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We study implications of the weak gravity conjecture in the AdS/CFT correspondence. Unlike in
Minkowski spacetime, Anti-de Sitter (AdS) spacetime has a physical length scale, so that the conjecture must
be generalized with an additional parameter. We discuss possible generalizations and translate them into the
language of dual conformal field theories (CFTs), which take the form of inequalities involving the dimension
and charge of an operator as well as the current and energy-momentum tensor central charges. We then test
these inequalities against various CFTs to see if they are universally obeyed by all the CFTs. We find that
certain CFTs, such as supersymmetric QCDs, do not satisfy them even in the large N limit. This does not
contradict the conjecture inAdS spacetime because the theories violating them are either unlikely or unclear to
haveweakly coupled gravitational descriptions, but it suggests that theCFTinequalities obtained here bynaive
translations do not apply beyond the regime in which weakly coupled gravitational descriptions are available.
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I. INTRODUCTION

There are many folk theorems that are believed to hold
in quantum gravity. Some are qualitative such as the
nonexistence of continuous global symmetries, suggested
by the physics of black holes as well as perturbative string
theory. Others are more quantitative, which include the
weak gravity conjecture [1]. These more quantitative
theorems, however, generally have weaker foundations
and their precise meanings are obscured beyond the semi-
classical limit. For recent discussions on the weak gravity
conjecture, see e.g. Refs. [2–5].
Since AdS/CFT duality [6,7] provides a nonperturbative

definition of quantum gravity, it is natural to explore how
the folk theorems in quantum gravity may be realized in
this framework. Ideally, a folk theorem can be translated
into a universal statement in CFTs which may be tested, at
least under some circumstances. Alternatively, one might
find that such a universal statement is not possible, in which
case one would learn that the theorem arises as a property
that manifests itself only in a certain (weakly coupled
gravitational) limit of the theory.
Motivated by these considerations, in this article we

study the weak gravity conjecture in AdS/CFT. Since the
original conjecture was formulated in asymptotically
Minkowski spacetime, we first discuss possible general-
izations in AdS spacetime (in Sec. III). Then, we translate
the statements into the language of CFTs, all of which take
the form that there must be an operator whose coupling
to the energy-momentum tensor is smaller than that to
the conserved current (in Sec. IV). Finally, we test these

statements against known CFTs (in Sec. V). We find that
the statements as formulated here do not apply universally
to all the CFTs. On the other hand, all the theories that do
not satisfy them are those that are believed not to have
weakly coupled gravitational descriptions or unclear to
have such descriptions. It is, therefore, still consistent to
postulate that the weak gravity bounds discussed here hold
in asymptotically AdS spacetime. An alternative possibility
is that there are some modified expressions that apply
universally and reduce to the bounds discussed here when
there are weakly coupled gravitational descriptions. This is
discussed in Sec. VI.

II. WEAK GRAVITY CONJECTURE IN
MINKOWSKI SPACETIME

Consider Einstein-Maxwell theory in D-dimensional
(asymptotically-)flat Minkowski spacetime

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R
2κ2D

−
1

4e2
FMNFMN þmatter

�
; ð1Þ

where κ2D ¼ M2−D
Pl is the D-dimensional Newton constant.

The weak gravity conjecture states that a low energy
effective theory of a consistent theory of quantum gravity
must contain a particle with the mass m and charge q
satisfying1

1There are two versions of the conjecture discussed in Ref. [1].
In this paper we focus on the weaker (more conservative) version.
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m2

q2
≤ CDe2κ−2D : ð2Þ

Here, the coefficient CD is determined such that the
inequality is saturated by the extremal Reissner-
Nordström (RN) black hole of mass m and charge q.
[In the normalization of qe we will adopt later,
CD ¼ ðD − 2Þ=ðD − 3Þ.]
An alternative, and essentially equivalent, formulation of

the conjecture is given by the statement that extremal [and
non-Bogomol’nyi-Prasad-Sommerfield (BPS)] RN black
holes must be unstable, at least marginally. A connection
between the two formulations is the following. Imagine that
the weak gravity conjecture were violated. Then the particle
with the smallest m=q has κ2Dm

2 > CDe2q2, so that
gravitational attraction between two such particles is
stronger than the gauge repulsion. This implies that we
can form Kepler bound states composed of any number n of
these particles, which are all absolutely stable and become
extremal in the n → ∞ limit. On the other hand, if there
exists a particle with m <

ffiffiffiffiffiffiffi
CD

p
qe=κD, then extremal RN

black holes can decay, except possibly for “quantum” ones
with charges smaller than q, where we have assumed q≫1.
In this paper we adopt the latter formulation, based on

extremal RN black holes, and discuss how it may be
generalized in AdS spacetime. We also see how the
generalized conjecture may be interpreted in dual CFTs,
using the AdS/CFT correspondence.

