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We perform a coupled-channel analysis of pseudodata for the Dþ → K−πþπþ Dalitz plot. The
pseudodata are generated from the isobar model of the E791 Collaboration, and are reasonably realistic. We
demonstrate that it is feasible to analyze the high-quality data within a coupled-channel framework that
describes the final state interaction of Dþ → K−πþπþ as multiple rescatterings of three pseudoscalar
mesons through two-pseudoscalar-meson interactions in accordance with the two-body and three-body
unitarity. The two-pseudoscalar-meson interactions are designed to reproduce empirical ππ and πK̄
scattering amplitudes. Furthermore, we also include mechanisms that are beyond simple iterations of the
two-body interactions, i.e., a three-meson force, derived from the hidden local symmetry model. A picture
of hadronic dynamics in Dþ → K−πþπþ described by our coupled-channel model is found to be quite
different from those of the previous isobar-type analyses. For example, we find that the Dþ → K−πþπþ

decay width can get almost triplicated when the rescattering mechanisms are turned on. Among the
rescattering mechanisms, those associated with the ρð770ÞK̄0 channel, which contribute toDþ → K−πþπþ

only through a channel coupling, give a large contribution and significantly improve the quality of the fits.
The K−πþ s-wave amplitude from our analysis is reasonably consistent with those extracted from the E791
model independent partial-wave analysis; the hadronic rescattering and the coupling to the ρð770ÞK̄0

channel play a major role here. We also find that the dressedDþ decay vertices have phases, induced by the
strong rescatterings, that strongly depend on the momenta of the final pseudoscalar mesons. Although the
conventional isobar-type analyses have assumed the phases to be constant, this common assumption is not
supported by our more microscopic viewpoint.

DOI: 10.1103/PhysRevD.93.014005

I. INTRODUCTION

With the advent of charm and B factories, a large amount
of data for charmed-meson decays have been accumulated
in the last decades. Among a number of physical interests,
one appealing aspect of studying these charmed-meson
decays is that we can gain information about interactions
between light mesons and resonances. This was particularly
highlighted by the E791 Collaboration’s report on their
identification of the σ meson in the Dalitz plot of theDþ →
π−πþπþ decay [1]. A similar analysis was also made for
the Dþ → K−πþπþ decay to identify the κ resonance [2].
These findings triggered further analyses of the Dþ →
K−πþπþ Dalitz plot data, paying special attention to the
K−πþ s-wave amplitude, as follows. Oller [3] analyzed the
E791 data [2] using the K̄π I ¼ 1=2 (I: total isospin) s-
wave amplitude based on the chiral unitary approach [4],
instead of Breit-Wigner functions for the K−πþ s wave
used in the E791 analysis, and obtained a reasonable fit.
The I ¼ 3=2 swave was not considered in his analysis. The
E791 Collaboration reanalyzed their data without assuming
a particular functional form for the K−πþ s-wave ampli-
tude. Rather, they determined it bin by bin, which they call
model-independent partial-wave analysis (MIPWA) [5]. An

interesting finding in the MIPWA was that the obtained
K−πþ s-wave amplitude has the phase that depends on the
K−πþ energy in a manner significantly different from what
is expected from the Watson theorem combined with the
LASS empirical amplitude [6], assuming the I ¼ 1=2
dominance. Edera et al. suggested that this difference
can be understood as a substantial mixture of the K̄π I ¼
1=2 and 3=2 s-wave amplitudes [7]. This idea was
implemented in the Dalitz plot analysis done by the
FOCUS Collaboration [8]. They parametrized the K−πþ

s-wave amplitude in terms of the K matrix of I ¼ 1=2 and
3=2 that had been fitted to the LASS amplitudes [6,9]. They
found that theDþ → K−πþπþ Dalitz plot can be well fitted
with the K−πþ s-wave amplitude in which the I ¼ 1=2 and
3=2 components interfere with each other in a rather
destructive manner. The FOCUS Collaboration also has
done a MIPWA in a subsequent work [10] to find results
similar to those of the E791 MIPWA. The quasi-MIPWA
has also been done by the CLEO Collaboration [11]. Their
new finding was that I ¼ 2 ππ nonresonant amplitude can
give a non-negligible contribution. Meanwhile, an analo-
gous decay, Dþ → K0

Sπ
0πþ, has been analyzed by the

BESIII Collaboration [12]. An interesting finding was that
the ρð770ÞK̄ channel gives by far the dominant contribu-
tion. This implies that, although the ρð770ÞK̄ contribution
is not directly observed in the Dþ → K−πþπþ Dalitz plot,*nakamura@kern.phys.sci.osaka‑u.ac.jp
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it can play a substantial role in the hadronic final state
interactions (FSI) of the Dþ → K−πþπþ decay, consider-
ing that the two Dþ decays share the same hadronic
dynamics to a large extent.
Many of the previous analyses of the Dþ → K−πþπþ

Dalitz plot have been done with the so-called isobar model
in which aDþ-meson decays into an excited state R (κ̄, K̄�,
K̄�

2, etc.) and a pseudoscalar meson. The R subsequently
decays into a pair of light pseudoscalar mesons, while the
third pseudoscalar meson is treated as a spectator. The
propagation of R is commonly parametrized by a Breit-
Wigner function. The total decay amplitude is given by a
coherent sum of these isobar amplitudes supplemented by a
flat interfering background. On the other hand, as men-
tioned in the above paragraph, some analysis groups
modified the conventional isobar model to use the K
matrix or chiral unitary model for the K−πþ s-wave
amplitude so that the consistency with the LASS data
for K−πþ → K−πþ and with the two-body unitarity is
maintained. Meanwhile, in (Q)MIPWA, the K−πþ s-wave
amplitude is solely determined by the Dþ → K−πþπþ
Dalitz plot data. We will refer to these models, which do
not explicitly consider three-meson-rescattering required
by the three-body unitarity, as isobar-type models. The
basic assumptions common to all of these models are that
the spectator pseudoscalar meson interacts with the others
very weakly, and/orDþ → Rc (c: spectator meson) vertices
with complex coupling constants can absorb such effects.
Although each analysis group has obtained a reasonable

fit to its own data, their results are not necessarily in
conformity with theoretical expectations. For example, the
E791 Collaboration reported that the phase of the
I ¼ 1=2 K̄π p-wave amplitude used in their MIPWA is,
according to the Watson theorem, not consistent with that
of the LASS analysis in the elastic region [5]. This may be
originated from either or both of two possible reasons
below, each of which signals a serious problem in the basic
assumptions underlying in the analysis model. One pos-
sible reason is that the I ¼ 1=2 K̄π p-wave amplitude in
the E791 analysis is given by a coherent sum of Breit-
Wigner functions for K̄�ð892Þ and K̄�ð1680Þ, and it is not
consistent with the LASS data to the required precision. Or
the amplitude does not satisfy the two-body unitarity not
only formally but also quantitatively. Another possibility is
that the (neglected) rescattering of the spectator meson with
the other mesons actually plays a substantial role to
generate an energy-dependent phase so that the Watson
theorem does not hold in reality, and the analysis model
tried to fit it. Not only the E791 analysis but also all the
previous analyses mentioned above would share the same
problem, and this seems to indicate a need for going beyond
the conventional isobar-type analysis; a unitary coupled-
channel approach. In order to extract from data a right
physics, e.g., K−πþ s-wave amplitude from Dþ →
K−πþπþ Dalitz plot data, one needs to use a theoretically

sound model so that unnecessary model artifacts do not
come into play.
Recently, we have developed a unitary coupled-channel

framework for describing a heavy-meson decay into three
light mesons [13]; both the two-body and three-body
unitarity are maintained. In the reference, we studied the
extent to which the isobar-type description of heavy-meson
(or excited meson) decays is valid by analyzing simple
pseudodata. We found a significant effect of the channel
couplings and multiple rescattering on the Dalitz plot
distributions. This study has been extended to an analysis
of pseudodata for excited meson photoproductions [14].
In the present work, we apply the formalism of Ref. [13]
with some modifications to a realistic case. Thus, we will
perform a coupled-channel analysis of the Dþ → K−πþπþ
Dalitz plot pseudodata generated from the E791 isobar
model [5]. To the best of our knowledge, this is the first
coupled-channel Dalitz plot analysis of a D-meson decay
into three pseudoscalar mesons. We will demonstrate that a
quantitative coupled-channel partial wave analysis of the
Dþ → K−πþπþ Dalitz plot is feasible. Then we will
examine the hadronic dynamics in the FSI of the Dþ →
K−πþπþ decay within the coupled-channel model. We will
study how the partial wave amplitudes and their fit fractions
are different between an isobar-type model and a model that
includes the three-body scattering. We also examine con-
tributions from the rescattering and channel couplings to
the Dalitz plot distribution. Through these investigations,
we address the validity of the above-mentioned basic
assumptions of the isobar-type model from this more
microscopic viewpoint.
So far, the three-body FSI for the Dþ → K−πþπþ decay

has been explored by Magalhães et al. [15] (see also
Guimarães et al. [16]). They were concerned with whether
the difference in the phase between the K−πþ s-wave
amplitudes from MIPWA (E791 [5] and FOCUS [10]) and
the K̄π I ¼ 1=2 s-wave amplitude from the LASS analysis
can be understood as a result of the FSI. They calculated the
K−πþ s-wave amplitude in the Dþ → K−πþπþ decay with
only the K̄π I ¼ 1=2 s-wave scattering amplitude of the
chiral unitary model that had been fitted to the LASS
amplitude in the elastic region; other partial waves as well
as inelasticities were not taken into account. An interesting
finding in their work was that the K−πþ s-wave amplitude
originated from the weak vector current and the subsequent
s-wave rescattering is in a fairly good agreement with the
phases from the MIPWA in the elastic region; the quali-
tative feature of the modulus of the MIPWA amplitude is
also described. This finding was further confirmed in their
subsequent works [17] where ρð770Þ contribution was also
partly taken into account. Although their results are
interesting and suggestive, they should be looked with a
caution for the reasons below. First, their calculated
amplitudes are still qualitatively in agreement with those
from the MIPWA in the elastic region, and more
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refinements are needed particularly in the inelastic region.
There will be a delicate interplay between new mechanisms
to be included for the refinements and the already existing
mechanisms, and thus it is not clear if their current findings
persist after the refinements. Second, the authors of
Refs. [15,17] treated the K−πþ s-wave amplitudes from
the MIPWA as data, and did not analyze the Dalitz plot
directly. However, we note that the MIPWA s-wave
amplitude was obtained under the assumption that all the
other partial wave amplitudes are basically not changed by
the FSI. In case the s-wave amplitude is significantly
modified by the FSI, the other partial wave amplitudes are
also probably modified, and the MIPWA s-wave amplitude
may no longer be compatible with them. In order to fully
examine the FSI effects on each of the partial wave
amplitudes for the Dþ → K−πþπþ decay, it is first neces-
sary to analyze the Dalitz plot with a model that takes
account of all relevant partial waves and the FSI, thereby
extracting the partial wave amplitudes, as we will do in this
work. Then, the FSI effects on the extracted amplitudes can
be studied.
In our analysis, we use two-pseudoscalar-meson inter-

actions that generate unitary amplitudes for K̄π and ππ
scatterings and consider resonances (κ̄, K̄�, ρ, etc.) as poles
in the amplitudes. The two-body interactions are fitted to
the LASS and CERN-Munich [18–20] data. With the two-
body interactions, we solve the Faddeev equation for a
three-pseudoscalar-meson scattering to obtain an amplitude
that respects the three-body unitarity and thus channel
couplings. This amplitude is used to describe the FSI of
the Dþ decay. The pseudodata are fitted by adjusting the
strengths and phases of (bare) Dþ → Rc vertices, while the
two-pseudoscalar-meson interactions are fixed as those
obtained by fitting the two-body scattering data. In this
way, we will examine the extent to which we can fit theDþ-
decay pseudodata, keeping the consistency with the two-
body scattering data for all partial waves considered in our
model. This is in contrast with the previousDþ → K−πþπþ
analyses where some of the resonance parameters were also
adjusted along with theDþ → Rc vertices. We consider the
I ¼ 1=2 K̄π s, p, and d waves as commonly included in
the previous analyses. We also explicitly include the
I ¼ 3=2 K̄π s wave (I ¼ 2 ππ s wave) as has been done
in the FOCUS [8] (CLEO [11]) analysis. We also consider
the I ¼ 1 ππ p wave where the ρð770Þ plays a major role.
This partial wave has not been considered in the previous
Dalitz plot analyses because it does not directly decay into
the K−πþπþ final state. However, this partial wave can still
contribute to Dþ → K−πþπþ through the channel cou-
plings. Considering the BESIII analysis mentioned above,
the ρð770ÞK̄ channel is expected to play a substantial role
also here, and we will see that this is indeed the case, at
least within our analysis.
Now we discuss the last piece of our model. The FSI of

the Dþ → K−πþπþ decay is a three-pseudoscalar-meson

scattering. Generally in a three-body scattering, there can
exist a mechanism that cannot be expressed by a combi-
nation of two-body mechanisms, i.e., a three-body force.
Based on the hidden local symmetry (HLS) model [21], in
which vector and pseudoscalar mesons are implemented
together in a chiral Lagrangian, we can actually derive a
“three-meson force” essentially in a parameter-free fashion,
up to form factors we include. Thus we consider some of
the HLS-based three-meson force acting on important
channels and examine how they play a role in the Dþ →
K−πþπþ decay. If two-pseudoscalar-meson interactions are
well determined by precise two-body scattering data, the
D → K̄ππ decays and also other decay modes such asD →
πππ could serve as a ground to study the three-meson force.
The organization of this paper is as follows. In Sec. II,

we discuss our coupled-channel model and present for-
mulas to calculate the Dþ → K−πþπþ decay amplitude.
Then in Sec. III, we present numerical results from our
analyses of the two-pseudoscalar-meson scattering data
and of the Dþ → K−πþπþ decay Dalitz plot pseudodata.
Finally, we give a summary and future prospects in Sec. IV.
A derivation and the resulting expressions for the three-
meson force and model parameters are presented in the
Appendixes.

