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Light scalar hadrons can be understood as dynamically generated resonances. These arise as “companion
poles” in the propagators of quark-antiquark seed states when accounting for meson-loop contributions to
the self-energies of the latter. Along this line, we extend previous calculations of Törnqvist and Roos and of
Boglione and Pennington, where the resonance a0ð980Þ appears as a companion pole in the propagator of
a0ð1450Þ which is predominantly a quark-antiquark state. We also construct an effective Lagrangian where
a0ð1450Þ couples to pseudoscalar mesons with both nonderivative and derivative interactions. Computing
the one-loop self-energy, we demonstrate that the propagator has two poles: a companion pole
corresponding to a0ð980Þ and a pole of the seed state a0ð1450Þ. The positions of these poles are in
quantitative agreement with experimental data.
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I. INTRODUCTION

The majority of mesons can be understood as being
predominantly quark-antiquark states [1]. Yet, various
unconventional mesonic states such as glueballs, hybrids,
and four-quark states are expected [2]. One particular type
of four-quark meson is that of a “dynamically generated”
state [3–14]. Although there are recent works on the
compositeness of (dynamically generated) resonances—
see, e.g., Refs. [15,16], where the former also provides a
method to quantify the weight of the two-body components
of a resonance—a generally accepted definition of dynami-
cal generation does not exist [17]. An interesting version of
this idea was put forward in Refs. [10–13]. Consider, for
instance, a single seed state, e.g., a quark-antiquark meson
with certain quantum numbers. This state interacts with
other mesons, giving rise to loop contributions in the
corresponding self-energy. These shift the pole of the seed
state and, moreover, a new pole may appear (at least one).
The latter, also denoted as a companion pole, corresponds
to a dynamically generated resonance. As a consequence,
two resonances have emerged from a single seed state. In
this work, we aim to review some previous works and
deepen the understanding of the resonance a0ð980Þ as a
dynamically generated state.
There is a growing consensus that the scalar resonances

f0ð1370Þ, f0ð1500Þ, K�
0ð1430Þ, and a0ð1450Þ are predomi-

nantly quark-antiquark states; see for example
Refs. [6,7,14,18–21] [recent studies [22,23] agree in
interpreting the resonance f0ð1710Þ as predominantly
gluonic]. Then, the light scalar states f0ð500Þ, f0ð980Þ,
K�

0ð800Þ, and a0ð980Þ are (most likely) predominantly four

quark-states [see, e.g., Refs. [5–7,14,19,24–29] and refer-
ences therein]. As we shall show in the following for the
heavy scalar-isovector seed state a0ð1450Þ, the coupling of
this state to πη,KK̄, and πη0 dynamically generates the light
a0ð980Þ as a particular type of four-quark meson.
Törnqvist and Roos [11] (in the following denoted as

TR) and later Boglione and Pennington [12,13] (denoted as
BP) studied the mechanism of dynamical generation
through meson-loop contributions to the self-energy.
Here, we extend their studies (Sec. II) and compare
numerical results for the poles of the propagator to the
latest experimental data [1]. It turns out that (depending on
the assignment of the poles to physical resonances) the
widths of both the seed state a0ð1450Þ and the dynamically
generated state a0ð980Þ are by a factor of 2 larger than the
experimental values. Moreover, the mass of a0ð1450Þ is too
large (by 100 MeV in TR and by 400 MeV in BP). It thus
seems that, while qualitatively feasible, the dynamical
generation of resonances as companion poles in the
propagator does not yield results that are in quantitative
agreement with experimental data.
In this work, we show that this is actually not true and

that the mechanism of dynamical generation produces
results which are in quantitative agreement with the data.
To this end, we introduce a Lagrangian inspired by the
recently developed extended Linear Sigma Model (eLSM)
[20,21]. Here, the mesons interact via derivative and
nonderivative couplings (Sec. III). In our case, the
Lagrangian contains a single scalar-isovector a0 seed state
which corresponds to the resonance a0ð1450Þ. A careful
analysis of the pole structure of the corresponding propa-
gator shows that it is indeed possible to obtain a narrow
resonance with mass around 1 GeV, the pole coordinates of
which fit quite well with those of the physical a0ð980Þ
resonance, and simultaneously obtain a pole for the seed
state in agreement with that for the a0ð1450Þ [1]. Finally,
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we also investigate the use of Feynman rules in the context
of quantum field theories with derivative interactions and
demonstrate that for a particular form of the Lagrangian
there may be a discrepancy between ordinary Feynman
rules and dispersion relations (see in the Appendix).
Our units are ℏ ¼ c ¼ 1. The metric tensor is

ημν ¼ diagðþ;−;−;−Þ.

II. DYNAMICAL GENERATION

A. Approach of TR and BP

Following earlier work [10], Törnqvist et al. studied the
scalar sector in a unitarized quark model by including
meson-loop contributions [11]. They showed that meson-
loop effects may serve to explain the existence of the light
scalar states.
The following two points are relevant in the mechanism

of dynamical generation, irrespective of the quantum
numbers of the hadronic resonance considered. (i) The
propagator of a quark-antiquark seed state gets dressed by
meson-loop contribution to the self-energy. These contri-
butions shift the mass of the state and change the form of its
spectral function. When increasing the coupling, the
corresponding pole moves away from the real axis and
follows a certain trajectory in the complex plane. The mass
and the width of the resonance are determined by the
position of the complex pole of the dressed propagator on
the appropriate Riemann sheet—a procedure first proposed
by Peierls a long time ago [30]. (ii) If the interaction
exceeds a critical value, a companion pole (at least one) can
appear in the complex plane. If this pole is sufficiently close
to the real axis, it can manifest itself in the spectral function
as an additional resonance with the same quantum numbers
as the seed state [9,11,31]. Since the coupling of scalars to
pseudoscalars is large, the scalar sector is particularly
affected by such distortions of the spectral function.
We now recapitulate the seminal works TR [11] and BP

[13], where the latter uses the same model as the former but
with a slightly different set of parameters. The main goal is
the determination of the inverse propagator of a resonance
after applying a Dyson resummation of loop contributions
to the self-energy:

Δ−1ðsÞ ¼ s −m2
0 − ΠðsÞ; ð1Þ

where s is the first Mandelstam variable, m0 is the bare
mass of the seed state, and ΠðsÞ ¼ P

iΠiðsÞ is the self-
energy [32]. Here, the sum runs over the loops emerging
from the coupling of the resonance to various mesons. The
imaginary part of ΠiðsÞ corresponds to the partial decay
width of the resonance into mesons in channel i. The real
part of ΠðsÞ on the real axis is related to the imaginary part
by the dispersion relation

