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Recent data of reactor neutrino experiments set more stringent constraints on leptonic mixing patterns.
We examine all possible patterns on the basis of combinations of elementary correlations of elements of
leptonic mixing matrix. We obtain 62 viable mixing patters at 3o level of mixing parameters. Most of these
patterns can be paired via the y — 7 interchange which changes the octant of 6,3 and the sign of cos é. All
viable patterns can be classified into two groups: the perturbative patterns and nonperturbative patterns.
The former can be obtained from perturbing tri-bimaximal mixing. The latter cannot be obtained from
perturbing any mixing pattern whose 05 is zero. Different predictions of Dirac CP phase 6 of these two
types of mixing patterns are discussed. Evolutions of mass matrices of neutrinos with small mixing
parameters are discussed via special mixing patterns on the basis of flavor groups. In general cases, a small
variation of sin#3 may bring about large modifications to alignment of vacuum expectation values in a
mixing model. Therefore, small but nonzero sin 6,5 brings a severer challenge to leptonic mixing models on

the basis of flavor groups than usual views.
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I. INTRODUCTION

Recent reactor neutrino experiments have confirmed a
nonzero 63 [1-5], which opens the window to deter-
mine the Dirac CP violation phase and the octant of 6,5.
These experiment results also set more stringent con-
straints on the theoretical models of neutrinos. As a
challenge brought by the progress of experiments, few
models based on symmetries [6] can fit the experiment
results completely. Perturbations or other phenomeno-
logical considerations should be introduced in the
typical mixing patterns such as tri-bi-maximal (TBM)
[7,8], golden ratio mixing (GRM) [9,10], Toorop-
Feruglio-Hagedorn mixing (TFHM) [11,12] etc. [13-15].
However, even so, the candidate mixing pattern is not
unique, we need to determine all viable leptonic mixing
patterns and find differences between their physical origins
and predictions. In this article, we extract all viable mixing
patterns at 3¢ level of mixing parameters on the basis of
various combinations of correlation of elements of mixing
matrix. Special correlations have been widely discussed in
the literature, see Refs. [16—18] for example. We search for
more general correlations to construct the leptonic mixing
pattern. The method to generate general correlations is
employing the combinations of elementary correlations.
We propose two types of elementary correlations. By
examining all possible combinations of these elementary
correlations, we obtain 62 viable mixing patters, including
some familiar types such as tri-maximal TM;, TM,
[19-22], pu—t symmetric mixing [23-27] and many
new types. Most of these patterns could be paired via
the y — 7 interchange which changes the octant of 6,3 and
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the sign of cosd. Furthermore, according to the depend-
ence of cosd on small sin? @5 all these patterns can be
classified into two types: the perturbative and nonpertur-
bative patterns. The former could be obtained from
perturbing TBM. The latter cannot be obtained from
perturbing any mixing pattern whose 6,3 is zero.

In order to study the robustness of leptonic mixing
models on the basis of flavor groups, the dependence of
mass matrix of neutrinos on small mixing parameter sin 63
is discussed via special perturbative and nonperturbative
mixing patterns. In general cases, a small variation of
sin #,3 may correspond to large modifications to alignment
of vacuum expectation values in a mixing model on the
basis of flavor groups.

The article is organized as follows: In Sec. II we
introduce the general framework of our program, includ-
ing the unitary parametrization of mixing matrix, con-
straints on the parameters at 3o level, two types of
elementary correlations and the u —t interchange. In
Sec. III we show all viable combinations of elementary
correlations, including the combination of two correla-
tions and the combination of three correlations, mixing
angles, and Dirac CP phases of viable patterns. In Sec. IV
we discuss evolutions of mass matrices of neutrinos via
special leptonic mixing patterns. Finally, we present a
summary.

II. GENERAL FRAMEWORK

A. Unitary parametrization of leptonic mixing matrix

In order to simplify calculations of combinations of
correlations, we adopt the following parametrization of
leptonic mixing matrix:
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where j, k, [, N are non-negative real numbers. By comparison with the standard parametrization of Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matirx [28]:

2=

(1)

L,

C12€13 S12€13 si3e7"° e 0 0
_ is is i
U= | —s1p¢23 — cpp813503€ C12C23 — §12513523€ C13523 0 e 0 [, (2)
is is
S12823 — C12513€3¢€ —C12823 — §12813C23€ C13C23 0 0 1

where s;; = sin8;;, ¢;; = cos 0;;, 6 is the Dirac CP-violating phase, @, and @, are Majorana phases. In our parametrization,

s;; could be written as:
) 1
Sin 913 = \/%,

sin 023 = J

N-1
k
Sin6’12 = ﬁ (3)

And the Dirac CP phase is expressed as:

—I(-1+N)?>=(1+k=N)(=1 +N)N + j(k+ N + kN — N?)
2VN\/j(=1 = j+N)\/k(-1 =k +N)

According to the recent fit data of the Ref. [29], absolute values of elements of mixing matrix in 3¢ ranges are

Ccosd =

: (4)

0.801 — 0.845 0.514 — 0.580 0.137 — 0.158
Ul = [ 0225 50517 0441 -0.699 0.614 > 0.793 |. (5)
0.246 — 0.529 0.464 — 0.713  0.590 — 0.776

So constraints on our parameters at 3¢ level are These two types of correlations are implied in some
| familiar mixing patterns such as TBM and GRM. We
— =0.0188 — 0.0251, examine correlations of these two types. The parameter-
N space of a viable correlation (or viable combination of
z — 0.1945 — 0.4886 elementary correlations) should satisfy two conditions:
N ' First, the magnitude of every element of mixing matrix
J is in 30 range; Second, |cos (1, j, k, N)| < 1. There are 7
N 0.3770 — 0.6288, viable type-A elementary correlations in total. They are
k listed as follows:
N 0.2642 — 0.3364. (6)
Al: |U;41|:|U11|a (8)
B. Elementary correlations
We propose two types of elementary correlations as A2: |Up| = |Unl, 9)
follows:
A3: |U/43| = |UT3 ) (10)
B: |Uy| = 2|Ugl. (7) Ad: Ul = U, (11)
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A5: |Up| = |Us|, (12)
A6: U,y = U], (13)
AT |Up| = |Us|, (14)
A8: U, = |U,l, (15)
A9: |Uy| = |Upy]. (16)

