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For a field theory with a gravitational dual, following Susskind’s proposal we define holographic
complexity for a subsystem. The holographic complexity is proportional to the volume of a codimension
one time slice in the bulk geometry enclosed by the extremal codimension two hypersurface appearing in
the computation of the holographic entanglement entropy. The proportionally constant, up to a numerical
order of 1 factor is GR where G is the Newton constant and R is the curvature of the space-time. We study
this quantity in certain holographic models. We also explore a possible relation between the defined
quantity and fidelity appearing in quantum information literature.
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I. INTRODUCTION

AdS=CFT correspondence [1] as a concrete realization
of holographic principle [2,3] could provide a framework to
study quantum gravity and black hole physics. On the other
hand theoretical quantum information may also provide a
useful tool to study physics of black holes in gravitational
theories. Therefore it would be interesting or might even be
crucial to understand quantum information holographically,
in the sense that for any quantity in quantum information
one could have a holographic dual description.
Holographic entanglement entropy [4] is an explicit

example in this paradigm which is found useful to study
quantum entanglement that might be eventually used to
understand the nature of the space-time geometry. In quan-
tum information there are other quantities, such as n-partite
information, which might be of interest from holography
point of view. Actually n-partite information has been also
studied holographically in recent years (see e.g. [5]).
We note, however, that even if we could compute

entanglement entropy or in general n-partite information
(directly or holographically), it might not be enough to
fully understand the system under consideration quantum
mechanically. It is because no matter which entanglement
measure is being computed, we may lose some information
of the system simply because the whole system is not a sum
of the subsystems.
Actually it was recently pointed out that in order to

understand properties of black hole horizons, it is also
essential to consider quantum complexity [6]. Suppose our
system is in a given state and we would like to map it to
another state. Then, intuitively, the complexity tells us that
how difficult this task is. In fact, it was conjectured that for
an eternal black hole the complexity is proportional to the
spatial volume of the Einstein-Rosen bridge connecting
two boundaries [7].

Motivated by holographic entanglement entropy and
quantum complexity, in this paper we would like to further
explore a holographic description of complexity within the
context of AdS=CFT correspondence. To proceed, let us
consider a field theory whose holographic dual may be
provided by an Einstein gravity on an asymptotically anti–
de Sitter (AdS) geometry. In this context holographic
entanglement entropy for a subsystem in the dual field
theory can be computed by minimizing the area of a
codimension two hypersurface in the bulk geometry.
More precisely, consider a subsystem A in a time slice in

the boundary theory. There is a minimal codimension two
hypersurface in the bulk, denoted by γðAÞ, whose boundary
coincides with the boundary of the subsystem ∂γ ¼ ∂A.
Then the holographic entanglement entropy is the area of
the minimal surface divided by the Newton constant [4]

SEE ¼ AreaðγÞ
4G

: ð1Þ

Based on this prescription here is an observation. Indeed
the way the holographic entanglement entropy is computed
would naturally define, rather uniquely, another quantity on
the gravity side. Actually the minimal hypersurface con-
sidered above divides a constant time slice into two parts,
whose regularized volumes are fixed as soon as the
minimal hypersurface is determined. Therefore beside its
area, the volume enclosed by the minimal hypersurface
may also define a new quantity.
To be precise, for a subsystem A in the boundary theory,

let us denote by VðγÞ the volume of the part in the bulk
geometry enclosed by the minimal hypersurface appearing
in the computation of entanglement entropy. The corre-
sponding part also contains the subsystem A itself. Then
motivated by [6] one may define holographic complexity as
follows:

CA ¼ VðγÞ
8πRG

; ð2Þ*alishah@ipm.ir
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where R is the radius of the curvature of the space-time, e.g.
AdS radius. The numerical factor 8π is just a conventional
factor. Clearly the definition is ambiguous up to an order of
1 numerical factor. It is also inherently divergent and
should be regularized by a UV cutoff. Note also that by
definition

CA þ CĀ ≤ V ts; ð3Þ

where Ā is the complement of A and V ts is the whole
regularized volume of the time slice. This inequality
saturates for the ground state.1