ReΠðsÞ ¼ 1

π
⨍ ds0 −ImΠðs0Þ

s − s0
: ð2Þ

TR and BP now assume a simple model for the imaginary
part of ΠiðsÞ, see Refs. [11–13,33] for details:

ImΠiðsÞ ¼ −g2i
kiðsÞffiffiffi

s
p ðs − sA;iÞF2

i ðsÞΘðs − sth;iÞ: ð3Þ

In the scalar-isovector sector, the Adler zeros sA;i are set to
zero for simplicity [11,13]. The form factor is chosen to be
a simple exponential,

FiðsÞ ¼ exp½−k2i ðsÞ=ð2k20Þ�; ð4Þ

where k0 is a cutoff parameter and kiðsÞ is the absolute
value of the three-momentum of the decay particles in the
rest frame of the resonance,

kiðsÞ ¼
1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðm2

i1 −m2
i2Þ2 − 2ðm2

i1 þm2
i2Þs

q
: ð5Þ

Here, mi1, mi2 are the masses of the decay particles, i.e., in
our case the pseudoscalar mesons [34]. The function FiðsÞ
guarantees that the imaginary part of ΠðsÞ vanishes
sufficiently fast for s → ∞ (the inverse cutoff k0 corre-
sponds to the nonvanishing size of a typical hadron). The
step function in Eq. (3) ensures that the decay channel i
contributes only when the squared energy of the resonance
exceeds the threshold value sth;i. Finally, the coupling
constants gi are related by SUð3Þ-flavor symmetry.
Note that one may also define the so-called Breit-Wigner

mass of a resonance as the real-valued root of the real part
of the inverse propagator, ReΔ−1ðsÞ ¼ 0. These roots can
be found by identifying the intersections of the so-called
“running mass”

m2ðsÞ ¼ m2
0 þ ReΠðsÞ ð6Þ

with the straight line fðsÞ ¼ s, where s is purely real. This
definition of the mass of the resonance is also used in TR
and BP. However, the Breit-Wigner mass does not neces-
sarily correspond to a pole in the complex energy plane or
to a peak in the spectral function.
For the scalar-isovector sector, the main results of TR

and BP can be summarized as follows:
(1) TR found a pole on the second Riemann sheet

with coordinates [35] mpole ¼ 1.084 GeV and
Γpole ¼ 0.270 GeV, which is a companion pole
corresponding to the resonance a0ð980Þ. A reanal-
ysis (the second paper quoted in Ref. [11]) where the
complex plane was investigated more carefully
revealed another pole with mpole ¼ 1.566 GeV
and Γpole ¼ 0.578 GeV on the third sheet. This pole
is indeed the original seed state and describes the
resonance a0ð1450Þ. It was suggested that, although
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the numerical agreement was not yet satisfactory, an
improved model could in principle be capable of
describing the whole scalar-isovector sector up to
1.6 GeV. TR also reports one (but not more)
intersection point(s) of the running mass
from Eq. (6).

(2) BP used the same approach but did not look for
poles of the propagator. Instead, they considered the
Breit-Wigner mass. Compared to TR, also the values
of the bare mass parameter m0 as well as the overall
strength of the couplings gi in Eq. (3) were changed.
BP found two intersection points for the running
mass from Eq. (6), one in the region around 1 GeV
corresponding to a0ð980Þ (like TR) and another one
at about 1.4 GeV (absent in TR). This latter
intersection was interpreted as the state a0ð1450Þ.
Note that, although BP did not investigate the poles
of the propagator, a pole and an intersection were
reported in an earlier work [12].

Apparently, the situation is somewhat inconclusive regard-
ing the number and location of poles of the propagator and/
or intersection points of the running mass. Therefore, we
decided to repeat the study of TR and BP and investigate
the propagator in the complex plane including all Riemann
sheets nearest to the first (physical) sheet in order to clarify
this problem. The self-energy on the unphysical sheet(s) is
obtained by analytic continuation. To this end, one first
computes the discontinuity of the self-energy across the
real s-axis,

DiscΠðsÞ ¼ 2i lim
ϵ→0þ

X
i

ImΠiðsþ iϵÞ; s ∈ R: ð7Þ

Then, the appropriately continued self-energy ΠcðsÞ on the
next Riemann sheet is obtained via

ΠcðsÞ ¼ ΠðsÞ þ DiscΠðsÞ: ð8Þ

This expression is valid on thewholeRiemann sheet, i.e., s is
complex valued. Note that in our case there are three
thresholds, in successive order corresponding to the decays
of a0 into πη,KK̄, and πη0. These channels will be numbered
i ¼ 1, 2, 3 in the following. Thus, crossing the real s-axis at
values of s in the interval ðsth;1; sth;2�, wemove from the first
to the second Riemann sheet, in the following denoted by
roman numeral II. Analogously, crossing the real s-axis in
the interval ðsth;2; sth;3�, we move from the first to the third
(III) sheet. Finally, crossing the real s-axis at s > sth;3, we
move from the first to the sixth (VI) sheet (in the standard
notation). Since we will also show plots of the spectral
function dðxÞ, we recall its definition,

dðxÞ ¼ −
2x
π

lim
ϵ→0þ

ImΔðx2 þ iϵÞ; ð9Þ

where x ¼ ffiffiffi
s

p
.

B. Spectral functions and poles

We introduce a dimensionless parameter λ ∈ ½0; 1� and
replace the coupling constants in Eq. (3) by g2i → λg2i . In
consequence, for λ ¼ 0 the self-energy vanishes, and we
just obtain the spectral function of the noninteracting seed
state, i.e., a delta function. The corresponding pole lies on
the real

ffiffiffi
s

p
-axis. Increasing λ from zero to 1, the interaction

is successively increased, and we can monitor in a con-
trolled manner how the spectral function changes. In the
following figures, we will show the spectral function for the
physical value λ ¼ 1.0 and for the intermediate value
λ ¼ 0.4. Changing λ from zero to 1, we will also see
how the pole of the seed state moves off the real axis and
other poles emerge, which correspond to the dynamically
generated resonances. A continuous change of λ will trace
out pole trajectories in the complex

ffiffiffi
s

p
-plane. The final and

physical locations of the poles are reached when λ ¼ 1.0,
which we indicate by a dot in the following figures. We
consider the three Riemann sheets nearest to the physical
region (i.e., the first sheet) in one figure (a list of the poles
corresponding to the resonances of interest can be found in
Sec. IV). For TR, we use the values g1 ¼ 1.2952 GeV,
g2 ¼ 0.8094 GeV, g3 ¼ 0.9461 GeV, and k0 ¼ 0.56 GeV
and for BP g1 ¼ 1.7271 GeV, g2 ¼ 1.0975 GeV,
g3 ¼ 1.4478 GeV, and k0 ¼ 0.56 GeV.
The results are shown in Fig. 1. We first discuss the

