
FS

¼ αs
π2

Z
d2k

Z
L

zh

dz1
λq

Z
d2lVðlÞ2Ncð1 − cosφ0Þ

×

�
1

ðk − lÞ2 −
k · ðk − lÞ
k2ðk − lÞ2

�
: ð90Þ

Finally, integrating over z1 and using CFλq ¼ Ncλg yields

x
dI
dx

����
FS

¼ CFαs
π2λg

Z
d2k

Z
d2lVðlÞ 2k · l

k2ðk − lÞ2

×

�
L −

kþ

ðk − lÞ2 sinL
ðk − lÞ2

kþ

�
; ð91Þ

where L is the distance crossed by the quark from the hard
production point zh ¼ 0 to the boundary of the medium.
Clearly, the spectrum for purely final-state radiation off a
color charge CR is obtained by replacing CF → CR in the
expression (91), which then coincides with the final-state
radiation spectrum derived in Ref. [27].
The k-integrated spectrum (91) is mathematically well

defined; in particular there is no singularity at k ¼ 0 or
k ¼ l. Changing the variable k → l − k, Eq. (91) becomes

x
dI
dx

����
FS

¼ CFαs
π2λg

Z
d2k
k2

�
L −

kþ

k2
sinL

k2

kþ

�

×
Z

d2lVðlÞ 2l · ðl − kÞ
ðk − lÞ2 : ð92Þ

The integral over l can be performed using

Z
dφl

2π

2l · ðl − kÞ
ðk − lÞ2 ¼

Z
dφl

2π

�
1þ l2 − k2

ðk − lÞ2
�

¼ 2Θðl2 − k2Þ; ð93Þ

and introducing the variable u ¼ kþ=ðk2LÞ we obtain

x
dI
dx

����
FS

¼ 2CFαs
πλg

L2μ2

kþ

Z
∞

0

du
1 − u sin 1

u

1þ μ2L
kþ u

: ð94Þ

When μ2L=kþ ≪ 1, the u integral simplifies toR∞
0 duð1 − u sin 1

uÞ ¼ π
4
, giving

x
dI
dx

����
FS

¼ CFαs
2λg

L2μ2

xpþ ðxpþ ≫ μ2LÞ: ð95Þ

The spectrum arises from an integration domain where
u ∼Oð1Þ, i.e., from formation times tf ∼ kþ=k2 ∼ L, as
expected.

18The virtual photon participating in the hard process [see
Fig. 9(a)] is not drawn in Eq. (89).

FIG. 9. (a) Sudden acceleration of a quark in the γ�q → q hard
process. (b) Fast quark annihilation in the qq̄ → γ� hard process.
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To logarithmic accuracy the associated average energy
loss reads

ΔpþjFS ≡ pþ
Z

dxx
dI
dx

����
FS

¼ CFαs
2

L2μ2

λg
log

pþ

μ2L
; ð96Þ

arising from the logarithmic interval μ2L ≪ kþ ≪ pþ. The
result (96) was derived previously; see for instance
Ref. [26]. When pþ → ∞ the purely final-state energy

loss is independent of pþ (up to logarithms) and is
proportional to L2.

B. Initial-state radiation

In the case where the outgoing energetic particle par-
ticipating in the hard process carries no color charge, as in
Fig. 9(b), the medium-induced radiation arises solely from
the initial state. The derivation of the spectrum is the same
as for final-state radiation, up to a few modifications. The
diagrams contributing to the initial-state radiation spectrum

ð97Þ

are evaluated using the pictorial rules defined in Fig. 10(b), which differ from those of Fig. 10(a) only in the phase factors.
The only nonvanishing contribution to the k-integrated spectrum (97) arises from the set of diagrams

ð98Þ

As a result,

x
dI
dx

����
IS
¼ CFαs

π2λg

Z
d2k

Z
d2lVðlÞ 2l · ðl − kÞ

k2ðk − lÞ2 ×

�
L −

kþ

k2
sinL

k2

kþ

�
; ð99Þ

where L is the distance travelled by the quark in the medium up to the point zh ¼ 0.

