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A possible interplay between the two terms of the general type-II seesaw formula is exercised which
leads to the generation of nonzero θ13. The specific flavor structure of the model, guided by the
A4 × Z4 × Z3 symmetry and accompanied with the Standard Model singlet flavons, yields the conventional
seesaw contribution to produce the tribimaximal lepton mixing which is further corrected by the presence
of the SUð2ÞL triplet contribution to accommodate θ13. We consider the CP symmetry to be spontaneously
broken by the complex vacuum expectation value (vev) of a singlet field S. While the magnitude of its
complex vev is responsible for generating θ13, its phase part induces the low energy CP violating phase (δ)
and the CP violation required for leptogenesis. Hence the triplet contribution, although subdominant, plays
a crucial role in providing a common source for nonzero θ13, δ and CP-violation required for leptogenesis.
We find that the recent hint for δ close to 3π=2 is somewhat favored in this setup though it excludes the
exact equality with 3π=2. We also discuss the generation of lepton asymmetry in this scenario.
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I. INTRODUCTION

The question whether there exists an underlying princi-
ple to understand the pattern of lepton mixing, which is
quite different from the quark mixing, demands the study of
neutrino mass matrix as well as the charged lepton one into
a deeper level. The smallness of neutrino masses can be
well understood by the seesaw mechanism in a natural way.
The type-I seesaw mechanism [1–4] provides the simplest
possibility by extending the Standard Model (SM) with
three right-handed (RH) neutrinos. An introduction of
discrete symmetries into it may reveal the flavor structure
of the neutrino and charged lepton mass matrix. For
example, a type-I seesaw in conjugation with A4 explains
the tribimaximal lepton mixing pattern (TBM) [5] in the
presence of SM singlet flavon (charged under A4) fields
which get vacuum expectation values (vev) [6–8]. However
the original approach fails to accommodate the recent
observation of nonzero θ13 [9–12]. In [13], we have shown
that an extension of the Altarelli-Feruglio (AF) model [8]
by one additional flavon field can be employed to have a
nonzero θ13 consistent with the present experimental
results. The setup also constrains the two Majorana phases
involved in the lepton mixing matrix. The deviation of the
TBM pattern is achieved through a deformation of the RH
neutrino mass matrix compared to the original one. On the
other hand, within the framework of a general type-II
seesaw mechanism [where both RH neutrinos and SUð2ÞL
triplet Higgs are present], light neutrino mass depends upon
the comparative magnitude of the pure type-I (mediated by
heavy RH neutrinos) and triplet contributions. This

interplay is well studied in the literature [14–23]. In recent
years keeping in mind that θ13 is nonzero, efforts have been
given to realize leptogenesis [24–30] and linking it with θ13
in models based on the type-II seesaw [31].
In this paper, we focus on the generation of the light

neutrino mass matrix through a type-II seesaw mechanism
[32–35]. The fields content of the SM is extended with
three right-handed neutrinos, one SUð2ÞL triplet and a set
of SM singlet flavon fields. A flavor symmetry A4×Z4×Z3

is considered. The type-II seesaw mechanism therefore
consists of the conventional type-I seesaw contribution
(mI

ν) along with the triplet contribution (mII
ν ) to the neutrino

mass matrix. Here we find the type-I contribution alone can
generate the TBMmixing pattern, where the charged lepton
mass matrix is a diagonal one. Then we have shown that the
same flavor symmetry allows us to have a deviation from
the conventional type-I contribution, triggered by the
SUð2ÞL triplet’s vev. We have found that this deviation
is sufficient enough to keep θ13 at an acceptable level
[36–38]. We mostly consider the triplet contribution to the
light neutrino mass is subdominat compared to the conven-
tional type-I contribution.
We further assume that apart from the flavons (SM

singlets charged under A4) involved, there is a A4 singlet
(as well as SM gauge singlet) field S, which gets a complex
vacuum expectation value and thereby responsible for
spontaneous CP violation1 at high scale [47–55]. All other
flavons have real vevs and all the couplings involved are
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1Earlier it has been shown that the idea of spontaneous CP
violation [39] can be used to solve the strong CP problem
[40,41]. Later it has been successfully applied on models based
on SOð10Þ [42,43] and other extensions of the Standard Model
[44–46].
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considered to be real. It turns out that the magnitude of this
complex vacuum expectation value of S is responsible for
the deviation of TBM by generating the nonzero value of
θ13 in the right ballpark. On the other hand, the phase
associated with it generates the Dirac CP violating phase in
the lepton sector. So in a way, the triplet contribution
provides a unified source for CP violation and nonzero θ13.
In the lepton sector, the other possibilities where CP
violation can take place involve a complex vev of Higgs
triplets [56–60], or when a Higgs bidoublet (particularly in
left-right models) gets complex vev [61] or in a mixed
situation [62–64]. However, we will concentrate in a
situation where a scalar singlet S present in the theory
gets complex vev as in [48]. We have also studied the lepton
asymmetry production through the decay of the heavy
triplet involved. The decay of the triplet into two leptons
contributes to the asymmetry where the virtual RH neu-
trinos are involved in the loop. This process is effective
when the triplet is lighter than all the RH neutrinos. It turns
out that sufficient lepton asymmetry can be generated in
this way. On the other hand, if the triplet mass is heavier
than the RH neutrino masses, the lightest RH neutrino may
be responsible for producing lepton asymmetry where the
virtual triplet is contributing in the one-loop diagram.
In [48], authors investigated a scenario where the triplet

vevs are the sole contribution to the light neutrino mass and
a single source of spontaneous CP violation was consid-
ered. There, it was shown that the low energy CP violating
phase and the CP violation required for leptogenesis both
are governed by the argument of the complex vev of that
scalar field. The nonzero value of θ13 however followed
from a perturbative deformation of the vev alignment of the
flavons involved. Here in our scenario, the TBM pattern is
realized by the conventional type-I contribution. Therefore
in the TBM limit, θ13 is zero in our setup. Also there is no
CP violating phase in this limit as all the flavons involved
in mI

ν are carrying real vevs, and hence no lepton asym-
metry as well. Now once the triplet contribution (mII

ν ) is
switched on, not only the θ13, but also the leptonic CP

violation turn out to be nonzero. For generating lepton
asymmetry, two triplets were essential in [48], while we
could explain the lepton asymmetry by a single triplet along
with the presence of RH neutrinos. In this case, the RH
neutrinos are heavier compared to the mass of the triplet
involved.
The paper is organized as follows. In Sec. II, we provide

the status of the neutrino mixing and the mass squared
differences. Then in Sec. III, we describe the setup of the
model followed by constraining the parameter space of the
framework from neutrino masses and mixing in Sec. IV. In
Sec. V, we describe how one can obtain lepton asymmetry
out of this construction. Finally we conclude in Sec. VI.

II. STATUS OF NEUTRINO MASSES AND MIXING

Here we summarize the neutrino mixing parameters and
their present status. The neutrino mass matrix mν, in
general, can be diagonalized by the UPMNS matrix (in
the basis where charged lepton mass matrix is diagonal)
as mν¼U�

PMNSdiagðm1;m2;m3ÞU†
PMNS, where m1, m2, m3

are the real mass eigenvalues for light neutrinos.
The standard parametrization of the UPMNS matrix [65]
is given by

UPMNS ¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23
s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

1
CA
0
B@

1 0 0

0 eiα21=2 0

0 0 eiα31=2

1
CA; ð2:1Þ

where cij ¼ cos θij, sij ¼ sin θij, the angles θij ¼ ½0; π=2�,
δ ¼ ½0; 2π� is the CP-violating Dirac phase while α21 and
α31 are the two CP-violating Majorana phases. The mixing
angles θ12, θ23 and the two mass-squared differences
Δm2

12ð≡m2
2 −m2

1Þ, Δm2
31ð≡m2

3 −m2
1Þ have been well mea-

sured at several neutrino oscillation experiments [66].
Recently the other mixing angle θ13 is also reported to
be of sizable magnitude [9–12]. Very recently, we start to
get a hint for the nonzero Dirac CP phase [12,36–38]. From

the updated global analysis [38] involving all the data from
neutrino experiments, the 1σ and 3σ ranges of mixing
angles and the mass-squared differences are mentioned
(NH and IH stand for the normal and inverted mass
hierarchies respectively) in Table I. The result by Planck
[67] from the analysis of cosmic microwave background
(CMB) also sets an upper limit on the sum of the three
neutrino masses as given by, Σimνi < 0.23 eV. The result
from neutrinoless double beta decay by KamLAND-Zen

TABLE I. Summary of neutrino oscillation parameters for
normal and inverted neutrino mass hierarchies from the analysis
of [38].