results for the TR parametrization and then those for BP:
(1) The two panels in the upper row of Fig. 1 show the

results of TR. For λ ¼ 1.0 the spectral function
exhibits a narrow peak in the region around 1 GeV
that was interpreted by TR as the a0ð980Þ resonance.
We furthermore observe a broad structure above
1.5 GeV. For decreasing coupling strength the
narrow peak around 1 GeV vanishes, while the
broad structure becomes more pronounced. It is
located around 1.4 GeV, which is the location of the
seed state. The width of the peak decreases with λ,
such that we obtain a delta function for λ ¼ 0, as
expected (not displayed here).
The behavior described above can also be under-

stood considering the pole structure in the complexffiffiffi
s

p
-plane. The narrow peak around 1 GeV for λ ¼

1.0 corresponds to a pole at s ≈ ð1.0842−
i1.084 · 0.270Þ GeV2, which TR has found on the
second sheet. This pole is indeed present only if λ
exceeds the critical value λTRc;1 ≈ 0.75. The pole
emerges close to (but not on) the real axis for λTRc;1
and descends down into the complex plane on the
second sheet for increasing coupling strength. One
can interpret this appearance and motion of a pole as
a feature typical for the kind of dynamical generation
we are interested in.
However, we also find another pole on the second

sheet emerging at a large imaginary value of
ffiffiffi
s

p
and

moving up toward the real axis. It first appears for

a0ð980Þ REVISITED PHYSICAL REVIEW D 93, 014002 (2016)

014002-3



λTRc;2 ≈ 0.84. Its effect on the spectral function is hard
to discern, since (the absolute value of) its imaginary
part (i.e., its decay width) is still too large at λ ¼ 1.0.
This pole was not reported in TR, yet, in Ref. [36], a
similar situation was described where the a0ð980Þ
was taken to have such a behavior; i.e., its pole was
coming from the region of large negative imaginary
parts of

ffiffiffi
s

p
and heading toward the real axis. This

is, however, not the case for the pole of TR, which
is dynamically generated near the real axis and
then shifts toward larger (negative) imaginary values
of

ffiffiffi
s

p
.

On the third sheet, TR reports another pole. One
could think that this pole corresponds to the seed state,
since for λ ¼ 0 the pole trajectory starts on the real
axis at the mass of the seed state. However,
the pole lies on the third sheet, i.e., prior to crossing
the πη0-threshold, but its location is above that thresh-
old. Therefore, it should not be considered to induce
the broad bump in the spectral function. However,
there is also a pole on the sixth sheet which also starts
at themass of the seed state. From its position this pole
can also be considered to generate the broad reso-
nance shape in the spectrum above 1.5 GeV. It is

interesting that the pole on the third sheet was
suggested in TR to correspond to the a0ð1450Þ
resonance. From our point of view, because of the
above arguments it is more natural to take the pole on
the sixth sheet. A close inspection of the peak position
of the broad bump in the spectral function reveals that
it corresponds more closely to the real part of the pole
on the sixth sheet than that on the third sheet, which
corroborates our interpretation.

(2) In the lower row of Fig. 1 we present the results for
the parameter choice in BP. We find that the
qualitative behavior is very similar to the one in
TR. Quantitatively, we find that the bump in the
spectral function corresponding to the a0ð980Þ
resonance is now somewhat wider. The broad
structure at large

ffiffiffi
s

p
is more pronounced and now

lies around 2 GeV. For decreasing coupling strength
the peak becomes narrower and moves toward
1.6 GeV (because the seed state is located there).
We find again two poles on the second sheet. The

right pole appears first for λBPc;1 ≈ 0.69 and the left
one for λBPc;2 ≈ 0.66. The parameter set of BP does not
yield a pole structure from which one can infer
which pole corresponds to the a0ð980Þ. Both poles
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FIG. 1. Spectral functions (left panels) and positions of poles in the complex
ffiffiffi
s

p
-plane (right panels) for the parameter sets of

TR (upper row) and BP (lower row). Spectral functions are shown for λ ¼ 0.4 (dashed gray lines) and λ ¼ 1.0 (solid blue lines).
The pole trajectories of the seed state are indicated by gray dotted or red dashed lines (for details, see the text) and the one for the
dynamically generated resonance by solid blue lines. The roman numerals indicate the Riemann sheets where the respective poles can be
found. Final pole positions (λ ¼ 1.0) are indicated by solid black dots, pole positions at λc;i, i.e., where the pole i first emerges, are
indicated by X.
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give too large widths, and the left one is too light,
while the right one is too heavy. It seems that both of
them are relevant in the generation of the bump at
1 GeV in the spectrum. Moreover, it does not seem
to be appropriate to assign the poles on the other two
sheets to a0ð1450Þ. At least within this model and
with the chosen parameters, the pole masses are
definitely too high [37].

III. SIMPLE EFFECTIVE MODEL WITH
DERIVATIVE INTERACTIONS

In the previous section we have reexamined the approach
of TR and BP to dynamically generate resonances in the
scalar-isovector sector. We now apply the above mecha-
nism of dynamical generation of resonances using a
formulation based on an interaction Lagrangian.

A. Interactions with derivatives:
A lesson from the eLSM

The way a scalar field couples to pseudoscalar states
depends on the effective approach used. Let us, for
instance, consider the coupling of a0 to kaons. In chiral
perturbation theory (chPT) [38], which is based on the
nonlinear realization of chiral symmetry, only derivative
couplings of the type a00∂μK0∂μK̄0 can appear in the chiral
limit [39]. Away from the chiral limit, a nonderivative
coupling a00K

0K̄0 appears, too, but its strength is propor-
tional to m2

K, i.e., via the Gell-Mann–Oakes–Renner

relation proportional to the explicit breaking of chiral
symmetry by nonzero quark masses. On the other hand,
if the standard linear sigma model (without vector degrees
of freedom) is considered, the coupling is only of the
nonderivative type a00K