FIG. 10. Pictorial rules for (a) final-state (z1 > zh) and (b) initial-state (z1 < zh) emission vertices supplemented by phase factors. For
convenience we set zh ¼ 0, and we define φ≡ z1k2=kþ, φ0 ≡ z1ðk − lÞ2=kþ.
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Thus, provided the radiated gluon transverse momentum
k is integrated over, the purely initial- and purely final-state
radiation spectra are identical; see Eqs. (92) and (99). The
associated average energy loss is given by Eq. (96).

VI. SUMMARY AND DISCUSSION

In this study we have derived, to all orders in the opacity
expansion, and for the case of a Coulomb rescattering
potential, the medium-induced gluon radiation spectrum
associated to the hard forward scattering of an energetic
parton. The latter spectrum arises from gluon formation
times scaling as the parton energy, tf ∝ E, corresponding to
fully coherent radiation (i.e. tf ≫ L) over the medium size.
In the light-cone gauge Aþ ¼ 0, the induced coherent
spectrum is dominated by the interference between initial-
and final-state emission amplitudes.
Using the result (60) for a parton of color charge CR

(process q → q or g → g), the demonstration in Sec. IVA
that Eq. (60) also holds (up to the color factor) for processes
where the nature of the fast parton is changed in the hard
scattering (q → g and g → q), and finally the result (87) for
the scattering of a gluon to a massive compact color octet,
we infer the following general expression for the induced
coherent spectrum:

x
dI
dx

¼ ðCR þ CR0 − CtÞ
αs
π
log

�
1þ Δq2⊥ðLÞ

x2M2⊥

�
: ð100Þ

The color factor trivially follows from the structure of the
interference term. The latter is indeed of the form ∼2Ta

RT
a
R0

(where Ta
R and Ta

R0 are the color generators of the incoming
and outgoing parton color representations R and R0), which
can be written as

2Ta
RT

a
R0 ¼ ðTa

RÞ2 þ ðTa
R0 Þ2 − ðTa

R − Ta
R0 Þ2

¼ CR þ CR0 − Ct; ð101Þ

with CR, CR0 the incoming and outgoing color charges, and
Ct the color charge of the t-channel exchange. We
emphasize that the factor CR þ CR0 − Ct holds at any finite
Nc, and is negative in the particular q → q case, where
CR þ CR0 − Ct ¼ 2CF − Nc ¼ −1=Nc. We argued in
Sec. II E that a medium-induced energy gain for the
q → q process, although surprising, could have been
anticipated from the features of the total radiation spectrum
associated to q → q. Note however that the negativity of the
induced spectrum associated to q → q is in general not a
specificity of the quark, but depends on the t-channel color
exchange Ct. In particular, the induced spectrum associated
to g → g would also be negative in an academic situation
where Ct would be constrained to satisfy Ct > 2Nc.
A natural question to ask is whether this negative color

factor could have important phenomenological conse-
quences. Although phenomenology is not the purpose of
this paper, let us mention a couple of observables which

could be sensitive to an energy gain arising from a negative
medium-induced gluon spectrum. The production of pho-
tons in proton-nucleus (p–A) collisions is likely dominated
by the Compton scattering channel, q → qγ, at forward
rapidity. Although this process is formally 1 → 2, it was
shown in Ref. [29] that CR0 should be taken as the global
color charge of the two-particle final state; consequently,
the color factor of the medium-induced gluon spectrum in
q → q and q → qγ should be identical and equal to −1=Nc.
Similarly, forward light-hadron production should be sen-
sitive to the scattering channel q → qg, and therefore be
sensitive to the negative medium-induced gluon spectrum
when the final qg state is in the color-triplet representation
(unlike qγ, the qg state can be in other, higher-dimension,
color representations). In both channels, q → qγ and
q → ðqgÞ3, one could legitimately expect some enhance-
ment in p–A with respect to p–p collisions, although this
remains to be quantified. In particular, the smallness
of the color factor −1=Nc may somehow tame such an
enhancement.
The induced coherent spectrum explicitly depends on

the hard process (through Ct and the hard scale M⊥ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