Oscillation
parameters Best fit 1σ range 3σ range

Δm2
21 [10

−5eV2] 7.60 7.42–7.79 7.11–8.18

jΔm2
31j [10−3eV2]

2.48 (NH) 2.41–2.53 2.30–2.65
2.38 (IH) 2.32–2.43 2.20–2.54

sin2 θ12 0.323 0.307–0.339 0.278–0.375

sin2 θ23
0.567 (NH) 0.439–0.599 0.392–0.643
0.573 (IH) 0.530–0.598 0.403–0.640

sin2 θ13
0.0234 (NH) 0.0214–0.0254 0.0177–0.0294
0.0240 (IH) 0.0221–0.0259 0.0183–0.0297
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[68] and EXO-200 [69] indicates a limit on the effective
neutrino mass parameter jmeej as, jmeej < ð0.14–0.28Þ eV
at 90% C.L. and jmeej < ð0.19–0.45Þ eV at 90% C.L.
respectively.

III. THE MODEL

Our starting point is the conventional type-I seesaw
mechanism to explain the smallness of light neutrino
masses which further predicts a tribimaximal mixing
(TBM) pattern in the lepton sector. For this part, we use
the original AF model [8] by introducing a discrete A4

symmetry and A4 triplet flavon fields ϕS, ϕT along with a
singlet ξ field. Of course three right-handed neutrinos (NR)
are also incorporated. In addition, we include a SUð2ÞL
triplet field (Δ) with hypercharge unity, the vev of which
produces an additional contribution (hereafter called the
triplet contribution) to the light neutrino mass. So our setup
basically involves a general type-II seesaw,

mν ¼ mII
ν þmI

ν ¼ mII
ν −mT

DM
−1
R mD; ð3:1Þ

where mI
ν is the typical type-I term and mII

ν is the triplet
contribution. To realize both, the relevant Lagrangian for
generation of mν can be written as

−L¼YDL̄ ~HNRþ
1

2
MRNc

RNRþðYΔÞijLT
i CΔLj; ð3:2Þ

so that mII
ν ¼ 2YΔuΔ and mD ¼ YDv, where uΔ and v are

the vevs of the triplet Δ and SM Higgs doublet (H)
respectively. YD and YΔ correspond to the Yukawa matrices
for the Dirac mass and triplet terms respectively, the flavor
structure of which are solely determined by the discrete
symmetries imposed on the fields involved in the model.
MR is the Majorana mass of the RH neutrinos. In the
following subsection, we discuss in detail how the flavor
structure of YD, YΔ and MR are generated with the flavon
fields. A discrete symmetry Z4 × Z3 is also present in our
model and two other SM singlet fields ξ0 and S are
introduced. These additional fields and the discrete sym-
metries considered play a crucial role in realizing a typical
structure of the triplet contribution to the light neutrino
mass matrix as we will see below. Among all these scalar
fields present, only the S field is assumed to have a complex
vev while all other vevs are real. The framework is based on
the SM gauge group extended with the A4 × Z4 × Z3

symmetry. The field contents and charges under the
symmetries imposed are provided in Table II.
With the above fields content, the charged lepton

Lagrangian is described by

Ll ¼
ye
Λ
ðL̄ϕTÞHeR þ yμ

Λ
ðL̄ϕTÞ0HμR þ yτ

Λ
ðL̄ϕTÞ00HτR;

ð3:3Þ

to the leading order, where Λ is the cutoff scale of the
theory and ye, yμ and yτ are the respective coupling
constants. Terms in the first parentheses represent products
of two A4 triplets, which further contracts with A4 singlets
1, 100 and 10 corresponding to eR, μR and τR respectively to
make a true singlet under A4. Once the flavons ϕS and ϕT
get the vevs along a suitable direction as (uS, uS, uS) and
(uT , 0, 0) respectively,

2 it leads to a diagonal mass matrix
for charged leptons, once the Higgs vev v is inserted. Below
we will first summarize how the TBM mixing is achieved
followed by the triplet contribution in the next subsection.
The requirement of introducing SM singlet fields will be
explained subsequently while discussing the flavor struc-
ture of neutrino mass matrix in detail.

A. Type-I seesaw and tribimaximal mixing

The relevant Lagrangian for the type-I seesaw in the
neutrino sector is given by

LI ¼ yL̄ ~HNR þ xAξNc
RNR þ xBϕSNc

RNR; ð3:4Þ

where y, xA and xB are the coupling constants. After the ξ
and ϕS fields get vevs and the electroweak vev v is
included, it yields the following flavor structure for
Dirac (mD) and Majorana (MR) mass matrices:

mD ¼ YDv ¼ yv

0
B@

1 0 0

0 0 1

0 1 0

1
CA and

MR ¼

0
B@

aþ 2b=3 −b=3 −b=3
−b=3 2b=3 a − b=3

−b=3 a − b=3 2b=3

1
CA; ð3:5Þ

with a ¼ 2xAhξi ¼ 2xAuξ, b ¼ 2xBuS. The A4 multiplica-
tion rules that result to this flavor structure can be found
in [13]. Therefore the contribution toward light neutrino
mass that results from the type-I seesaw mechanism is
found to be

TABLE II. Fields content and transformation properties under
the symmetries imposed on the model.

Field eR μR τR L NR H Δ ϕS ϕT ξ ξ0 S

A4 1 1″ 10 3 3 1 1 3 3 1 10 1
Z4 −1 −1 −1 i i 1 −i −1 −i −1 i −1
Z3 ω ω ω ω ω 1 ω2 ω 1 ω ω2 1

2The typical vev alignments of ϕS and ϕT are assumed here.
We expect the minimization of the potential involving ϕS and ϕT
can produce this by proper tuning of the parameters involved in
the potential. However the very details of it are beyond the scope
of this paper.
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mI
ν ¼−mT

DM
−1
R mD

¼−v2y2

0
BBBBBBBB@

3aþb
3aðaþbÞ

b
3aðaþbÞ

b
3aðaþbÞ

b
3aðaþbÞ −

bð2aþbÞ
3aða2−b2Þ

3a2þab−b2

3aða2−b2Þ
b

3aðaþbÞ
3a2þab−b2

3aða2−b2Þ −
bð2aþbÞ
3aða2 −b2Þ

1
CCCCCCCCA
:

ð3:6Þ

Now, we introduce two parameters α ¼ b=a and k ¼
v2y2=a which are real and positive as they are part of
the type-I contribution only. Therefore, Eq. (3.6) now takes
the form

mI
ν ¼ −k

0
BBBBBBBB@

3þ α

3ð1þ αÞ
α

3ð1þ αÞ
α

3ð1þ αÞ
α

3ð1þ αÞ −
αð2þ αÞ
3ð1 − α2Þ

3þ α − α2

3ð1 − α2Þ
α

3ð1þ αÞ
3þ α − α2

3ð1 − α2Þ −
αð2þ αÞ
3ð1 − α2Þ

1
CCCCCCCCA
:

ð3:7Þ

Note that this form of mI
ν indicates that the correspond-

ing diagonalizing matrix would be nothing but the TBM
mixing matrix of the form [5]

UTB ¼

0
BBBB@

ffiffi
2
3

q
1ffiffi
3

p 0

− 1ffiffi
6

p 1ffiffi
3

p − 1ffiffi
2

p

− 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1
CCCCA: ð3:8Þ

As a characteristic of typical A4 generated structure, the
RH neutrinos mass matrix is as well diagonalized by the
UTB. In order to achieve the real and positive mass
eigenvalues, the corresponding rotation UR is provided
onMR asUT

RMRUR¼Mdiag
R ¼diagðaþb;a;a−bÞwithUR ¼

UTBdiagð1; 1; e−iπ=2Þoncea > b is considered.On the other
hand for a < b; through UR ¼ UTB itself, the real and
positive eigenvalues ofMR [Mdiag

R ¼ diagðaþ b; a; b − aÞ]
can be obtained. Thiswould be usefulwhenwewill consider
the decay of the RH neutrinos for leptogenesis in Sec. V.