0K̄0. At tree-level both chPTand the
sigma model can coincide, but when loops are included
differences arise due to the different s-dependence in the
amplitudes.
Studying the spectral function of ϕ → a0ð980Þγ → π0ηγ

measured by the KLOE Collaboration [40], it was shown in
Ref. [41] that a derivative coupling of the type a00∂μK0∂μK̄0

seems to be necessary. As we shall demonstrate below, we
come to the same conclusion: a derivative coupling is
necessary for the simultaneous description of both reso-
nances a0ð980Þ and a0ð1450Þ.
Interestingly, an improved version of the linear sigma

model, called the extended Linear Sigma Model, naturally
contains both nonderivative and derivative coupling terms.
This feature is due to the inclusion of (axial-)vector degrees
of freedom in the model; for more details see Refs. [20,21].
This model is able to provide a surprisingly good descrip-
tion of the tree-level masses and decay widths of meson
resonances below 1.7 GeV [20–22]. Furthermore, in this
approach the resonance a0ð1450Þ turns out to be predomi-
nantly a quark-antiquark state with a (bare) mass
of ma0 ¼ 1.363 GeV.
The Lagrangian for the scalar-isovector sector emerging

from the eLSM has the following form,

LeLSM
a0ηπ ¼ AeLSM

1 a00ηπ
0 þ BeLSM

1 a00∂μη∂μπ0 þ CeLSM
1 ∂μa00ðπ0∂μηþ η∂μπ0Þ;

LeLSM
a0η0π

¼ AeLSM
2 a00η

0π0 þ BeLSM
2 a00∂μη

0∂μπ0 þ CeLSM
2 ∂μa00ðπ0∂μη0 þ η0∂μπ0Þ;

LeLSM
a0KK̄

¼ AeLSM
3 a00ðK0K̄0 − K−KþÞ þ BeLSM

3 a00ð∂μK0∂μK̄0 − ∂μK−∂μKþÞ
þ CeLSM

3 ∂μa00ðK0∂μK̄0 þ K̄0∂μK0 − K−∂μKþ − Kþ∂μK−Þ; ð10Þ

where AeLSM
i , BeLSM

i , and CeLSM
i are coupling constants that

are functions of the parameters of the model [21]. Note that
both nonderivative and derivative interactions appear. The
derivatives in front of the fields produce an s-dependence in
the decay amplitudes, −iMeLSM

i ðsÞ, which enter the tree-
level expressions of the decay widths,

ΓeLSM
i ðsÞ ¼ kiðsÞ

8πs
j− iMeLSM

i ðsÞj2Θðs − sth;iÞ; ð11Þ

which have to be evaluated for s ¼ m2
a0. The amplitudes

read

MeLSM
i ðsÞ ¼ AeLSM

i −
1

2
BeLSM
i ðs −m2

i1 −m2
i2Þ þ CeLSM

i s;

ð12Þ

where the masses mi1, mi2 are the pseudoscalar masses in
the relevant channels. The parameters of the eLSM were
determined from a χ2-fit to tree-level masses and decay
widths. So far, no loop corrections were considered. For a
consistent loop calculation one would have to perform a
new fit of the parameters, which is an interesting project
for future work. In any case, one should not use the
values of the parameters of the eLSM determined in
Ref. [21] in the expressions for AeLSM

i , BeLSM
i , and

CeLSM
i . Therefore, we shall treat the latter as free parameters

in the following.
A first attempt to incorporate loop corrections in a

scheme inspired by the eLSM was presented in
Refs. [42,43]. There, the s-dependence of the amplitudes
was completely neglected, and a regularization function
was introduced,
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−iMeLSM
i ðsÞ → −iMiðsÞ ¼ −iMeLSM

i ðm2
a0ÞFiðsÞ: ð13Þ

After that, the imaginary part of the self-energy was
computed using the optical theorem,

ImΠiðsÞ ¼ −
ffiffiffi
s

p
Γtree
i ðsÞ

¼ −
kiðsÞ
8π

ffiffiffi
s

p j− iMiðsÞj2Θðs − sth;iÞ; ð14Þ

and the real part from the dispersion relation (2). As shown
in Ref. [42] the model yields a width of the seed state which
is too small. Moreover, no additional pole for the a0ð980Þ
is dynamically generated. Obviously, neglecting the s-
dependence of the amplitudes is an oversimplification.
One has to take into account the derivatives in some way; at
the same time care is needed when derivative interactions
appear in a Lagrangian; for details see in the Appendix.

B. Effective model with both nonderivative
and derivative interactions

We now consider an effective model for the isovector
states containing the same decay channels as the eLSM and
including also nonderivative and derivative interactions.
The Lagrangian is given by the sum of the following terms:

La0ηπ ¼ A1a00ηπ
0 þ B1a00∂μη∂μπ0;

La0η0π ¼ A2a00η
0π0 þ B2a00∂μη

0∂μπ0;

La0KK̄ ¼ A3a00ðK0K̄0 − K−KþÞ
þ B3a00ð∂μK0∂μK̄0 − ∂μK−∂μKþÞ: ð15Þ

Formally it can be obtained by rewriting the terms propor-
tional to CeLSM

i in Eq. (10) by an integration by parts in
order to get rid of the derivatives of the a0-fields [44].
Subsequently, one replaces the emerging second derivatives
with the help of the Klein-Gordon equation,□π0 ¼ −m2

ππ
0

(and similarly for the other pseudoscalar fields). Then,
Eq. (15) gives rise to the following s-dependent amplitudes,

Meff
i ðsÞ ¼

�
Ai −

1

2
Biðs −m2

i1 −m2
i2Þ

�
FiðsÞ; ð16Þ

where we have already included a regularization function
FiðsÞ as defined in Sec. II. We again note that the constants
Ai and Bi will not be computed from the numerically
determined parameters of the eLSM but will be determined
in order to produce the masses and decay widths of the
resonances under study. Note that in chPT the parameters
Ai are proportional to the masses of the pseudo-Goldstone
bosons as A1 ∝ m2

π þm2
η, A2 ∝ m2

π þm2
η0 , A3 ∝ 2m2

K and
thus vanish in the chiral limit. Thus, also from this
consideration, we expect that the derivative terms are
sizable and crucial for the determination of the resonance
poles.

We computed the real and imaginary part of the self-
energy in two ways. In the first, we applied the method
outlined in Sec. III A; i.e., we computed the tree-level
decay widths and used the optical theorem from Eq. (14) to
obtain the imaginary part of the self-energy. We then
applied the dispersion relation (2) to calculate the corre-
sponding real part. In the second approach, we computed
the one-loop self-energy directly from the Feynman rules.
From a comparison, we identified the necessity to introduce
subtractions in the first approach; for details see in the
Appendix. Note that the one-loop approximation for the
self-energy is quite reliable, since vertex corrections can be
shown to have a negligible effect [45].
There are eight parameters in our approach: m0,