There are 14 viable type-B elementary correlations in total.
They are written as follows:

BI: [Ual =2|U,]. (17)
B2: |U, | =2|U,]|, (18)
B3: Ul = 2/Uu, (19)
B4: |U,| =2|Uyl, (20)
BS: Uy = 2|U,], (21)
B6: |Up| =2|U4l, (22)
BT: |Up| =2[Upul. (23)
B8: |U,| =2|Uy], (24)
BY: Uyl =2|U, |, (25)
B10: [Ugs| =2|U4. (26)
BI1: |U,s] = 2|U,], (27)
B12: |U | =2|U,l, (28)
BI3: [Uy| = 2|Ual. (29)
Bl14: |U,| =2|Up. (30)

Al — A2,
A3 — A4,

A4 — A5,
A3 - AS,

Al — A4,
AS — A6,
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In order to get general mixing patterns, all combinations of
elementary correlations are examined. The number of
possible combinations is so large. However, because the
octant of 8,3 and CP violation phase ¢ are uncertain at 3¢
level, one type of combination can be converted to another
type through the u — r interchange. y — 7 interchange is
equivalent to the following transformation:

(7 Z_—¢0 > N—-1—7j
{ 23 73 23 or {J—’ J (31)
0—>0+nm |- N-I[-k

As for type-A correlations, u — 7 interchange brings fol-
lowing correspondences:

Al < Al,
A4 < AS,

A2 < A2,
A6 < AT,

A3 < A3,
A8 < A9.  (32)

And correspondences in type-B correlations are

Bl < B2,
B9 < B10,

B3 < B4,
B11 < B12,

B5 < B6, BT < BS,
B13 < Bl4.  (33)

So we first examine the parameter-space of a combination
of elementary correlations. Then the examination of the
corresponding combination is carried out easily.

III. COMBINATIONS OF ELEMENTARY
CORRELATIONS

A. Viable combinations of two elementary correlations

There are 83 viable combinations of two elementary
correlations in total. They can be classified into 3 types:
Ai-Aj, Bi-Bj, and Ai-Bj, where the notation Ai-Aj means
elementary correlation Ai and Aj hold at the same time. The
common combinations of these three types are not counted
repeatedly.

There are 12 viable Ai-Aj combinations. They are listed
as follows:

There are 23 viable Bi-Bj combinations. They are listed as follows:

B1 - B2, B1 — B6, B2 - B5,

B2 - B9, B1 - B11, B2 - B12,
B4 — B8, B5 - BT, B6 — B8,

B8 — B11, B9 - B11, B10 - B12,

Al—A5,  Al—-A6, Al —A7,

Ad—A7,  AT-A8,  A6-A9. (34)
B1-BS, B2—-B7, Bl -BIO,
B3-B5, B4—B6, B3—BI,
B5-B9, B6-B10, B7-BI2,

B9-B12,  BIO—BII. (35)

There are 48 viable Ai-Bj combinations. They are listed as follows:
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A4 — B14, A8 — B2, A2 — B2,
A2 — B9, A2 - B10, A2 - B11,
A3 - B2, A3 - B1, A3 — BS,
A4 — B1, A5 — B2, A4 — B6,
A4 — B9, A5 - B10, A4 — B10,
A4 - B12, A5 — B11, A6 — B2,
A6 — B4, A7 — B3, A6 — B6,
A6 — B12, A7 - Bl11, A6 — B13,

Let us describe these viable combinations in more detail:
(i) Most viable combinations are paired via the y — 7
interchange. There are only 5 single combinations,
among which 3 combinations are invariant under the
u — 7 interchange, including A1-A2 (4 —7 sym-
metry), B1-B2 (TM,), A4-A5 (TM,). The reason
why A8-B2 and A4-B14 are single is that the
constraint matrix (5) is not symmetric under the
u — 7 interchange. So the viable parameter-space of
a combination may become unviable under the u — =
interchange, especially when the parameter-space

is small.

(i) For more than half of the viable combinations, their
2-dimensional parameter-spaces are not compressed
obviously. There are 21 combinations whose
parameter-spaces are reduced more than half com-
pared with the noncorrelation case. These combi-
nations are A4-AS5, A7-A8, A6-A9, B1-B§, B2-B7,
B1-B7, B2-B5, B3-B7, B4-BS, B4-B6, B9-Bl1,
B10-B12, A2-B13, A2-Bl4, A4-BS, A4-Bl4,
A5-Bl11, A6-B13, A8-B2, A8-B11, A9-B12.
There are 17 combinations, whose octants of 8,5 are
uncertain. These combinations are A4-AS5, B1-B2,
B1-B10, B1-B11, B2-B5, B2-B9, B2-B12, A2-B2,
A2-Bl1, A4-B2, A4-B6, A4-B10, A4-B11, A5-B1,
A5-B5, A5-B9, A5-B12.

(iii)

B. Viable combinations of three elementary correlations

There are 62 viable combinations of three elementary
correlations in total. They can be classified into 4 types:
Ai-Aj-Ak, Bi-Bj-Bk, Ai-Bj-Bk, and Ai-Aj-Bk. The
common combinations of these four types are not counted
repeatedly. In detail, there are 3 viable Ai-Aj-Ak combi-
nations. Their mixing patterns are listed as follows:

5-8s

RV A
Al=A4=AT: [U|= | (i f2s | fasss |
[1+4s 3-2s 3-2s
7 7 7

(37)
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A2 — B1, A2 — B3, A2 — B4,
A2 — B12, A2 — B13, A2 — B14,
A3 — B6, A4 — B2, A5 — B1,
A5 — BS, A4 — BT, AS — B8,
AS — B9, A4 - BI11, A5 - B12,
A7 - Bl, A6 — B1, AT - B2,
AT — BS, A6 — B10, AT - B9,
A7-Bl14,  A8-BIl,  A9-BI2. (36)
5—78s % \/E
Al — A5 — A6: |U| — 1-;4s 3—72s 3—72s ,
1445 245 4-5s
7 7 7
(38)
23 \/g 5
Al—A4-A5: U= | 2 /L (s ] (39)
1
3

143s
6

1 a2
where s = 5 = sin” 3.