B. Triplet contribution and type-II seesaw

The leading order Lagrangian invariant under the sym-
metries imposed, that describes the triplet contribution to
the light neutrino mass matrix (mII

ν ), is given by

LII ¼ 1

Λ2
ΔLTLðx1Sþ x01S

�Þξ0; ð3:9Þ

where x1 and x01 are the couplings involved. Here ξ0

develops a vev uξ0 and the singlet S is having a complex
vev hSi ¼ vSeiαS. As we have mentioned before, the vev of
S provides the unique source of CP violation as all other
vevs and couplings are assumed to be real. CP is therefore
assumed to be conserved in all the terms involved in the
Lagrangian. Similar to [48],CP is spontaneously broken by
the complex vev of the S field. After plugging all these
vevs, the above Lagrangian in Eq. (3.9) contributes to the
following Yukawa matrix for the triplet Δ as given by

YΔ ¼ h

0
B@

0 0 1

0 1 0

1 0 0

1
CA;

h ¼ 1

Λ2
uξ0vSðx1eiαS þ x01e

−iαSÞ: ð3:10Þ

This specific structure follows from the A4 charge assign-
ments of various fields present in Eq. (3.9) and is instru-
mental in providing nonzero θ13 as we will see shortly.
Before discussing the vev of the Δ field, let us describe

the complete scalar potential V, including the triplet Δ
obeying the symmetries imposed, is given by

V ¼ VS þ VH þ VΔ þ VSH þ VSΔ þ VΔH; ð3:11Þ
where

VS ¼ μ2SðS2 þ S�2Þ þm2
SS

�Sþ λ1ðS4 þ S�4Þ
þ λ2S�SðS2 þ S�2Þ þ λ3ðS�SÞ2;

VH ¼ m2
HH

†H þ λ4ðH†HÞ2;
VΔ ¼ M2

ΔTrðΔ†ΔÞ þ λ5½TrðΔ†ΔÞ�2;
VSH ¼ λ6ðS�SÞH†H þ λ7ðS2 þ S�2ÞðH†HÞ;
VSΔ ¼ TrðΔ†ΔÞ½λ8ðS2 þ S�2Þ þ λ9S�S�;
VΔH ¼ λ10ðH†HÞTrðΔ†ΔÞ þ λ11ðH†Δ†ΔHÞ

þ
�
−
μ

Λ
~HTΔ ~HϕSϕT þ H:c:

�
: ð3:12Þ

The above potential contains several dimensionful (denoted
by μS, mS;H, MΔ) and dimensionless parameters (as
λi¼1;2;…;11 and μ), which are all considered to be real.
Similar to [48], here also it can be shown that the S field
gets a complex vev for a choice of parameters involved in
VS asm2

S < 0, μS ≃ 0 and λ3 > 2λ1 > 0. However contrary
to [48], here we have only a single triplet field Δ. Once the
ϕS, ϕT get vevs, the last term of VΔH results into an
effective ΔHH interaction which would be important for
leptogenesis. The vev of the triplet Δ is obtained by
minimizing the relevant terms3 from V after plugging
the vevs of the flavons and is given by

3We consider couplings λ8;9 ≪ 1.
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hΔ0i≡ uΔ ¼ η
v2

M2
Δ

and η ¼ μ

Λ
uSuT: ð3:13Þ

Using Eqs. (3.10) and (3.13), the triplet contribution to
the light neutrino mass matrix follows from the Lagrangian
LII as

mII
ν ¼

0
B@

0 0 d

0 d 0

d 0 0

1
CA; ð3:14Þ

where

d ¼ 2huΔ ¼ 2hη
v2

M2
Δ
: ð3:15Þ

Note that only the triplet contribution (d) involves the phase
due to the involvement of hSi in h, while the entire type-I
contributionmI

ν remains real. Therefore the term d serves as
the unique source of generating all the CP-violating phases
involved in neutrino as well as in lepton mixing. This will
be clear once we discuss the neutrino mixing in the
subsequent section. Now we can write down the entire
contribution to the light neutrino mass as

mν ¼ mI
ν þmII

ν

¼ −k

0
BBBBBBB@

3þ α

3ð1þ αÞ
α

3ð1þ αÞ
α

3ð1þ αÞ
α

3ð1þ αÞ −
αð2þ αÞ
3ð1 − α2Þ

3þ α − α2

3ð1 − α2Þ
α

3ð1þ αÞ
3þ α − α2

3ð1 − α2Þ −
αð2þ αÞ
3ð1 − α2Þ

1
CCCCCCCA

þ

0
B@

0 0 d

0 d 0

d 0 0

1
CA: ð3:16Þ

IV. CONSTRAINING PARAMETERS
FROM NEUTRINO MIXING

In this section, we discuss how the neutrino masses and
mixing can be obtained from the mν mentioned above.
Keeping in mind that mI

ν can be diagonalized by UTB, we
first perform a rotation by UTB on the explicit form of the
light neutrino mass matrix obtained in Eq. (3.16) and the
rotated mν is found to be

m0
ν ¼UT

TBmνUTB¼

0
BBBB@
−
d
2
−

k
ð1þαÞ 0

ffiffiffi
3

p
d

2

0 d−k 0ffiffiffi
3

p
d

2
0

d
2
þ k
ð1−αÞ

1
CCCCA:

ð4:1Þ

Wenote that a further rotation byU1 (another unitarymatrix)
in the 13 plane in required to diagonalize the light neutrino
mass matrix, UT

1m
0
νU1 ¼ mdiag

ν . With a form of U1 as

U1 ¼

0
B@

cos θ 0 sin θe−iψ

0 1 0

− sin θeiψ 0 cos θ

1
CA; ð4:2Þ

we have ðUTBU1ÞTmνUTBU1¼diagðm1eiγ1 ;m2eiγ2 ;m3eiγ3Þ,
where mi¼1;2;3 are the real and positive eigenvalues and
γi¼1;2;3 are the phases associated to these mass eigenvalues.
We can therefore extract the neutrino mixing matrix Uν as

Uν ¼UTBU1Um

¼

0
BBBB@

ffiffi
2
3

q
cosθ 1ffiffi

3
p

ffiffi
2
3

q
e−iψ sinθ

− cosθffiffi
6

p þ eiψ sinθffiffi
2

p 1ffiffi
3

p − cosθffiffi
2

p − e−iψ sinθffiffi
6

p

− cosθffiffi
6

p − eiψ sinθffiffi
2

p 1ffiffi
3

p cosθffiffi
2

p − e−iψ sinθffiffi
6

p

1
CCCCAUm; ð4:3Þ

where Um ¼ diagð1; eiα21=2; eiα31=2Þ is the Majorana phase
matrix with α21 ¼ ðγ1 − γ2Þ and α31 ¼ ðγ1 − γ3Þ, one
common phase being irrelevant. As the charged lepton mass
matrix is a diagonal one, we can now compare this Uν with
the standard parametrization of lepton mixing matrix
UPMNS. The UPMNS is therefore given by UPMNS¼UPUν,
wherewe need tomultiply theUνmatrix by a diagonal phase
matrix UP [70] from left as given by

UP ¼ diag

�
1;1þ isinψ

cosψþ ffiffiffi
3

p
cotθ

;1þ isinψ

cosψ −
ffiffiffi
3

p
cotθ

�
;

ð4:4Þ

so that theUPMNS excluding the Majorana phase matrix can
take the standard form where 23 and 33 elements are real as
in Eq. (2.1). Hence we obtain the usual (in A4 models)
correlation [71] between the angles and CP violating Dirac
phase δ as given by

sinθ13¼
ffiffiffi
2

3

r
jsinθj; sin2θ12¼

1

3ð1− sin2θ13Þ
; ð4:5Þ

sin2θ23¼
1

2
þ 1ffiffiffi

2
p sinθ13 cosδ; δ¼ arg½ðU1Þ13�: ð4:6Þ

The angle θ and phase ψ associated with U1 can now be
linked with the parameters involved in mν. For this we first
rewrite the triplet contribution d as d ¼ jdjeiϕd and define a
parameter β ¼ jdj=k (hence β is real). This parameter
indicates the relative size of the triplet contribution to
the type-I contribution when α ≤ 1. As U1 diagonalizes the
m0