III. WEAK GRAVITY CONJECTURE
IN ADS SPACETIME

How can we extend the weak gravity conjecture to
asymptotically AdS spacetime? The answer is not obvious
because of the following facts: (i) AdS spacetime can be
regarded as a finite box, preventing Hawking radiation
from escaping to “infinity”; (ii) Physical properties of black
holes change when their size becomes larger than the AdS
scale (making the n → ∞ limit we took in the previous
section less convincing); (iii) Unlike in Minkowski space-
time, there is no no-hair theorem in AdS spacetime, making
it possible for a black hole to decay by a process that does
not have a direct analogue in Minkowski spacetime.
Given these facts, in this paper we formulate our

conjecture(s) in the following steps.2 We first consider the
requirement that small extremal AdS-RNblack holesmust be
able to decay by a process that is also available inMinkowski
spacetime. In particular, we require that there is a particle
in the AdS theory to which small extremal AdS-RN black
holes can decay. We call this condition the simple kinematic
conjecture, and discuss its formulation in dual CFTs.
We next consider the condition that small extremal AdS-

RN black holes decay by a dynamical process that is

available (only) in AdS spacetime. In particular, we
consider that the decay occurs through superradiant insta-
bility discussed in Refs. [10,11]. We find that this gives a
condition weaker than that of the simple kinematic con-
jecture, and call it the dynamical conjecture. The difference
between the simple kinematic and dynamical conjectures is
purely AdS in nature—both these conjectures reduce to the
Minkowski one in the appropriate large AdS radius limit.
We finally discuss possible additional constraints com-

ing from large extremal AdS-RN black holes. We find that
as long as either of the above conjectures is satisfied, a large
extremal AdS-RN black hole can always have a micro-
scopic “decay” process. Namely, a process in which a
larger black hole is converted into a smaller one and the
light quantum is always kinematically allowed. It is
possible that this is indeed enough for the consistency of
the theory.
On the other hand, in AdS spacetime the above process

does not lead to a real decay of a large black hole because
the finite-box nature of AdS makes a large black hole be in
thermal equilibrium with the ambient space. To make the
large black hole really unstable, we need to have a different
process. In Ref. [12], it was advocated that this may in fact
be the case—large extremal AdS-RN black holes have
instabilities associated with the presence of a supercon-
ducting phase in strongly coupled dual CFTs. While we do
not have a better argument for this conjecture than the
authors of Ref. [12], we also discuss it for completeness.

IV. CFT FORMULATION

We now formulate our conjectures using the language
of dual CFTs. Below, we focus on the case with D ¼ 5, but
the extension to other dimensions is straightforward.
In dual d ¼ 4 CFTs, a conserved current Jμ and the

energy-momentum tensor Tμν have the two-point functions

hJμðxÞJνð0Þi ¼
CV

x6
IμνðxÞ; ð3Þ

hTμνðxÞTρσð0Þi ¼
CT

x8
Iμν;ρσðxÞ; ð4Þ

where IμνðxÞ ¼ δμν − xμxν=x2 and Iμν;ρσðxÞ ¼ ðIμρðxÞ
IνσðxÞ þ IμσðxÞIνρðxÞÞ=2 − δμνδρσ=4. Crudely speaking, CT

counts the number of massless degrees of freedom in the CFT,
while CV counts the number of massless charged degrees of
freedomintheCFT.(WhenthecurrentJμ isgauged,theleading-
order beta function is proportional to CV .) For our explicit
normalization convention for these quantities, seeAppendixA.
The AdS/CFT correspondence states that CV and CT

are related to the kinetic terms of the bulk fields in AdS
spacetime2Related but different conjectures were discussed in Refs. [8,9].
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S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

2κ25

�
Rþ 12

L2

�
−

1

4e2
FMNFMN þ � � �

�
;

ð5Þ

as

CV ¼ 6L
π2

e−2; CT ¼ 40L3

π2
κ−25 ; ð6Þ

where L is the AdS radius. The existence of a bulk field of
massm implies that of a CFToperator of scaling dimension

Δ ¼ LmþOð1Þ; ð7Þ

where Oð1Þ corrections depend on the spin and detailed
couplings, and we will discuss it only when necessary. It is
natural to focus on Δ rather than m, since it corresponds
to the conserved global energy in AdS spacetime. A
(minimally coupled) scalar field in AdS spacetime must
satisfy the Breitenlohner-Freedman bound

m2L2 ≥ −4: ð8Þ

Note that a small negative mass-squared is allowed without
causing an instability.