There are 5 viable Bi-Bj-Bk combinations. Their mixing
patterns are listed as follows:

1+s

10 10

Bl —B10-B11: |U| = | /%=

1=s /3+5s 1—s
8 8 2
(40)
1+s 3—1ls
o 0 Vs
B2—-B9 - B12: |U| = % 3§5s % 7
T+s  [13419s 1-s
40 40 2
(41)
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B1 - B6—B10: |U| = % % %—I—S %ﬂ ,
1 2 2
3 3 3
(42)
RVCRVE ERUNG
B2-B5-B9: U =| ! 2 2 ,
%\/% =+s 1V5-9s
(43)
Vs A s
B3 —B5-B7: |U| = %\A \@ 11
Vits b e
(44)

There are 35 viable Ai-Bj-Bk combinations. Their
mixing patterns are listed as follows:

A4—Bl1—B2: |U| =

wi._‘
“

[T
_|_
“

(45)
Vi s
AS— Bl -B2: |U| = \@ Lo \/5—2S
\A §—s I+
(46)
S = NG
A4—BI-B6: U= | f52 | [J= fsos |
\/345}505 \/3+710s \/13585%
(47)
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% 2—755 \/E
A5—B2-B5: |U| = \/3;;% \/3+7103 13505 |,
5-2s 2-5s 15+22s
8 7 28
(48)

3+2s 5-25s
2, i [ NG
9+23s
17 ’
2—10s 7450s 2 2—10s
17 17 17

A4—B1—BI10: |U| = | /22 /52

(49)
342s 5-25s
257 Vs
— — . — 2—10s 7+50s 2—10s
AS-B2-B9: |U| = | (/e [1es o, fms
/3+2s 5-25s /94235
17 17 17
(50)
7—1%)4_? 3Jlr61s \/E
. _ 1-2s 3+4s 3—
A4 —B7-BI12: |U| = - 3
1485 2—4s 2-4s
5 5 5
(51)
7-14 3+4
IOS TOS \/E
_ _ . _ 1+8 24 2-4
A5 - B8 —Bl11: |U| = M 2 =
1-2s 3+4s 3—s
10 10 5
(52)
13 1 5
i8S 3\@ Vs
A4 — B6 — B10: |U| = Ly %\é 1505 |-
1 2 2
3 3 3
(53)
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A5—B5—B9: |U| =

A4—B9-BIl: [U|= | /4=

Lis
7

5-2s

7

AS—B10-BI12: |U| = | (/4=
14s
\/ 7

4—s
2 23

A4-B1-BI1: U= | /%
/3+5s
23

4—s
223

AS—B2-BI12: [U| = | /32
ﬂ
23

A4-B2-B7: |U| = | /3l

W)=
Wi S
[

Wi Q‘
S ST

(ST

v
54

S

N—

W)
S
)
=

2
~

154
5

[\S)
.

S

(98]
>4

o

=
|
©

¥
ol
[oe)
=3

[oS]
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NN TN
A4—B2-B9: |U| = \/" s g fus |
\/7 LL+50s \/@
(60)

A5 — Bl —B10: |U| =

[\®)

2k

I

=)

oS
B
Ol

©

(61)
A4 - B10 - B11: |U|
WIT=11s 1V5-55 /s
— | $V3F 3 V55 ()L (62
1-s 3+5s 1=s
8 8 2
A5 — B9 — B12: |U|
IWVIT=11s 1V5-55 /s
_ % 3-§5s % ; (63)
IV3+13s 1V5-55 /58
s v
A2-B1-B2: |U|= [ /L /23 fis | (64)
1 243s 1—s
6 6 2
8+s —25s
2, /8 (/52 Vs
. _ 8+s 164255 11-13s
A2-B1-BI10: [U|= | /8 T n |
6=5s 16+25s 6—5s
46 16 2 46
(65)
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8+s /1-25s

2 46 23
6—5s 164255

46 46
8+s 16+25s

46 46

NG
6-5s
2 \/ 46 ’
11-13s
23

(66)

A2-B2-B9: |U| =

[\
(o)}
2T
eff
wn
—|
L
\]©
=

[*))
5y
IS
+
°
\S)

A2-Bl-BIl1: |U| =

w
=
—_
=

T
W
©
—_
[\
-
—_
\O
o

)
=
—_
-
—_
-

A2 - B2-BI12: |U| =

——— —— ————

[\

Py IS

W | [ .

(98]

’i Bl A|ﬂ;