ν matrix, after some involved algebra, we finally get
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tan 2θ ¼
ffiffiffi
3

p

α

½1 − ð1 − α2Þcos2ϕd�1=2
2

βð1−α2Þ þ cosϕd
and

tanψ ¼ ðtanϕdÞ=α: ð4:7Þ

sin θ may take positive or negative value depending on the
choices of α, β as evident from the first relation in Eq. (4.7).
For sin θ > 0, we find δ ¼ ψ using δ ¼ arg½ðU1Þ13 and the
second relation of Eq. (4.7).On the other hand for sin θ < 0;
δ and ψ are related by δ ¼ ψ � π. Therefore in both these
cases we obtain tanψ ¼ tan δ and hence

tan δ ¼ ðtanϕdÞ=α: ð4:8Þ

In our setup, the source of this CP-violating Dirac phase δ
is through the phase αS associated with hSi. Note that tan δ
is related with tanϕd and α as seen from Eq. (4.8). Now
from the relation d ¼ jdjeiϕd and using Eqs. (3.10)
and (3.15), we obtain ϕd satisfying

tanϕd ¼
ðx1 − x01Þ
ðx1 þ x01Þ

tan αS; ð4:9Þ

where x1 and x01 are the coupling involved in Eq. (3.9).
As seen from Eqs. (4.5) and (4.7), we conclude that the

UPMNS parameters θ13 and δ depend on the model
parameters α, β and ϕd. Note that we expect terms a
and b (α ¼ b=a) to be of similar order of magnitude as both
originated from the tree level Lagrangian [see Eqs. (3.4)
and (3.5)]. We categorize α < 1 as case A, while α > 1 is
with case B. The other parameter β basically represents the
relative order of magnitude between the triplet contribution
(jdj) and the type-I contribution (v2y2=a). Our framework
produces the TBMmixing pattern to be generated solely by
type-I seesaw and triplet contribution is present mainly to
correct for the angle θ13 which is small compared to the
other mixing angles. Therefore we consider that the triplet
contribution is preferably the subdominant or at most
comparable one. Therefore we expect the parameter β to

be less than one. Although we discuss what happens when
β > 1 in some cases, we will restrict ourselves with β < 1
for the most of the analyses involved later in this paper. In
Fig. 1 (left panel), we study the variation of α and β in order
to achieve the best fit value of sin2θ13 ¼ 0.0234 [38] while
different values of δ are considered. In producing these
plots, we have replaced the ϕd dependence in terms of α
and δ by employing the second equation in Eq. (4.7) as
ψ ¼ δ. Similarly in the right panel of Fig. 1, contour plots
for sin2 θ13 ¼ 0.0234 are depicted for α > 1 with different
values of δ. We find a typical contour plot for sin2 θ13 with a
specific δ value coincides with the one with other δ values
obtained from jπ − δj. For example, one particular contour
plot for δ ¼ 30° is repeated for δ ¼ 150°, 210°, 330°.
Diagonalizing m0

ν in Eq. (4.1), the light neutrino masses
turn out to be

m1 ¼ k

��
α

�ð1 − α2Þ −
p
k

�
2

þ
�
q
k

�
2
�
1=2

; ð4:10Þ

m2 ¼ k½1þ β2 − 2β cosϕd�1=2; ð4:11Þ

m3 ¼ k

��
α

�ð1 − α2Þ þ
p
k

�
2

þ
�
q
k

�
2
�
1=2

; ð4:12Þ

where p and q are defined as

�
p
k

�
2

¼ 1

2

0
@A
k2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

k4
þ B2

k4

s �
;

�
q
k

�
2

¼ 1

2

�
−
A
k2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

k4
þ B2

k4

s �
; ð4:13Þ

A
k2

¼ β2 cos 2ϕd þ β
cosϕd

1 − α2
þ 1

ð1 − α2Þ2 ;
B
k2

¼ β2 sin 2ϕd þ β
sinϕd

1 − α2
: ð4:14Þ

FIG. 1. Contour plots for
sin2 θ13 ¼ 0.0234 in the α-β
plane for various choices of δ
as indicated inside the figure.
The left panel is for (A) α < 1
and the right panel is with
(B) α > 1.
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The “þ” sign in the expression of m1 and m3 is for
α < 1 (case A) where the “−” sign is associated with α > 1
(case B). The Majorana phases in Um [see Eq. (4.3)] are
found to be

α21 ¼ tan−1
�

q=k
p=k� α

ðα2−1Þ

�
− tan−1

�
β sinϕd

β cosϕd − 1

�
; ð4:15Þ

α31 ¼ π þ tan−1
�

q=k
p=k� α

ðα2−1Þ

�
− tan−1

�
q=k

p=k� α
ð1−α2Þ

�
:

ð4:16Þ

Note that the redefined parameters p=k and q=k are
functions of α, β and ϕd, while the mass eigenvalues mi,
depend on k as well.
The parameters α, β and ϕd can now be constrained by

the neutrino oscillation data. To have a more concrete

discussion, we consider the ratio, r, defined by r ¼ Δm2⊙
jΔm2

atmj,

with Δm2⊙ ≡ Δm2
21 ¼ m2

2 −m2
1 and jΔm2

atmj≡ Δm2
31 ¼

m3
3 −m2

1 considering normal hierarchy. Following [38],
the best fit values of Δm2⊙ ¼ 7.6 × 10−5 eV2 and
jΔm2

atmj ¼ 2.48 × 10−3 eV2 are used for our analysis.
Using Eqs. (4.10)–(4.12), we have an expression for r as

r ¼ �ð1 − α2Þ
4α

k
p

�
1þ β2 − 2β cosϕd

−
�

α

�ð1 − α2Þ −
p
k

�
2

−
�
q
k

�
2
�
: ð4:17Þ

Here also, “þ” corresponds to case A (i.e., with α < 1) and
“−” is for case B (i.e., when α > 1). Interestingly we note

that r depends on α, β and ϕd. Therefore using this
expression of r, we can now have a contour plot for r ¼
0.03 [65] in terms of α and β for specific choices of δ as we
can replace the ϕd dependence in terms of α and δ through
Eq. (4.8). For α < 1, this is shown in Fig. 2 (left panel) and
a similar plot is made for α > 1 in the right panel. Although
we argue that it is more natural to consider β to be less than
one, in this plot we allow larger values of β as a
completeness. With this, for α < 1 (case A) we see the
appearance of two separate contours of r ¼ 0.03 with
δ ¼ 30°, one is for β < 1 and the other corresponds to
β > 1. Similar plots are obtained for δ ¼ 70° as well.
However these isolated contours become a connected one
once the value of δ increases, e.g., at δ ¼ 80°, it is shown in
Fig. 2 (left panel). A similar pattern follows in case of the
α > 1 case. Below we discuss the predictions of our model
for case A (with α < 1) and case B (α > 1) separately.