A. Simple kinematic conjecture

Let us first consider the simple kinematic bound coming
from the requirement that there exists a particle that has a
smaller ratio of the AdS energy Δ to the charge q than that
of small extremal AdS-RN black holes (which have the
horizon sizes smaller than the AdS radius L). As summa-
rized in Appendix B, in AdS spacetime the mass-to-charge
ratio, M=Q, of a small extremal black hole depends on the
size of the black hole

M2

Q2
¼ 3e2

2κ2
hðxÞ; ð9Þ

where hðxÞ ¼ ð3x2=4Þð ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
− 1Þ−2ð2 ffiffiffiffiffiffiffiffiffiffiffi

1þ x
p þ 1Þ−1,

and x ¼ 2Mκ25=L
2 (0 < x≲ 1). Since hðxÞ is a monoton-

ically increasing function, however, requiring the bound for
the smallest black hole, i.e. in the x → 0 limit,3 ensures that
all heavier black holes satisfy the corresponding bounds.

This leads to the condition that in 5D AdS spacetime
there must be a particle whose AdS energy E and charge q
satisfy

E2

q2
≤
3

2
e2κ−25 : ð10Þ

Using Eq. (6) andΔ ¼ LE, we can write this in terms of the
CFT data4

Δ2

q2
≤

9

40

CT

CV
: ð11Þ

This condition, by itself, does not tell us where the state
exists, but it is natural to expect that it must be below the
mass of the lightest 5D AdS-RN black hole.
The mass of the lightest 5D AdS-RN black hole depends

on the size of the extra dimensions beyond 5D AdS we
consider. It is not known how small the extra dimensions
can be made in general, but it is possible that there is a
lower bound on their size. For example, Ref. [1] argues that
the volume of the extra dimensional space X must satisfy
ðVX=l5s Þ ≳ gsðR=lsÞ, where ls and gs are the string length
and coupling, respectively. Assuming that X has only one
length scale, this implies that the state satisfying Eq. (11)
must exist below Δ ∼ C3=5

T .
Since black holes in the x → 0 limit behave similarly to

those in Minkowski spacetime, we expect that the condition
discussed here is reduced to the original Minkowski bound
when we take L → ∞ (with the fixed Planck scale as well
as any other scales). Indeed, using Eqs. (6), (7), we find that
Eq. (11) yields Eq. (2) in the appropriate limit.

B. Dynamical conjecture

In general, the stability condition for a system in AdS
spacetime is different from that in Minkowski spacetime.
In particular, since there is no no-hair theorem in AdS
spacetime, extremal AdS-RN black holes may have
dynamical instabilities involving classical condensates,
which are not available in Minkowski spacetime. Indeed,
it is known that in the presence of a minimally coupled
charged scalar field, extremal AdS-RN black holes may be
unstable against scalar hair formation. For small extremal
AdS-RN black holes, this instability can be interpreted as a
superradiant instability.
According to Refs. [10,11], the superradiant instability

for small extremal black holes occurs when there is a
minimally coupled charged scalar field in the bulk satisfy-
ing the condition (for the rþ=L → 0 limit):

3This limit must be taken such that the size of the black hole
is still larger than the 5D Planck scale. In the CFT language,
if we have a (5D) Planck-sized black hole, Δ ∼ Lκ−2=35 ∼ C1=3

T . In
comparison, we have Δ≳ CT for large black holes. Note that the
5D Planck scale is the largest conceivable cutoff for the 5D
theory, but there can be lower scales such as the Kaluza-Klein or
string scales. In fact, Ref. [1] argues that this must be the case,
based on an analysis of 5D AdS spacetime cut off by a “UV
brane.”