II. FORMULATION

We have already developed a formalism to describe a
heavy-meson decay into three light mesons in Ref. [13]. In
the present work, we basically use the same formalism with
some modifications. Thus, here we just present expressions
that are needed in the following discussions, specifying the
modifications we make for this work. For derivations of
most of the expressions, see Sec. II of Ref. [13]. Our
formalism can be regarded as a three-dimensional reduction
of a fully relativistic formulation. Because we deal with
scatterings of light particles, i.e. pions, one may question
the validity of this approximation. Although a legitimate
concern, we made an argument on this along with improve-
ments needed in the future in Sec. V of Ref. [13]. In our
formalism, we first construct a two-light-meson (π, K)
interaction model that is subsequently applied to three-
light-meson scattering. The following presentations are
also given in this order.

A. Two-light-meson scattering model

We describe two-light-meson scatterings with a unitary
coupled-channel model. For example, we consider ππ and
KK̄ channels for a ππ scattering, and πK̄ and η0K̄ channels
for I ¼ 1=2 s-wave πK̄ scattering. Wewill specify channels
for each partial wave later. We model the two-light-meson
interactions with resonance(R)-excitation mechanisms or
contact interactions or both. We choose this parametrization
of the two-meson interactions so that it can be easily
applied to a three-meson scattering. A difference from

COUPLED-CHANNEL ANALYSIS OF … PHYSICAL REVIEW D 93, 014005 (2016)

014005-3



Ref. [13] is that we include the contact interactions here but
we did not in Ref. [13]. This is because we include partial
wave amplitudes that do not have resonances in analyzing
the Dþ → K−πþπþ decay Dalitz plot. Besides, we use a
parametrization for R → ab (a, b: pseudoscalar mesons)
vertex functions that are different from those used in the
previous work and, with this parametrization, we need to
include contact interactions in addition to R-excitation
mechanisms in order to obtain reasonable fits to some
empirical partial wave amplitudes.
We consider a partial wave ab → a0b0 scattering (see

Fig. 1 for a diagrammatic representation) with total energy
E, total angular momentum L, total isospin I. We will also
denote the incoming and outgoing momenta by q an q0,
respectively; q ¼ jqj throughout this paper, except for the
Appendix. When q is on-shell, it is related to E by E ¼
EaðqÞ þ EbðqÞ and EaðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

a

p
; ma being the

mass of a. First let us consider a ab → a0b0 scattering
that is not accompanied by a resonance excitation. In this
case, we use a separable two-light-meson interaction
potential [first term of rhs of Fig. 1(a)] as follows:

vLIa0b0;abðq0; qÞ ¼ wLI
a0b0 ðq0ÞhLIa0b0;abwLI

abðqÞ; ð1Þ

where hLIa0b0;ab is a coupling constant, and w
LI
abðqÞ is a vertex

function. We use the following parametrization for wLI
abðqÞ:

wLI
abðqÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EaðqÞEbðqÞ

p �
1

1þ ðq=bLIabÞ2
�
2þL=2

�
q
mπ

�
L
;

ð2Þ

where bLIab is a cutoff parameter. Meanwhile, we allow an
exception for L ¼ 0, I ¼ 2 ππ scattering for which we use
a different parametrization for the vertex function:

wLI
ππðqÞ ¼

1þ h0ðq=mπÞ2
EπðqÞ

�
1

1þ ðq=bLIππÞ2
�
3

; ð3Þ

where an additional coupling constant h0 has been intro-
duced to obtain a reasonable fit to data. For a later
convenience, let us define ~wLI

ab by

wLI
abðqÞ ¼

(
1ffiffi
2

p ~wLI
abðqÞ ðif a and b are identical particlesÞ;

~wLI
abðqÞ ðotherwiseÞ:

ð4Þ

With the above interaction potential, the partial wave
amplitude is given as follows [see Fig. 1(c) for a dia-
grammatic representation]:

tLIa0b0;abðq0; q;EÞ ¼
X
a00b00

wLI
a0b0 ðq0ÞτLIa0b0;a00b00 ðEÞhLIa00b00;abwLI

abðqÞ;

ð5Þ

with

½ðτLIðEÞÞ−1�a0b0;ab ¼ δa0b0;ab − σLIa0b0;abðEÞ; ð6Þ

σLIa0b0;abðEÞ ¼
Z

∞

0

dqq2
hLIa0b0;ab½wLI

abðqÞ�2
E − EaðqÞ − EbðqÞ þ iϵ

: ð7Þ

FIG. 1. Diagrammatic representation of two-light-meson partial wave scattering, ab → a0b0. (a) two-meson interaction potentials;
(b) two-meson partial wave scattering amplitude; (c) two-meson partial wave scattering amplitude from separable contact interactions;
(d) dressed R → ab decay vertex; (e) the inverse of dressed R Green function.
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The amplitude of Eq. (5) can contain resonance pole(s), in
general.
Now we extend the model to include explicit degrees of

freedom for excitations of spin-L isospin-I resonances that
contribute to the ab → a0b0 scattering. In this case, a two-
light-meson interaction potential includes bare R-excitation
mechanisms in addition to the contact potential vLIa0b0;ab
defined in Eq. (1) as follows [see also Fig. 1(a)]:

VLI
a0b0;abðq0; q;EÞ

¼ vLIa0b0;abðq0; qÞ þ
X
R

f̄LIa0b0;Rðq0Þ
1

E −mR
f̄LIR;abðqÞ; ð8Þ

where mR is the bare mass of R; f̄LIab;RðqÞ denotes a bare
R → ab vertex function and f̄LIR;abðqÞ ¼ f̄LI�ab;RðqÞ.
Following Ref. [13], we introduce ~fLIab;RðqÞ that is related
to f̄LIab;RðqÞ as follows:

f̄LIab;RðqÞ

¼
(

1ffiffi
2

p ~fLIab;RðqÞ ðif a and b are identical particlesÞ;
~fLIab;RðqÞ ðotherwiseÞ:

ð9Þ

Then we employ the following parametrization for the bare
vertex function:

~fLIab;RðqÞ ¼ gab;R
mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mREaðqÞEbðqÞ
p

×

�
1

1þ ðq=cab;RÞ2
�
1þðL=2Þ� q

mπ

�
L
; ð10Þ

where gab;R and cab;R are coupling constant and cutoff,
respectively. This parametrization is different from that
used in Eq. (35) of Ref. [13], and has a proper kinematical
factor. With the potential in Eq. (8), the resulting scattering
amplitude is given by [Fig. 1(b)]:

TLI
a0b0;abðq0; q;EÞ ¼ tLIa0b0;abðq0; q;EÞ

þ
X
R0;R

¯̄fLIa0b0;R0 ðq0;EÞτLIR0;RðEÞ ¯̄fLIR;abðq;EÞ;

ð11Þ

where the first term is the scattering amplitude from
the contact interactions only, as has been defined in

Eq. (5). The symbol ¯̄fab;R denotes the dressed vertex that
describes the bare R → ab decay followed by ab rescatter-
ing through the contact interactions. Expressions for ¯̄fab;R
and ¯̄fR;ab are [Fig. 1(d)]:

¯̄fLIab;Rðq;EÞ ¼ f̄LIab;RðqÞ

þ
X
a0b0

Z
∞

0

dq0q02
tLIab;a0b0 ðq;q0;EÞf̄LIa0b0;Rðq0Þ
E−Ea0 ðq0Þ−Eb0 ðq0Þ þ iϵ

;

ð12Þ

¯̄fLIR;abðq;EÞ ¼ f̄LIR;abðqÞ

þ
X
a0b0

Z
∞

0

dq0q02
f̄LIR;a0b0 ðq0ÞtLIa0b0;abðq0; q;EÞ
E−Ea0 ðq0Þ−Eb0 ðq0Þ þ iϵ

:

ð13Þ

In Eq. (11), the dressed Green function for R, τLIR0;RðEÞ, has
been introduced, and is given by [Fig. 1(e)]:

½ðτLIðEÞÞ−1�R0R ¼ ðE −mRÞδR0;R − Σ̄LI
R0;RðEÞ; ð14Þ

where Σ̄LI
R0;RðEÞ is the self-energy of R, and is defined

by

Σ̄LI
R0;RðEÞ ¼

X
ab

Z
∞

0

q2dq
f̄LIR0;abðqÞ ¯̄fLIab;Rðq;EÞ

E − EaðqÞ − EbðqÞ þ iϵ
: ð15Þ

In case ab → a0b0 interaction is given by only resonant
mechanisms [no first term in Eq. (8)], which is the case in
Ref. [13], the corresponding scattering amplitude is
obtained from Eq. (11) by dropping the first term, and
replacing the dressed vertex ( ¯̄f) with the bare one (f̄) in
Eqs. (11) and (15).
The partial wave amplitude, TLI

a0b0;ab in Eq. (11), is related
to the S matrix by

sLIab;abðEÞ ¼ ηLIe2iδLI ¼ 1 − 2πiρabTLI
ab;abðqo; qo;EÞ; ð16Þ

where qo is the on-shell momentum that satisfies
E ¼ EaðqoÞ þ EbðqoÞ, and ρab ¼ qoEaðqoÞEbðqoÞ=E is
the phase-space factor. The phase shift and inelasticity
are denoted by δLI and ηLI, respectively.
The parameters contained in the two-light-meson poten-

tials such as mR, gab;R, cab;R, hLIa0b0;ab, and bLIab are deter-
mined by fitting experimental data. A particular choice of
the potential, such as the number of R and contact
interactions included, will be specified later for each partial
wave and for each of ππ and K̄π interactions.

B. Three-light-meson scattering model

We now consider a case where three light-mesons are
scattering. First, let us assume that the three mesons interact
with each other only through the two-meson interactions
discussed in the previous subsection. Because our two-
meson interaction potential is given in a separable form, we
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can cast the Faddeev equation into a two-body like scattering
equation (the so-called Alt-Grassberger-Sandhas (AGS)
equation [22]) for a cR → c0R0 scattering. Here, R stands
for either R or rab, and rab is a spurious “state” that is
supposed to live within a contact interaction in a very short
time, and decays (going to the left in equations) into the two
light-mesons, ab. This degree of freedom is introduced
merely for extending the AGS-type cR → c0R0 scattering
equation used in Ref. [13] to include the contact two-meson
interactions. Thus, the scattering equation for a partial wave
amplitude, T 0JPT

ðc0R0Þl0 ;ðcRÞlðp0; p;EÞ, is given as (see Fig. 2 for
a diagrammatic representation)

T 0JPT
ðc0R0Þl0 ;ðcRÞlðp0; p;EÞ
¼ Zc̄;JPT

ðc0R0Þl0 ;ðcRÞlðp0; p;EÞ

þ
X

c00;R00;R000;l00

Z
∞

0

q2dqZc̄00;JPT
ðc0R0Þl0 ;ðc00R000Þl00 ðp

0; q;EÞ

× Gc00R000;c00R00 ðq; EÞT 0JPT
ðc00R00Þl00 ;ðcRÞlðq; p;EÞ; ð17Þ

where JPT are the total angular momentum, parity, and the
total isospin of the cR system and they are conserved in the
scattering. The cR state with the relative orbital angular
momentum l is denoted by ðcRÞl; the allowed range for l is
determined by JP and the spin-parity ofR. The magnitude

of the incoming (outgoing) relative momentum of the cR
(c0R0) state is denoted by p (p0). The driving term of the
scattering is a partial wave form of the so-called “Z
diagram,”Zc̄;JPT

ðc0R0Þl0 ;ðcRÞlðp0; p;EÞ. TheZ diagram is a process

in whichR → c0c̄ decay is followed by c̄c → R0 formation,
as illustrated in Fig. 3. For a more explicit definition as well
as the partial wave expansion of the Z diagram, we refer the
readers to Appendix C of Ref. [13]; in particular,
Eqs. (C10)–(C12) of Ref. [13] give an explicit expression
for Zc̄;JPT

ðc0R0Þl0 ;ðcRÞlðp
0; p;EÞ (note R ¼ R and R0 ¼ R0 in

Ref. [13]) in which ~fLIc0c̄;R and ~fLIc̄c;R0 defined in Eq. (10)
can be directly inserted. When R ¼ rc0c̄ (R0 ¼ r0a0b0 ), the
corresponding expression for the Z diagram can be
practically obtained by replacing ~fLIc0c̄;R ( ~fLIc̄c;R0 ) in
Zc̄;JPT
ðc0R0Þl0 ;ðcRÞlðp

0; p;EÞ with ~wLI
c0c̄ (hLIa0b0;c̄c ~w

LI
c̄c ) defined in

Eq. (4). The Z diagrams are known to have the moon-shape
singularity [23] that prevents us from solving Eq. (17) with
the standard subtraction method. Here we employ the spline
method (see Ref. [23] for detailed explanations) to obtain
numerical solutions from Eq. (17).
In Eq. (17), we have also used the Green function,

GcR0;cRðq; EÞ, forR andR0 which can be coupled through
R → ab → R0. It is given by

½G−1ðq; EÞ�cR0;cR ¼ ½E − EcðqÞ − ERðqÞ�δR0;R − ΣLI
R0;Rðq; E − EcðqÞÞ; ð18Þ

for ðR;R0Þ ¼ ðR;R0Þ, and

½G−1ðq; EÞ�cr0
a0b0 ;cR

¼ −σLIr0
a0b0 ;R

ðq; E − EcðqÞÞ for ðR;R0Þ ¼ ðR; r0a0b0 Þ; ð19Þ

½G−1ðq; EÞ�cR0;crab ¼ −σLIR0;rab
ðq; E − EcðqÞÞ for ðR;R0Þ ¼ ðrab; R0Þ; ð20Þ

½G−1ðq; EÞ�cr0
a0b0 ;crab

¼ δrab;r0a0b0
− σLIr0

a0b0 ;rab
ðq; E − EcðqÞÞ for ðR;R0Þ ¼ ðrab; r0a0b0 Þ; ð21Þ

where we have introduced the self-energies ΣLI
R0;Rðq; EÞ, and also quantities σLIR0;Rðq; EÞ, which is either dimensionless or

dimension of square-root of the energy, as defined by

ΣLI
R0;Rðp;EÞ ¼

X
ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR0mR

ER0 ðpÞERðpÞ
r Z

∞

0

q2dq
MabðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
abðqÞ þ p2

q f̄LIR0;abðqÞf̄LIab;RðqÞ
E −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

abðqÞ þ p2
q

þ iϵ
; ð22Þ

Rc’

cR’

=T’ + T’

FIG. 2. Diagrammatic representation of scattering equation of
Eq. (17) for cR → c0R0 scattering. The gray blob represents the
dressed R Green function in Eqs. (18)–(21).