A. Results for case A

Note that we need to satisfy both the sin2 θ13 as well as the
value of r obtained from the neutrino oscillation experi-
ments. For this reason, if we consider the two contour plots
(one for r ¼ 0.03 and the other for sin2θ13 ¼ 0.0234)
together, then their intersection [denoted by (α, β)] should
indicate a simultaneous satisfaction of these experimental
data for a specific choice of δ. This is exercised in Fig. 3. In
the left panel of Fig. 3, contour plots of r and sin2 θ13 are
drawn in terms ofα and β for two choices of δ ¼ 20° and 40°.
We find that there is no such solution for (α, β) which
satisfies both r and sin2 θ13 with α, β ≲ 1 in these cases.
However there exists a solution for α very close to onewith a
pretty large value of β as mentioned in Table III. This
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FIG. 2. Contour plots for r ¼ 0.03 are shown in the α-β plane for various choices of δ. Here, in the left panel (with α < 1, case A) red
(dotted), black (dashed) and blue (continuous) lines represent δ ¼ 30°, 70° and 80° respectively. Similar contours are present for jπ − δj
values of the CP violating Dirac phase. In the right panel (with α > 1, case B) red (dotted), black (dashed) and blue (continuous) lines
represent δ ¼ 10°, 30° and 70° respectively.
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solution as we expect is not a natural one, not only for a large
value of β, but also for its very fine-tuned situation. Note that
α requires to be sufficiently close (and hence finely tuned) to
one in this case. This situation can be understood from the
fact that β being quite large (≫1), the value of α has to be
adjusted enough [see the involvement of the expression
α=ð1 − α2Þ in Eq. (4.17)] so as to compete with the β
dependent terms to get r ∼ 0.03. Similarly variation of
sin2 θ13 is very sharp with respect to α (when close to 1)
for large β. For example, a small change in α values (∼1%)
would induce a change in sin2 θ13 by an amount of 15% near
the intersection region.
However the situation changes dramatically as we pro-

ceed for higher values of δ as can be seen from Fig. 3, right
panel. This figure is for two choices of δ ¼ 60° and 75°. We
observe that with the increase of δ, the upper contour for r is
extended toward the downward direction and the lower one

is pushed up, thereby providing a greater chance to have an
intersection with the sin2 θ13 contour. We also note that the
portion of sin2 θ13 contour for α < 1 prefers a region with
relatively small value of βð<1Þ as well. However a typical
solution with both α and β < 1 appears when δ is closer to
75°. With this δ, we could see the lower and upper contours
open up to form a connected one and we can have a solution
for ðα; βÞ≡ ð0.29; 0.2Þ. In this case, there is one more
intersection between the r and sin2 θ13 contours with
α, β < 1 as given by (0.77, 0.93). When δ approaches
80° and up (until π=2) we have solutions with α, β < 1.
We have scanned the entire range of δ, from 0 to 2π and

listed our findings in Table III. For the δ values, we denote
inside the first bracket those values of δ, for which the same
set of solution points (α, β) are obtained. This is due to the
fact that corresponding to a r or sin2 θ13 contour plot for a
typical δ between 0 and 2π, the same plot is also obtained
for other jπ − δj values. Accepting the solutions for which
α, β < 1 (i.e., those are not fine-tuned with large β), we find
that our setup then predicts an acceptable range of CP
violating Dirac phase δ to be between 72°–82°, while the
first quadrant is considered. For the whole range of δ
between 0 and 2π, the allowed range therefore covers
72°–82°, 98°–108°, 252°–262°, 278°–288°. Note that δ
between 83° and 90° (similarly regions of δ in other
quadrants also) is ruled out from the constraints on the
sum of the light neutrino mass mentioned in Table III. We
will discuss it shortly. Also the values of δ s like 0, π, 2π are
disallowed in our setup as they would not produce any CP
violation which is the starting point of our scenario. Again
δ ¼ π=2, 3π=2 are not favored as we have not obtained any
solution of α, β that satisfied both r and sin2 θ13. The same
is true for the case with α > 1.

20o
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0.0 0.2 0.4 0.6 0.8 1.0
0.01
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0.0 0.2 0.4 0.6 0.8 1.0
0.01
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FIG. 3. Contour plots for both sin2 θ13 ¼ 0.0234 (shown in red-dashed and red-continuous lines) and r ¼ 0.03 (shown in blue-dashed
and blue-continuous lines) in the α-β plane for various choices of δ with α < 1. In the left panel, dashed and continuous lines represent
δ ¼ 20° and 40° respectively, while in the right panel, dashed and continuous lines represent contour plots for δ ¼ 60° and 75°
respectively.

TABLE III. α, β values at the intersection points of the r and
sin2 θ13 contour plots are provided corresponding to different δ
values. The sum of the light neutrino masses are also indicated in
each case.

δ α β
P

miðeVÞ
20° (160°, 200°, 340°) 0.99 28.26 0.0714
40° (140°, 220°, 320°) 0.99 20.94 0.0709
60° (120°, 240°, 300°) 0.98 11.16 0.0701

75° (105°, 255°, 285°)
0.94 3.70 0.0691
0.77 0.93 0.0734
0.29 0.20 0.1333

80° (100°, 260°, 280°) 0.16 0.11 0.1835
82° (98°, 262°, 278°) 0.12 0.09 0.2137
85° (95°, 265°, 275°) 0.07 0.05 0.2827
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Wewill nowproceed to discuss the prediction of themodel
for the light neutrino masses and other relevant quantities
in terms of the parameters involved in the setup. For
this, from now onward, we stick to the choice of δ ¼
80°ð≡100°; 260°; 280°Þ as a reference value for the Dirac
CP violating phase. The r and sin2 θ13 contours for this
particular δ are shown separately in Fig. 4, left panel. In Fig. 4
(right panel) we put the sin2 θ13 contours corresponding to
the upper and lower values (detonated by red dotted lines)
those are allowed by the 3σ range of sin2 θ13. Only a section
of the r contour is also incorporated which encompasses the
(α, β) solution points. This plot provides a range for (α, β)
once the 3σ patch of sin2 θ13 is considered. It starts from a set
of values ð∼0.13; 0.09Þ (can be called a reference point P1)
up to ð∼0.18; 0.14Þ (another reference point P2). Note that
there is always a one-to-one correspondence between the
values of α and β, which falls on the line of r contour.
We have already noted that in the expression for r,

parameters α, β and ϕd are present. Once we choose a
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FIG. 4. The left panel contains contour plots for best-fit values of r (indicated by blue-continuous lines) and sin2 θ13 (indicated by the
red-dashed line) for δ ¼ 80° in the α-β plane with α < 1. The right panel is for the contour plot of r with its best fit value r ¼ 0.03
(shown in the blue-continuous line) and 3σ range of sin2 θ13 (denoted by two red-dashed lines) along with the sin2 θ13 ¼ 0.0234 contour
(denoted by the orange large-dashed line).
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FIG. 5. k vs α (left panel) and jdj vs α (right panel) for δ ¼ 80°ð≡100°; 260°; 280°Þ.
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(magenta-large dashed line), m3 (orange-dashed line) and Σmi
(red continuous line) vs α for δ ¼ 80°ð≡100°; 260°; 280°Þ.
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specific δ, automatically it boils down to find α and β from
Eq. (4.17). Although r is the ratio between Δm2⊙ and
jΔm2

atmj, we must also satisfy the mass-squared differences
Δm2⊙ as well as jΔm2

atmj independently. For that we need to
determine the value of the k parameter itself apart from its
involvement in the ratio β ¼ jdj=k as evident from
Eqs. (4.10)–(4.12). For this purpose, with δ ¼ 80° while
moving from P1 to P2 along the r contour in the right panel
of Fig. 4, we find the values of α and correspondingly β
which produce r ¼ 0.03. Now using these values of (α, β),
we can evaluate the values of k for each such set which
satisfies Δm2⊙ ¼ 7.6 × 10−5 eV2. To obtain these values of
k corresponding to the (α, β) set, we employ Eqs. (4.10) and
(4.11). The result is reflected in the left panel of Fig. 5, where
we plot the required value of k in terms of its variationwithα.
In producing the plot, only a narrow range of α is considered
which corresponds to the 3σ variation of sin2 θ13 as obtained
from Fig. 4, right panel (i.e., from P1 to P2). Although we
plot it against α, each value of α is therefore accompanied by
a unique value of β, as we just explained. Once the variation
of k in terms of α is known, we plot the variation of jdj (¼βk)
with α in Fig. 5, right panel. Having the correlation between
α and other parameters like β, k for a specific choice of δ is
known, we are able to plot the individual light neutrino
masses using Eqs. (4.10)–(4.12). This is done in Fig. 6. The
light neutrino masses satisfies normal mass hierarchy. We
also incorporate the sum of light neutrino masses (Σmi) to
check its consistency with the cosmological limit set by
Planck,Σmi < 0.23 eV [67]. In this particular casewith δ ¼
80° (also for δ ¼ 100°, 260°, 280°), this limit is satisfied for
the allowed range of α, it turns out that δ ¼ 83° and 97° (and
similarly for 263°–277°) do not satisfy it as indicated in
Table III. One can check that indeed the light neutrino
masses are mostly dominated by the type-I seesaw contri-
bution. This can be seen from Eqs. (4.10)–(4.12) by setting
β ¼ 0. As an example, with δ ¼ 80° (α < 1 case), m3 is
found to be 0.074 eVand the type-I contribution toward this
mass is almost 0.07 eV. A similar conclusion holds for other
ranges of δ values as well.