4Whether this inequality is satisfied or not is related to a certain
convexity of the CFT operator spectrum in the large spin limit
[13]. We thank João Penedones for bringing this to our attention.
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L2m2 −
3

2
e2κ−25 L2q2 ≤ −4: ð12Þ

In terms of the CFT data, this leads to

ðΔ − 2Þ2
q2

≤
9

40

CT

CV
; ð13Þ

where Δ is the dimension of the CFT operator correspond-
ing to the charged scalar field in the bulk. Note that the
bound on Δ is shifted by two units compared with that in
Eq. (11). This is because the condensation effect can make
the AdS energy per charge lower than that of the collection
of quanta. In fact, in the range allowed by unitarity, Δ ≥ 1,
the bound in Eq. (13) is weaker than that in Eq. (11).
In the appropriate Minkowski limit (sending L → ∞

while keeping m), Eq. (13) is also reduced to the
Minkowski bound in Eq. (2). This implies that the differ-
ence between the two bounds in Eqs. (11) and (13) is purely
AdS in nature—it is important only for low Δ.
We note that, unlike the corresponding objects in

Minkowski spacetime, extremal AdS-RN black holes do
not saturate the BPS bound (i.e. they cannot be super-
symmetric), except in the limit rþ=L → 0. (See
Appendix B.) The decay processes described above, there-
fore, may occur nonmarginally even in theories with
supersymmetry.

C. Large black holes

In AdS spacetime, we have large extremal AdS-RN
black holes (rþ > L), which do not possess a simple flat
spacetime limit. While the weak gravity bound in
Minkowski spacetime does not directly lead to the con-
clusion that these black holes must be unstable, it is
interesting to see what bounds on CFTs can be obtained
by requiring that they are indeed unstable. In fact, the idea
that the planar extremal AdS-RN black branes (which are
equivalent to AdS-RN black holes in the rþ=L → ∞ limit)
should be unstable was advocated in Ref. [12], in relation
to the presence of a superconducting phase in strongly
coupled CFTs.
The instability condition on an AdS-RN black hole with

respect to the formation of (minimally coupled) scalar hair
condensation depends on the size of the black hole rþ.
While the general condition can be found in Ref. [11], here
we quote only two representative cases. We expect that the
true bound is obtained by the union of the conditions for all
values of rþ ≳ L.
In the limit of a planar extremal AdS-RN black brane

(i.e. rþ=L → ∞), the horizon topology becomes
AdS2 × R3, and the instability appears when the effective
mass of a charged field near the horizon becomes below the
AdS2 Breitenlohner-Freedman bound. In our normaliza-
tion, we find ([12] for D ¼ 4 and [14] for D ¼ 5)

3

2

ðΔ − 1ÞðΔ − 3Þ
q2

≤
9

40

CT

CV
: ð14Þ

On the other hand, for an “intermediate” extremal AdS-RN
black hole (i.e. rþ ∼ L or ΔBH ∼ CT), the condition that it
must be unstable gives (for rþ ¼ L)

4

3

ðΔ − 2Þ2
q2

≤
9

40

CT

CV
: ð15Þ

The shift in Δ is the same as in Eq. (13), but we have an
additional factor of 4=3 in the left-hand side.
The conditions in Eqs. (14), (15) give stronger bounds

than the original weak gravity bound, Eq. (2), in the naive
flat-space limit Δ ≫ 1. This, however, does not mean the
existence of a stronger bound than Eq. (2) in Minkowski
spacetime. In the true Minkowski limit, large black holes
considered here disappear from the spectrum, and so do the
corresponding bounds.

V. TESTING WITH EXAMPLES

In this section, we study if the bounds discussed in the
previous section are indeed satisfied in various known
CFTs. Since our conjectures are about “generic” CFTs that
have weakly coupled gravitational descriptions, and these
theories are not well understood, we need to “test” them
against theories in our hands, which are not necessarily in a
class to which the conjectures must apply. Nevertheless, we
find some interesting lesson—all the theories that we find
do not satisfy the bounds are those that are believed not
to have weakly coupled gravitational descriptions (or
unclear to have such descriptions). In particular, we find
that supersymmetric theories that have weakly coupled
gravitational descriptions (although in 10D) do satisfy the
bounds.