R

c’

c

R’

c−

FIG. 3. Z diagram for cR → c0R0 process via c̄ exchange.
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σLIr0
a0b0 ;R

ðp;EÞ ¼
X
ab

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mR

ERðpÞ
r Z

∞

0

q2dq
MabðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
abðqÞ þ p2

q hLIa0b0;abw
LI
abðqÞf̄LIab;RðqÞ

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

abðqÞ þ p2
q

þ iϵ
; ð23Þ

σLIR0;rab
ðp; EÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR0

ER0 ðpÞ
r Z

∞

0

q2dq
MabðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
abðqÞ þ p2

q f̄LIR0;abðqÞwLI
abðqÞ

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

abðqÞ þ p2
q

þ iϵ
; ð24Þ

σLIr0
a0b0 ;rab

ðp;EÞ ¼
Z

∞

0

q2dq
MabðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
abðqÞ þ p2

q hLIa0b0;ab½wLI
abðqÞ�2

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

abðqÞ þ p2
q

þ iϵ
; ð25Þ

withMabðqÞ ¼ EaðqÞ þ EbðqÞ, and
P

ab runs over all two-
meson states from R → ab decays. The kinematical factors
in the expressions are from the Lorentz transformation to
boost the R-at-rest frame to the cR center-of-mass frame.
So far, we have considered the three-meson scattering

due to multiple iterations of the two-meson interactions.
Given the two-meson interactions, this is a necessary
consequence of the three-body unitarity. In a three-meson
system, however, there may be a room for a new mecha-
nism that is absent in a two-meson system to play a role. We
will refer to such mechanisms as a “three-meson force”
hereafter. Diagrams shown in Fig. 4 can work as a three-
meson force. These are interactions between a vector-
meson and a pseudoscalar meson via a vector-meson
exchange; for our particular application to Dþ →
K−πþπþ, they are bare ρ-K̄, and bare K̄�-π interactions.
These mechanisms are based on the hidden local symmetry
(HLS) model [21] in which vector and pseudoscalar
mesons are implemented in a Lagrangian that has a
symmetry under nonlinear chiral transformations.
Expressions for the Lagrangian and the resulting interaction
potentials of Fig. 4 are presented in Appendix A. These
mechanisms in Fig. 4 along with the Z diagram in Fig. 3
have been studied by Jansen et al. [24–26] to examine the
π-ρ correlation and its relevance to a soft πNN form factor

in a NN potential. There are also other possible mecha-
nisms that can work as a three-meson force. We show some
diagrams in Fig. 5 as examples. The diagram in Fig. 5(a)
describes an interaction between a pseudoscalar-meson pair
(ab) in s wave and another pseudoscalar meson (c) via a
vector-meson exchange; this mechanism is also from the
HLS Lagrangian. Meanwhile, in the diagram of Fig. 5(b),
an R interacts with a pseudoscalar meson to form a
resonance (M�), which is followed by a decay into an R0
and a pseudoscalar meson. This is a familiar mechanism
and often assumed in partial wave analyses for meson
spectroscopy.
In this work, we consider the vector-pseudoscalar

interactions shown in Fig. 4 in our analysis of the Dþ →
K−πþπþ decay to study their relevance. Thus, the scatter-
ing equation in Eq. (17) is modified by adding the new
mechanisms to the Z diagrams:

Zc̄;JPT
ðc0R0Þl0 ;ðcRÞlðp

0; p;EÞ
→ Zc̄;JPT

ðc0R0Þl0 ;ðcRÞlðp
0; p;EÞ

þ VJPT
ðc0R0Þl0 ;ðcRÞlðp

0; pÞ in Eq:ð17Þ; ð26Þ

V

V’

P

P’

Vex

(a)

V

P’

P

V’

Vex

(b)

FIG. 4. Vector (V) and pseudoscalar (P) mesons interaction
potentials based on the hidden local symmetry model [21]. Vector
mesons (Vex) are exchanged.

(a) (b)

FIG. 5. Three-meson force not considered in this work.
(a) Vector-meson exchange between a pseudoscalar-meson pair
(ab) in s wave and a pseudoscalar meson (c). (b) Rc interaction
via meson-resonance (M�) excitation.
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where the added term, VJPT
ðc0R0Þl0 ;ðcRÞlðp

0; pÞ, is in the partial

wave form for which we give explicit expressions in
Eqs. (A8), (A12), and (A17). In Eq. (26), R and R0 are
the lightest spin-1 bare states of either ðI; S½strangeness�Þ ¼
ð1; 0Þ or ðI; SÞ ¼ ð1=2;−1Þ which we denote “ρ” and
“K̄�,” respectively. For our particular application to the
Dþ → K−πþπþ decay, we include ðVP; V 0P0; VexÞ ¼
ð“ρ”K̄; “ρ”K̄; ρÞ, ð“ρ”K̄; “K̄�”π; K�Þ, ð“K̄�”π; “K̄�”π; ρÞ
for the diagram Fig. 4(a), and ðVP; V 0P0; VexÞ ¼
ð“ρ”K̄; “ρ”K̄; K�Þ, ð“ρ”K̄; “K̄�”π;ωÞ, ð“K̄�”π; “K̄�”π; K̄�Þ
for the diagram Fig. 4(b). On the other hand, we leave
examination of mechanisms such as those shown in Fig. 5
to future work for the following reasons. As we emphasized
in the Introduction, even effects of multiple scattering due
to the two-meson force on the D decay has still not been
studied in a realistic setting. In this situation, studying the
relevance of the three-meson force to theD decay is indeed
in an exploratory level, and thus a reasonable starting point
would be to include it in the most important channel. As we
will see, the vector-pseudoscalar (ρ-K̄) channel plays a very
important role in the rescattering process, and therefore it
would be good to study the new mechanisms of Fig. 4 in
this channel at first. Also, regarding the mechanism in
Fig. 5(b), no relevant meson-resonance of spin-0, I ¼ 3=2,
S ¼ −1 is known in the D-meson mass region, and thus we
do not need to include it for the moment.

C. Dþ → K−πþπþ decay amplitude

In our coupled-channel model, the decay amplitude for
Dþ → K−πþπþ is given by

TK−πþπþ;DþðpK− ; pπþ
1
; pπþ

2
;E ¼ mDþÞ

¼
Xcyclic
ðabcÞ

TðabÞc;Dþðpa; pb; pc;EÞ; ð27Þ

where we have introduced the cyclic summation that takes
the sum over abc ¼ K−πþ1 π

þ
2 , π

þ
1 π

þ
2 K

−, πþ2 K
−πþ1 , and

TðabÞc;Dþðpa; pb; pc;EÞ
¼

X
R;R0;szR

f
szR
ab;Rðpa; pbÞGcR;cR0 ðpc; EÞΓ̄szR

cR0;Dþðpc; EÞ;

ð28Þ

where szR is the z component of the spin of R, and GcR;cR0

is the Green function that has been defined in Eqs. (18)–
(21). This decay amplitude in Eq. (28) is diagrammatically

represented in Fig. 6. The symbol f
szR
ab;R denotes aR → ab

decay vertex function which is explicitly given as

fL
z

ab;Rðpa; pbÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mREaðqÞEbðqÞ
ERðpRÞEaðpaÞEbðpbÞ

s

× htatzatbtzbjI; tza þ tzbiYL;Lzðq̂Þ ~fLIab;RðqÞ for R ¼ R;

ð29Þ

fL
z

ab;Rðpa; pbÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EaðqÞEbðqÞ

EaðpaÞEbðpbÞ

s
htatzatbtzbjI; tza þ tzbiYL;Lzðq̂Þ ~wLI

abðqÞ

for R ¼ rab; ð30Þ

where ~fLIab;R and ~wLI
ab have been defined in Eqs. (9) and (4),

respectively; hj1m1j2m2jJMi is the Clebsch-Gordan coef-
ficient, and ta is the isospin of meson a and tza is its z
component. The kinematical factors in the equations are
from the Lorentz transformation to boost the ab-pair
center-of-mass (CM) frame to the total CM frame. The
momentum q is the relative momentum of the ab pair in

their CM frame. The dressed Dþ → R0c vertex, Γ̄
sz
R0
cR0;Dþ ,

has also been introduced in Eq. (28), and it is explicitly
given by

Γ̄
sz
R0
cR0;Dþðpc; EÞ ¼

X
PT

X
l;lz

hllzsR0szR0 jSDSzDi

× htR0 tza þ tzbtct
z
cjTtza þ tzb þ tzci

× Yl;lzðp̂cÞF̄SDPT
ðcR0Þl;Dþðpc; EÞ; ð31Þ

where SDð¼ 0Þ is the D-meson spin, and tza þ tzb þ tzc ¼
3=2 for Dþ → K−πþπþ. We sum over the parity (P) and
total isospin (T) of the final hadronic states because the
weak D decay does not conserve them. The last factor in
the above equation is given by

R

(b)

D

c
c’

b

a

+
R

+ D

c

b

a

+T’

(a)

R’

R
R’

R’’
R’’’

FIG. 6. Diagrammatic representation of Dþ decay into three
pseudoscalar mesons a, b, c in our coupled-channel model.
(a) The isobar-type diagram. (b) The rescattering diagram. The
amplitude T 0 is from the scattering equation represented by Fig. 2.
The gray blob represents the dressed R Green function.
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F̄JPT
ðcR0Þl;Dþðpc; EÞ
¼ FJPT

ðcR0Þl;DþðpcÞ

þ
X

R00;R000;c0;l0

Z
∞

0

dpc0p2
c0T

0JPT
ðcR0Þl;ðc0R00Þl0 ðpc; pc0 ;EÞ

× Gc0R00;c0R000 ðpc0 ; EÞFJPT
ðc0R000Þl0 ;Dþðpc0 Þ; ð32Þ

where T 0JPT
ðcR0Þl;ðc0R00Þl0 is the partial wave amplitude for

c0R00 → cR0 scattering obtained by solving the coupled-
channel scattering equation, Eq. (17). The first term on the
rhs corresponds to the isobar-type contribution [Fig. 6(a)]
while the second term is the contribution from the rescat-
tering [Fig. 6(b)]. The quantity FJPT

ðcRÞl;DþðpÞ is the bare

Dþ → ðRcÞl vertex function for which we choose a para-
metrization,

FJPT
ðcRÞl;DþðpÞ ¼ AR

ð2πÞ3=2
CJPT
ðcRÞl exp½iϕ

JPT
ðcRÞl �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EcðpÞ
p

×

� ðΛJPT
ðcRÞlÞ2

p2 þ ðΛJPT
ðcRÞlÞ2

�2þðl=2Þ� p
mπ

�
l
; ð33Þ

with

AR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR

2ERðpÞ
r

for R¼ R; AR ¼ 1 for R¼ rab:

ð34Þ

In Eq. (33), CJPT
ðcRÞl , ϕ

JPT
ðcRÞl , and ΛJPT

ðcRÞl are the coupling,

phase, and cutoff, respectively, and they will be determined
by fitting Dalitz plot distribution data. The couplings CJPT

ðcRÞl
are nonzero only when jSD − sRj ≤ l ≤ SD þ sR. The
parametrization used in this work [Eq. (33)] is different
from the one used in Ref. [13] in choosing the kinematical
factor.
The isobar-model-type amplitude [Fig. 6(a)] for the

Dþ → K−πþπþ decay, TIsobar
ðabÞc;Dþ , is obtained from the

above equations (27)–(34) by just dropping the second
term of the rhs of Eq. (32).
The procedure to calculate the Dalitz plot distribution

from the decay amplitude of Eq. (27) is explained in detail
in Appendix B of Ref. [13], and we do not repeat it here.

III. ANALYSIS AND RESULTS

Now we apply the coupled-channel formalism discussed
in the previous section to analyses of data. First we
determine parameters in the two-pseudoscalar-meson scat-
tering model by analyzing experimental data for ππ and πK̄
scatterings. Then we extract resonance parameters from
amplitudes of the two-meson interaction model. This
two-meson interaction model is a basic ingredient for the

three-meson scatteringmodel. In the subsequent subsection,
we analyze the Dþ → K−πþπþ decay in a realistic setting.

A. Two-pseudoscalar-meson scattering

For studying the Dþ → K−πþπþ decay in our coupled-
channel framework, the ππ and πK̄ scatterings of E≲
2 GeV are relevant. We will determine the model param-
eters of our ππ and πK̄ scattering models, i.e., hLIa0b0;ab, b

LI
ab,

mR, gab;R, and cab;R in Eqs. (1)–(3), (8), and (10), by fitting
empirical scattering amplitudes for E≲ 2 GeV.