Here we have implicitly assumed that the background is
static, though there is a natural generalization for time
dependent geometries. Indeed, following the covariant
conjecture of holographic entanglement entropy [8] in
order to define the corresponding holographic complexity
one should compute the volume of a part of the space-time
enclosed by the extremal codimension two hypersurface
appearing in the computation of the covariant holographic
entanglement entropy.2

It is worth noting that in the context of entanglement
renormalization [9] the entanglement entropy may be
estimated by the minimum number of bonds cut along a
curve [10] which could be thought of as Ryu-Takayanagi
(RT) curve. Therefore, based on our definition of (2), in this
context the holographic complexity may be related (or
estimated by) to the number of nods in the area enclosed by
the curve cutting the bonds. Such a relation has also been
suggested in [7]. Using a holographic model, it might be
possible to make this statement more precise [11].
The aim of this paper is to examine the quantity defined

in the equation (2) for a certain holographic model. To be
concrete we will consider a dþ 1 dimensional conformal
field theory (CFT) in its ground state whose dual descrip-
tion is given by a gravity on an AdSdþ2 geometry. By
making use of the gravity dual we will compute the
holographic complexity. It is then natural to look for a
proper quantity in the field theory, or in quantum informa-
tion literature, which could be identified as a holographic
dual of the holographic complexity. Actually we will argue
that fidelity defined in quantum information might provide
such a dual quantity.
The paper is organized as follows. In the next section

using an AdS geometry we will compute holographic

complexity for a subsystem in the form of a sphere in a
strongly coupled CFT. In Sec. III we will compare the
results obtained in Sec. II with fidelity defined for two
states in a CFT. The last section is devoted to discussions.

II. HOLOGRAPHIC COMPUTATIONS

Consider a gravitational theory on an AdSdþ2 geometry
which could provide a holographic dual for a dþ 1
dimensional strongly coupled CFT in its ground state.
Using RT prescription [4] one may compute holographic
entanglement entropy for a sphere with radius l. To do so,
it is more convenient to take the following parametrization
for the AdS geometry:

ds2 ¼ R2

r2
ð−dt2 þ dr2 þ dρ2 þ ρ2dΩ2

d−1Þ: ð4Þ

Then the entangling region is given by t ¼ fixed, ρ ≤ l. To
compute the holographic entanglement entropy one needs
to minimize the area of a codimension two hypersurface in
the bulk which may be parametrized by ρ ¼ fðrÞ. It is easy
to see that the area is minimized for fðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − r2

p
[4].

Following our proposal one needs to evaluate the volume
enclosed by the above minimal area

V ¼ Ωd−1Rdþ1

Z
ρ≤fðrÞ

dρdr
ρd−1

rdþ1

¼ Ωd−1Rdþ1

d

Z
l

ε
dr

ðl2 − r2Þd=2
rdþ1

; ð5Þ

where Ωd−1 is the volume of the unit sphere Sd−1 and ε
should be thought of as a UV cutoff. It is easy to perform
the integration over r to find the holographic complexity.
Indeed for even dimensional CFTs (odd d in our notation)
one arrives at

CA ¼ Ωd−1Rd

8dπG

�
1

d
ld

εd
−

d
2ðd − 2Þ

ld−2

εd−2
þ dðd − 2Þ

8ðd − 4Þ
ld−4

εd−4

þ � � � − ð−1Þ½d2� π
2

�
; ð6Þ

for d ¼ 1; 3; 5; � � �. Here ½y� denotes the integer part of y.
On the other hand for odd dimensional CFTs (even d) one
gets

CA ¼ Ω1R2

16πG

�
l2

2ε2
− log

l
ε
−
1

2

�
;

CA ¼ Ω3R4

32πG

�
l4

4ε4
−
l2

ε2
þ log

l
ε
þ 3

4

�
;

CA ¼ Ω5R6

48πG

�
l6

6ε6
−
3l4

4ε4
þ 3l2

2ε2
− log

l
ε
−
11

12

�
; ð7Þ

1Note that one could also define another quantity in terms of
the volume as BA ¼ MaxfVA;VĀg

8πRG , which for the ground state one
has BA ¼ BĀ. Here VA (VĀ) is the volume in the bulk associated
to the subsystem A (Ā). Of course this is not the quantity we will
consider in this paper. I would like to thank K. Papadodimas for a
comment on this point.