Now by using Eqs. (4.15)–(4.16), we estimate the
Majorana phases4 α21 and α31 for δ ¼ 80°, which appears
in the effective neutrino mass parameter jmeej. jmeej
appears in evaluating the neutrinoless double beta decay
and is given by [65],

jmeej ¼ jm2
1c

2
12c

2
13 þm2

2s
2
12c

2
13e

iα21 þm2
3s

2
13e

iðα31−2δÞj:
ð4:18Þ

In Fig. 7, we plot the prediction of jmeej against α within its
narrow range satisfying the 3σ range of sin2 θ13 with
δ ¼ 80°. Here we obtain 0.050 ≤ jmeej ≤ 0.062. This could
be probed in future generation experiments providing a
testable platform of the model itself.
It is known that the presence of the nonzero Dirac CP

phase can trigger CP violation in neutrino oscillation at low
energy. In standard parametrization, the magnitude of this
CP violation can be estimated [65] through

JCP ¼ Im½Uμ3U�
e3Ue2U�

μ2�

¼ 1

8
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ: ð4:19Þ

As in our model, the unique source of δ is the CP violating
phase αS in S, it is interesting to see the prediction of our
model towards JCP. Using the expression of JCP in
Eq. (4.19) along with Eqs. (4.5) and (4.6) we estimate
JCP in our model as shown in Fig. 7 (right panel) with
δ ¼ 80°. Here also we include only that range of α which
provides solutions corresponding to the 3σ allowed range of
sin2 θ13. Howeverwe scanned the entire range ofαwhere the
solutions exist for all allowed values of δ and find that JCP in
our model is predicted to be 0.03 < jJCPj < 0.04. This can
be measured in future neutrino experiments.

0.13 0.14 0.15 0.16 0.17 0.18
0.050

0.052

0.054

0.056

0.058

0.060

0.062

m
ee

e
V

0.13 0.14 0.15 0.16 0.17 0.18
0.030

0.032

0.034

0.036

0.038

J C
P

FIG. 7. Effective neutrino mass parameter (left panel) and Jarlskog invariant (right panel) vs α for δ ¼ 80°ð100°; 260°; 280°Þ.

4The source of these phases is the phase ϕd only.
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B. Results for case B

Similar to case A, we consider here the expression of r for
α > 1 from Eq. (4.17) to draw the contour plot for r ¼ 0.03
in theα-β plane as shown in Fig. 8while δ is fixed at different
values. In the same plot we include the sin2 θ13 ¼ 0.0234
contour as well to find the set of parameters (α, β)
corresponding to a fixed δ which satisfies the best fit values

of sin2 θ13 and r. Oncewe restrict β to be below one, we find
the solutions to exist for δ ¼ 0°–63°, (117°–180°, 180°–243°,
297°–360°) shown in Table IV. For δ’s beyond 63° (when
considered within π=2), the solutions exhibit β ≫ 1 imply-
ing a fine-tuned situation similar to case A. Note that α
therefore falls in a narrow range≃1.2–1.4 in order to satisfy
both sin2 θ13 ¼ 0.0234 and r ¼ 0.03 considering all δ
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FIG. 8. Contour plots for both sin2 θ13 ¼ 0.0234 (shown in red-dashed and red-continuous lines) and r ¼ 0.03 (shown in blue-dashed
and blue-continuous lines) in the α-β plane for various choices of δ with α > 1. In the left panel, dashed and continuous lines represent
δ ¼ 85° and 75° respectively, while in the right panel, dashed and continuous lines represent contour plots for δ ¼ 20° and 40°
respectively.
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(shown in the blue-continuous line) and 3σ range of sin2 θ13 (denoted by two red-dashed lines) along with the sin2 θ13 ¼ 0.0234 contour
(denoted by the orange large-dashed line).
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values. In Fig. 9 (left panel), we find the intersection is at
(1.36, 0.53) for δ ¼ 40°ð≡140°; 220°; 320°Þ. Considering
this δ as a reference for discussion, we further include the 3σ
range of sin2 θ13 in Fig. 9 (right panel).We findα to bevaried
between 1.35 and 1.39while sin2 θ13 changes from the lower
to the higher value, within the 3σ limit.Within this range, we
predict individual light neutrino masses and their sum. Here
alsowe find normal hierarchy for them as seen from Fig. 10.
With α > 1, we find that the type-I contribution toward
physical neutrino masses dominates similar to the case with

α < 1. For example, withm3 ¼ 0.057 eV, the type-I part is
∼0.062 eV [obtained by setting β ¼ 0 in Eq. (4.12)] and
hence the triplet contribution is almost 1 order of magnitude
less compared to type-I contribution. For different δ-values,
the Σmi (corresponding to the best fit value of sin2 θ13)
are provided in Table IV. For showing the prediction
of our model in terms of other quantities like jmeej and
JCP, the left and right panels of Fig. 11 are included.
Considering all the δ values for which β ≤ 1, we find
jJCPj to be within jJCPj < 0.035.

V. LEPTOGENESIS

In a general type-II seesaw framework, leptogenesis can
be successfully implemented through the decay of RH
neutrinos [72] or from the decay of the triplet(s) involved
[73–77] or in a mixed scenario where both RH neutrino and
the triplet(s) contribute [78–83]. In the present setup, all the
couplings involved in the pure type-I contribution are real
and hence the neutrino Yukawa matrices and the RH
neutrino mass matrices do not include any CP violating
phase. Therefore CP asymmetry originated from the sole
contribution of RH neutrinos is absent in our framework.
As we have mentioned earlier, the source of CP violation is
only present in the triplet contribution and that is through
the vev of the S field. However as it is known [76,84], a
single SUð2ÞL triplet does not produce CP-asymmetry.
Therefore there are two remaining possibilities to generate
successful lepton asymmetry [80,85] in the present context;
(I) from the decay of the triplet where the one-loop diagram
involves the virtual RH neutrinos and (II) from the decay of
the RH neutrinos where the one-loop contribution involves
the virtual triplet running in the loop. Provided the mass
of the triplet is light compared to all the RH neutrinos (i.e.,
MΔ < MRi), we consider option (I). Once the triplet is
heavier than the RH neutrinos, we explore option (II).
First we consider option (I), i.e., when MΔ < MRi. At

tree level the scalar triplet can decay either into leptons or
into two Higgs doublets, followed from the Lagrangian in
Eqs. (3.9) and (3.12). For Δ → LL, the one-loop diagram
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FIG. 11. Effective neutrino mass parameter (left panel) and Jarlskog invariant (right panel) vs α for δ ¼ 40°ð≡140°; 220°; 320°Þ when
α > 1.

TABLE IV. Solutions for αð>1Þ and β for various δ.

δ α β
P

miðeVÞ
10° (170°, 190°, 350°) 1.43 0.36 0.0791
30° (150°, 210°, 330°) 1.39 0.45 0.0798
40° (140°, 220°, 320°) 1.36 0.53 0.0799
50° (130°, 230°, 310°) 1.32 0.64 0.0794
60° (120°, 240°, 300°) 1.26 0.83 0.0776
70° (110°, 250°, 290°) 1.17 1.13 0.0739
73° (107°, 253°, 287°) 1.07 3.02 0.0696
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FIG. 10. Light neutrino masses m1 (blue-continuous line), m2

(green-large dashed line), m3 (orange-dashed line) and Σmi (red
continuous line) vs α (>1 case) for δ ¼ 40°ð≡140°; 220°; 320°Þ.
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involves the virtual RH neutrinos running in the loop as
shown in Fig. 12. Interference of the tree level and the one-
loop results in the asymmetry parameter [73,80,86]

ϵΔ ¼ 2
ΓðΔ� → Lþ LÞ − ΓðΔ → L̄þ L̄Þ
ΓðΔ� → Lþ LÞ þ ΓðΔ → L̄þ L̄Þ ; ð5:1Þ

¼ 1

8π

X
k

MRk

P
ilIm½ðŶ�

DÞkiðŶ�
DÞklðYΔÞilη��P

ijjðYΔÞijj2M2
Δ þ jηj2

× logð1þM2
Δ=M

2
RkÞ: ð5:2Þ

Here i, j denote the flavor indices, ŶD ¼ UT
RYD in the basis

where the RH neutrino mass matrix is diagonal. YΔ, YD and
expression of η can be obtained from Eqs. (3.5), (3.10)
and (3.13). Masses of RH neutrinos can be expressed as