1. πK̄ scattering

We analyze the πK̄ scattering amplitudes from the
LASS experiment [6,9]. For our application to the Dþ →
K−πþπþ decay in the next section, we determine the model
parameters for fL; Ig ¼ f0; 1=2g, f0; 3=2g, f1; 1=2g,
f2; 1=2g partial waves. We explain details of our πK̄
scattering model for each partial wave. For the fL; Ig ¼
f0; 1=2g wave, we consider πK̄-η0K̄ coupled channels
because the η0K̄ channel is known to play a significant
role while ηK̄ does not in this partial wave. We include two
bare R states supplemented by a contact πK̄ → πK̄ inter-
action. For the fL; Ig ¼ f0; 3=2g wave, we consider a
contact πK̄ → πK̄ interaction only. For the fL; Ig ¼
f1; 1=2g and f2; 1=2g waves, we consider coupling of
πK̄ and effective inelastic channels; masses of the two
“particles” in the inelastic channel, denoted by mLI

1 and
mLI

2 , are also fitted to the data. We include three bare R
states for fL; Ig ¼ f1; 1=2g while a single bare R state for
f2; 1=2g. We present the πK̄ model parameters determined
by the fits in Table VII of Appendix B.
We present the quality of the fits to the empirical partial

wave amplitude [6] of πþK− L ¼ 0 partial wave and
fL; Ig ¼ f1; 1=2g, f2; 1=2g partial waves in Fig. 7 where
phases (upper panels) and modulus (lower panels) of the
amplitudes are shown. Also the elastic scattering phase
shifts for the fL; Ig ¼ f0; 3=2g partial wave calculated
with our model are compared with the data [9] in Fig. 8
(left). The χ2 values obtained in the fits are tabulated in
Table I. The s-wave πþK− amplitude is calculated by
linearly combining the fL; Ig ¼ f0; 1=2g, f0; 3=2g partial
wave amplitudes. Overall, as seen in the figures, we obtain
a reasonable description of the data included in the fit.
However, one notices that the model has a sudden change
and deviation from the data in the phase for the fL; Ig ¼
f1; 1=2g partial wave at E ∼ 1.3 GeV. This is perhaps an
artifact of our model that has the threshold where the
effective inelastic channel opens. Fortunately, the magni-
tude of the amplitude is rather small around this energy so
that the deviation in the phase will not give a significant
impact on observables calculated with this model.
From the πK̄ amplitudes of the model determined above,

we extract resonance pole positions by the analytic con-
tinuation [29,30] as shown in Table II. We present poles
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below Re½E� ≤ 2 GeV and jIm½E�j ≤ 0.25 GeV. We can
consistently identify most of the extracted poles with the
corresponding particles listed by the Particle Data Group
(PDG) [31] as shown in the table. For the fL; Ig ¼
f0; 1=2g partial wave, our model has a pole at 0.71 −
0.23i GeV that corresponds to the so-called κ whose mass
is 682� 29 MeV, and width 547� 24 MeV in the PDG
listing. Also we find two poles at Re½E� ∼ 1.4 GeV on
different Riemann sheets. These two poles are associated
with a single resonance [K�

0ð1430Þ] that is split by coupling

to η0K̄ channel. For the fL; Ig ¼ f1; 1=2g partial wave, our
model has the well-established K�ð892Þ. Also in the same
partial wave, there is a pole at 1.28–0.058i GeV that is a bit
off the K�ð1410Þ resonance parameters from the PDG.

2. ππ scattering

We perform an analysis of ππ scattering data with our
coupled-channel model in a way similar to the analysis of
πK̄ data in the previous section. Although we only need a
ππ model for the fL; Ig ¼ f1; 1g; f0; 2g partial waves for
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FIG. 7. Phase (upper) and modulus (lower) of the amplitudes for the πK̄ scatterings: (Left) L ¼ 0 for πþK−. (Center)
fL; Ig ¼ f1; 1=2g. (Right) fL; Ig ¼ f2; 1=2g. Data are taken from Ref. [6].
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FIG. 8. Phase shifts (δLI) of the πK and ππ scatterings: (Left) πK phase shifts for fL; Ig ¼ f0; 3=2g partial wave; data are from
Ref. [9]. (Right) ππ phase shifts for fL; Ig ¼ f0; 2g partial wave; data are from Refs. [27,28].

TABLE I. χ2 values for the fits to empirical πK̄ and ππ partial wave amplitudes. Each entry in the row indicated by “# of parameters” is
the number of model parameters adjusted to fit the data.

πK̄ ππ
fL; Ig f0; 1=2g f0; 3=2g f1; 1=2g f2; 1=2g f0; 0g f0; 2g f1; 1g f2; 0g
χ2 304 158 344 183 274 114 291 276
# of data points 84 19 84 64 148 42 130 130
# of parameters 12 2 17 7 12 3 10 5
χ2=d:o:f 4.2 9.3 5.1 3.2 2.0 2.9 2.4 2.2
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our coupled-channel analysis of the Dþ → K−πþπþ decay,
we present here our ππ model for all major partial waves for
a future reference. We consider ππ-KK̄ coupled channels
for all partial waves except for fL; Ig ¼ f0; 2g where only
the elastic ππ channel is taken into account. Regarding
details of our model for each partial wave, we include two
bare R states supplemented by a contact ππ → ππ inter-
action for the fL; Ig ¼ f0; 0g wave. For the fL; Ig ¼
f1; 1g and f2; 0g waves, we include two bare R states
and a single bare R state, respectively. Finally for the
fL; Ig ¼ f0; 2g wave, we consider a contact ππ → ππ
interaction only. We present the ππ interaction model
parameters determined by the fits in Table VIII of
Appendix B.
We present the quality of the fits in Figs. 9 and 8 (right)

where phase shifts and inelasticities are shown. The χ2

values obtained in the fits are tabulated in Table I. As seen
in the figures, we obtain reasonable fits to the data from
Refs. [18–20]. Although the quality of the fits is not much
improved from those we obtained in Ref. [13], the purpose
of updating the ππ scattering model is to take account of the
proper kinematical factor, as mentioned below Eq. (10).

The nonzero inelasticities from our model are due to the
coupling to the KK̄ channel of our coupled-channel model.
We note that the KK̄ channel in our model effectively
simulates all inelastic channels in which the true KK̄
channel is a major component, because we did not include
ππ → KK̄ and KK̄ → KK̄ data in our analysis, and also
because we did not include the 4π channel in the model.
From the determined ππ partial-wave amplitudes of our
model, we extract resonance poles as presented in Table III.
Most of the extracted poles are consistently identified with
the counterparts in the PDG listings, as shown in Table III.
A difference from the PDG value is found for the width of
f0ð980Þ; our model has a rather small width (∼2 MeV) in
comparison with the PDG average (40–100 MeV). This
difference was also found in the model used in Ref. [13],
and possible sources of the difference were discussed
there. Also the second resonance in the fL; Ig ¼ f1; 1g
partial wave perhaps does not correspond to ρð1450Þ.
However, an effect of this resonance pole on the amplitude
seems to be very small, and our model reproduces the
empirical amplitude very well. These differences from the
PDG listings in the pole positions could be due to the fact

TABLE II. Pole positions of the πK̄ partial-wave amplitudes in the complex-energy plane. A partial wave is specified by the orbital
angular momentum (L) and the isospin (I). Poles below Re½E� ≤ 2 GeV and jIm½E�j ≤ 0.25 GeV are presented. Roman numerals in the
square brackets specify the Riemann sheet on which each of the poles exist. We use the convention defined in, e.g., Ref. [32], to specify
each of the Riemann sheets, I–IV. Each of the states is identified with the corresponding particle name used in the PDG listings [31].

L I Pole positions (GeV), [Riemann sheet], Name

0 1=2 0.71 − 0.23i [II] κ 1.44 − 0.14i [II] K�
0ð1430Þ 1.88 − 0.13i [III] K�

0ð1950Þ
1.46 − 0.25i [III] K�

0ð1430Þ
1 1=2 0.90 − 0.025i [II] K�ð892Þ 1.28 − 0.058i [III] K�ð1410Þ 1.66 − 0.088i [III] K�ð1680Þ
2 1=2 1.42 − 0.055i [III] K�

2ð1430Þ — —
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FIG. 9. Phase shifts (upper) and inelasticities (lower) for the ππ scattering: (Left) fL; Ig ¼ f0; 0g. (Center) fL; Ig ¼ f1; 1g. (Right)
fL; Ig ¼ f2; 0g. Data are taken from Ref. [18–20].
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that we employ the simple parametrization for the two-
pseudoscalar-meson interactions in order to make our
three-meson scattering model relatively easy to handle.
The behavior of the amplitudes on the unphysical (complex
energy) region may be different from those of more
sophisticated two-meson interaction models cited in the
PDG. Thus, we would not mean to claim that the pole
positions presented on Tables II and III have a comparable
reliability to those from the more sophisticated analyses.
The tables are just for showing the properties of the
amplitudes used in our analysis of the Dþ → K−πþπþ
decay, and thus we do not quote errors for the pole
positions. Yet, the ππ and πK̄ amplitudes our model
generates are reasonable on the real physical energy axis,
and should be good enough for our purpose, that is, a
coupled-channel analysis of the Dþ → K−πþπþ decay
with realistic ππ and πK̄ amplitudes.

B. Analysis of Dþ → K−πþπþ Dalitz plot

Now we will perform a partial-wave analysis of pseu-
dodata for Dþ → K−πþπþ Dalitz plot distribution using
our coupled-channel model. In what follows, we explain
setups of our models used in the analysis. Then we discuss
how we prepare pseudodata and our analysis procedure,
which is followed by numerical results.

1. Model setup

In our coupled-channel framework, Dþ-meson decays
into Rc channels, followed by multiple scatterings due to
the hadronic dynamics, leading to the final K−πþπþ state.
This process is expressed by Eqs. (28), (31), and (32);
with the symmetrization, the decay amplitude is given by
Eq. (27). We consider the following 11 Rc coupled
channels in our full calculation:

fRcg ¼ fR01
1 π; R01

2 π; r01
πK̄π; R

11
1 π; R11

2 π; R11
3 π; R21

1 π;

R12
1 K̄; R12

2 K̄; r03
πK̄π; r

04
ππK̄g; ð35Þ

where RL;2I
i stands for the ith bare R state with the spin L

and the isospin I; when I is an integer (half-integer), it is
understood that this R state has the strangeness S ¼ 0

(S ¼ −1) in this paper. Thus, R01
i , R11

i , R21
i , R12

i are seeds of
K̄�

0, K̄
�, K̄�

2, ρ resonances, respectively. In our model, these
resonances are included as poles in the unitary scattering
amplitudes. rL;2Iab is a “state” associated with a contact

interaction in a partial wave of L and I, as has been
introduced in Sec. II B. Most of the partial waves associated
with these channels have been considered in the previous
Dalitz plot analyses of the Dþ → K−πþπþ decay
[2,3,5,8,10,11]. However, the fL; Ig ¼ f0; 2g partial wave
associated with the r04ππK̄ channel was considered only in
the CLEO analysis [11]. Also, the fL; Ig ¼ f0; 3=2g
partial wave associated with the r03

πK̄π channel was explic-
itly considered only in the FOCUS analysis [8], but other
MIPWA can implicitly take account of this partial wave.
The fL; Ig ¼ f1; 1g partial wave associated with the R12

i K̄
channel has not been considered in the previous analyses.
This channel can contribute to Dþ → K−πþπþ only
through the coupled-channel dynamics, and therefore it
does not show up in isobar-type models. A possible
important role of this channel was hinted by the
Brazilian group [15,17], as stated in the Introduction.
We note that, unlike most of the previous isobar-type
analyses, we do not include a flat interfering background
amplitude. With the coupled channels considered in this
work [Eq. (35)], the final hadronic system has the total spin
J ¼ 0, parity P ¼ þ1, total isospin T ¼ 3=2, and l ¼ sR.
We fit Dalitz plot pseudodata for Dþ → K−πþπþ by
adjusting parameters associated with the Dþ → Rc vertex
function in Eq. (33). Among the parameters, CJPT

ðcRÞl , ϕ
JPT
ðcRÞl ,

and ΛJPT
ðcRÞl , we fix ΛJPT

ðcRÞl ¼ 5 GeV for all Dþ → ðcRÞl
vertices, and set CJPT

ðπR11
1
Þ1 ¼ 1, ϕJPT

ðπR11
1
Þ1 ¼ 0. Then, we fit the

pseudodata by adjusting the other CJPT
ðcRÞl and ϕ

JPT
ðcRÞl under a

requirement that allRL;2I, which belong to the same partial
wave characterized by fL; Ig, share the same phase ϕJPT

ðcRÞl .
With this requirement, when the hadronic rescattering is
turned off, the Watson theorem is satisfied, up to a slight
violation due to the fact that our model takes account of the
center-of-mass motion of the scattering two mesons. More
specifically, the pc-dependence of the phase of GcR;cR0 in
Eq. (28) leads to the slight violation.
The hadronic rescattering processes are described by the

scattering amplitude, T 0JPT
ðc0R0Þl0 ;ðcRÞl , defined in Eq. (17), and

also by the Rc Green function defined in Eqs. (18)–(21).
The main driving force of the rescattering processes is the
two-pseudoscalar-meson interactions that have been fixed
in the previous section by fitting the empirical πK̄ and ππ
scattering amplitudes. The two-pseudoscalar-meson inter-
actions enter the scattering equation [Eq. (17)] as the Z
diagrams and also through the R self-energies and σLIR0;R in

TABLE III. Pole positions of the ππ partial-wave amplitudes in the complex-energy plane. The other features are the same as those in
Table II.