2Using the holographic description of mutual information, one
could obviously generalize the holographic complexity for multi
subsystems.
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for d ¼ 2, 4, 6, respectively. It is interesting to note that for
odd dimensions the holographic complexity contains a
logarithmic divergent term.
It is also worth noting that the most divergent term in the

expression of holographic complexity is proportional to the
volume of the subsystem VðAÞ

CA ¼ Rd

8dπG
VðAÞ
εd

þ � � � ; ð8Þ

leading to a volume law behavior. This should be thought of
as an analogous to the celebrated area law of the entangle-
ment entropy. Moreover for arbitrary d, the holographic
complexity contains a universal term in the sense that it is
independent of the UV cutoff. For odd d the universal term
can be identified with the finite term, while for even d it is
given by the coefficient of the log divergence term

CuniA ¼ ð−1Þ½d2�
( Ωd−1Rd

16dG odd d;

Ωd−1Rd

8dπG even d:
ð9Þ

Note that the universal terms are also independent of the
size of the subsystem l, indicating that it could reflect
certain intrinsic properties of the theory under consider-
ation. In fact it might be thought of as a central charge for
the model.
It is also interesting to compute the holographic com-

plexity for a subsystem in an excited state. Holographically
an excited state may be described by an asymptotically AdS
geometry. To be concrete let us consider an AdS black hole
whose metric, adopted to our purpose, may be written as
follows:

ds2 ¼ R2

r2

�
−hðrÞdt2 þ dr2

hðrÞ þ dρ2 þ ρ2dΩ2
d−1

�
; ð10Þ

where hðrÞ ¼ 1 −mrdþ1 with m being a constant. In this
case, similar to the pure AdS background, the minimal
hypersurface in the bulk geometry (9) associated with a
sphere subsystem may be parametrized by ρ ¼ fðrÞ,
though in the present case the function f does not have
a closed simple form. Nonetheless one can find the profile
of the minimal surface at leading order inm. More precisely
assuming mldþ1 ≪ 1 one finds [12]

fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2t − r2

q �
1þ 2rdþ3

t − rdþ1ðr2t þ r2Þ
2ðdþ 2Þðr2t − r2Þ m

�
þOðm2Þ;

ð11Þ

where the turning point rt at leading order in m is given by

rt ¼ l
�
1 −

mldþ1

dþ 2
þOððmldþ1Þ2Þ

�
: ð12Þ

The volume enclosed by the minimal area is

V ¼ Ωd−1Rdþ1

d

Z
rt

ε
dr

fðrÞd
rdþ1

ffiffiffiffiffiffiffiffiffi
hðrÞp : ð13Þ

The above integral can be evaluated order by order in m
and the result would be a function of the turning point rt.
On the other hand using the expression of the turning point
(12) one can rewrite the holographic complexity as a
function of the radius l at leading order in m. Doing so,
in the present case unlike the entanglement entropy, one
finds that at leading order the holographic complexity
remains uncharged

CBHA ¼ CAdSA þOðm2Þ: ð14Þ
In fact one could go further to evaluate the order ofm2 term
as well. Although the expressions are lengthy, the final
result is simple, given by

ΔCA ¼ CBHA − CAdSA ¼ cd
Ωd−1Rd

8dπG
ðmldþ1Þ2; ð15Þ

where cd is a calculable (non-negative) numerical constant.
For example one has c1 ¼ 0; c2 ¼ 1

128
; � � �.