p
). When the incoming particle is colorless

(CR ¼ 0), the interference between initial- and final-state
emission amplitudes is absent and fully coherent radiation
vanishes (which formally follows by noting that when
CR ¼ 0, color conservation implies CR0 ¼ Ct). In this
case, we verified in Sec. V (at first order in the opacity
expansion) that the spectrum found in our setup arises from
formation times tf ≲ L and coincides with previously
known results [26,27].
Strictly speaking, Eq. (100) is an approximation to the

exact spectrum, which however has the correct parametric
behavior when x ≪ Δq⊥ðLÞ=M⊥ (see Secs. III C 2 and
IV B 2). In the case of a Coulomb scattering potential
considered in our study, the typical transverse broadening
entering Eq. (100) reads Δq2⊥ðLÞ≃ q̂L logL=λg at large L
(specifically when logL=λg ≫ 1; see Ref. [25]). We how-
ever found that Eq. (100) is numerically a very accurate
approximation to the exact coherent spectrum as soon as
logL=λg ≥ 1, i.e. already at moderate values of L, and up to
values of x ∼OðΔq⊥ðLÞ=M⊥Þ. We have seen that at larger
x, Δq⊥ðLÞ=M⊥ ≪ x ≪ 1, the parametric behavior
xdI=dx ∝ Δq2⊥ðLÞ=ðx2M2⊥Þ of Eq. (100) does not repro-
duce the proper normalization of the exact spectrum. In the
massless case, it overestimates [by a factor log ðL=λgÞ] the
correct behavior xdI=dx ∝ q̂L=ðx2q2⊥Þ; see Eq. (58) and
Fig. 5 (right). In the massive case, the approximation
(100) is also inaccurate at large x; see Fig. 8. In the
large-x domain the exact expression of the spectrum
[Eqs. (84)–(85) in the massive case] should be preferred.
We stress that the spectrum (100) corresponds to the

induced coherent radiation in a target of finite size L with
respect to an ideal target of zero size. For the sake of the
following discussion, we introduce the induced spectrum in
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p–A collisions with respect to p–p collisions, defined as the
difference of the spectrum (100) for a target nucleus A and
a proton target,

x
dI
dx

����
pA−pp

¼ðCRþCR0 −CtÞ
αs
π
log

�
x2M2⊥þΔq2⊥ðLAÞ
x2M2⊥þΔq2⊥ðLpÞ

�
:

ð102Þ

In some aspects, our study of coherent gluon radiation
resembles some studies of gluon radiation in the saturation
framework, however with a crucial difference: in the
saturation formalism, the focus is usually on that part of
gluon production which is process independent (and related
to the unintegrated or kt-dependent gluon distribution in
the target), whereas we concentrated here on the process-
dependent part of gluon radiation.
To illustrate this point, it is instructive to compare our

study to the study of gluon production in nuclear deep
inelastic scattering and p–A collisions of Ref. [14]. In this
work, the focus is on the contributions to the total, k⊥-
differential radiation spectrum which exhibit a collinear
(logarithmic) singularity when k⊥ → 0. As a consequence,
gluon production in p–A collisions is dominated (in light-
cone gauge) by purely initial- and purely final-state
radiation. The interference term,19

x
dI

dxd2~k⊥

����
pA;int

¼ −2CF
αs
π2

1 − e−k
2⊥=Δq2⊥ðLAÞ

k2⊥
; ð103Þ

is nonlogarithmic when k⊥ → 0 and is thus neglected
in Ref. [14].
However, considering medium-induced instead of total

radiation in the setup of Ref. [14], it is straightforward to
check that purely initial- and final-state radiation (inte-
grated over ~k⊥) cancels out (as in the present study),
leaving only a contribution from the interference term.
Thus, in Ref. [14] the medium-induced spectrum can be
simply obtained by subtracting from Eq. (103) a similar
contribution in p–p collisions,

x
dI

dxd2~k⊥

����
pA−pp

¼ −2CF
αs
π2

e−k
2⊥=Δq2⊥ðLpÞ − e−k

2⊥=Δq2⊥ðLAÞ

k2⊥
:

ð104Þ

Integrating Eq. (104) over ~k⊥ yields

x
dI
dx

����
pA−pp

¼ 2CF
αs
π
log

�
Δq2⊥ðLAÞ
Δq2⊥ðLpÞ

�
; ð105Þ

arising from the domainΔq2⊥ðLpÞ ≪ k2⊥ ≪ Δq2⊥ðLAÞ. This
emphasizes that the induced contribution (105) lies beyond
the scope of the k⊥ → 0 limit [which formally implies
k2⊥ ≪ Δq2⊥ðLpÞ] used in Ref. [14].
Quite remarkably, Eq. (105) can be obtained from the

general expression (102) by the formal replacements
Ct → 0, M⊥ → 0 [and CR; CR0 → CF, since Eq. (105)
corresponds to the scattering of a fast quark].20 This can
be understood from the fact that there is no “hard process”
in the setup of Ref. [14], with the fast quark undergoing
only soft rescatterings in the nuclear target.
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APPENDIX A: DERIVATION OF EQ. (22)

In this appendix we briefly outline the derivation
of Eq. (22).
The soft radiation intensity accompanying the (hard)

production of a parton of momentum p0 is given by the ratio

dI ¼ dσradðp0; kÞ
dσprodðp0Þ ; ðA1Þ

where the numerator is the radiative cross section for
producing a two-parton final state (the leading parton p0
and a soft radiated gluon of momentum k) while the
denominator represents the inclusive cross section for
producing the leading parton. Formally the latter inclusive
cross section includes the two-parton production cross
section entering the numerator, integrated over the radiated
gluon phase space. However, to leading order in αs, the
denominator can be approximated by the production cross
section of the leading parton without soft gluon emission.
Moreover, assuming that soft rescatterings of the leading
parton do not affect dσprodðp0Þ, the latter can be calculated

19In our notations, Eq. (103) corresponds to Eq. (60) of
Ref. [14] and represents the contribution of the interference to
the total gluon radiation spectrum off a fast massless quark in p–A
collisions.

20Note that Eq. (105) can also be obtained (including the color
factor) directly from the q⊥ → 0 limit of the expression (3)
(which expression follows from the setup of Ref. [13]). Indeed, as
mentioned in Ref. [13], when q⊥ → 0 the setups of Refs. [14] and
[13] coincide. This is because both studies consider the q → q
process, and Ct ¼ 0 in the model of Ref. [13].
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as if there were no scattering center in the medium, i.e., at
zeroth order in the opacity expansion [20].
On the contrary, the numerator of Eq. (A1) is modified

by soft rescatterings and must be represented as an
expansion in the number n of scattering centers encoun-
tered by the leading parton. The n ¼ 0 term in this
expansion coincides with the radiation cross section in
the absence of a medium, and thus cancels out in the
medium-induced radiation intensity defined as

dIinduced ≡ dI − dIvacuum ¼
X∞
n¼1

dσðnÞradðp0; kÞ
dσprodðp0Þ ≡X∞

n¼1

dIðnÞ:

ðA2Þ
Each term in the sum over n contains an implicit average

over the positions of the scattering centers on which the
parton-gluon system rescatters. Assume there are N ≫ 1
scattering centers overall, which are randomly but, on the
average, uniformly distributed in a layer of thickness L and
transverse area S ≫ 1=μ2. [Recall that 1=μ is the screening
length of the Coulomb scattering potential (24).] In the
calculation we consider the interaction of each scattering
center to the lowest order in αs. This implies that each of the
n scattering centers either contributes a single Born
interaction in both the amplitude and the conjugate, or it
can contribute a double Born interaction in the amplitude
with no interaction in the conjugate amplitude (or vice
versa), thus providing a so-called virtual correction to the
aforementioned single-Born interaction.
Averaging over the position of each scattering center

introduces a factor ðRdziRd2xiÞ=ðLSÞ. Accounting for the
different possibilities to choose n1 scattering centers
contributing via single Born interaction together with n2
and n2̄ centers contributing double Born interactions in the
amplitude and conjugate amplitude respectively, brings a
factor ðNn1Þð