L I Pole positions (GeV), [Riemann sheet], Name

0 0 0.41 − 0.24i [II] σ 1.02–0.001i [II] f0ð980Þ 1.38–0.15i [III] f0ð1370Þ
1 1 0.77–0.079i [II] ρð770Þ 1.01–0.083i [III] ρð1450Þ 1.58–0.16i [III] ρð1700Þ
2 0 1.25–0.099i [III] f2ð1270Þ — —
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Eqs. (22)–(25). Given the coupled channels specified above
and the two-meson interactions, we can find all the contrib-
uting Z diagrams that induce channel-couplings. In our
analysis, we consider all of the contributing Z diagrams that
contain ππK̄ and KK̄ K̄ intermediate states. In addition, we
include the three-meson force based on the HLS model and,
asmentioned below Eq. (26), we have totally six diagrams of
this type. As described in Appendix A, once two coupling
constants are fixed by the ρ → ππ andω → πρ decaywidths,
all the other couplings are fixed by SU(3) and the HLS. We
use the same form factor [Eq. (A15)] for all the different
diagrams of the three-meson force. The cutoff, Λ3MF, in the
form factor is determined by fitting the pseudodata.
In our analysis ofDþ → K−πþπþ Dalitz plot pseudodata,

we will basically use three models. The first one is the “full
model” that contains all the dynamical contents described
above. The second one is the “Z model” for which the
rescattering mechanism is solely due to multiple iteration of
the two-pseudoscalar-meson interactions in the formof theZ
diagramsandRpropagators.Thus, the fullmodel is obtained
by adding the three-meson force to the Z model. The third
model is the “Isobar model” that does not explicitly contain
the rescattering process. The decay amplitude for the Isobar
model has been described at the end of Sec. II C. This Isobar
model is still different frommost of the isobarmodels used in
thepreviousDalitzplotanalysesofDþ → K−πþπþ in thatall
two-pseudoscalar partial-wave amplitudes are unitary and fit
well the empirical amplitudes in the relevant energy region;
theWatson theorem is alsomaintained in the sense discussed
in the previous paragraph. Finally we remark that the two-
pseudoscalar-meson interactions, that have been determined
in the previous sections, will not be adjusted to fit the Dþ

decay pseudodata. This is in contrast with most of the
previous analyses where some of Breit-Wigner parameters
were also adjusted along with Dþ → Rc vertices.

2. Data and analysis method

We create reasonably realistic pseudodata of the Dþ →
K−πþπþ Dalitz plot from the isobar model of the E791
Collaboration [5]. The E791 Collaboration obtained the
isobar model through their partial-wave analysis of the
Dþ → K−πþπþ Dalitz plot of 15,079 events, among which
94.4 % were determined to be signals. In generating
pseudodata, we take a procedure similar to Sec. V of
Ref. [33] where Dedonder et al. created pseudodata for
D0 → K0

Sπ
þπ− using the isobar model of the BABAR

Collaboration. We start with a grid 400 × 400 squared
cells covering all kinematical region of the Dalitz plot
distribution with M2

K−πþ as x axis and another M2
K−πþ as y

axis; M2
K−πþ denotes the squared invariant mass of the

K−πþ pair. Each cell is given by the E791 isobar model a
value of the Dalitz plot distribution at the center of the cell.
Then, the values of the Dalitz plot distribution in 10 × 10
adjacent cells are summed to obtain 40 × 40 cells, each of
which has the value of the partially integrated Dalitz plot
distribution. The width of each cell is 0.0649 GeV2. In the
E791 analysis [5], 40 × 40 cells were used to perform their
MIPWA and thus are a reasonable size also in our analysis.
The Dalitz plot distribution value in each cell is multiplied
by a common normalization constant and then is round off
to be an integer; the common normalization constant is
chosen so that the sum of the round-off values of all the
cells coincides with 15; 079 × 94.4% ∼ 14; 234, the num-
ber of signals of the E791 experiment. In this way, we have
generated pseudodata for the Dþ → K−πþπþ Dalitz plot,
as presented in the left panel of Fig. 10.
Next task is to analyze the above pseudodata with our

model. Again, Ref. [33] serves as a useful reference to find
an analysis procedure. We calculate the Dalitz plot dis-
tribution using the decay amplitude of Eqs. (27) and the
formulas given in Appendix B of Ref. [13]. In each cell of
the 40 × 40 grid, we integrate the Dalitz plot distribution
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FIG. 10. The Dalitz plot distribution for Dþ → K−πþπþ in 40 × 40 cells. The left panel shows our pseudodata generated with the
isobar model of the E791 Collaboration [5]. The right panel is the counterpart from the full model that has been fitted to the pseudodata.
An explanation for how the pseudodata are generated is found in Sec. III B 2.
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from our model; the overall normalization is chosen so that
the integral over all the kinematical region of the Dalitz plot
distribution becomes equal to 14,234, the number of signals
for the E791 data. In this way, we have the number of
events (a real number) in each of the cells, and can compare
it with the counterpart in the pseudodata. If a given cell of
the pseudodata has the number of events less than 5, then
the cell is merged with the adjacent cell in the same x axis
to be a larger cell. This grouping is repeated until the cell
contains more than or equal to 5 events. The same grouping
is also applied to the event samples from our model. Thus,
the total number of effective cells, each of which contains
more than or equal to 5 events of the pseudodata, is 725.
The quality of the fit can be quantified by calculating χ2

defined by

χ2 ¼
X
j

χ2j ¼
X
j

�
Nth

j − Nexp
j

ΔNexp
j

�2

; ð36Þ

where j labels each cell, and Nth
j (Nexp

j ) is the number of
events in the j-th cell from our model (pseudodata). The
error of the pseudodata in each cell is assigned

by ΔNexp
j ¼

ffiffiffiffiffiffiffiffiffi
Nexp

j

q
.

We will perform the least χ2 fit to the pseudodata with
the CERN program library MINUIT. Errors for the fitting
parameters are estimated in a standard manner as follows.
First we calculate Hessian matrix, Hij, defined by

Hij ¼
1

2

∂2χ2

∂θi∂θj
����
fθg¼fθ̄g

; ð37Þ

where χ2 is given in Eq. (36); θi is one of the fitting
parameters and fθ̄g is a set of the fitting parameters at the
minimum of χ2. Then the error matrix is given by the
inverse of the Hessian, Eij ¼ ðH−1Þij, and the error for
the parameter θi is assigned by

ffiffiffiffiffiffi
Eii

p
. An error δX for a

quantity X such as a fit fraction is estimated by the error
propagation formula:

½δX�2 ¼
X
i;j

∂X
∂θi

����
fθg¼fθ̄g

Eij
∂X
∂θj

����
fθg¼fθ̄g

: ð38Þ

3. Numerical results and discussions

We performed the least χ2 fit to the pseudodata following
the procedure explained in the previous subsection. We
used the three models; the full, Z, and Isobar models. All
the parameters and their statistical errors determined by the
fits are tabulated for each of the models in Table IX. The
Dalitz plot distribution from the full model is shown in
the right panel of Fig. 10. Comparing with the left panel of
the pseudodata, a difference is hardly discernible to the
eye. The situation is the same for the Z and Isobar models.

The quality of the fit can be quantified by calculating the χ2

values of Eq. (36) that are presented in the second row of
Table IV. The χ2 values of the Z model are the smallest, and
the full model comes in second. These models are signifi-
cantly better than the Isobar model in the fit quality. In the
third row of the table, we also show χ2=d:o:f: to assess if
the better χ2 is simply due to more degrees of freedom in
the fits. The number of the fitting parameters for the full, Z,
and Isobar models are 16, 15, and 12, respectively, as can
be found in Table IX. The number of bins at which χ2 is
calculated is 725. Thus we obtain χ2=d:o:f: as shown in
Table IV. Therefore, the ranking of the fit quality is still in
the same order as far as χ2 is concerned.
In order to see the quality of the fits more clearly, we

show the χ2j distribution at all of the bins in Fig. 11. These
figures show that all of our models fit the pseudodata rather
precisely. Most of the bins are fitted with χ2j < 0.5, and χ2j
exceeds 1 at only a small number of the bins. Yet again, the
full and Z models clearly show a better performance in the
fit than the Isobar model does. The quality of the fit can also
be shown in the projection of the Dalitz plot distribution
onto the M2

K−πþ or M2
πþπþ distributions, as presented in

Fig. 12 for the full model as a representative.
What is the main reason that the full and Z models fit the

pseudodata better than the Isobar model? Because only
the former models have the R12

i K̄ (i.e., ρþK̄0) channels and
the hadronic FSI, one may guess either or both of these
dynamical contents are responsible. To address this point,
we introduce the “Z (without ρ)” model, that is, the Z
model with couplings to the R12

i K̄ channel turned off. By
fitting the pseudodata with the Z (without ρ) model, we
examine if the rescattering effects can improve the χ2. The
χ2 value is shown in Table IV, and is significantly better
than that of the Isobar model. We note that the Isobar model
and the Z (without ρ) model have the same number of
adjustable parameters in the fits. Thus, the quality of the fit
is improved just by including the rescattering due to the Z
diagrams, and the inclusion of the R12

i K̄ channels further
improves the fit substantially.
We remark that we obtained the reasonable fits to the

pseudodata without adjusting the parameters associated
with the two-pseudoscalar-meson interactions. On the
other hand, as mentioned already, most of the previous
analyses varied some Breit-Wigner parameters in fitting

TABLE IV. The total χ2 values and χ2=d:o:f: from the full, Z,
and Isobar models obtained by fitting the Dþ → K−πþπþ Dalitz
plot pseudodata. The Z model without couplings to ðπþπ0ÞI¼1

P K̄0

is labeled by “Z (without ρ)”.

Full Z Isobar Z (without ρ)

χ2 157. 119. 303. 216.
χ2=d:o:f: 0.22 0.17 0.42 0.30
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their Dþ → K−πþπþ Dalitz plot data. A common claim in
those analyses [2,5,8,11] was that the width of K̄�

0ð1430Þ
obtained in their fits, ∼170 MeV, was significantly smaller
than those from the PDG and the LASS analysis,
∼270 MeV. In our model, there are two poles associated
with K̄�

0ð1430Þ as shown in Table II, and they are on
different Riemann sheets, the branch point of which is the
η0K̄ threshold. This two-pole structure is a coupled-channel
effect. One of the poles is close to the PDG value, while the
other one has a rather broad width. Thus, in our analysis,
we did not need K�

0ð1430Þ with a narrower width to obtain
the reasonable fits to the Dþ → K−πþπþ Dalitz plot
pseudodata.
Next we present partial-wave decay amplitudes defined

by Eq. (28) at q̂ · p̂c ¼ 1 (q: relative momentum of the ab
pair in their CM frame) and the summation

P
R;R0 being

replaced by
P

R0;RδsR;LδsR0 ;LδtR;IδtR0 ;I where fL; Ig specify
the partial wave. These amplitudes correspond to Eq. (3) of
Ref. [5] at cos θ ¼ 1, and in the same reference, the E791
Collaboration presented their amplitudes. Thus we can
compare our amplitudes with those from the E791
MIPWA. We denote a partial wave by “ðabÞILc” in which
a two-pseudoscalar-meson pair ab has the total angular
momentum L and the total isospin I. When ab is written

with a charge state, ðabÞIL is understood to be the total
isospin I state projected onto the particular charge state,
e.g., ðK−πþÞI¼1=2

S πþ. We note that a partial-wave amplitude
of a coupled-channel model generally contains all the
partial waves considered in the model as intermediate
states. Therefore, we refer to an amplitude with ðabÞILc
in the final state as the ðabÞILc amplitude. The partial-
wave amplitudes for ðK−πþÞI¼1=2

S πþ, ðK−πþÞI¼1=2
P πþ,

ðK−πþÞI¼1=2
D πþ, ðK−πþÞI¼3=2

S πþ, and ðπþπþÞI¼2
S K− are

presented in Figs. 13(a)–13(e), respectively. The partial-
wave amplitudes from the full, Z, and Isobar models are
shown with their error bands as a function of
Mab ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEa þ EbÞ2 − ðpa þ pbÞ2

p
. As a whole, the full

and Z models are similar in the amplitudes while the Isobar
model is rather different, particularly in ðK−πþÞI¼1=2

S πþ,
ðK−πþÞI¼3=2

S πþ, and ðπþπþÞI¼2
S K−. Because the models

maintain the Watson theorem when the hadronic rescatter-
ing is absent (see the note in Sec. III B 1), the phases (the
upper panels of Fig. 13) from the Isobar model in the elastic
region are essentially the same as those in Figs. 7 and 8 up
to overall constant shifts. The difference in the MK−πþ-
dependence of the phases between the Isobar model and
the full (or Z) model is purely the effect of the hadronic
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rescattering. To put it the other way around, the Isobar
model does not have a degree of freedom to change the
phases using the rescattering in order to obtain an optimal
fit, which might have led to the rather different solution.
In Fig. 13(a), we also show the ðK−πþÞSπþ amplitude

from the E791 MIPWA [5], denoted by ½ðK−πþÞSπþ�E791MIPWA
hereafter. The modulus in the figure is, in their notation,
c × F0

Dð
ffiffiffi
s

p Þ, and numerical values for c and F0
Dð

ffiffiffi
s

p Þ are
tabulated in Table III of Ref. [5]. Interestingly, the MK−πþ-
dependence of the phases from the full and Z models are
in a very good agreement with those of the MIPWA for
MK−πþ ≲ 1.5 GeV. The full model also agrees with the

modulus of ½ðK−πþÞSπþ�E791MIPWA in the elastic region.
Because ½ðK−πþÞSπþ�E791MIPWA implicitly contains all the

partial-wave amplitudes other than ðK−πþÞI¼1=2
P πþ and

ðK−πþÞI¼1=2
D πþ, for a more meaningful comparison, we

might need to compare it with the coherent sum of the
ðK−πþÞI¼1=2

S πþ, ðK−πþÞI¼3=2
S πþ and ðπþπþÞI¼2

S K− ampli-
tudes of our models. However, because the ðπþπþÞI¼2

S K−

amplitude depends on Mπþπþ while the others on MK−πþ ,
they cannot be simply summed to obtain the counterpart
of ½ðK−πþÞSπþ�E791MIPWA. Still, we confirmed that the MK−πþ-

dependence of the phase of the ðK−πþÞI¼1=2
S πþ amplitude of
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FIG. 13. Phase (upper) and modulus (lower) of the partial-wave amplitudes for (a) ðK−πþÞI¼1=2
S πþ, (b) ðK−πþÞI¼1=2

P πþ,
(c) ðK−πþÞI¼1=2

D πþ, (d) ðK−πþÞI¼3=2
S πþ, (e) ðπþπþÞI¼2

S K−. The red solid, the blue cross-hatched, and the green bordered bands are
from the full, Z, and Isobar models, respectively; the band widths represents the errors. For the definition of the amplitudes, see the text. In
the panel (a), we also show the ðK−πþÞSπþ amplitude from the MIPWA of the E791 Collaboration [5] as the black squares with error bars.