A. Known AdS/CFT with supersymmetry

We first study if our conjectures are satisfied in known
examples of the AdS/CFT correspondence. Since these
theories have weakly coupled gravitational descriptions in
10D, our analysis in the previous section need not a priori
apply. Moreover, their 10D bulk descriptions possess high
supersymmetries that relate gravity withUð1Þ gauge forces,
reducing the significance of the conjectures in some cases.
Nevertheless, we find it nontrivial that all these theories
satisfy the bounds applied naively, especially given that not
all the CFTs satisfy them as we will see in later subsections.
To be specific, we focus on type IIB string theory

compactified on AdS5 × Yp;q with the coprime numbers
p > q, which have weakly coupled supergravity descrip-
tions with the second order bulk actions. In these theories,
the Kaluza-Klein reduction is consistent and most 5D
asymptotic AdS solutions (including black holes) can be
uplifted to 10D solutions [15] despite the intrinsic 10D
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nature of these theories. The compact spaces Yp;q are
nontrivial examples of Sasaki-Einstein five folds, whose
explicit construction can be found in Ref. [16].
The resulting dual CFTs preserve N ¼ 1 superconfor-

mal symmetry in 4D with Uð1ÞR symmetry. The central
charges for the energy-momentum tensor and the R current
can be computed both from the gravitational and field
theory points of view, giving [17]

CT ¼ 10N2

πVp;q
; ð16Þ

CR ¼ N2

πVp;q
; ð17Þ

where N and Vp;q are the number of branes and the volume
of Yp;q, respectively (which wewill not use). These theories
also have Uð1ÞF ×Uð1ÞB × SUð2Þ global symmetries.
As long as we have a scalar chiral operator, the super-
conformal R charge always saturates the simple kinematic
bound in Sec. IVA (and thus satisfies the weaker bound in
Sec. IV B). We are therefore more interested in other global
symmetries.
Let us first consider the Uð1ÞF symmetry. In the theories

under consideration, there are three types of chiral primary
operators with their Uð1ÞF charges given in terms of the R
charges as

qFðO1Þ ¼ y1RðO1Þ; ð18Þ

qFðO2Þ ¼ −y2RðO2Þ; ð19Þ

qFðO3Þ ¼ −
1

2
ðy1 þ y2ÞRðO3Þ; ð20Þ

where

y1 ¼
1

4p

�
2p − 3q −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

q �
; ð21Þ

y2 ¼
1

4p

�
2pþ 3q −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

q �
: ð22Þ

Since these are scalar chiral primary operators, they satisfy
ΔðOiÞ ¼ ð3=2ÞRðOiÞ. The AdS/CFT as well as direct field
theory computations give the central charge for Uð1ÞF as

CF ¼ N2

8πVp;q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

p
p2

�
2p −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

q �
: ð23Þ

Using these formulas, we can calculate the ratios Δ2=q2F for
O1;2;3. We find that the simple kinematic bound

Δ2

q2F
≤

9

40

CT

CF
; ð24Þ

is always satisfied by O1 and O2 (but not necessarily O3).
Note that in order to be consistent with the weak gravity
conjecture, we only need one operator (e.g. O1 here) that
satisfies the bound. The most stringent case is the p ≫ q
limit, but we still have a factor of 3 margin there.
As far as we have checked, in all known examples of the

AdS/CFT correspondence with weakly coupled gravity
descriptions, the simple kinetic bound in Sec. IVA (and
thus also the dynamical bound in Sec. IV B) is satisfied
for the R symmetries and Abelian flavor symmetries. The
further such examples include AdS5 × Lp;q;r compactifi-
cation of type IIB string theory [18]. We find this nontrivial.
As for the baryonic symmetry, the situation is less clear.

In the examples considered, the lightest object charged
under the baryonic symmetry hasΔ ∼ N ∼ C1=2

T , so that it is
heavier than the 5D Planck scale, Δ ∼ Lκ−2=35 ∼ C1=3

T . This,
however, may not mean a violation of the bound if the size
of extra dimensions is necessarily larger than the (effective)
5D Planck scale; see discussions after Eq. (11).
Let us now turn to the bound coming from large black

holes, discussed in Sec. IV C. Recall that this bound is
related, in the limit rþ=L → ∞, to the (in)stability of planer
extremal AdS-RN black branes, since in this limit the
horizon can be approximated by a plane with R3 topology.
In fact, there had been some interests in the stability of
these objects in string compactification [12,14,19]. The
motivation there was mainly applications to condensed
matter physics, in which the instability of these objects
corresponds to the instability of zero temperature CFTs
under the introduction of chemical potentials. In Sec. IV C,
we discussed a possible instability due to a scalar hair
formation. In the dual CFT language, this corresponds to an
instability of the system due to a scalar condensate, leading
to a superfluidity or superconductivity phase transition.
In all the examples studied in Refs. [12,14,19], the

extremal AdS-RN black branes are indeed (marginally)
unstable due to such scalar condensates. References [12,14]
studied (mainly) R-charged extremal AdS-RN black branes
in which R-charged scalar fields, typically dual to chiral
primary operators in the CFTs, trigger the instability. In
Ref. [19], a more intricate situation with baryon charges
was studied and the system was still marginally (un)stable.5