I~} %) ¢

Rl B il R

© ) b3

1) =

[\

= ~F %

| —|

W 1=

B4

34
(68)
2l S v
A3 -B1-B10: |U| = %Os 131(;% % ,
1=s 3+5s 1—s
3 8 2
(69)
2% e Vs
A3-B2-B9: |U| = % 3§5s % ,
Tts 13+19s 1-s
40 40 2
(70)
P
A7—-Bl1-B2: |U| = % 1 /1T +14s %_s )
1 \/E \/E
6 12 12
(71)
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2 74+2s 13-49s \/E
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41 a1 10;% 4ﬁs NG
A6 —B1 —BI10: |U| = 1425 175 JE=s |
| | 41 41 41 A7 — A4 — B9: |U|: % 4T2S 2 % ,
\/6—10s \/ 114505 [6-10s
a1 41 a1 14+10s 3-5s 3-5s
7 7 7
(78) (84)
9—-17s 2 [1+4s \/E
13 13 10—19s 4+5s \/E
14 14
AT-B3-B5: [U|=| /55 2\/58 /4
: : A6 — A5 — B10: |U| = l+7105 3—75s %—75s ’
3+16s 5-8s 5-8s
\ 13 3 13 - o5 o i
14 14 12
(79) (53)
85
There are 19 viable Ai-Aj-Bk combinations. Their
mixing patterns are listed as follows:
10;3s % NG
2—4s 3+5s
2 11 11 \/E A7 — A4 —-Bl11: |U|: 2+1£¥7S % 2 1—72s ,
. _ 2—4s 3+45s 6—s
AT —A4-B1: |U| = T Jlrl 5 |- 1_725 # %
\/1+205 \/5—105 \/5—105
11 11 11 (86)
(80)
10—13s 4—s
= s
2., /2=4s 3+5s \/E 14 14 \/_
11 11
A6 —A5-B12: |U| = 1—725 # ,/3# ,
A6 —A5—B2: |U| = \/1+203' \/5—10x \/5—10& ,
i i 1 2+17s 4-s 2 1-2s
2—4s 345s 6—s 14 14 7
11 11 11 (87)
(81)
AT — A4 - Bl14: |U|
2 3—4s 5-s \/E
17 17
u — : T }1\/11—20s %\/5+4s NG
A7 —-A4-B2: |U| = +20s 5=s —19s
17 17 17 ’
— | Wi+4s {V5+4s -5, (88)
3—4s 1+2s 142s
17 17 17 AT 4. L1 /3 3_s
% 1 -+ 4ds 3 5~ 2s 3§72
(82)
_ _ 1
2\ 7 Vs E \/; Vs
. — 3-4 7425 742 — — Bl1: = 1_s 1 2+s
A6-AS—BI: U= | (S e mE |0 m-as-sijul= |- A |
2420, 5— 10-19 14 5s 1L 1./5_
7 N 7 st3 \/; 7V2—35s
(83) (89)
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A4-A5-B2: |U| = lgss ! IV2-5s |.
1_s 1 V2+ts
6 4 3 2
(90)
s s
A4—A5-B9: |U| = 2 1 2\/% ’
bes B
(1)
RNV
A4—A5-B10: [U| = | /L+s \@ s,
VE VA 2R
(92)

A4 — A5 —B11: |U|

IRV S
— | L2525 \@ 2VT=3s | (93)
%\/1—3s \/% %\/5+3s
A4— A5 - B12: |U|
RV G
=1 1y/1-3s \A WV5+3s [, (94)
WVIETS (b VTS
2—32s % \/E
A3—Ad—B2: U= | S s i (95)
1= 1425 1—s
6 3 2
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2—32s % \/E
A3—As—Bl1: U= | J=  frs s | (96)
/1455 1=s 1=s
6 3 2
T Vs
. — 2+7s 3-2s —s
A3—A4—B6: [U| = | 2 =2 i | (97)
[14s 2+42s 1-s
10 5 2
—8s 3-2s
7lO 10 \/E
. — 1 242 1-
A3—A5-B5: U= | (Jl [ i | (98)

2+7s 3-2s 1-s
10 10 2

Specific mixing angles and Dirac CP phases are listed in
Table I-III.

As we can see from the expressions of |U|, there are
only 6 single combinations, i.e., A1-A4-AS, A2-B1-B2,
B3-B5-B7, A4-B2-B7, A7-B3-B5, A7-A4-B14, among
which A1-A4-A5 and A2-B1-B2 are y —t symmetric.
The remaining 56 combinations are paired through y — 7
interchange. According to the expressions of cos ¢ in tables,
all viable patterns can be classified into two groups:
perturbative patterns and nonperturbative patterns. There
is a factor /s in cos § of the former pattern which could be
obtained from perturbing TBM. So we could call it TBM-
like pattern. In contrast, there is a factor % in cos o of the

latter pattern which cannot be obtained from perturbing the
pattern whose 65 is zero. There are 8 perturbative patterns,
ie., Al-A4-A5, A4-B1-B2, AS5-B1-B2, A2-B1-B2,
A4-A5-B1, A4-A5-B2, A3-A4-B2, A3-A5-Bl1. The
remaining 54 patterns are non-perturbative. In more details,
as for cos 6 of perturbative and nonperturbative patterns, we
have following observations:

(i) Because of the factor \/E for perturbative patterns,
cosd — 0 when s — 0, see A3-A4-B2, A3-A5-Bl
in Table III for example. In contrast, for nonpertur-
bative patterns, because of the factor %, Ccosd — oo

when s — 0, see A3-A4-B6 in Table III for example.
So for a nonperturbative pattern, small perturbation
to s = 0 would bring very large variation of Dirac
CP phase. We note that this observation has also
been obtained in special mixing patterns in Ref. [30].
(i) For different perturbative patterns, the difference
of coséd is very small. And the variation of 6 is
focused on small range around +7. We show cos 6
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TABLE I. Mixing angles of and Dirac CP Phase of viable leptonic mixing patterns.