MR1
¼ v2y2

k
ð1þ αÞ; ð5:3Þ

MR2 ¼
v2y2

k
; ð5:4Þ

MR3
¼
���� v2y2k

ð1 − αÞ
����: ð5:5Þ

Therefore, in the limit when the scalar triplet is much
lighter than the RH neutrinos, the asymmetry parameter in
our model is estimated to be [80]

ϵΔ¼−
M2

Δ
8πv2

α2

ð1−α2Þ

×
kμ ~ω3vSðx1−x01ÞsinαS

½3 ~ω2 v2S
Λ2 ðx21þx102þ2x1x01 cos2αSÞM2

Δþðμ ~ω2ΛÞ2�
:

ð5:6Þ

Here we denote ~ω ¼ vf=Λ, where vf is considered to be the
common vev of all flavons except S-field’s vev
hSi ¼ vSeiαS . The associated phase αS is the only source
of CP-violation here. The total decay width of the triplet Δ
(for Δ → two leptons and Δ → two scalar doublets) is
given by

ΓT ¼ ΓΔ�→LL þ ΓΔ�→HH ð5:7Þ

¼ MΔ

8π

�X
ij

jðYΔÞijj2 þ
jηj2
M2

Δ

�
: ð5:8Þ

Note that there are few parameters in Eq. (5.6), e.g., α, k
which already contributed in determining the mass and
mixing for light neutrinos. Also ϕd is related with αS by
Eq. (4.9). In the previous section, we have found solutions for
(α, β) that satisfy the best fit values of sin2θ13 and r for a
specific choice of δ (the reference values δ ¼ 80° for α < 1
and δ ¼ 40° for α > 1). Then we can find the values of k and
jdj corresponding to that specific δ value. These sets of α, jdj,
k produce the correct order of neutrinomass andmixing aswe
have already seen. Here to discuss the CP-asymmetry
parameter ϵΔ, we therefore choose δ ¼ 80°ð100°; 260°;
280°Þ for α < 1 and δ ¼ 40°ð140°; 220°; 320°Þ for α > 1.
We further define vS=Λ ¼ f ~ω where f serves as a

relative measure of the vevs. With this, the expression of
ϵΔ takes the form

ϵΔ¼−
α2

8πv2ð1−α2Þ

×
kfðx1−x01ÞsinαSðμΛ=M2

ΔÞ
½ð3f2=M2

ΔÞðx21þx021 þ2x1x01 cos2αSÞþðμΛ=M2
ΔÞ2�

;

ð5:9Þ

which is ~ω independent. The expression for jdj as obtained
from Eq. (3.15) can be written as

jdj ¼ 2fv2 ~ω4
μΛ
M2

Δ
ðx1 þ x01Þ cos αS secϕd: ð5:10Þ

Using Eq. (5.9), we obtain the contour plot for ϵΔ ¼ 10−6,
10−7, 10−8 with μ ¼ 1, f ¼ 0.1, x1 ¼ 0.5 and x01 ¼ 1which
are shown in Fig. 13, left panel. The electroweak vev is also
inserted in the expression. In obtaining the plots we variedΛ
above the masses of RH neutrinos [Eqs. (5.3)–(5.5)]. The
variation ofMΔ is also restricted from above by the condition
that wework in regime (I) whereMΔ < MRi¼1;2;3

. Figure 13 is
produced for a specific choice of δ ¼ 80°ð100°; 260°; 280°Þ
which corresponds to the solution (α ¼ 0.16, β ¼ 0.11). The
values of jdj and k corresponding to this set of (α,β) are found
to be 0.0068 and 0.06 eV respectively. Note thatMΔ < MRi
restricts the choice of y involved in Eqs. (5.3)–(5.5).We have
chosen y ¼ 1 for the left panel of Fig. 13. In order to keep
MΔ < MRi < Λ, we find MΔ ≃ 1013–14 GeV would be the
right choice for enough lepton asymmetry can be generated.
As the values of α, k are fixed for generating the plots of
Fig. 13, following Eqs. (5.3)–(5.5) the corresponding RH
neutrino masses are found to be MR1

¼ 5.8 × 1014 GeV,
MR2

¼ 5.01 × 1014 GeV and MR3
¼ 4.22 × 1014 GeV

(with y ¼ 1).

FIG. 12. One-loop diagram which contributes to the generation
of ϵΔ.
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Note that value of ~ω can be concluded from the
expression of jdj in Eq. (5.10), for a choice of Λ=M2

Δ
which produces a ϵΔ contour. This is because correspond-
ing to a specific choice of δ value, jdj is uniquely
determined for the solution point (α, β). Hence with fixed
values of x1, x01, f, μ (with the same values to have the ϵΔ
contour), ~ω can be evaluated from jdj for a chosenΛ=M2

Δ. It
turns out that ~ω has a unique value for a specific ϵΔ for both
panels of Fig. 13. For example, with ϵΔ ¼ 10−7, we need
~ω ¼ 0.2, while to have ϵΔ ¼ 10−6, ~ω is required to be 0.36.
These ~ω values are provided in the first bracket in each

figure beside the ϵΔ value. The reason is the following. For
the specified range of Λ (i.e., MΔ < MRi < Λ), it follows
that5 the first bracketed term in the denominator of Eq. (5.9)
is almost negligible compared to the second term (with the
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FIG. 13. Contours corresponding to different values of jϵΔj in the MΔ − Λ plane with α < 1. The choice of other parameters are
provided inside the figures.
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FIG. 14. Contours corresponding to different values of jϵΔj in the MΔ − Λ plane with α > 1. The choice of other parameters are
provided inside the figures.

5In principle, the operator LHLH contributes in the present
framework at a higher order, with the c1

Λ2 LHLHξ (ϕS) term.
However its contribution is suppressed compared to the type-I
contribution by ∼ ~ω2 ≪ 1, with c1 ∼Oð1Þ. It turns out that with
the parameters specified in our discussion, it is also smaller [with
c1 ∼Oð1Þ] than the triplet contribution.

BISWAJIT KARMAKAR and ARUNANSU SIL PHYSICAL REVIEW D 93, 013006 (2016)

013006-14



choice of x1, x01, f, μ as mentioned before) and hence
effectively

ϵΔ ≃ −
α2

8πv2ð1 − α2Þ kfðx1 − x01Þ sin αS
M2

Δ
μΛ

: ð5:11Þ

Therefore for a typical choice of ϵΔ, Λ=M2
Δ is almost fixed

and the jdj expression in Eq. (5.11) tells that ~ω also is
almost fixed. In the right panel of Fig. 13, we take y ¼ 1,
f ¼ 1 and draw the contours for ϵΔ while x1, x01, μ are fixed
at their previous values considered for generating plots in
the left panel. In this case,MΔ turns out to be 1013–14 GeV.
Similarly, contours for ϵΔ are drawn in Fig. 14 for the

α > 1 case. Correspondingly, we have used solutions of
(α ¼ 1.36, β ¼ 0.53) and the values of k ¼ 0.02 eV and
jdj ¼ 0.01 eV are taken for δ ¼ 40° (also for 140°, 220°,
320°). For the left panel of Fig. 14, μ ¼ 1, y ¼ 1 and f ¼ 1
are considered and we get a somewhat lighter scalar with
mass, MΔ ∼ 1013 GeV. In this case the RH neutrinos are
with masses MR1

¼3.5×1015GeV, MR2
¼ 1.48×1015 GeV

andMR3
¼ 5.4×1014 GeV and hence satisfyingMΔ < MRi.