These authors interpreted this observation as a manifesta-
tion of the weak gravity conjecture applied to extremal
AdS-RN branes. In our viewpoint, these examples suggest
that extremal AdS-RN black holes are unstable in the large
black hole limit. Correspondingly, in these dual CFTs, there
exists an operator that (marginally) satisfies the bound such
as Eqs. (14), (15).

5Strictly speaking, what they obtained by their tree-level
computations is that the potential vanishes. It is, however,
conjectured that higher order corrections make the system
unstable. We thank Igor Klebanov for discussions.
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B. Free theories

We now study if our bounds, as formulated in Eqs. (11),
(13), (14), and (15), can be universally valid for all the
CFTs regardless of the existence of a weakly coupled
gravitational picture.
For this purpose, let us consider free field theories. We

find that the naive bound in Eq. (11) cannot be universal.
Take a free complex scalar with a Uð1Þ global symmetry.
This theory has an operator (free complex scalar itself) with
Δ ¼ 1. Normalizing the charge of this scalar to be unity,
q ¼ 1, we find that CT=CV ¼ 8=3. The bound in Eq. (11)
then leads to 1 ≤ 3=5, which is clearly not satisfied. The
existence of other operators does not help, since they all
have jΔ=qj ≥ 1. A similar conclusion is also obtained for a
free fermion.
The situation is different for the dynamical conjecture

in Eq. (13), which gives a weaker bound. This bound is
satisfied by a free scalar and a free fermion due to the shift
in the left-hand side. It is trivially satisfied for a charged
free scalar ϕ because of the existence of the ϕ2 operator,
which has ðΔ; qÞ ¼ ð2; 2Þ. For a free fermion ψ , we have a
ðΔ; qÞ ¼ ð3; 2Þ scalar operator (i.e. ψ2), and since the
theory has CT=CV ¼ 2, the bound is satisfied. Therefore,
at this point, the bound in Eq. (13) still has a chance to be
universal.
Finally, we discuss the bounds in Eqs. (14), (15), arising

from considerations of large black holes. These bounds are
also satisfied by free scalars and fermions. The meaning
of this fact, however, is not clear. In a weakly coupled
gravitational description, we might as well formulate the
conjecture in a form more physical from the CFT point of
view: the zero temperature CFTs must be unstable under
the introduction of a chemical potential. (This issue was
studied in Ref. [20].) In this form, however, we know that a
free fermion system does not satisfy the conjecture, since it
is stable under the introduction of large chemical potentials.
This casts some doubt on adopting Eqs. (14), (15) as the
conditions applying universally beyond the weakly coupled
gravity limit.6

C. Supersymmetric QCDs in the large N limit

Consider supersymmetric QCDs with SUðNcÞ gauge
groups and Nf flavors of quarks (i.e. Nf Q’s and Nf Q̄’s
in the fundamental and antifundamental representations
of SUðNcÞ, respectively) in the conformal window 3

2
Nc ≤

Nf ≤ 3Nc.
7 This theory possesses a Uð1ÞB symmetry,

Qðþ1Þ and Q̄ð−1Þ, in addition to the SUðNfÞ × SUðNfÞ
flavor symmetry and the R-symmetry. Since the theory
has scalar chiral superconformal primary operators, the

R-symmetry automatically satisfies the bounds in Eqs. (11),
(13). We thus focus on the Uð1ÞB symmetry below.
While the theory is strongly coupled away from the

perturbative regime Nf ∼ 3Nc, one can compute the exact
value of the Uð1ÞB-current central charge CB from the
supersymmetric formula

CB ¼ −
9

4π4
Tr½RBB� ¼ 9

4π4
ð2NfNcÞ

Nc

Nf
: ð25Þ

Similarly, the exact value of the energy-momentum tensor
central charge is [21]