This result may be compared with that of the entangle-
ment entropy where one finds that the variation of entan-
glement entropy gets corrected at order of mldþ1 [12,13]

ΔSEE ¼ SBHEE − SAdSEE ¼ ~cd
Ωd−1Rd

G
ðmldþ1Þ; ð16Þ

leading to the first law of entanglement [14]. Here ~cd is a
numerical factor (see e.g. [12]). Note that ϵ ¼ mldþ1 is the
expanding parameter which measures how much the
ground state is deformed to the excited state. Taking into
account that in the present case the energy of the excited
state is proportional to E ∼ Rd

G mld, up to numerical factors,
one arrives at

ΔSEE ∼
Rd

G
ϵ ∼ El;

ΔCA ∼ ðd − 1ÞR
d

G
ϵ2 ∼ ðd − 1Þ G

Rd E
2l2; ð17Þ

i.e. while the change of entanglement entropy gets first
order correction with respect to energy, the holographic
complexity receives second order correction. Here we have
explicitly put the factor of d − 1 to stress that for d ¼ 1 the
correction vanishes.
Finally we should note that although we have done

all the computations for a subsystem with spherical
symmetry, it could be done for other subsystem such as
a strip. An advantage to work with an entangling region
with spherical symmetry is that we could present the results
analytically.
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III. FIDELITY AND HOLOGRAPHIC
COMPLEXITY

The complexity as defined in [6] is a quantity to measure
how difficult a task is. Given a quantum system a task
would be a unitary evolution to map a state to another state.
In quantum information there are several quantities which
could provide measures to compare two states. These
include, for example, relative entropy or fidelity (see
[15] for a holographic description of the relative entropy).
The aim of this section is to investigate whether there is any
connection between holographic complexity and fidelity.
To explore this point let us start with a quantum pure

state jΨðλ1Þi in the Hilbert of a quantum system. Where λ is
a tunable parameter of the model. Now consider a neigh-
boring pure state jΨðλ2Þi which may be reached by
changing, infinitesimally, the parameter λ. It is then natural
to pose a question of how close these two states are. To
address this question one could compute fidelity [16] which
in the present case where both states are pure it is given by
the inner product of the two states. For sufficiently small
perturbation δλ ¼ λ2 − λ1 one has

jhΨðλ1ÞjΨðλ2Þij ¼ 1 − Gλδλ
2 þOðδ3Þ; ð18Þ

where Gλ is fidelity susceptibility. This expression, con-
sidered as a metric (see e.g. [17]), could measure the
distance between two neighboring quantum pure states.
Recently a gravity dual for information metric was

proposed in [18] where it was suggested that under certain
approximations the fidelity susceptibility for a dþ 1
dimensional CFT deformed by a marginal perturbation is
holographically given by the time slice with the maximal
volume in the AdS background which ends on the time
slice at the AdS boundary [18].
From our construction it is clear that within the same

approximations if one takes infinite volume limit, the
holographic complexity reduces to the fidelity susceptibil-
ity Gλ as computed in [18]. In particular for a two
dimensional CFT from (6) one has

CA ¼ cl
12πε

−
c
24

; ð19Þ

where c ¼ 3R
2G is the central charge of the two dimensional

CFT. Clearly in the large l limit it reduces to that in [18]
obtained from AdS Janus solution [19]. It is interesting to
note that the finite term in the above expression is propor-
tional to the Casimir energy of the two dimensional CFT
which typically appears whenever we are dealing with a
CFT in a finite volume. Note that the factor of 24 comes
from our particular normalization of CA.
More generally for a dþ 1 dimensional CFT one gets

CAjl→∞ ¼ VRd

8πdGεd
; ð20Þ

where V is the volume of the time slice in the AdS
geometry. This is exactly the fidelity susceptibility obtained
in [18] for an AdS background with a defect brane [20]
considered as a marginal deformation. It is important to
note that to get the right 1