Λ ¼ ffiffiffi
2

p
k0, and six coupling constants Ai, Bi (i ¼ 1, 2,

3). We vary the numerical values of m0 and Λ within
reasonable intervals m0 ∈ ð0.8; 1.5Þ GeV and Λ ∈
ð0.4; 1.5Þ GeV and each time perform a fit of the six
coupling constants to six experimental quantities: one pole
in the Particle Data Group (PDG) range for a0ð980Þ [in our
case

ffiffiffi
s

p ¼ ð0.969 − i0.045Þ GeV] and one for a0ð1450Þ
[in our case

ffiffiffi
s

p ¼ ð1.450 − i0.135Þ GeV], and the central
values of the branching ratios of a0ð1450Þ [see Eq. (22)].
By this, all six free parameters can be fixed.
It turns out that there is only a narrow range of suitable

values of the parameters m0 and Λ for which the fit of the
six coupling constants is possible: approximately m0 ∈
ð0.9; 1.2Þ GeV and Λ ∈ ð0.4; 0.9Þ GeV. Here, “approxi-
mately” refers to the fact that, due to the interdependence of
the parameters, the window is not rectangular. However, a
small change inm0 and/or Λ by 50 MeV near the borders of
the quoted interval does not allow one to reproduce the data
anymore. Thus, although we have eight parameters, we are
severely constrained in their choice in order to describe the
I ¼ 1 resonance. As we will see below, the present
parameters also explain why a0ð980Þ couples strongly to
kaons. The final values for the parameters and coupling
constants are

m0 ¼ 1.15 GeV; Λ ¼ 0.6 GeV; ð17Þ

A1 ¼ 2.52 GeV; B1 ¼ −8.07 GeV−1;

A2 ¼ 9.27 GeV; B2 ¼ 9.25 GeV−1;

A3 ¼ −6.56 GeV; B3 ¼ −1.54 GeV−1: ð18Þ

We rescale these coupling constants by a common factorffiffiffi
λ

p
and compute the corresponding spectral functions. The

result is shown in the left panel of Fig. 2. We also compute
the pole trajectories in the complex

ffiffiffi
s

p
-plane by varying λ

from zero to 1. The following comments are in order:
(1) The spectral function shows a narrow peak for λ ¼

1.0 at a value of x ¼ ffiffiffi
s

p
slightly smaller than 1 GeV,

which can be interpreted as the a0ð980Þ. The form is
distorted by the nearby KK̄-threshold and resembles
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the Flatté distribution [46]; see also Refs. [47,48]
and references therein. The pole corresponding
to this peak lies on the second sheet and has
coordinates

ffiffiffi
s

p ¼ ð0.970 − i0.045Þ GeV; ð19Þ

i.e., we find the a0ð980Þ to have a mass of mpole ¼
0.969 GeV and a width of Γpole ¼ 0.090 GeV. This
pole appears only if λ exceeds λc ≈ 0.52 (note that
the pole trajectory is very different from the one
reported in Ref. [14]). The corresponding position is
indicated by an X in the right panel of Fig. 2. The
important thing here is that, in contrast to what we
have found for the TR and BP parametrizations,
there is only one pole for the a0ð980Þ, and thus no
ambiguity which one should be identified with this
resonance [49].

(2) There is also a broad structure around 1.5 GeV
which corresponds to the resonance a0ð1450Þ. For
decreasing λ, both peaks merge and settle around
1.15 GeV, where the seed state is located.

(3) As expected, there is (only) one pole present on
the third sheet with coordinates

ffiffiffi
s

p ¼ ð1.400−
i0.141Þ GeV. However, as in TR and BP, we find
a pole on the sixth sheet, too. Its coordinates are

ffiffiffi
s

p ¼ ð1.456 − i0.134Þ GeV; ð20Þ

or mpole ¼ 1.450 GeV and Γpole ¼ 0.270 GeV. This
is the pole which is responsible for the peak around
1.5 GeV in the spectrum, and thus we assign it to the
a0ð1450Þ. However, since the pole on the third sheet
also reproduces mass and width of a0ð1450Þ to
reasonable accuracy, it is in principle possible
to regard this one as the pole corresponding to
a0ð1450Þ, too.

The present study demonstrates that, by starting with a
unique seed state, it is indeed possible to find two poles for

the isovector states, both of which reproduce the masses
and widths of a0ð980Þ and a0ð1450Þ reasonably well.

C. Branching ratios and coupling constants for a0ð980Þ
For completeness, we report the branching ratios of our

effective model by using the tree-level decay widths
obtained from the optical theorem (14). The partial widths
are evaluated at the peak value of the spectral function
above 1 GeV, mpeak ¼ 1.419 GeV. For the resonance
a0ð1450Þ this leads to

Γtree
a0→η0π

Γtree
a0→ηπ

≃ 0.44;
Γtree
a0→KK̄

Γtree
a0→ηπ

≃ 0.96; ð21Þ

which can be compared to the experimental values [1]:

Γa0→η0π

Γa0→ηπ
¼ 0.35� 0.16;

Γa0→KK̄

Γa0→ηπ
¼ 0.88� 0.23: ð22Þ

Concerning the resonance a0ð980Þ, we give the follow-
ing estimates for the coupling constants in the πη- and KK̄-
channels: We calculate the partial widths Γtree

i ðsÞ, this time
with

ffiffiffi
s

p
equal to the peak mass of the spectral function

below 1 GeV, mpeak ¼ 0.956 GeV. Then, Eq. (14) is used
to solve for the absolute values of the amplitudes. The result
is multiplied with the root of the wave-function renorm-
alization factor,

ffiffiffiffi
Z

p ¼ 0.652, which is its value at the Breit-
Wigner mass of the a0ð980Þ. Thus. we obtain the coupling
constants in the πη- and KK̄-channels as

gπη ¼ 2.496 GeV; gKK̄ ¼ 6.012 GeV: ð23Þ

It is remarkable that the coupling of a0ð980Þ to kaons turns
out to be sizably larger than the coupling to πη. This is in
agreement with various other works on this topic
[25,29,41]: Virtual kaon-kaon pairs near the kaon-kaon
threshold are important for the dynamical generation of the
resonance a0ð980Þ.
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FIG. 2. In the left panel we show the spectral functions for three different values of λ. In the right panel we display pole trajectories
obtained by varying λ from zero to 1. Black dots indicate the position of the poles for λ ¼ 1.0. The X indicates the pole position for λc,
i.e., when the pole first emerges. The roman numeral indicates on which sheet the respective pole can be found.
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IV. CONCLUSIONS

Experimental data exhibit several puzzling facts about
the light scalar mesons: f0ð500Þ (or σ) and K�

0ð800Þ have
large decay widths, while f0ð980Þ and a0ð980Þ are narrow,
but their spectral functions show threshold distortions due
to the nearby KK̄-threshold. It is nowadays recognized that
these states do not fit into the ordinary qq̄ picture based on a
simple representation of SUð3Þ-flavor symmetry [52], yet
there is no consensus on the precise mechanism which
generates them. One can also regard these states as four-
quark objects, for example, as tetraquarks [19,24,25,27,28]
or as dynamically generated states. The latter are states
which are not present in the original formulation of a
hadronic model but appear when calculating loop correc-
tions [4,5,9–12]. Indeed, the interpretation of light scalar
states as loosely bound molecular states [29] is also an
example of dynamical generation. (For another interpreta-
tion of light scalar states, see, e.g., Ref. [53].)
A particular type of dynamical generation is that of