SATOSHI X. NAKAMURA PHYSICAL REVIEW D 93, 014005 (2016)

014005-16



the full and Z models does not significantly change even
after the ðK−πþÞI¼3=2

S πþ amplitude is coherently added.
Thus, our coupled-channel models explain the gap between
the phase of ½ðK−πþÞSπþ�E791MIPWA and that of the LASS

ðK−πþÞI¼1=2
S πþ amplitude in a way qualitatively different

from the previous explanation. Edera et al. [7] and the
FOCUSK-matrix model analysis filled the gap with a rather
large (more than 100%) destructive interference between the
ðK−πþÞI¼1=2

S πþ and ðK−πþÞI¼3=2
S πþ amplitudes, without an

explicit consideration of the hadronic rescattering. Our
coupled-channel models, on the other hand, fill the gap
with the hadronic rescattering, and have a moderately
destructive interference between the ðK−πþÞI¼1=2

S πþ and

ðK−πþÞI¼3=2
S πþ amplitudes (see Table V).

We notice in Fig. 13 that the ðK−πþÞI¼3=2
S πþ and

ðπþπþÞI¼2
S K− partial-wave amplitudes have relatively large

errors. Because we analyzed the data of the single charge
state, it may be difficult to separate the different isospin
states with a good precision. This situation would be
improved by analyzing data of different charge states,
i.e., Dþ → K−πþπþ and Dþ → K0

Sπ
þπ0, in a combined

manner. We also note that even though the phases of the
ðK−πþÞI¼1=2

P πþ amplitude from the Isobar model have very
large errors for MK−πþ ≲ 1.5 GeV, this is simply because
the absolute value of the amplitude is very small.
Now we look into the fraction of each channel’s contri-

bution (fit fraction). In an isobar model that describes aDþ-
meson decay asDþ →

P
RRc → abcwhere R is expressed

by a Breit-Wigner function, the fit fractions of different Rc
contributions can be straightforwardly defined, and are often
presented in the previous analyses. However, in a model like
ours where the resonances are described as poles in unitary

scattering amplitudes, the fit fraction of a certain resonance
contribution is not so straightforwardly defined, because the
scattering amplitude generally contains more than a single
resonance, as we have seen in Tables II and III. Furthermore,
theamplitudealsocontainsnonresonantcontributions.There
is no unambiguous way to single out a certain resonance
contribution. Therefore, we present the fit fractions of
contributions from different partial-wave amplitudes. We
calculate the ðabÞILc partial width using the partial-wave
amplitudes presented in the above paragraph, with the
angular (q̂ · p̂c) dependence being restored and the Bose
symmetrizationbeingtakenintoaccountas inEq.(27).Thefit
fraction is then naturally defined as the ðabÞILc partial width
divided by the total width.
The fit fractions defined in the above paragraph are

presented in Table V for the full, Z, and Isobar models. The
incoherent sum of the fit fractions in the last row is not
necessarily 100% because of the interferences between
different contributions in the different rows of the table. We
can see that the full and Z models agree fairly well within
the errors, although the errors are rather large for the
ðK−πþÞI¼3=2

S πþ and ðπþπþÞI¼2
S K− fit fractions. On the

other hand, the Isobar model has quite different
ðK−πþÞI¼3=2

S πþ and ðπþπþÞI¼2
S K− fit fractions that are

rather large, leading to the large incoherent sum (367%).
This indicates a very destructive interference between the
ðK−πþÞI¼3=2

S πþ and ðπþπþÞI¼2
S K− partial waves. These

results are consistent with what we can expect from the
partial-wave amplitudes shown in Fig. 13. We also show
the coherent sum of the ðK−πþÞI¼1=2

S πþ, ðK−πþÞI¼3=2
S πþ,

and ðπþπþÞI¼2
S K− fit fractions, labeled “S waves.”

Interestingly, all three models have consistent S-wave fit
fractionswithin the drastically reduced errors. Therefore, the

TABLE V. Fit fractions (%) from each of the models fitted to the Dþ → K−πþπþ pseudodata. See the text for the definition of the fit
fraction. The “S waves” fit fraction is the coherent sum of the ðK−πþÞI¼1=2

S πþ, ðK−πþÞI¼3=2
S πþ, and ðπþπþÞI¼2

S K− fit fractions. The
numbers in the parentheses are not included in the “Sum” in the last row. The fit fractions from the E791 Isobar model [5], the FOCUS
K-matrix model analysis [8], and the CLEO QMIPWA [11] are also presented. The fit fractions in hi are obtained by the incoherent sum
of different resonance contributions in the same partial wave, and the errors are added in quadrature.

Full Z Isobar E791 [5] FOCUS [8] CLEO [11]
isobar K matrix QMIPWA

ðK−πþÞI¼1=2
S πþ 95.9� 7.3 78.7� 4.3 68.9� 4.4 33.8� h10.8i 207.25� 25.45 —

ðK−πþÞI¼1=2
P πþ 15.3� 1.5 16.2� 2.1 13.7� 0.7 16.2� h1.6i h15.99� 1.18i h10.076� 0.47i

ðK−πþÞI¼1=2
D πþ 0.5� 0.1 0.4� 0.1 0.3� 0.1 0.6� 0.1 0.39� 0.09 0.204� 0.040

ðK−πþÞI¼3=2
S πþ 27.9� 27.5 34.2� 25.7 109.8� 27.8 — 40.50� 9.63 —

ðπþπþÞI¼2
S K− 21.1� 19.3 5.1� 5.6 174.6� 28.9 — – 15.5� 2.8

Background — — — 17.2� 5.3 – —

S waves (81.7� 0.8) (82.3� 0.8) (81.2� 0.7) (79.8� h12.0i) (83.23� 1.50) h97.1� 3.9i
Sum 160.7 134.5 367.3 66.3 264.13 122.9
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data used in our analysis can constrain the S-waves fit
fraction rather well, while they cannot well constrain the
ðK−πþÞI¼3=2

S πþ and ðπþπþÞI¼2
S K− fit fractions individually.

In Table V, we also list fit fractions from the previous
analyses done by the experimental groups for a comparison
with our result. Although each of the experimental groups
obtained several models through their analyses, we do not
try to exhaust all the models in the comparison. Rather we
pick up some cases that are particularly interesting to
compare with our results. Here, we tabulated three analyses
results in Table V: the E791 Isobar model [5] on which our
pseudodata are based, the FOCUSK-matrix model analysis
[8], and the CLEO QMIPWA [11]. We note that the
definition for the fit fraction used by the E791 in
Ref. [5] is different from what used here; the partial-wave
amplitudes are not Bose-symmetrized in calculating the fit
fractions, while our and the CLEO’s [11] fit fractions are
from Bose-symmetrized amplitudes. However, we actually
tabulated in Table V the fit fractions for the E791 Isobar
model calculated by ourselves with our definition, and their
errors are assumed to be the same as those given in Ref. [5].
In the original papers, the experimental groups presented
the fit fractions of each of resonances considered. In order
to (roughly) compare their results with ours, we sum the
resonance contributions in the same partial wave incoher-
ently, and the errors are summed in quadrature. The
numbers enclosed by hi are obtained by the incoherent
(quadrature) sum. For the ðK−πþÞI¼1=2

P πþ fit fraction
obtained by the incoherent sum, the K̄�ð892Þ fit fraction
dominates, and thus the interference effect would not be so
large. A general trend in Table V is that all the analyses
listed, and the E791 [5] and FOCUS [10] MIPWA results
(not listed on the table) as well, are in fairly good agreement
on the ðK−πþÞI¼1=2

P πþ, ðK−πþÞI¼1=2
D πþ, and S-waves fit

fractions. Although the S-waves fit fraction from the CLEO
QMIPWA is somewhat larger than the others, it is probably
because the ðπþπþÞI¼2

S K− and K̄�
0ð1430Þ fit fractions have

been added incoherently. The other fit fractions are rather
largely dependent on each of the analyses. For example, as
we have mentioned, the FOCUS K-matrix model analysis
gives rather large ðK−πþÞI¼1=2

S πþ and ðK−πþÞI¼3=2
S πþ fit

fractions that interfere very destructively while the inter-
ference is moderate in the full and Z models.
With our coupled-channel analysis, it is interesting to

examine bare fit fractions defined as follows. We first
calculate a bare ðabÞILc partial width using the decay
amplitude in which all contributions from the rescattering
processes [the second term of Eq. (32); Fig. 6(b)] are
omitted. In our coupled-channel description of the Dþ →
K−πþπþ decay, we consider not only K−πþπþ but also
K̄0π0πþ in the hadronic intermediate states. Therefore,
when calculating the bare partial width, we consider both
of the states in the final state sum. (Precisely speaking,
K̄0η0πþ, K̄0K̄0Kþ, and the effective inelastic channels in

the πK̄ p and d waves are also included in the intermediate
states; their partial widths are rather small.) Then, the bare
fit fraction for a given ðabÞILc is defined by the bare ðabÞILc
partial width divided by the sum of the bare partial widths
for all the considered ðabÞILc. Thus the sum of all the bare
fit fractions is 100% by definition. The result is presented in
Table VI. We leave the column for the Isobar model blank.
This is because the Dþ → Rc vertices of the Isobar model
implicitly includes the rescattering effect, and we cannot
eliminate the effect to extract the bare vertices.
A remarkable feature in Table VI is the large fit fraction

of ðπþπ0ÞI¼1
P K̄0 in which ρð770Þ plays a major role. This is

particularly true for the Z model. This fit fraction did not
appear in Table V because ðπþπ0ÞI¼1

P K̄0 can appear only in
intermediate states of the Dþ → K−πþπþ decay, and its
contribution is genuinely a coupled-channel effect. The
previous Dþ → K−πþπþ analyses cannot see this effect
because they did not explicitly consider three-body dynam-
ics. In order to see the contribution of ðπþπ0ÞI¼1

P K̄0 to the
Dþ → K−πþπþ decay more clearly, we show in Fig. 14
the K−πþ (πþπþ) squared invariant mass spectrum of the
full model but couplings to ðπþπ0ÞI¼1

P K̄0 are turned off.
The figures clearly show the large contribution from
ðπþπ0ÞI¼1

P K̄0. It increases the decay rate by ∼7%, and
significantly changes the shape of the spectra. We found a
further enhanced contribution from ðπþπ0ÞI¼1

P K̄0 for the Z
model; it increases the decay rate by ∼30%. Actually, the
dominance of the ðπþπ0ÞI¼1

P K̄0 fit fraction (∼85%) was
also found in a recent analysis of Dþ → K0

Sπ
þπ0 done by

the BESIII Collaboration [12]. The Dþ → K−πþπþ and
Dþ → K0

Sπ
þπ0 decays share the same hadronic dynamics,

except for additional but much smaller doubly Cabibbo
suppressed channels in the latter. Therefore, the large
bare fit fraction of ðπþπ0ÞI¼1

P K̄0 for the Dþ → K−πþπþ

decay seems natural in order to understand the decay
mechanisms for Dþ → K−πþπþ and Dþ → K0

Sπ
þπ0 con-

sistently. However, we have seen the rather large model
dependence of the contribution from ðπþπ0ÞI¼1

P K̄0.
This would be largely due to the fact that we analyzed
the Dþ → K−πþπþ data that do not contain this partial

TABLE VI. Bare Dþ → K−πþπþ, K̄0π0πþ decay fit fractions
(%).

Full Z Isobar

ðK̄πÞI¼1=2
S πþ 45.0� 9.2 39.8� 5.0 —

ðK̄πÞI¼1=2
P πþ 13.1� 2.2 5.8� 1.1 —

ðK̄πÞI¼1=2
D πþ 0.3� 0.2 0.1� 0.1 —

ðπþπ0ÞI¼1
P K̄0 16.0� 0.9 42.7� 0.7 —

ðK̄πÞI¼3=2
S π 8.7� 11.7 7.7� 8.2 —

ðππÞI¼2
S K̄ 16.8� 19.1 3.9� 4.4 —
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wave in the final state. Because the Dþ → K0
Sπ

þπ0 decay
contains ðπþπ0ÞI¼1

P K̄0 in the final state, a combined
analysis of these two decay modes would significantly
reduce the uncertainty associated with ðπþπ0ÞI¼1

P K̄0.
Now let us study how much the three-meson force

contributes to the Dþ → K−πþπþ decay. In Fig. 15, we
compare the K−πþ (πþπþ) squared invariant mass spec-
trum of the full model with those from the same model but
the three-meson force being turned off. The three-meson
force suppresses the decay width by ∼22%, and change the
spectrum shape significantly, as seen in Fig. 15. The K−πþ
spectrum is suppressed by the three-meson force at the
K�ð892Þ peak region, and the πþπþ spectrum is suppressed
at higher M2

πþπþ. We found that the effect of the diagram in
Fig. 4(a) connected to ðπþπ0ÞI¼1

P K̄0 is the most important
among the three-body-type diagrams we consider. In the
same figure, we also show the spectrum from the full model
with all the rescattering processes [Fig. 6(b); second term
in Eq. (32)] being turned off. Effects of the rescattering
mechanisms are quite large; the decay width gets almost
triplicated by the rescattering effect. The spectra are rather
different from the blue dashed curves in Fig. 14 where

ðπþπ0ÞI¼1
P K̄0 is turned off. Therefore, the hadronic rescat-

tering through partial waves other than ðπþπ0ÞI¼1
P K̄0 also

gives a major contribution.
In a Dalitz plot analysis with an isobar-type model,

it is assumed that a M� → Rc (M�: heavy meson, meson
resonance, etc.) decay vertex implicitly contains effects of
rescattering mechanisms that are simulated by a complex
coupling constant for the vertex. It is interesting to examine
the extent to which this assumption is valid. In Fig. 16, the
upper [lower] panels give the phase [modulus] of dressed
Dþ → Rc vertices defined in Eq. (32) for the full model
(red solid bands) and the Z model (blue cross-hatched
bands), as a function of the momentum of the unpaired
meson, pc. For comparison, we also show in the same
figure the Dþ → Rc vertices from the Isobar model by the
green bordered bands. The left, middle, and right panels
are for RL;2I

i c ¼ R01
1 πþ, RL;2I

i c ¼ R11
1 πþ, and RL;2I

i c ¼
R21
1 πþ, respectively. R01

1 works as a seed to develop κ̄ and
K̄�

0ð1430Þ resonances, while R11
1 and R21

1 πþ will develop
K̄�ð892Þ and K̄�

2ð1430Þ resonances, respectively. Even
though all of the models have been fitted to the same
pseudodata of the Dalitz plot distribution, they are rather
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P K̄0 to the K−πþ [πþπþ] squared invariant mass spectrum in the left [right] panel. The full model is

shown by the red solid curve. The blue dashed curve is also from the full model but couplings to ðπþπ0ÞI¼1
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different in the Dþ → Rc vertices. In particular, the
significant phase variations as a function of pc in the full
and Z models are purely due to the three-body hadronic
dynamics required to satisfy the three-body unitarity. The
constant phase assumed in the isobar-type models is not
justified from this viewpoint.