CT ¼ 5

2π4

�
7N2

c −
9N4

c

N2
f

�
; ð26Þ

leading to

CT

CB
¼ 5

9

�
7 −

9N2
c

N2
f

�
: ð27Þ

Because of the gauge invariance, the lightest baryonic
charged operator is ϵQQQQ… (with Nc Q’s), which has

qB ¼ Nc; Δ ¼ 3

2
Nc

�
1 −

Nc

Nf

�
: ð28Þ

We thus find that when

Nf

Nc
>

3

11
ð6 −

ffiffiffi
3

p
Þ≃ 2.1; ð29Þ

all the bounds are violated—there is no light (protected,
chiral) state that satisfies any of the bounds. Note that
the shift of Δ in Eq. (13) does not help because the
dimensions of relevant operators are of OðNcÞ ≫ 2. While
it is logically possible that some unprotected operator
satisfies a bound, we find it unlikely. Furthermore, even
this loophole is closed when the theory is close to free,
Nf=Nc ≃ 3.
A reasonable conclusion is that none of the inequalities

in Eqs. (11), (13), (14), (15) applies universally, at least as
are written. This does not contradict the existence of the
corresponding weak gravity bounds in the limit that
theories admit weakly coupled gravity dual descriptions.
Even in the limit of large Nc, the supersymmetric QCDs
considered here are expected not to have weakly coupled
gravitational duals, as suggested e.g. by the presence of
higher spin protected operators and a violation of the
holographic central charge equality c ¼ a. The analysis
here simply says that the bounds as are written cannot be
true universally for all the CFTs.
The weak gravity bounds we present, therefore, must be

corrected when we deviate from weakly coupled Einstein
gravitational descriptions. In the example considered here,

6We thank Sean Hartnoll for discussions on this point.
7We take the Veneziano limit Nc, Nf → ∞ for the purpose of

simplifying the formula.
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we are taking the largeNc limit. Therefore, these corrections
must be understood as higher derivative corrections (such as
higher curvature terms). It was claimed that higher derivative
terms must contrive such that the original weak gravity
conjecture holds without modification [22]. (See also
Ref. [23] for related AdS discussions.) Our example suggests
that this might not be the case in general. Note, however, that
the relation between the two analyses is not strict. For
example, unlike in the Minkowski case, in AdS spacetime
one cannot take a simple large black hole limit tomake higher
derivative terms be small perturbations to the system.

D. CFT dual of extremal AdS/RN branes

Suppose the weak gravity bound from large black holes
holds. Then, any attempt to construct a dual field theory
model for extremal AdS/RN branes must exhibit some
instability, at least if we can take the weakly coupled limit
in the gravity side.
There is, in fact, some attempt to construct field theories

that model extremal AdS/RN branes in the largeN limit with
long range interactions [24]. The claim is that it is possible
to reproduce states with a large degeneracy matching with
the Bekenstein-Hawking entropy of RN black branes. An
important thing for us is that these theories do not seem to
show an instability suggested by the conjecture.
Similarly, in another recent paper [25], a universal

behavior of scaling dimensions, Δ ∼QðD−1Þ=ðD−2Þ, in a
large charge sector of certain (non-large N) ðD − 1Þ-
dimensional CFTs was discussed. The observation relevant
to us is that the scaling behavior of Δ as a function of Q is
precisely that of large AdS-RN black holes in D dimen-
sions. Again, as long as their effective field theory building
on large charge expansion is valid, there does not seem any
instability.
These analyses, however, do not immediately imply that

the weak gravity bound from large black holes is invalid,
since it is not clear if the theories analyzed have weakly
coupled gravitational descriptions. It would be interesting
to study if these constructions can be applied in the regime
in which the weakly coupled gravity limit can surely be
taken. If such a limit can indeed be taken, the weak gravity
conjecture for large black holes would imply that the
effective field theory description discussed in Ref. [25]
must possess an additional instability mode.