“image” or “companion poles.” We have concentrated on
such a method in this work and have applied it to the scalar-
isovector sector. Our results demonstrate that it is in fact
possible to correctly describe the resonances a0ð980Þ and
a0ð1450Þ in a unique framework, where originally only a
single quark-antiquark seed state is present.
Besides that, we have also repeated the previous calcu-

lations of Törnqvist and Roos [11] and Boglione and
Pennigton [13]. These studies have been extended by us
to the complex plane on all Riemann sheets nearest to the
first, physical sheet. A summary of our results and, for
comparison, those of Törnqvist and Roos and Boglione and
Pennington can be found in Table I. Our results are based
on an effective Lagrangian approach that includes both
derivative and nonderivative interaction terms, see Eq. (15),
inspired by the eLSM, and show that both terms are
necessary and equally important [20,21].
Note that the formulation of dynamical generation

applied here is related but not equal to the one described
in Ref. [5]. In the latter the scattering amplitude is
computed from an effective Lagrangian (derived from
chiral perturbation theory and containing only pseudoscalar
mesons) and then unitarized; this process of unitarization

generates, for instance, the pole of the a0ð980Þ in the scalar-
isovector sector. Yet, it is a priori not possible to know if
the resulting state is in fact a quark-antiquark or a four-
quark resonance and if it can be linked to the heavier
a0ð1450Þ state or not; see Ref. [17] for a detailed discussion
of this issue. However, further studies within this scheme
were performed in Ref. [6] by including an octet of bare
resonances masses around 1.4 GeV. It was found that the
physical a0ð1450Þ in fact originates from this octet, giving
a clear statement about its nature, which is in agreement
with our results.
In this work we have concentrated on the isovector sector

I ¼ 1. However, the very same mechanism is applicable for
the other light and heavy scalar states. As a consequence,
all light scalars are dynamically generated states. In
particular, it seems promising to extend the present study
in the low-energy regime into two directions. (i) First is the
isodoublet, i.e., by describing the resonances K�

0ð800Þ and
K�

0ð1430Þ in a similar framework. The pole of K�
0ð800Þ is

not yet very well known, and there is need of improved
analyses from different directions. (ii) Second is the scalar-
isoscalar sector, where the resonances f0ð500Þ and f0ð980Þ
should be dynamically generated. In this case, f0ð1370Þ,
f0ð1500Þ, and f0ð1710Þ would be predominantly a non-
strange quarkonium, a strange quarkonium, and a scalar
glueball, respectively.
Another interesting subject is the study of dynamical

generation in the framework of puzzling resonances in the
charmonium sector [54]; see, for example, Ref. [55] and
references therein. Namely, a whole class of mesons, called
X, Y, and Z states, has been experimentally discovered but
is so far not fully understood [56,57]. As demonstrated in
Ref. [58] for the case of Xð3872Þ, some of the X and Y
states could emerge as companion poles of quark-antiquark
states.
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TABLE I. Numerical results for the pole coordinates in the scalar-isovector sector in TR, BP, and our effective model, compared to the
PDG values. In the case of the a0ð1450Þ, the poles listed for TR and BP are located on the third sheet, while our pole lies on the sixth
sheet. All poles for the a0ð980Þ are found on the second sheet. Note that all poles listed for BP were obtained performing the analytic
continuation of the propagator given by BP.

a0ð980Þ a0ð1450Þ
mpole (GeV) Γpole (GeV) mpole (GeV) Γpole (GeV)

TR [11] 1.084 0.270 1.566 0.578
BP [13] 1.186a 0.373a 1.896 0.250
Our results 0.969 0.090 1.450 0.270
PDG [1] 0.980� 0.020 0.050 to 0.100 1.474� 0.019 0.265� 0.013

aIn order to compare to TR, the right pole on the second sheet was chosen.
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APPENDIX: THEORIES WITH DERIVATIVE
INTERACTIONS

In this Appendix, we compute the one-loop self-energy
in the case of derivative interactions. We first derive the
interacting part of the Hamiltonian from the Lagrangian via
a Legendre transformation. We shall see that the derivative
interactions give rise to new interaction vertices. We
demonstrate that, in a perturbative calculation of the
one-loop self-energy, these terms are necessary to cancel
additional terms arising from contractions of gradients of
fields. This proves that, at least at the one-loop level, it is
justified to apply standard Feynman rules with the deriva-
tive interaction in Lint. We shall also demonstrate that a
computation of the self-energy via the dispersion relation
(2) may require subtraction constants to agree with the
perturbative calculation using Feynman rules.

1. Canonical quantization

Let us consider a theory with two scalar fields, S and ϕ,
which allows for the decay process S → ϕϕ. Consequently,
the Lagrangian is

L ¼ LS þ Lϕ þ Lint; ðA1Þ
where

LS ¼
1

2
ð∂μS∂μS −M2S2Þ;

Lϕ ¼ 1

2
ð∂μϕ∂μϕ −m2ϕ2Þ;

Lint ¼ gS∂μϕ∂μϕ: ðA2Þ
For perturbative calculations of Ŝ-matrix elements or
Green's functions, however, one needs the interaction part
of the Hamilton operator in the interaction picture. We
derive this operator via a Legendre transformation of L and
subsequent canonical quantization in the interaction pic-
ture. As a byproduct of this calculation, we will explicitly
show that the derivative interactions invalidate the com-
monly used relation Hint ¼ −Lint [59].
The canonically conjugate fields are

πS ¼
∂L

∂ð∂0SÞ
¼ ∂0S;

πϕ ¼ ∂L
∂ð∂0ϕÞ

¼ ∂0ϕþ 2gS∂0ϕ ¼ ð1þ 2gSÞ∂0ϕ: ðA3Þ

The Hamiltonian is defined via a Legendre transformation
of L,

H ¼ πS∂0Sþ πϕ∂0ϕ − L

¼ 1

2
πSπS þ

1

2
~∇S · ~∇Sþ 1

2
M2S2 þ 1

2
πϕπϕð1þ 2gSÞ−1

þ 1

2
~∇ϕ · ~∇ϕþ 1

2
m2ϕ2 þ gS ~∇ϕ · ~∇ϕ: ðA4Þ

For a perturbative calculation, we need to expand the
denominator ð1þ 2gSÞ−1 and obtain the interaction part of
the Hamiltonian as