N−n1
n2

ÞðN−n1−n2
n2̄

Þ. Integrating over d2xi ensures the
same transverse momentum transfer from the scattering
center i in the amplitude and its conjugate for a single Born
scattering, or a zero net momentum transfer in a double-
Born interaction [20]. For N → ∞ one can use ðNnÞ≃
Nn=n! to obtain

dIðnÞ ¼ 1

dσprodðp0Þ
�Yn
i¼1

Z
L

0

dzi

Z
d2lid2l0

iδ
ð2Þðli − li

0Þ
�

×
X

n1;n2;n2̄

νn

n1!n2!n2̄!
dσradðp0; k; fli;l0

igÞ
d2l1d2l0

1…d2lnd2l0
n
; ðA3Þ

where ν≡ N=ðLSÞ is the number of scattering centers per
unit volume in the target, n ¼ n1 þ n2 þ n2̄, and n1 ≥ 1.
The next observation concerns the square of the

matrix element entering the cross section dσradðp0;
k; fli;l0

igÞ=d2l1d2l0
1…d2lnd2l0

n in Eq. (A3). In our
setup of small-angle scattering and gluon radiation with
large formation times, each rescattering contributes to the

Lorentz structure a factor equal to the elastic scattering
cross section dσAbelianel ðliÞ=d2li of an “Abelian” parton
with charge g. This factor is parametrized as

dσAbelianel ðliÞ
d2li

¼ σAbelianel VðliÞ; ðA4Þ

where VðlÞ is the normalized Coulomb potential defined in
Eq. (24). The elastic cross section which corresponds to the
hard scattering cancels the denominator except for the color
factor dRCR. Therefore

dIðnÞ ¼ ðνσAbelianel Þn
dRCR

�Yn
i¼1

Z
L

0

dzi

Z
d2liVðliÞ

�

×
X

n1;n2;n2̄

~σradðp0; k; fligÞ
n1!n2!n2̄!

ð2gÞ2 dkþd2k
2kþð2πÞ3 ; ðA5Þ

where the phase-space factor for the radiated gluon [see
Eq. (5)] and a factor ð2gÞ2 [see Eq. (4)] have been made
explicit, and the “reduced cross section” ~σrad contains only
the color factors and emission vertices computed using the
pictorial rules defined in Fig. 2. Introducing light-cone time
(or longitudinal position) ordering of the scattering centers,
zi < ziþ1 for i ¼ 1;…; n − 1, the permutations of the
scattering centers within the subsets of those contributing
via single-Born or double-Born interaction (in either the
amplitude or its conjugate) give n1!n2!n2̄! identical con-
tributions. Noting that CRνσ

Abelian
el ¼ 1=λR completes the

proof of Eq. (22).

APPENDIX B: LARGE-Ω LIMIT OF S½Ω; r�
Here we derive the behavior of the function S½Ω; r�

defined in Eq. (52) in the limit Ω → ∞ at fixed r. The
function S½Ω; r� can be written as

S½Ω; r� ¼
Z

∞

0

dBBJ0ðΩBÞαðBÞ; ðB1Þ

where

αðBÞ≡ 2

B2
f1 − exp ½−rð1 − BK1ðBÞÞ�g: ðB2Þ

Using

BJ0ðΩBÞ ¼
1

Ω
d
dB

BJ1ðΩBÞ ðB3Þ

a simple integration by parts of Eq. (B1) yields

S½Ω; r� ¼ −
1

Ω

Z
∞

0

dBJ1ðΩBÞBα0; ðB4Þ

where α0 ≡ dαðBÞ=dB. Now use

J1ðΩBÞ ¼
1

Ω
d
dB

ð1 − J0ðΩBÞÞ ðB5Þ
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to integrate Eq. (B4) by parts, leading to

S½Ω; r� ¼ 1

Ω2

Z
∞

0

dB½1 − J0ðΩBÞ�ðBα0Þ0

¼ r
Ω2

−
1

Ω2

Z
∞

0

dBJ0ðΩBÞðBα0Þ0: ðB6Þ

We used Bα0jB→0 ¼ −r, which can be verified from
Eq. (B2). When Ω → ∞, the integral in the second term
of Eq. (B6) vanishes due to the rapid oscillation of J0ðΩBÞ.
We thus obtain

S½Ω; r� ≃
Ω→∞

r
Ω2

: ðB7Þ
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