εd
behavior it is crucial to deform

the CFT by an exactly marginal operator [18]. In terms
of the information metric Gλ the inequality (3) reads
CA þ CĀ ≤ Gλ.
Note also that the above comparison works just for the

extremely large l limit. In other words there is, a priori, no
way to understand the subleading divergences in this
picture, nor it is not clear how to compare the finite
temperature case where the temperature dependent term
drops in the large l limit.
Therefore although this comparison seems reasonable, it

is not quite clear to us whether there is a relation between
holographic information metric obtained in [18] and the
holographic complexity studied in this paper (or that
defined in [6]).3 Nonetheless it might be possible to extend
the notation of fidelity susceptibility for a subsystem with a
finite size.
To explore this point better it is useful to write the fidelity

in terms of a density metric. Denoting by ϱðλ1Þ and ϱðλ2Þ
the density matrices associated with two states jΨðλ1Þi
and jΨðλ2Þi respectively, the fidelity can be written as
follows [16]:

F ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱðλ1Þ

p
ϱðλ2Þ

ffiffiffiffiffiffiffiffiffiffiffi
ϱðλ1Þ

pq
; ð21Þ

which for pure states reduces to the inner product of the
states, jhΨðλ1ÞjΨðλ2Þij. On the other hand dealing with a
subsystem, it is natural to consider a reduced density matrix
and therefore define the fidelity for two reduced density
matrices [21]

FA ¼ TrA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱAðλ1Þ

p
ϱAðλ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱAðλ1Þ

pq
; ð22Þ

where ϱAðλ1Þ and ϱAðλ2Þ are the corresponding reduced
density matrices. Now the aim is to expand the reduced
fidelity for a small perturbation to find an expression for
reduced fidelity susceptibility.
To proceed, we will take advantage of having a sub-

system in the shape of a sphere. Actually when we have a
subsystem with spherical symmetry in the ground state of a
CFT, one may conformally map the system to a thermal
system whose temperature is given by the radius of the
sphere; β ¼ 2πl [22]. More precisely, under this conformal
map the reduced density matrix maps to a thermal density
matrix given by [22]

3I would like to thank T. Takayanagi for a comment on this
point.
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ϱthðλÞ ¼
e−2πlHτðλÞ

Trðe−2πlHτðλÞÞ ; ð23Þ

whereHτ is the standard Hamiltonian of the thermal system
which corresponds to the time translation. As a result we
will have to compute fidelity at finite temperature. Fidelity
for a mixed state at finite temperature has been studied in
[23] where the authors have considered two possibilities,
either to change the temperature while keeping the param-
eter λ fixed, or another way around. In our model since we
are dealing with a system with a fixed temperature (fixed l)
the corresponding thermal fidelity should be given as
follows [23]:

Fð2πl; λ1; λ2Þ ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱthðλ1Þ

p
ϱthðλ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱthðλ1Þ

pq
: ð24Þ

Setting λ2 ¼ λ1 þ δλ, for sufficiently small δλ and using the
definition of thermal density matrix in terms of the
Hamiltonian one gets [24]

Fð2πl; λ1; λ2Þ ¼ 1 − 2πlχλ
δλ2

8
þOðδλ3Þ; ð25Þ

where χλ ¼ ∂2
λF th is the fidelity susceptibility given in

terms of the free energy of the thermal system, F th. If
one perturbs the system by an operator with dimension Δ,
then the fidelity susceptibility scales as Rd

ε2Δ−2−d
, where R is a

scale of the model (see e.g. [25]). Thus for a marginal
operator where Δ ¼ dþ 1 one gets χλ ∼ ðR=εÞd. On the
other hand the free energy and therefore susceptibilities
receive finite temperature corrections which have an
expansion in power of T2 (see e.g. [26]). Therefore for
our mixed thermal state, where the temperature is given by
T ¼ 1

2πl, one arrives at

χλ ∼
Rd

εd

�
1þ c2

ε2

l2
þ c4

ε4

l4
þ � � �

�
; ð26Þ

in qualitative agreement with our results in the previous
section.
It is also interesting to use the inverse of the conformal

map to return to the original picture of the reduced density
matrix. In fact doing so, one gets

FA ¼ 1 − ∂2
λF

δλ2

8
þOðδλ3Þ; ð27Þ

where F ðλÞ ¼ TrðϱAðλÞHðλÞÞ − SEEðλÞ with SEE being the
entanglement entropy andHðλÞ is the modular Hamiltonian
by which the reduced density matrix may be given as
follows:

ϱAðλÞ ¼
e−HðλÞ

Trðe−HðλÞÞ : ð28Þ

Note that in terms of the modular Hamiltonian the fidelity
susceptibility χ ¼ ∂2

λF is given by

χ ¼ hH2i − hHi2: ð29Þ
Since the explicit form of the modular Hamiltonian is
known for the subsystem we are considering [14], it would
be interesting to find the fidelity susceptibility directly from
the modular Hamiltonian. We are currently working on
this line.