Hint ¼ −gSπϕπϕ þ gS ~∇ϕ · ~∇ϕþ 2g2S2πϕπϕ þOðg3Þ:
ðA5Þ

We may now quantize in the Heisenberg picture (indicated
by a superscript H at the respective operators). This is
commonly done by promoting fields to operators S → ŜH,
ϕ → ϕ̂H, πS → π̂HS , πϕ → π̂Hϕ , and postulating certain
commutation relations for these operators. However, in
perturbation theory we need the operators in the interaction
picture. The following relations hold,

ŜI ¼ ÛŜHÛ†; ϕ̂I ¼ Ûϕ̂HÛ†;

π̂IS ¼ Ûπ̂HS Û
†; π̂Iϕ ¼ Ûπ̂Hϕ Û

†; ðA6Þ

where Û ¼ eiĤ0te−iĤt is the time-evolution operator that
relates operators in the Heisenberg picture with those in the
interaction picture. Finally, replacing π̂IS ¼ ∂0ŜI , π̂Iϕ ¼
∂0ϕ̂I this results in

ĤI
int ¼ −L̂I

int þ 2g2ŜIŜI∂0ϕ̂
I∂0ϕ̂I þOðg3Þ: ðA7Þ

As advertised, the second term spoils the standard relation
Ĥint ¼ −L̂int. This term corresponds to a four-point vertex,
so it will not appear in the tree-level decay S → ϕϕ. In
contrast, in the one-loop self-energy, it will give rise to an
additional tadpole contribution.

2. Perturbative calculation of the one-loop self-energy

We now turn to the self-energy ΠðsÞ of the field S. At
one-loop level, the Feynman rules applied to Ĥint tell us
that we will have two contributions. The first contribution
comes from taking two three-point vertices of L̂int where
the ϕ̂ legs are joined in a manner which gives a one particle
irreducible (1PI) diagram. A covariant derivative acts on
each ϕ̂ leg at each vertex. The second contribution is a
tadpole term arising from the four-point vertex in Eq. (A7),
which has two time derivatives on the internal leg. This can
be graphically depicted as follows:

ðA8Þ

The usual Feynman propagator is defined as a contraction
of two fields:
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ϕ̂ðx1Þϕ̂½ ðx2Þ ¼ h0jT fϕ̂ðx1Þϕ̂ðx2Þgj0i

¼ h0jϕ̂ðx1Þϕ̂ðx2Þj0iΘðx01 − x02Þ
þ h0jϕ̂ðx2Þϕ̂ðx1Þj0iΘðx02 − x01Þ

¼ iΔϕ
Fðx1 − x2Þ

¼ i
Z

d4p
ð2πÞ4

e−ip·ðx1−x2Þ

p2 −m2 þ iϵ
: ðA9Þ

However, in the tadpole diagram, we have the contraction
of two fields, on each of which acts a time derivative.
Because time ordering has no effect at the same space-time
point, we obtain

h0jT f∂x
0ϕ̂ðxÞ∂0;xϕ̂ðxÞgj0i ¼ h0j∂x

0ϕ̂ðxÞ∂0;xϕ̂ðxÞj0i

¼ i
Z

d4p
ð2πÞ4

E2
p

p2 −m2 þ iϵ
:

ðA10Þ

In order to obtain this result, we inserted the standard
Fourier decomposition of the field operators,

ϕ̂ðxÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep

p ðâ†peip·x þ âpe−ip·xÞ; ðA11Þ

where p0 ¼ Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
is the on-shell energy. Thus,

a time derivative acting on a field operator brings down a
factor of �i times the on-shell energy in the corresponding
Fourier representation.
The result (A10) is, however, identical ifwe just actwith the

time derivatives on the standard Feynman propagator (A9):

∂x
0∂0;xh0jϕ̂ðxÞϕ̂ðxÞj0i ¼ lim

x1→x2
∂x1
0 ∂0;x2h0jT fϕ̂ðx1Þϕ̂ðx2Þgj0i

¼ i
Z

d4p
ð2πÞ4

E2
p

p2 −m2 þ iϵ
: ðA12Þ

In order to prove this, it is convenient to first perform the p0

integration in Eq. (A9) and then take the time derivatives. The
equivalenceofEqs. (A10)and(A12) isgraphicallydepictedas

ðA13Þ

In the perturbative series of the full propagator of the
S-field, this tadpole contribution appears in combinationwith
twofreeS-fieldpropagators (whereweomit thesuperscriptS):

−2ig2

1!
· 2

Z
dx0iΔðx1 − x0Þh0jT f∂x0

0 ϕðx0Þ∂0;x0ϕðx0Þgj0iiΔðx0 − x2Þ

¼ i2g2 · 2
Z

dx0Δðx1 − x0ÞΔðx0 − x2Þh0jT f∂x0
0 ϕðx0Þ∂0;x0ϕðx0Þgj0i: ðA14Þ

The factor −2ig2 is the factor accompanying the four-point vertex, cf. Eq. (A7). A factor of 2 arises because each S
propagator can be joined with either one of the S legs at the vertex.
We now compute the first diagram in Eq. (A8). To this end, we need contractions of gradients of the ϕ-fields. These can

be expressed in terms of gradients acting on the standard Feynman propagator. The gradient of the Feynman propagator
(A9) is

i∂x2
ν Δϕ

Fðx1 − x2Þ ¼ ∂x2
ν h0jT fϕðx1Þϕðx2Þgj0i

¼ h0jT fϕðx1Þ∂x2
ν ϕðx2Þgj0i − ην0δðx01 − x02Þh0j½ϕðx1Þ;ϕðx2Þ�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼0

j0i; ðA15Þ

where we used the explicit definition of the time-ordered product. The last term vanishes on account of the delta function,
since it is an equal-time commutator of two ϕ-fields [59]. Taking another gradient leads to

i∂x1
μ ∂x2

ν Δϕ
Fðx1 − x2Þ ¼ ∂x1

μ h0jT fϕðx1Þ∂x2
ν ϕðx2Þgj0i

¼ h0jT f∂x1
μ ϕðx1Þ∂x2

ν ϕðx2Þgj0i þ ημ0δðx01 − x02Þh0j½ϕðx1Þ; ∂x2
ν ϕðx2Þ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

≠0

j0i: ðA16Þ

Now the second term does not vanish if ν ¼ 0, because then it involves a commutator of a field with its canonically
conjugate field [59],
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ημ0δðx01 − x02Þh0j½ϕðx1Þ; ∂x2
ν ϕðx2Þ�j0i ¼ iημ0ην0δð4Þðx1 − x2Þ: ðA17Þ

Collecting terms, we can express the contraction of two gradients of the ϕ-field as

h0jT f∂x1
μ ϕðx1Þ∂x2

ν ϕðx2Þgj0i ¼ i∂x1
μ ∂x2

ν Δϕ
Fðx1 − x2Þ − iημ0ην0δð4Þðx1 − x2Þ: ðA18Þ

In the perturbative series of the full propagator for the S-field, the first diagram in Eq. (A8) also appears in the combination
with two ϕ-field propagators:

ð−igÞ2
2!