For the right panel of Fig. 14, y is considered as 0.1 and
hence the RH neutrino masses are smaller compared to the
left panel. However, they are still heavier (here the lightest
RH neutrino mass, MR3

¼ 5.4 × 1012 GeV) than the scalar
triplet,MΔ ∼ 1012 GeV. In Fig. 15 similar contour plots for
ϵΔ are exercised with μ at somewhat lower values, fixed at
μ ¼ 0.1 along with f ¼ 0.1 for both α < 1 (left panel)
and α > 1 (right panel). Corresponding to Fig. 15, the
masses of the RH neutrinos are MR1

¼ 5.8 × 1014 GeV,
MR2

¼ 5.01 × 1014 GeV, MR3
¼4.22×1014GeV for α<1

(left panel) andMR1
¼3.5×1015GeV,MR2

¼1.48×1015GeV,

MR3
¼ 5.4 × 1014 GeV for α > 1 (right panel). So the choice

of y satisfies MΔ < MRi for the range of MΔ considered
in Fig. 15.
So overall we have found that enough ϵΔ can be created

so as to achieve the required lepton asymmetry through
nL
nγ
¼ ϵΔ

nΔ
nγ
D with nΔ ¼ nΔ0

þ nΔþ þ nΔþþ is the total

number density of the triplet and D is the efficiency factor.
After converting it into baryon asymmetry by the sphaleron
process, nB=nγ is given by nB

nγ
≃ −0.03ϵΔD. D depends on

the satisfaction of the out-of-equilibrium condition
(ΓΔ ≤ HjT¼MΔ

). Being SUð2ÞL triplet, it also contains
the gauge interactions. Hence the scattering like ΔΔ →
SM particles can be crucial [87,88]. In [75,76,80,89,90], it
has been argued that even if the triplet mass (MΔ) is much
below 1014 GeV, the triplet leptogenesis mechanism con-
sidered here is not affected much by the gauge mediated
scatterings. The exact estimate of D requires to solve the
Boltzmann equations in detail which is beyond the scope of
the present paper.6 However analysis toward evaluating D
in this sort of framework (where a single triplet is present
and RH neutrinos are in the loop for generating ϵΔ) exits in
[76]. Following [76], we note that with the effective type-II

mass ~mΔð≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðmII†

ν mII
ν Þ

q
Þ ∼ ð0.01–0.02Þ eV, the effi-

ciency D is of the order of 10−3. In estimating7 ~mΔ, we
have considered all the parameters in a range (mentioned
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FIG. 15. Contours corresponding to different values of jϵΔj in the MΔ − Λ plane for α < 1 (left panel) and α > 1 (right panel) with
relatively small μð¼ 0.1Þ. The choice of other parameters are provided inside the figures.

6A detailed study on flavor effects in scalar triplet leptogenesis
can be found in [91].

7It is possible to recast Eq. (5.2) as ϵΔ¼− 1
8π

MΔ
v2

ffiffiffiffiffiffiffiffiffiffiffiffi
BLBH

p TrðmI†
ν mII

ν Þ
~mΔ

with the consideration MΔ < MRk. Here BL and BH are corre-
sponding branching ratio’s of decay of the triplet into two leptons
and two scalar doublets.
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within Figs. 13 and 14) so as to produce ϵΔ of order 10−6 as
shown in Figs. 13 and 14.
Now, using the approximated expression as given by

Eq. (5.11) we can obtain variation of jϵΔj against sin2 θ13 as

given in Fig. 16 for α < 1 and in Fig. 17 with α > 1. In
doing so we have substituted μΛ=M2

Δ from Eq. (5.10) in
Eq. (5.11). Then as discussed in the previous section, using
solutions of α, β for 3σ range of sin2 θ13 with fixed δ value,
we have obtained Figs. 16 and 17 for α < 1 and α > 1
respectively. Here Fig. 16 for δ ¼ 80°ð100°; 260°; 280°Þ
and Fig. 17 with δ ¼ 40°ð140°; 220°; 320°Þ.
It is interesting to note that within our present frame-

work, neutrino oscillation data imposes an upper bound on
the lepton asymmetry as seen from Fig. 16 (Fig. 17)
corresponding to the upper (lower) value of sin2 θ13 within
the 3σ range for α < 1 (α > 1). Although a value of jϵΔj ∼
10−7 as found in Fig. 16 seems to be quite restrictive for
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FIG. 16. Variation of jϵΔj with sin2 θ13 for α < 1. The left panel is with ~ω ¼ 0.2 while the right panel is with ~ω ¼ 0.36.
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FIG. 18. One-loop diagram for decay of RH neutrinos.
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leptogenesis in the present context, a somewhat generous
value of jϵΔj ∼ 10−6 can be obtained in our case by a
change of value of ~ω from 0.2 to ~ω ¼ 0.36 as seen by
comparing the left and the right panel of Fig. 16. Similar
conclusions hold for the α > 1 case also as seen
from Fig. 17.
We now discuss option II, when RH neutrinos are lighter

than MΔ. The one loop diagram involves here the virtual
triplet (Δ) running in the loop as shown in Fig. 18. The
contribution toward the CP-asymmetry parameter gener-
ated from the decay of the lightest neutrino is given by

ϵN1
¼ 3

16πv2
MR1

P
ilIm½ðŶDÞ1iðŶDÞ1lðmII�

ν Þil�P
ijðŶDÞ1ij2

; ð5:12Þ

¼ 3MR1

2

1

16πv2
jdj sinϕd; ð5:13Þ

ϵN2
¼ −3MR2

1

16πv2
jdj sinϕd and

ϵN3
¼ ∓ 3MR3

2

1

16πv2
jdj sinϕd; ð5:14Þ

where we have usedmII
ν from Eq. (3.14). In the above, “þ”

and “−” sign stands for α > 1 and α < 1 cases respectively
in the computation of ϵN3

. The above expressions of ϵNi
are

valid when the scalar triplet is much heavier than the singlet
RH neutrinos. Note that in the present scenario, the RH
neutrino masses are not entirely hierarchical, rather they are
closely placed. Therefore the total baryon asymmetry from
the decay of the three RH neutrinos is to be estimated as
j nBs j ¼ 1.48 × 10−3

P
iϵNi

DNi
, where DNi

is the respective
efficiency factor. It turns out that with the same DNi

for
i ¼ 1, 2, 3,

P
iϵNi

¼ 0 as a result [using MRi
from

Eq. (5.5)] of the specific flavor structure considered.
Therefore it is expected that the lepton asymmetry would
be suppressed in this case. Also in this case MRi

< MΔ,
which can be obtained by considering the smaller value of
the Yukawa coupling y (as to generate the required jdj,
specific values of α, β, k are already chosen). This could

reduce the individual ϵNi
. We conclude this contribution

(ϵN) as a subdominant to ϵΔ.

VI. CONCLUSION

We have considered a flavor symmetric framework for
generating light neutrino masses and mixing through the
type-II seesaw mechanism. In realizing it, we have intro-
duced three SM singlet RH neutrinos, one SUð2ÞL triplet
and few flavon fields. The RH neutrinos contribute to the
type-I term, which guided by the A4 × Z4 × Z3 symmetry
of the model produces a TBM mixing pattern. Then we
have shown that the typical flavor structure resulted from
the model can generate nonzero θ13. In this framework, all
the couplings are considered to be real. The CP symmetry
is violated spontaneously by the complex vev of a single
SM singlet field, while other flavons have real vevs.
Interestingly this particular field is involved only in the
pure type-II term. Hence the triplet contribution not only
generates the θ13, it is also responsible for providing Dirac
CP violating phase δ. Therefore the model has the potential
to predict δ in terms of the parameters involved in neutrino
masses and mixing. We have therefore studied the param-
eter space of the setup considering that the triplet con-
tribution is subdominant or at most comparable to the
type-I term. The model indicates the values of δ to be in the
range 72°–82°, 98°–108°, 252°–262°, 278°–288° for α < 1
and δ ¼ 0°–63°, 117°–180°, 180°–243°, 297°–360° for
α > 1. However δ ¼ 0 (and hence π, 2π) is disfavored
in our scenario as in that case no CP violation would be
present. Also δ ¼ π=2, 3π=2 are excluded here. These
ranges can be tested in future neutrino experiments. We
provide an estimate for the JCP. The sums of the neutrino
masses are also evaluated. It turns out that the scenario
works with normal hierarchical masses of light neutrinos.
We have also studied leptogenesis in this model. As the
type-I contribution to the light neutrino mass does not
involve anyCP violating phase, RH neutrinos decay cannot
contribute to the lepton asymmetry in the conventional way.
We have found the triplet decay with the virtual RH
neutrino in the loop can produce enough lepton asymmetry.
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