Combinations sin? 0, sin’ 0,5 sin® 6,5 cos &
Al-A4-A7 245 4=5s s 1-55+10s2—125>
s 7=Ts 25V 10- 1158521/ 12-235+ 105
Al1-A5-A6 245 3=2s S _ 1-55+1052—125°
s s 2./5V10- 115852/ 12-235+ 105>
“Ad- 1 1
Al1-A4-A5 Ty 5 S 0
B1-B10-B11 13‘1]15 % S o —1-2s43s%
0-10s 4y/5v21-Tas—115>
B2-B9-B12 136‘11105 % S o —1-2s43s%
s 4/5V21-T45~1157
B1-B6-B10 13-45s 3=9s S 5-315490s>
45-45s 9-9s 4,/5v/26-905\/5-9s
B2-B5-B9 13-45s 4 S __ 5-315490s>
45-45s 9-9s 4/5v/26=905v/5-95
B3-B5-B7 1 _7_ S —1-45+1252
3-3s 12-12s Visv5—125v/2-3s
A4-B1-B2 %js % s 3(1-55)v/5
o s 2v2V1=35V1-25-85
A5-B1-B2 ;:gf ;:‘2& s _ 3(1=55)/5
$ $ 2v2V1-3s5V1-25-8s2
A4-B1-B6 3—3 s ;ff%? s 9+65-+352(=89+10s)
- e 2(/54/(5-25)(2=55)/(15+225)(13-50s)
A5-B2-B5 2=5s ;g—;? S _ 9+65+3s2(~89+10s)
=T o8 2/51/(5-25)(2-55)+/(15+225)(13-30s)
A4-B1-B10 5-255 94235 s 1142245136552 15053
17=17s 17-17s 8v/105v/9—225—11552v/3—135— 105>
A5-B2-B9 5-255 % S _ 1142245— 1365521505
17=17s —17s 8v/105V9—225—11552v/3—135— 1052
A4-B7-B12 ﬁ 53—; S 1437590524245
- s 2V 1d5V3-25—85%\/3~Ts+25>
A5-B8-Bl11 1%+‘1‘8 . g—‘s‘f S 143759052 +24s3
—w = 2V/T45V/3-25-85%/3~Ts+2s>
A4-B6-B10 5 5-9s S _ 74435-90s*
18-18s 9-9s 4,/5/65-9051/5-9s
A5-B5-B9 5 4 S 74435905
18-18s 9-9s 4/5v/65-905v/5—95
A4-B9-B11 2-5s 4445 S 1+10s—74s2+15s3
T-Ts T-17s > >
4/5V/3=85-11521/10-295+10s
A5-B10-B12 2-5s % s _ 14105—745 41553
=T o 4/5V3-85—115>1/10-295+10s>
A4-B1-Bl11 273—_—1293-: %fggz S 3(5+375—31752+1953)
) ) 8y/5V33=745—215571/28—835+195
RO 7-19s 11-43s 3(54+375—-31752+19s°
A5-B2-B12 J-Los U—t3s s _ ( )
8/5V/33— 745215521/ 28—835+19s2
A4-B2-B7 2=5s 17+10s S —1+745-32552+90s
775 28-28s = =
2/5V/187-5365—380s2/10-29s+ L5
R 9-25s 164205 —143595—17355242255>
A4-B2-B9 29-295 29-295 s : >
8v/5V/52—1315—24552/ 45— 13454255
RIi. 9-255 13-49s — 143595173552 422553
A5-B1-B10 20-295 29205 s -

8y/5V/52-1315-2455% \/45—1345+255

TABLE II. Mixing angles of and Dirac CP Phase of viable leptonic mixing patterns.

Combinations sin” 6, sin? 0,5 sin? 0,3 cos &
A4-B10-B11 3 1 S 14155
16 2 2\/5\/5
A5-B9-B12 5 1 S 14155
16 2 2V/55./5
A2-B1-B2 = i S 0
A2-B1-B10 72—253' ;1 —gs S 16+435+105>+755>
23723 323 8v/5V/56-1035—2552/66—1335+655>
A2-B2-B9 7-25s 12—123 S _ 16+435+105%+755°
23-23s 2323 8/5V/56— 193525521/ 66—1335-+655>
A2-B1-B11 % % S 124335+105%+575°
§ s 84/5V30-1095—1952/36—735+355>
A2-B2-B12 157— 11975 12:?; s _ 124335+1052457s3
- s 81/5v/30-1095—195% /36735355

(Table continued)
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TABLE II. (Continued)

PHYSICAL REVIEW D 93, 013010 (2016)

Combinations sin® 0, sin? 0,5 sin? 0, cos &
A3-B1-B10 3-11s 1 (1435)(1-s)
10-10s 2 4/5V21=Tas—115
A3-B2-B9 3-1ls 1 _ (1+3s5)(1-s)
10-10s 2 4y/sV21-T4s-1152
A7-B1-B2 1-3s 7—12s 1-115+30s2
3-3s 12-12s 2v/10sv/1-35v/7—125
A6-B1-B2 1-3s 5  1-11543082
3-3s 12—12s 2V/10sv/1-35/7—12s
A7-B1-B6 13-45s 5-9s 5-315490s>
45-45s 9-9s 44/5v/26—905v/5-95
A6-B2-B5 13-45s 4 __ 5-315+90s>
45-45s 9-9s 4/5v/26-905v/595
A7-B1-Bl11 11-43s 4=8s 9—485+217524785>
35-35s 7=Ts 81/25V/33—1185—4352V/3—=55—2s>
A6-B2-B12 11-435 345 _ 9-4854+2175% 4785
35355 7=T7s 8v/25v/33—1185—4352/3—55 252
A7-B2-B9 13495 24-40s 25-72854194552—-90s3
I1-41s I1-4ls = >
8v/25V91-3175-985%/51-885+55
A6-B1-B10 13-49s 17—s _ 25-7285+194552-9053
41—-41s 41-41s 2 2
8v/25V91-3175-98521/51-885+55
A7-B3-B5 4445 8-5s —7—735+20052=7253
13-13s 13=13s - 5
4/5V9-85— 175> \/40—-895+405>
A7-A4-B1 3455 6—1S1 7-13154+26452—60s3
et Htls 4y/T051/6-135+252V/3—5— 105
A6-A5-B2 3455 5-10s _ 7-1315+2645>~60s3
H=1s H=11s 4/105y/6-135+252V/3—5— 1057
A7-A4-B2 S=s 10195 —1+1495—25652 43653
7175 17-17s = =
4/5V70-1135-385\/ 15-235-+4s
A6-A5-Bl S=s 7425 _ —14+1495-25654 365>
17-17s 17-17s 5 B
4/5V70-1135-3852/ 15-235+45
A7-A4-B9 4+5s 4=2s 2-705+14952—455
T4—14s 775 = =
2V/Z5VA0-265-9557\/6-135+55>
A6-A5-B10 4+5s 3=5s _ 2-705+1495%—45s
1=t = 2v/25V/40-265-955 \/6—135+55°
A7-A4-Bl11 4-ds 4=8s 2450591524153
T4—14s T=Ts = =
4/5V3—=55-252\/40-625+135
-A5- 4-4s 345 24505—9152+1553
A6-A5-B12 T4—14s 775

4/5V3=55-2571/40—-625+135>

TABLE IIl. Mixing angles of and Dirac CP phase of viable leptonic mixing patterns.