IV. SUMMARY AND FUTURE PROSPECTS

In this work, we have performed a coupled-channel
analysis of the pseudodata for the Dþ → K−πþπþ Dalitz
plot. The pseudodata are generated from the isobar model
of the E791 Collaboration [5], and are reasonably realistic.
As far as we know, this is the first coupled-channel analysis
of a realistic Dalitz plot distribution for a D-meson decay
into a three-pseudoscalar-meson state. We have demon-
strated that it is indeed possible to analyze this kind of high-
quality data within a coupled-channel framework, and
found lots of interesting results that are beyond what can
be obtained with the conventional isobar-type model
analyses. Let us summarize below what we have done
and found in this work.
In our build-up approach, we started with developing a

two-pseudoscalar-meson interaction model. With a suitable
combination of contact interactions and bare resonance-
excitation mechanisms, our two-pseudoscalar-meson inter-
action model successfully describes empirical ππ and πK̄
scattering amplitudes of low partial waves that are needed
to analyze theDþ → K−πþπþ Dalitz plot. Poles associated
with ππ and πK̄ resonances have been extracted, and most
of them are in agreement with the PDG listings. Then using

the two-pseudoscalar-meson interactions as building
blocks, we developed a three-pseudoscalar-meson interac-
tion model that describes the FSI of the Dþ → K−πþπþ
decay. The main driving force for the three-pseudoscalar-
meson scattering process is the Z diagrams and the dressed
R-propagator that appear as a necessary consequence of
the three-body unitarity. These mechanisms do not contain
any adjustable parameters once the two-pseudoscalar-
meson interactions have been fixed using the ππ and πK̄
scattering data. In addition, we considered mechanisms that
are beyond simple iterations of the two-body interactions,
and thus may be called a three-meson force. We introduced
the three-meson force to an important channel in the FSI
of the Dþ → K−πþπþ decay, i.e., the vector-pseudoscalar
channels. Guided by the hidden local symmetry model [21]
that incorporates vector and pseudoscalar mesons in a
chiral Lagrangian, we derived the vector-pseudoscalar
interactions that work as a three-meson force.
In our analysis of the pseudodata for theDþ → K−πþπþ

Dalitz plot distribution, we basically used three models:
full, Z, and Isobar models. In the models, we took account
of all of the channels (partial waves) that had been
considered in the previous analyses of the same process.
This includes ðK̄πÞI¼3=2

S π (ðππÞI¼2
S K̄) that is considered

only in the FOCUS [8] (CLEO [11]) analysis. In addition,
in the full and Z models, we also considered ðπþπ0ÞI¼1

P K̄0

where ρð770ÞK̄0 plays a dominant role. This partial wave
can contribute to the Dþ → K−πþπþ decay only through
the rescattering, and thus this contribution is a pure
coupled-channel effect. A distinct feature of our models
is that all of the two-pseudoscalar-meson resonances are
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FIG. 16. Phase (upper) and modulus (lower) of Dþ → RL;2I
i c dressed vertex: (Left) RL;2I

i c ¼ R01
1 πþ; (Middle) RL;2I
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1 πþ;

(Right) RL;2I
i c ¼ R21

1 πþ. The red solid bands are from the full model, the blue cross-hatched bands from the Z model, and the green
bordered bands from the Isobar model; the band widths represents the errors. The unit of the modulus is arbitrary, but the relative
magnitudes between the different bands in the three panels are given by the model.
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included as poles of the unitary scattering amplitudes that
fit well the empirical ππ and πK̄ amplitudes. With an
appropriately selected set of fitting parameters associated
with bare Dþ → Rh ðh ¼ π; K̄Þ vertices, the Watson theo-
rem is satisfied by the models when the rescattering is
turned off. The three-body unitarity is also taken care of
within the full and Z models. Unlike the previous analyses,
we did not include a flat background amplitude.
Our models fit the pseudodata with a reasonable pre-

cision. As far as the χ2 value is concerned, the full and Z
models are significantly better than the Isobar model.
Although this may be partly due to the larger number of
adjustable parameters in the fits, it would also be because
important mechanisms are considered in the better models.
Indeed, we showed that the Isobar model can be signifi-
cantly improved by just introducing the hadronic rescatter-
ing (χ2=d:o:f: is reduced by ∼29%), keeping the number of
the fitting parameters unchanged [Z (without ρ) model].
The inclusion of the ρK̄ channel further reduces χ2=d:o:f:
by ∼47%, and thus the importance of this channel seems
rather clear. On the other hand, the three-meson force does
not improve χ2 although it gives a significant effect on the
FSI. Another important point is that we achieved the good
fits using two-pseudoscalar-meson amplitudes fixed by the
empirical ππ and πK̄ amplitudes. This is in sharp contrast
with the previous analyses where the p-wave πK̄ amplitude
is given by a sum of the Breit-Wigner functions that does
not necessarily satisfy the Watson theorem. Also, the
previous analyses commonly adjusted parameters associ-
ated with K̄�

0ð1430Þ in their fits, and obtained widths
significantly narrower than those in the PDG listings. In
our analysis, on the other hand, we were able to obtain the
reasonable fits with K̄�

0ð1430Þwhose width is close to those
from the PDG.
We examined the partial-wave amplitudes and found

that the full and Z models have similar amplitudes, while
the Isobar model has significantly different amplitudes,
particularly for ðK−πþÞI¼3=2

S πþ and ðπþπþÞI¼2
S K̄. The

ðK−πþÞI¼3=2
S πþ and ðπþπþÞI¼2

S K− amplitudes have rather
large errors due to the fact that the fitting parameters
associated with these partial waves cannot be precisely
determined by the data used in this work. We compared the
ðK−πþÞI¼1=2

S πþ amplitudes from our models with the
ðK−πþÞSπþ amplitude from the E791 MIPWA. We found
a good agreement between the full and Z models, and the
E791 MIPWA for MK−πþ ≲ 1.5 GeV. We stress that the
hadronic rescattering plays an essential role to bring
the phases of our models into agreement with those from
the E791 MIPWA. On the other hand, the Isobar model,
that maintains the Watson theorem, does not have a
freedom to change the phases in the elastic region, ending
up with a rather different solution. The partial-wave
amplitudes were used to calculate the fit fractions that
were compared with those from the previous analyses done

by the experimental groups. We found a fairly good
agreement between the analyses on the ðK−πþÞI¼1=2

P πþ

and ðK−πþÞI¼1=2
D πþ fit fractions. For the ðK−πþÞI¼1=2

S πþ,
ðK−πþÞI¼3=2

S πþ and ðπþπþÞI¼2
S K− fit fractions, however,

we found a rather large dependence on each of the analyses
and also large errors. Even so, their coherent sum turned
out to be consistent among our three models and also the
ðK−πþÞSπþ fit fractions from the E791 and FOCUS
MIPWA within greatly reduced errors.
With the coupled-channel framework, we were able to

study the bare fit fractions for which all the hadronic
rescattering effects are absent. This quantity could be useful
to study the intrinsic quark-gluon substructure of the D
meson. Remarkably, ðπþπ0ÞI¼1

P K̄0, that does not show up in
the usual fit fraction, gives a large bare fit fraction. This
result may appear a bit surprising. However, considering
that the Dþ → K−πþπþ and Dþ → K0

Sπ
0πþ decays share

the same hadronic dynamics to a large extent, this finding is
actually consistent with the recent BESIII analysis [12] that
found a dominant fit fraction (∼85%) of ðπþπ0ÞI¼1

P K̄0 in the
Dþ → K0

Sπ
0πþ decay.

We further studied coupled-channel effects. We found
that the Dþ → K−πþπþ decay width gets triplicated by the
rescattering effects in the full model. We also found that the
phases of the dressedDþ → Rπþ vertices have rather large
dependence on the unpaired πþ momentum. The phase
variation is a consequence of the explicit treatment of the
three-body dynamics. In the conventional isobar-type
model analyses of heavy or excited meson (M�) decay
into three light mesons, it is assumed that the rescattering
effects are small and/or the phases of theM� → Rc vertices
can be approximated by constants. Clearly, our analysis
indicates that neither of these assumptions are supported
from this more microscopic viewpoint, at least for the
Dþ → K−πþπþ decay. With the above results as a basis,
we can rather clearly conclude that explicit treatment of the
hadronic FSI is essential for extracting partial-wave ampli-
tudes from Dalitz plots for Dþ → K−πþπþ and probably
also many other processes.
In future, we will apply our coupled-channel model to a

combined analysis of the Dþ → K−πþπþ and Dþ →
K0

Sπ
0πþ decays. The strength of the coupled-channel

framework is to describe different processes in a unified
manner. Because different aspects of the hadronic dynam-
ics appear in different processes, the combined analysis
is a powerful method to understand the hadron dynamics
with smaller model-dependence. This is why a combined
analysis has become standard in the study of the baryon
spectroscopy. For example, πN, γN → πN, ηN, KΛ, KΣ
reaction data are analyzed with a coupled-channel model in
a unified manner to extract the nucleon resonance proper-
ties in Ref. [34]. This direction should also be pursued to
better understand the hadronic dynamics in heavy-meson
decays and meson resonances. Getting back to the future
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combined analysis of Dþ → K−πþπþ and K0
Sπ

0πþ, we
expect to better understand the role of ðπþπ0ÞI¼1

P K̄0

because contributions of this partial wave can be directly
seen in the Dþ → K0

Sπ
0πþ Dalitz plot. Although we found

the very important contribution of ðπþπ0ÞI¼1
P K̄0 to the

Dþ → K−πþπþ decay through the FSI, this finding is
based on the indirect information. Also in the combined
analysis, we would be able to better extract the ðK̄πÞI¼3=2

S π
and ðππÞI¼2

S K̄ amplitudes that have been determined with
large uncertainties in this work. By simultaneously analyz-
ing the Dþ decays with differently charged final states, it
will be possible to better separate contributions from these
different isospin states. It will be interesting to examine
how the partial-wave amplitudes and fit fractions obtained
in this work will be in the combined analysis. Finally, we
will also study if a three-meson force plays an important
role in understanding the hadronic FSI of the two
Dþ-meson decays in a unified manner.
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APPENDIX A: THREE-MESON FORCE BASED
ON HIDDEN LOCAL SYMMETRY MODEL

In this Appendix, we first present a set of Lagrangians
from the hidden local symmetry (HLS) model [21]. Then
we present expressions for potentials, derived from the
Lagrangians, between vector-mesons and pseudoscalar-
mesons. These potentials work as a three-body force in
a three-pseudoscalar-meson system. Finally, we present the
potentials in a partial-wave form that is useful for numerical
calculations.