IV. DISCUSSIONS

In this paper we have defined and studied holographic
complexity for a subsystem in a CFT which has a holo-
graphic description. Motivated by the holographic entan-
glement entropy, the corresponding quantity has been
defined by the volume enclosed by the extremal codimen-
sion two hypersurface appearing in the computation of the
holographic entanglement entropy.
We have also compared the holographic complexity of

the ground state of a CFT deformed by a marginal operator
with the reduced fidelity susceptibility where we have seen
that these two quantities qualitatively behave in a similar
manner. We have also noticed that in large volume limit the
holographic complexity reduces to holographic informa-
tion metric studied in [18].
It is also illustrative to apply the above suggestion for the

case of thermofield doubled CFTs whose gravitation dual
may be provided by an eternal black hole. The entangle-
ment entropy for this model has been studied in [27] where
it was shown that the holographic entanglement entropy is
given by the area of an extremal surface connecting two
boundaries. Following the equation (2), one needs to
compute the volume enclosed by this extremal hypersur-
face. Actually for this system the complexity has been
studied in [7] where it was shown that the complexity is
given by the spatial volume of the Einstein-Rosen bridge
connecting two boundaries.
It is worth mentioning that through the whole of this

paper we have implicitly assumed that the gravitational
theory is given by an Einstein gravity. It is then natural to
ask how to define holographic complexity when we have a
gravitational theory with higher derivative terms. Note that
for this case the thermal entropy and holographic entan-
glement entropy are given by Wald entropy and the
generalized entropy functional (see e.g. [28]), respectively.
Therefore we would expect to have a general expression
(which is not necessary the volume) for the holographic
complexity as well.
Actually to address this question one needs to understand

two issues. First of all one should understand how to
specify the corresponding codimension two hypersurface in
the bulk. And secondly, even when we have fixed a part of
the time slice, what quantity should be evaluated in this
time slice?
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In fact there is a natural proposal for holographic
complexity in a general gravitational theory which is as
follows. Consider the Wald charge appearing as the
integrand in the Wald formula for entropy. Then evaluate
it on a codimension one time slice enclosed by a codi-
mension two hypersurface minimizing the entropy func-
tional appearing in the computation of holographic
entanglement entropy. More explicitly

CA ¼ −
1

R

Z
enclosed volume

∂L
∂Rμνρσ

ϵμνϵρσ; ð30Þ

where ϵμν is binormal to the codimension two hypersurface
enclosing the volume. Here the factor of 1

R comes from a
dimensional analysis and the fact that the only natural
dimensionful parameter of the model is the curvature radius
of the space-time. In fact this factor is the same as the extra
R appearing in Eq. (2). Clearly for Einstein gravity the
above expression reduces to the volume. On the other hand
if one computes the holographic complexity for a sphere in
the most general quadratic actionZ

ddþ2x
ffiffiffi
g

p ðα1RμνρσRμνρσ þ α2RμνRμν þ α3R2Þ; ð31Þ

then it gets corrected by an overall factor given by
4α1 þ 2ðdþ 1Þðα2 þ ðdþ 2Þα3Þ. Interestingly enough it
is exactly the factor which appears in the correction of the
entanglement entropy for a sphere. It is then natural to think
of the universal term of holographic complexity as the
central charge of the model [see also (19)].
Clearly this point deserves more investigations. We

would like to mention that quantum complexity for a
general theory is extensively studied in [29]. Of course it is
not clear to us whether, for a generic case, there is a direct
relation between quantum complexity studied in [29] and
holographic complexity studied in the present paper.
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