Combinations sin? 6, sin? 0,3 sin? 0,3 cos &
A7-A4-Bl14 5+4s 5—4s S —7-315+1045>-48s°
16-16s 88 2,/5v/55-565—80s%/15-325+ 165>
A4-A5-Bl ! = s EENGEPDIS
3-3s 4-ds V2—35\/4—8s5552
A4-A5-B2 A 25 s _ 3\6(=1429)
- - V2-35V4-85-552
A4-A5-B9 1 8 s 1413530
3-3s 15-155 as\T-T35v/33s
A4-A5-B10 1 1-15s S _1+13s-30s2
3-3s 15-15s 4v/25\/1-155\/2=35
A4-A5-B11 1 4=12s s 1+135-305°
3-3s 9-9s 4/5V/2-35V5-125-957
A4-A5-B12 1 3+3s s 1413523057
3=3s 9-9s 4/5/2=35V/5—125—957
A3-A4-B2 L 1 s %
2V2
A3-A5-Bl ! 1 s 3
: 2V2
A3-A4-B6 32 1 s Csee?
§ 2/51/21-385+165>
A3-A5-B5 T : S 145565

24/51/21-38s+16s>

013010-11



SHU-JUN RONG

PHYSICAL REVIEW D 93, 013010 (2016)

-0.140 E 0.165 |
A5-B1-B2
-0.145 | i 0.160 - A3-A4-B2 5
< “w 4
2 8 ]
S © oass ]
-0.150 | 1 1
0.150 1
-0.155 ' ]
1 1 1 1 1 1 1 0.145'AlkkkklAAAAlAAAAlAAAAlAAAAlAAAAl‘
0019 0020 0021 0022 0023 0024 0025 0019 0020 0021 0022 0023 0024  0.025
S S
FIG. 1. cosé in viable range of parameter s of perturbative patterns A5-B1-B2 and A3-A4-B2.
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FIG. 2. cosé in viable range of parameter s of nonperturbative patterns A1-A4-A7 and A4-B1-B6.
of A5-B1-B2, A3-A4-B2 as an example in Fig. 1. In (iii) Except the perturbative patterns A2-B1-B2 (64) and
contrast, for two similar nonperturbative patterns, A1-A4-A5 (39) as u — 7 symmetric combinations,
the difference of cosd could be notable. Take Al- cos 6 = 0 cannot be obtained at 3¢ level in viable
A4-A7T and A4-B1-B6 for example, the difference patterns. In nonperturbative patterns, we could
between their magnitude of elements of mixing obtain cos 6 = 0 for A4-B2-B7 (59), see Fig. 3.
matrix is small, while the difference between their (iv) Trivial Dirac CP violation phases 6 = 0,z cannot
cos o is large, see Fig. 2. be obtained at 3¢ level in viable patterns. In non-
perturbative patterns, we could obtain coséd = —1
for B34-B5-B7 and A7-A4-B14, see Fig. 4.
T T ‘ ‘ ‘ =] (v) The viable range of parameter s or 1/N is not
0.050 | ] . I
[ ] reduced obviously for most combinations. The only
0045 b ] exceptions are the paired combinations A5-B2-B9
A4-B2-BT and A4-B1-B10, see Fig. 5.
« 0.040 [ ]
S E ] IV. EVOLUTIONS OF MASS MATRICES OF
0035 ] SPECIAL MIXING PATTERNS
0,030; ] In the previous section, we have extracted all viable
[ leptonic mixing patterns at 3o level from the general
0025 bl combinations of two types of elementary correlations.
0019 0020  0.021 0-222 0023 0024  0.025 These viable combinations could be classified into pertur-
bative and nonperturbative patterns. The dependence of
FIG. 3. cos§ in viable range of parameter s of nonperturbative cos & on sin’ 03 of perturbative patterns is different to that

pattern A4-B2-B7.

of nonperturbative patterns. In this section, we study the
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FIG. 5.

dependence of neutrinos mass matrix on the small mixing
parameter sin’6;. Our physical motivation to discuss
evolutions of mass matrices of special mixing patterns
with sin® 6,5 is to examine the stability of a mixing model
on the basis of flavor groups and their breaking. We want to
know whether a small perturbation of sin? #,5 would bring
about large modifications to the assumption in a flavor
model such as alignment of vacuum expectation values of
scalar fields. Our discussion is qualitative and is on the
basis of special leptonic mixing patterns. But the con-
clusions obtained here could be extended to general
patterns.

A. Evolutions of mass matrices of perturbative patterns

The general perturbative or TBM-like pattern could be
expressed as:

€11 €12 €13
+ | €1 €n €3 |, (99)

€31 €3 €33

(o)}
= T S
D=

1=

PHYSICAL REVIEW D 93, 013010 (2016)

L B e L B e e e o L B e e e e BN H s e

I AT-A4-Bl14 ]
092 1

—094 | ]

~096 | ]

—-0.98 : :

'x ) S VSN IS S S SN S N S S S S ST S S SN ST SN S S S N S S S S :

0.019 0.020 0.021 0.022 0.023 0.024 0.025
S

cos ¢ in viable range of parameter s of nonperturbative patterns B3-B5-B7 and A7-A4-B14.

-0.850 F :
-0.855F ]

[ A5-B2-BY ]
-0.860 [ ]
—0.865 :

-0.870F ]

-0.875F, . . . . . ]

1 P — P — P — P — PR -
0.019 0.020 0.021 0.022 0.023 0.024
N

cos 6 in viable range of parameter s of nonperturbative patterns A4-B1-B10 and A5-B2-B9.

where €;; is a small correction or perturbation of order
sin 3. And the Dirac CP phase could be written as:

cosd = f(e;;),

where f is a function dependent regularly on small ¢;;,
which means f(0)=0. Take the perturbative pattern A3-AS5-
B1 for example, we have:

(100)

vi=| V= = EL o
\V 6 3 2
3

0055:—j (102)

22

where s = sin? 05. As for this type of patterns, one can
choose TBM pattern as a zeroth-order approximation first,
and then take corrections into consideration. These cor-
rections usually come from leptonic interaction or special
vacuum expectation of Higgs field or other scalar fields. A
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large number of papers have constructed leptonic mixing
models for TBM-like patterns following this way, see
Refs. [31-37] for example.