1. Lagrangians from the HLS model

We use symbols P and V to denote octet pseudoscalar-
mesons and nonet vector-mesons, respectively. The pseu-
doscalar meson fields in the SU(3) matrix form are

P ¼ 1

2

X8
a¼1

Paλa

¼ 1ffiffiffi
2

p

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1
CCCA; ðA1Þ

where λa is a Gell-Mann matrix, while the vector meson
nonet is given by

V ¼ 1

2

X8
a¼0

Vaλa

¼ 1ffiffiffi
2

p

0
BBB@

1ffiffi
2

p ρ0 þ 1ffiffi
2

p ω ρþ K�þ

ρ− − 1ffiffi
2

p ρ0 þ 1ffiffi
2

p ω K�0

K�− K̄�0 ϕ

1
CCCA; ðA2Þ

where λ0 ¼
ffiffi
2
3

q
1 (1: unit matrix), and the ideal mixing

between the neutral vector mesons is assumed. When P and
V are enclosed in the trace symbol, they are fields of the
SU(3) matrix form. Otherwise, e.g., they are in brackets,
they are understood to be one of particles contained in
the SU(3) matrix elements. It is convenient to work with
isospin states rather than the charge states used in Eqs. (A1)
and (A2). For the relation between the two sets of the basis,
we employ a convention where the charge states are the
same as their isospin states (jIIzi) with some exceptions
that need additional phases as follows:

jρþi ¼ −jI ¼ 1; Iz ¼ 1i;
jK�−i ¼ −jI ¼ 1=2; Iz ¼ −1=2i;
jπþi ¼ −jI ¼ 1; Iz ¼ 1i;
jK−i ¼ −jI ¼ 1=2; Iz ¼ −1=2i: ðA3Þ

In what follows, jPi and jVi are understood to be isospin
states rather than charge states. Also, we use curly symbols
to denote creation or annihilation operators. For example,P
is the annihilation operator contained in the field P, and its
normalization is h0jPjPai ¼ λa=2.
The mesonic interaction Lagrangians we use are those

from the HLS model [21,35]. The VPP interactions are
(with the Bjorken-Drell convention for the metric)

LVPP ¼ 2igTr½Vμð∂μPP − P∂μPÞ�; ðA4Þ
where the trace is taken in the SU(3) space. The coupling g
is related to the ρππ coupling by g ¼ gρππ, and we use
gρππ ¼ 6.0 determined from the ρ → ππ decay width. The
Yang-Mills type Lagrangian, from which we use VVV
interactions, is

LYM ¼ −
1

2
Tr½FμνFμν�; ðA5Þ

with

Fμν ¼ ∂μVν − ∂νVμ − ig½Vμ; Vν�: ðA6Þ
The VVP interactions are given by

LVVP ¼ g2CϵαβγδTr½∂αVβ∂γVδP�; ðA7Þ
where we use the convention, ϵ0123 ¼ þ1. The coupling is
C ¼ −3=ð4π2fπÞ with fπ being the pion decay constant. In
our numerical calculations, we use jg2C=2j ¼ gωπρ ∼ 0.012
from an analysis by Durso [36] on the decay ω → πρ → πγ.
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2. VP → V0P0 potentials

We consider a process VðpV; ϵV; IV; I
z
VÞPðpP; IP; I

z
PÞ →

V 0ðpV 0 ; ϵV 0 ; IV 0 ; IzV 0 ÞP0ðpP0 ; IP0 ; IzP0 Þ where the variables in
the parentheses specify each particle’s state such as the
four-momentum (p), polarization (ϵ), isospin (I) and its z
component (Iz). The 0th component of the four-momentum

is related to the spatial part by p0
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2x þm2

x

p
wheremx is

the mass for a particle x. The potential diagrammatically
represented in Fig. 4(a) is derived from the Lagrangians in
Eqs. (A4) and (A5) following the unitary transformation
method [37] and is given by

VFig:4ðaÞ ¼
gVV 0Vex

gVexPP0

q2 −m2
Vex

ð−1ÞIVþ2IV0þIVex−2I
z
VþIP0þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2IP0 þ 1Þð2IV þ 1Þ

p
×
X
I

ð−1Þ−IWðIVIV 0IPIP0 ; IVex
IÞðIVIzVIPIzPjIIzÞðIV 0IzV 0IP0IzP0 jIIzÞ

× fðpV þ pV 0 Þ · ðpP þ pP0 ÞϵV · ϵ�V 0 − ðpV þ qÞ · ϵ�V 0 ðpP þ pP0 Þ · ϵV
þ ðq − pVÞ · ϵVðpP þ pP0 Þ · ϵ�V 0g; ðA8Þ

where q ¼ pV − pV 0 ¼ pP0 − pP, and mVex
and IVex

are the
exchanged vector-meson mass and isospin, respectively.
We have used the Racah and Clebsch-Gordan coefficients
denoted by Wðj1j2Jj3; j12j23Þ and ðj1m1j2m2jJMÞ, re-
spectively. The propagator for the exchanged vector-meson
is more explicitly written as

1

q2−m2
Vex

¼1

2

�
1

ðpV −pV 0 Þ2−m2
Vex

þ 1

ðpP0 −pPÞ2−m2
Vex

�
;

ðA9Þ

as specified by the unitary transformation [37]. The
effective coupling gVV 0Vex

is given by

gVV 0Vex
¼ gffiffiffi

2
p Tr½hVi½hV 0i; hVexi��

ðIV 0IzV 0IVex
IzVex

jIVIzVÞ
; ðA10Þ

with hVi ¼ h0jVjVi, hV 0i ¼ hV 0jVj0i and hVexi ¼
hVexjVj0i. The effective couplings gVV 0Vex

as well as
gVexPP0 and gVVexP0 appearing below are independent of
isospin z components. gVexPP0 is given by

gVexPP0 ¼ gffiffiffi
2

p Tr½hVexi½hP0i; hPi��
ðIVex

IzVex
IPI

z
PjIP0IzP0 Þ ; ðA11Þ

with hVexi ¼ h0jVjVexi, hPi ¼ h0jPjPi and hP0i ¼
hP0jPj0i.
Another potential diagrammatically represented by

Fig. 4(b) is derived from the Lagrangian in Eq. (A7) and
is given by

VFig:4ðbÞ ¼
gVVexP0gV 0VexP

q2 −m2
Vex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2IV þ 1Þð2IV 0 þ 1Þ

p X
I

WðIV 0IPIP0IV ; IVex
IÞðIVIzVIPIzPjIIzÞðIV 0IzV 0IP0IzP0 jIIzÞ

× fpV 0 · pP0 ðϵ�V 0 · pVϵV · pP − ϵ�V 0 · ϵVpV · pPÞ þ pV · pV 0 ðϵ�V 0 · ϵVpP · pP0 − ϵ�V 0 · pP0ϵV · pPÞ
þϵV · pV 0 ðϵ�V 0 · pP0pV · pP − ϵ�V 0 · pVpP · pP0 Þg; ðA12Þ

where the propagator for the exchanged vector-meson is

1

q2 −m2
Vex

¼ 1

2

�
1

ðpV − pP0 Þ2 −m2
Vex

þ 1

ðpV 0 − pPÞ2 −m2
Vex

�
:

ðA13Þ
The effective coupling gVVexP0 is given by

gVVexP0 ¼ 2gωπρ
Tr½hP0iðhVihVexi þ hVexihViÞ�

ðIVex
IzVex

IP0IzP0 jIVIzVÞ
; ðA14Þ

with hP0i ¼ hP0jPj0i, hVi ¼ h0jVjVi and hVexi ¼
hVexjVj0i. gV 0VexP is obtained by exchanging labels V →
V 0 and P0 → P in the rhs of Eq. (A14), and the meaning of

the matrix elements are hV 0i ¼ hV 0jVj0i, hPi ¼ h0jPjPi
and hVexi ¼ h0jVjVexi.
Following Ref. [25], we multiply the following form

factor to the potentials of Eqs. (A8) and (A12):

F3MFðqÞ ¼
�
Λ2
3MF −m2

Vex

Λ2
3MF þ q2

�2

; ðA15Þ

where Λ3MF is a cutoff to be determined by fitting data.
We use the same cutoff value for all the potentials of
Eqs. (A8) and (A12). We checked numerical values of the
potentials by comparing our calculation with Fig. 8
of Ref. [25].
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3. Partial-wave expansion

In order to implement the VP → V 0P0 potentials of Eqs. (A8) and (A12) into the scattering equation of Eq. (17), we need
to expand the potentials in terms of the partial-wave representation as,

hV 0ðpV 0 ; ϵV 0 ; IV 0 ; IzV 0 ÞP0ðpP0 ; IP0 ; IzP0 ÞjVFig:4jVðpV; ϵV; IV; I
z
VÞPðpP; IP; I

z
PÞi

¼
X

TJJzllzl0l0z
hIVIzVIPIzPjTIzV þ IzPihIV 0IzV 0IP0IzP0 jTIzV þ IzPi

× hllz1ϵV jJJzihl0l0z1ϵV 0 jJJziYl0l0zðp̂V 0 ÞY�
llzðp̂VÞV Fig:4 JPT

ðP0V 0Þl0 ;ðPVÞlðjpV 0 j; jpV jÞ; ðA16Þ

where JPT are the total angular momentum, parity, and total isospin, respectively, and l (l0) is the orbital angular
momentum of the relative motion of VP (V 0P0). Inverting this equation, we obtain

VFig:4 JPT
ðP0V 0Þl0 ;ðPVÞlðjpV 0 j; jpV jÞ ¼

X
IzV ;I

z
P;I

z
V0 ;I

z
P0

hIVIzVIPIzPjTTzihIV 0IzV 0IP0IzP0 jTTzi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2l0 þ 1

r

×
X
ϵV ;ϵV0

ð−1Þlþl0þϵVþϵV0 h1ϵVJ − ϵV jl0ih1ϵV 0J − ϵV jl0ϵV 0 − ϵVi
Z

dΩp̂V0Y
�
l0;ϵV−ϵV0

ðp̂V 0 Þ

× hV 0ðpV 0 ; ϵV 0 ; IV 0 ; IzV 0 ÞP0ðpP0 ; IP0 ; IzP0 ÞjVFig:4jVðpV; ϵV; IV; I
z
VÞPðpP; IP; I

z
PÞi; ðA17Þ

where pV is taken along the z axis. This partial-wave form of the potentials is plugged in Eq. (26).

APPENDIX B: MODEL PARAMETERS

TABLE VII. Model parameters for the πK̄ partial-wave scattering with the angular momentum L and the isospin I.
The parameters are defined in Eqs. (1), (2), (8), and (10). For each partial wave specified by fL; Ig, masses (mRi

),
couplings (gh1h2;Ri

), and cutoffs (ch1h2;Ri
) are for the i-th bare R states, Ri, and h1 and h2 are particles in a two-

pseudoscalar-meson channel. Couplings (hh1h2;h1h2 ) and cutoffs (bh1h2 ) are for the contact interactions. Masses (m1,
m2) are for two “particles” in the effective inelastic channel, except for the fL; Ig ¼ f0; 1=2g wave for which (m1,
m2)=(mK , mη0 ). The superscripts, LI, of the parameters are suppressed for simplicity. The masses and cutoffs are
given in the unit of MeV. The hyphens indicate unused parameters.

RfL; Ig K̄�
0f0; 1=2g f0; 3=2g K̄�

1f1; 1=2g K̄�
2f2; 1=2g

mR1
1391 — 1081 3070

gπK̄;R1
−6.28 — 0.52 0.18

cπK̄;R1
609 — 1973 1954

gh1h2;R1
4.30 — −0.00 0.97

ch1h2;R1
1966 — 1706 1035

mR2
1767 — 1580 —

gπK̄;R2
8.22 — 1.84 —

cπK̄;R2
395 — 395 —

gh1h2;R2
−4.87 — −3.00 —

ch1h2;R2
395 — 411 —

mR3
— — 1750 —

gπK̄;R3
— — 0.23 —

cπK̄;R3
— — 1316 —

gh1h2;R3
— — 2.65 —

ch1h2;R3
— — 395 —

hπK̄;πK̄ 1.31 0.45 — —
bπK̄ 710 1973 — —
m1 494 — 591 100
m2 958 — 662 1049
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TABLE VIII. Model parameters for ππ partial-wave scatterings. The coupling h0 is defined in Eq. (3). The other
features are the same as those in Table VII.

RfL; Ig f0 f0; 0g f0; 2g ρf1; 1g f2f2; 0g
mR1

1166 — 850 1561
gππ;R1

5.97 — 1.02 −0.32
cππ;R1

1162 — 805 962
gKK̄;R1

−2.19 — −0.18 0.19
cKK̄;R1

1973 — 395 1216
mR2

1627 — 1551 —
gππ;R2

−5.23 — 0.49 —
cππ;R2

1973 — 1973 —
gKK̄;R2

11.99 — 3.74 —
cKK̄;R2

533 — 395 —
hππ;ππ 0.47 0.11 — —
h0 — 0.21 — —
bππ 897 913 — —

TABLE IX. Parameters determined by fitting Dþ → K−πþπþ Dalitz plot pseudodata; Dþ → hRL;2I
i (h ¼ π, K̄)

bare coupling (ChRL;2I
i

) and phase (ϕhRL;2I ) in degrees, as defined in Eq. (33). RL;2I
i stands for i-th bare R state with

the spin L and isospin I. rL;2Iab stands for the spurious state (see Sec. II B for the definition) that decays into two
pseudoscalar mesons ðabÞ with the orbital angular momentum L and total isospin I. The total spin, parity, total
isospin, and hR relative orbital angular momentum are J ¼ 0, P ¼ þ1, T ¼ 3=2, and l ¼ L, respectively for all the
parameters, and thus labels of JPT and l are suppressed in the table. The second, third, fourth, and fifth columns
show the parameters for the full, Z, Isobar, and Z (without ρ) models, respectively. The hyphens indicate unused
parameters. The cutoff for the three-meson force in the unit of MeV is denoted by Λ3MF [see Eq. (A15) for
definition].

Full Z Isobar Z (without ρ)

ϕπR01 −72:� 5: −80:� 4: 2.� 3: −24:� 6:
CπR01

1
10.54� 0.57 24.32� 2.94 10.83� 0.60 7.81� 0.79

CπR01
2

0.00� 0.28 0.00� 0.87 8.37� 0.59 12.34� 1.16
Cπr01

πK̄
0.00� 0.01 0.00� 0.03 0.00� 0.00 0.00� 0.00

ϕπR11 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)
CπR11

1
1 (fixed) 1 (fixed) 1 (fixed) 1 (fixed)

CπR11
2

1.48� 0.31 4.08� 0.83 0.03� 0.26 0.19� 0.24
CπR11

3
1.34� 0.46 6.55� 1.28 0.03� 0.43 0.39� 0.50

ϕπR21 82:� 13: 136:� 24: −131:� 9: 129:� 6:
CπR21

1
0.27� 0.08 0.37� 0.10 0.21� 0.04 0.34� 0.04

ϕK̄R12 −44:� 8: 178:� 7: — —
CK̄R12

1
0.00� 0.00 19.37� 3.12 — —

CK̄R12
2

17.27� 1.48 0.00� 0.84 — —

ϕπr03
πK̄

121:� 19: 62:� 16: −133:� 4: −170:� 8:

Cπr03
πK̄

0.90� 0.52 2.06� 1.12 2.61� 0.26 3.00� 0.36

ϕK̄r04ππ 173:� 30: 36:� 42: −78:� 5: −114:� 7:
CK̄r04ππ 1.78� 0.79 2.09� 1.20 4.67� 0.30 4.97� 0.48
Λ3MF 2563:� 722: — — —
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