VI. DISCUSSION

In this paper, we have discussed possible generalizations
of the weak gravity conjecture to AdS spacetime. We have
considered the conditions arising from both small and large
AdS-RN black holes, and translated them into the language
of dual CFTs. While these conditions need to be satisfied
a priori only in the regime in which weakly coupled
gravitational descriptions are available, we have tested them
against awider range ofCFTs.Wehave found that the bounds

as formulated in this paper are not universally satisfied by all
the CFTs, and yet all the examples that we found do not
satisfy them are theories that are expected not to have, or
unclear to have, weakly coupled gravitational descriptions.
Although the bounds as written here do not apply

universally to all the CFTs, it is possible that a similar,
modified bound exists that is universally valid. If such a
bound exists, it must arise purely from consistency con-
ditions applicable to all the CFTs with a Uð1Þ symmetry.
One candidate for such consistency conditions is the
conformal bootstrap condition for correlation functions,
and indeed there have been some studies on bounds of
current central charges CV using this method (with or
without fixing the dimensions of operators or the energy-
momentum tensor central charge CT) [26].
While these bounds given by the conformal bootstrap are

rigorous within numerical precision, they mostly give lower
bounds on CV , yielding lower bounds on the strength of
gravity. Obtaining an upper bound is difficult because of
the possibility that another (nonconserved) spin one oper-
ator mimics the current operator in question in a single
bootstrap equation. This makes it hard to isolate the
relevant contribution. In this respect, a promising case is
a theory withN ¼ 2 supersymmetry, in which a conserved
current multiplet has an isolated contribution to the boot-
strap equation so that the above problem can be avoided.
This allows us to obtain an upper bound on CV [27],
although current theoretical technology still seems unable
to extract a useful bound in this way for large values of CT ,
which we are interested in.
Another direction would be to study the consistency

of the CFT spectrum on nontrivial geometries such as
S1 × Sd−1. There is a constraint on the spectrum from the
modular invariance in d ¼ 2 cases. There, the information
of the central charges is also encoded in the torus partition
function, and the promising results have been reported in
Ref. [28]. In higher dimensions, however, due to the lack
of manifest modular properties, it is an open question if we
can derive an interesting bound.
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APPENDIX A: NORMALIZATION CONVENTION

Here we present our normalization convention for CV
andCT in Eqs. (3), (4). In the dual gravitational description,
our normalization for CV corresponds to taking that of qe
so that CD ¼ ðD − 2Þ=ðD − 3Þ in Eq. (2).
We focus on D ¼ 5, i.e. 4-dimensional CFTs. For a

single complex scalar with a unit charge, we take its
contribution to CV and CT as (see, e.g., Ref. [29]):

CV ¼ 1

S24
; CT ¼ 8

3

1

S24
; ðA1Þ

where S4 is the volume of the unit four-sphere, S4 ¼ 2π2.
For a single Weyl fermion with a unit (chiral) charge, we
then have

CV ¼ 2
1

S24
; CT ¼ 4

1

S24
: ðA2Þ

The contribution from a free massless vector field is
CT ¼ 16=S24.
The coefficient in the weak gravity bound, e.g. in the

right-hand side of Eq. (11) can be worked out by noticing
that the bound in the Minkowski limit (i.e. 1 ≪ Δ ≪ CT)
becomes identical to the BPS bound for the superconformal
R-current in superconformal field theories, which is satu-
rated by chiral primaries having Δ=qR ¼ 3=2 and
CT=CR ¼ 10.

APPENDIX B: EXTREMAL
ADS-RN BLACK HOLES

In our normalization, the metric of the 5DAdS-RN black
hole is given by

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2
3; ðB1Þ

where

fðrÞ ¼ 1 −
2κ25
3r2

M þ κ25e
2

6r4
Q2 þ r2

L2
; ðB2Þ

and M and Q are the mass and charge of the black hole,
respectively. The gauge potential is given by

At ¼ const −
e2Q
r2

: ðB3Þ

The outer horizon is located at r ¼ rþ, where

2κ25M
3

¼ r2þ þ κ25e
2Q2

6r2þ
þ r4þ
L2

: ðB4Þ

The extremal limit is defined by

Q2 ¼ 6r4þ
e2κ25

�
1þ 2

r2þ
L2

�
; ðB5Þ

so that fðrÞ has a double zero with zero temperature. In this
limit, the mass of the black hole is given by

M ¼ 3r2þ
κ25

�
1þ 3

2

r2þ
L2

�
: ðB6Þ

Note that the BPS condition M2=Q2 ¼ CDe2κ−2D jD¼5 ¼
ð3=2Þe2κ25 is not satisfied except for rþ=L → 0, even
though the black hole has zero temperature.
The transition between small and large black holes

occurs at rþ ∼ L. At that point, M ∼ L2κ−25 , and the
corresponding conformal dimension is Δ ∼ L3κ−25 ∼ CT .
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