As an illustrative case, we consider mixing models of
pattern A3-A5-B1. The specific mixing matrix of A3-AS5-
B1 is expressed as:

\/%CIS C—\/I% e 053
U = _ L €Psy 1 Py 13
Vo V3 V3 Ve V2
L_e'ﬁsm _L_wals o
N Vi Ve V2
e'n 0O O
x[ 0 e 0 (103)
0 0 1

In the basis where the mass matrix of charged lepton
is diagonal, the mass matrix of Majorana neutrinos is
written as:

M, = Udiag(m,, my, m3)UT = MO +6M,.  (104)

The zeroth-order mass matrix of neutrinos MY is of the
form:

M) = Urgpdiag(my, my, m3)Ulgy

2my | my _m oy om my _ my
3+3 3+3 3 3
|y o my oy g my omg
- 3+3 6+3+2 6 3+2 ’
my_my o _my_my My omy My M
3 3 6 3+2 6+3+2

YA Y
Umsm = | —\/% \/T \ﬁ . (106)

3
1
3

N

2
\ﬁ

2
Here the Majorana phases have been absorbed into the

neutrino mass eigenvalues. And the correction to zeroth-
order mass matrix could be written as:

2

(6M,)yy = =2 @my +my = 3mye™?). (107)

(3M)12 = 5 (1 = e1s)my )

. 2 .
) )
e s13¢13€"°(my + 2my) +*2 s13¢c13€7°ms,

(108)

PHYSICAL REVIEW D 93, 013010 (2016)

(M3 =3 (1 = e13)(my = m)

V2 .
- ?S13013€’5(m2 +2m)

+7s13c13e_i5m3, (109)
2. ..
(6M,),, = %3‘32’5(’”2 +2m)
i5 S%3
+——s13¢"(m, —mz)—7m3, (110)
2. . 52
(6M,)53 = —2 €% (my + 2m,) —%3’713’ (111)
2. ..
(0M,)3; = %362’6(’"2 +2m)
2 . 52
+7513615(m2—m1)—%3m3- (112)

In order to construct mixing models, we could choose a
special flavor group according to textures of MY and M,
For example, we choose A, as a flavor group. Following
the presentation of A, in the Ref. [31,38], we could obtain
the general mass matrix of neutrinos [31]:

a+%b1 C—%b:’, d—%bz
Ml,:mo C—%b3 d“‘%bz a_%bl , (113)
d-1b, a-2b, c+1by

where m, a, b;, ¢, d come from the vacuum expectation
values of scalar fields as singlet or triplet of A,. Then
employing the following equation:

a+3by c—iby d-1%b,
mg| c—31by d+3iby a—-3b, | =MJ+M,,
d=1b, a-32b, c+1by
(114)

we could obtain the special alignment of vacuum expect-
ation values of scalar fields. Now one may consider that we
have obtained a neutrinos mixing model that could interpret
the special mixing pattern. However, we should answer the
important question what the physical origin of special
alignment of vacuum expectations is. At the level of zeroth-
order mass matrix, the alignment of vacuum expectations
could be obtained by residual symmetries such as Z,, C;
after spontaneous breaking of A4, see Ref. [39] for
example. However, we should answer the further question
whether the assumption of such mixing model is stable
under the perturbation of small mixing parameters. Let us
examine the evolution of neutrinos mass matrix with s;3. At
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present, absolute mass scales of neutrinos and ordering of
neutrino masses are unknown. The effects of s;3 on
corrections to neutrinos mass matrix include follow-
ing cases:
(i) Case 1 |m;|~ |m,| ~ |ms]. In this case, corrections
of order s7;|m;| could be omitted, the correction
matrix could be expressed as:

0 €y €y
5Ml/ = € € 0 N (115)
€ 0 —€]
where ¢; is of the form:
V2o
€ = Tslselé(ml —my),
2 . ,
€, = %s13c13e’5(36_2’5m3 —my—2my). (116)

(ii) Case 2 |m;| < |m,| < |ms|. In this case, corrections
of order s%;|ms| cannot be omitted. The correction
matrix could be expressed as:

€ € €
/ / /
M, = | € € €|, (117)
/ / /
e, € ¢

where ¢/ is of the form:

. s
/ 2 -2is r 513
€ = mysi3e7, €5 ==~ ms,

\/§ 52
I s 13
€y = 3 s13€°(my —my) > ms,

2 . 52

;o 5 13
€= s13€°(my —my) = M3, (118)

and the expression of €} is the same as €, in Case 1.
(iii) Case 3 |m3| < |m| < |m;|. In this case, corrections
of order s2;|m;| could also be omitted, the correction
matrix is the same as that in Case 1.
From corrections of elements of the mass matrix, we can
see that small 5,3 corresponds to small modification of the
structure of the neutrinos mass matrix in the Case 1 and
Case 3. However, small s;3 would change the neutrinos
mass matrix notably in the Case 2. Especially, for example,
if |m3| ~10|m;|(i =1, 2), the correction ¢, brought by
small 53 is large compared with the zeroth-order element.
Therefore, only when neutrinos mass scales of |m;|(i =
1,2,3) approximate or when neutrinos masses are in
inverted ordering, the corrections are small and could be
treated as perturbation. So the structure of the neutrinos
mass matrix of perturbative pattern is dependent on the

PHYSICAL REVIEW D 93, 013010 (2016)

mass scales of neutrinos. A small variation of s;3 may
correspond to large modifications to alignment of vacuum
expectation values in mixing models of Case 2. Therefore,
in general, the robustness of a mixing model on the basis of
flavor group is dependent on neutrinos mass scales. Similar
observations have been obtained in Refs. [40,41] with
different perturbative methods.