· 2 · 2
Z

dx0
Z

dx00iΔðx1 − x0ÞiΔðx00 − x2Þh0jT f∂x0
μ ϕðx0Þ∂x00

ν ϕðx00Þgj0ih0jT f∂μ;x0ϕðx0Þ∂ν;x00ϕðx00Þgj0i: ðA19Þ

Two factors of −ig originate from the three-point vertices in L̂int. The factor of 1=2! arises because the diagram is second
order in perturbation theory. A factor of 2 arises because each S propagator can be joined with either one of the S legs at the
vertex. Finally, another factor of 2 comes from the fact that the two ϕ lines at one vertex can be joined with corresponding
lines at the other vertex in two different ways. Successively inserting Eq. (A18), we compute

2g2
Z

dx0
Z

dx00Δðx1 − x0ÞΔðx00 − x2Þ½i∂x0
μ ∂x00

ν Δ
ϕ
Fðx0 − x00Þ − iημ0ην0δð4Þðx0 − x00Þ�h0jT f∂μ;x0ϕðx0Þ∂ν;x00ϕðx00Þgj0i

¼ 2g2
Z

dx0
Z

dx00Δðx1 − x0ÞΔðx00 − x2Þi∂x0
μ ∂x00

ν Δ
ϕ
Fðx0 − x00Þh0jT f∂μ;x0ϕðx0Þ∂ν;x00ϕðx00Þgj0i

− i2g2
Z

dx0Δðx1 − x0ÞΔðx0 − x2Þh0jT f∂0;x0ϕðx0Þ∂0;x0ϕðx0Þgj0i

¼ −2g2
Z

dx0
Z

dx00Δðx1 − x0ÞΔðx00 − x2Þ∂x0
μ ∂x00

ν Δ
ϕ
Fðx0 − x00Þ∂μ;x0∂ν;x00Δϕ

Fðx0 − x00Þ

− i2g2
Z

dx0
Z

dx00Δðx1 − x0ÞΔðx00 − x2Þi∂x0
0 ∂x00

0 Δ
ϕ
Fðx0 − x00Þδð4Þðx0 − x00Þ

− i2g2
Z

dx0Δðx1 − x0ÞΔðx0 − x2Þh0jT f∂0;x0ϕðx0Þ∂0;x0ϕðx0Þgj0i: ðA20Þ

With Eq. (A13) one realizes that the last two terms are identical. The final result is

− 2g2
Z

dx0
Z

dx00Δðx1 − x0ÞΔðx00 − x2Þ∂x0
μ ∂x00

ν Δ
ϕ
Fðx0 − x00Þ∂μ;x0∂ν;x00Δϕ

Fðx0 − x00Þ

− i2g2 · 2
Z

dx0Δðx1 − x0ÞΔðx0 − x2Þh0jT f∂0;x0ϕðx0Þ∂0;x0ϕðx0Þgj0i; ðA21Þ

which can be graphically depicted as

ðA22Þ

Obviously, the second diagram cancels the tadpole contribution, Eq. (A13), in the one-loop self-energy from Eq. (A8).
In summary, a derivative interaction in Lint produces an additional term in the interaction Hamiltonian and thus, after

quantization, an additional vertex which has to be taken into account in perturbative calculations via Feynman rules. In the
one-loop self-energy, this vertex leads to a tadpole diagram. Nevertheless, carefully computing contractions between
gradients of the field operators, we demonstrated that these lead to a term which exactly cancels the tadpole diagram. The
remaining contribution is exactly equal to the self-energy when computed with standard Feynman rules using L̂int and
derivatives acting on the usual Feynman propagators.
We did not deliver a rigorous proof of this tadpole cancellation to all orders in perturbation theory. However, since this

seems to be just a demonstration of the validity of Matthews’s theorem [60] which was investigated, e.g., in Refs. [61–64],
we also expect a similar cancellation to work at higher orders in perturbation theory.
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3. One-loop self-energy from a dispersion relation

The second way to compute the self-energy is via the dispersion relation (2). To this end, one needs the imaginary part of
the self-energy in order to compute the real part. The imaginary part can be inferred from the decay width through the
optical theorem. For the one-loop self-energy, the cutting rules imply that the decay width needs only to be known at tree-
level:

ðA23Þ

The second equality arises from Eq. (A22) and the fact that the tadpole has no imaginary part.

The calculation of the tree-level decay width in momen-
tum space proceeds by replacing derivatives ∂μ → �ipμ

(the lower/upper sign stands for incoming/outgoing par-
ticles) in the Lagrangian (A2); i.e., in our simple model the
decay amplitude reads

ðA24Þ

The factor 2 arises from the two identical particles in the
outgoing channel. The blob in the left diagram represents
the vertex as given by Eq. (A7), while in the middle
diagram the above replacement was performed in order to
calculate the expression on the right-hand side. Note that
the factor ðs − 2m2Þ=2 appears in a similar form in Eq. (12)
with coupling constant g ¼ BeLSM

i . Nevertheless, since
s ¼ M2, the tree-level decay width is simply a constant.
Returning now to the imaginary part (A23) of the self-

energy, we observe that, on account of the fact that the
tadpole does not contribute to the imaginary part, with the
dispersion relation (2), one actually only computes the first

diagram in Eq. (A8) but misses the tadpole contribution. In
other words, as we have demonstrated above, the first
diagram in Eq. (A8) contains precisely the tadpole contri-
bution, but with opposite sign, cf. Eq. (A22). Consequently,
we need to add this tadpole to the (real part of the) self-
energy as computed via the dispersion relation, in order to
have the latter agree with the result obtained from the
perturbative calculation. We remark in passing that the
emergence of a tadpole can also be explicitly demonstrated
by cleverly manipulating the expression for ΠðsÞ as it results
from the Feynman rules. In the case of our effective model
from Sec. III, we computed the self-energies precisely in the
manner explained above, i.e., from a dispersion relation and
adding the corresponding tadpole diagrams.
We conclude by remarking that, in the eLSM

Lagrangian for the scalar-isovector state, derivatives also
occur in front of the decaying field a0; these are the terms
with coupling constants CeLSM

i in Eq. (10). All that has
been stated above applies also in this case, with the
exception that, besides constant tadpole terms, also s-
dependent contributions appear in the expression for
ΠðsÞ. We note that all these additional contributions also
cancel in a similar way as we discussed above.
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