B. Evolutions of mass matrices of
nonperturbative patterns

Different to the perturbative patterns, there is no unified
formula to depict the nonperturbative mixing patterns.
Because the dependence of cosd on sin’#;; is not
continuous when 6,3 — 0, we cannot obtain a nonpertur-
bative pattern from perturbing TBM pattern. However, as a
theoretical program, we could still choose a zeroth-order
mixing pattern whose 63 # 0, and then take corrections
into consideration, see Ref. [42] for example. On the other
hand, we could survey various flavor groups and choose
special residual symmetries to construct viable mixing
models without extra corrections. Following this program,
orders of viable discrete flavor groups are very large. And
viable mixing patterns on the basis of large finite groups are
usually TM,, see Refs. [43-45].

For both of these programs, in order to study the stability
of the flavor model of a special mixing pattern, variation of
lepton mass matrix should be examined when the pertur-
bation of small mixing parameter is considered. As an
illustrative example, we discuss the evolution of neutrinos
mass matrix of pattern A5-B9-B12. The mixing matrix of
AS5-B9-B12 is written as:

\/ﬁ V5 —is

€13 7 C13 € 78513

\/3 \/@e S13 \/E \/;e S13 C—\/I% ,
(119)
where cos ¢ is listed in Table II. In the basis where the mass

matrix of charged lepton is diagonal, elements of mass
matrix of Majorana neutrinos are written as:

11 .
(M), = 160%3’"1 + 16613’"2 + s13¢7my,  (120)
V2 .
(M,)), = _g(V 55¢i3 4 11s13¢13€)m

2 )
-+ 3\/—;<V 55C13 - 11S13C13€lé)m2

V2

+73130133_i5m3, (121)
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V2

(M) = §(V 55¢i3 — 1lsi3¢13€)m,

2 .
— 3—2 ( V 55013 + 11S13C13€16)m2

+ ——s513¢13¢"°ms, (122)

2

1 .
(M), = 3—2(\/5 + \/ﬁswelé)zml

1 . 1
+ ﬁ(ﬁ —V11s3¢)2m, + Ec%3m3, (123)

1 .
(M,)y; = *2( =5+ 11s3;6*%)m,
1

1
0 (=114 5533¢*%)m, + 50%3’"3’

+ (124)

1 )
(M,)35 = ﬁ(\/g - \/ﬁswel&)zm

1 . 1
+ ﬁ(\/g + Vv 11S13el§)2m2 + =

5 (125)

2
C13Ms3.

As the Ref [41], we introduce following parameters to
describe the structure of mass matrix, i.e.,

e — (Mb)12_(Mv)13
C M)+ (M)
- 110<m2—m1)
_ v __ (126)
—11V/2s13€ (my +my) + 1632513 P my
e — (Mu)22 - (MD)33
N il 752 M il 2551
(M,)2 + (M,)33
B 21/55513¢"(my — my)
= 2 25 . (127)
(5 + 11s7;€*) (my + my) + 16c7,m;
Through the derivative
&NE_ 110(m2—m1)
ds;z st [=11v/2e®(my + my) + 163/2e P my)s2,
(128)
d€b — 2\/5_5€i6(m1 - mz) ’ (129)

ds;z (54 11s3,e?®)(my + my) + 16¢3,m;

we can see that the structure parameter ¢, depends on small
parameter 53, singularly when s?; — 0. Thus, except the
case where the coefficient |C| <« 1, a small perturbation of
mixing parameter 53 would bring about a notable variation
of structure parameter ¢,. So the structure of mass matrix is
stable only in special mass ordering of neutrinos such as
normal hierarchy, i.e., |m;| << |m,| < |ms| or quasidegener-
acy, i.e., |my| = |m,| < |ms|. Therefore, in general, the
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robustness of the structure of neutrinos mass matrix of a
mixing model of nonperturbative pattern is also dependent
on the mass scales of neutrinos. Accordingly, a small
variation of s;3 may correspond to large modifications to
alignment of vacuum expectation values in a mixing model
on the basis of flavor groups in the special mass ordering of
neutrinos.

V. SUMMARY

We have obtained all viable patterns of leptonic mixing
matrix on the basis of combinations of elementary corre-
lations of elements of mixing matrix. The elementary
correlations include type-A: |U,| = |Ugl; type-B:
|Uqil = 2|Ug;|. There are 9 viable type-A correlation
and 14 viable type-B correlation at 3¢ level of mixing
parameters. With the help of y — 7 interchange of mixing
matrix, we examined all viable combinations of elementary
correlations. We obtained 83 viable combinations of two
elementary correlations and 62 viable combinations of
three elementary correlations. A combination of three
elementary correlations could determine a neutrinos mixing
pattern. All these viable patterns could be classified into
two groups: perturbative patterns and nonperturbative
patterns. The former can be obtained by perturbing
TBM. The latter cannot be obtained from any 63 =0
pattern. The Dirac CP violating phases of perturbative
patterns are compared with those of nonperturbative
patterns through function cos §(s) and figures.

In order to study the robustness of leptonic mixing
models on the basis of flavor groups, evolutions of mass
matrix of neutrinos have been discussed via special
perturbative and nonperturbative mixing patterns. We
found that the mass matrix of neutrinos is stable under
the small variation of mixing parameter siné;; only in
special mass ordering of neutrinos. In general cases, a small
variation of sin #3 may correspond to large modifications
to alignment of vacuum expectation values in a mixing
model on the basis of flavor groups. Therefore, small but
nonzero sin 65 brings more stringent constraint on leptonic
mixing models on the basis of flavor groups than usual
views. A successful mixing model should not only predict
viable mixing parameters but also be stable under the small
variation of mixing parameter.

Finally, we note that a recent paper [46] has discussed
viable patterns on the basis of type-A correlation without
discussing evolutions of neutrinos mass matrices. Our work
incudes both type-A and type-B correlation. We find that,
in 62 viable patterns, only 3 are just from combinations of
correlations of type-A. So general methods and results of
our work are different from theirs.
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