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In this work we investigate the entropic information measure in the context of braneworlds with
nonconstant curvature. The braneworld entropic information is studied for gravity modified by the square
of the Ricci scalar, besides the usual Einstein-Hilbert term. We showed that the minimum value of the brane
configurational entropy provides a stricter bound on the parameter that is responsible for the FðRÞ model
differing from the Einstein-Hilbert standard one. Our results are moreover consistent to a negative bulk
cosmological constant.
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I. INTRODUCTION

The standard model of cosmology, named the Λ cold
dark matter model, derived from Einstein’s general rela-
tivity, although yielding great accordance between theory
and observational data [1], has some shortcomings that
question its validity as the truthful model for the origin,
structure, and evolution of the Universe. Among those
shortcomings, one could quote the cosmological constant
(CC), the coincidence and dark matter problems, missing
satellites, the hierarchy problem, etc. (see [2] and refer-
ences therein).
The CC problem is the most critical among those issues,

since it lacks a convincing explanation for the physical
meaning of dark energy, which composes ∼70% of the
Universe and, in principle, is responsible for the cosmic
acceleration predicted by type Ia supernovae observational
data [3,4].
In order to evade some of those shortcomings, it is

common to consider generalized theories of gravity, such as
the FðRÞ theories (check [5,6] for instance), as the starting
point for alternative cosmological models. Such a formal-
ism successfully describes both the inflationary era [7,8]
and the current phase of accelerated expansion our
Universe is undergoing [9,10], the latter with no need of
a CC.
On the other hand, the hierarchy problem, for instance,

may be solved from the approach of braneworld models
[11,12]. This occurs since in such a universe setup gravity
is allowed to propagate through the bulk (a five-
dimensional anti–de Sitter space-time) differently from

the other fundamental forces of nature. This explains the
“weakness” of gravity in the observable Universe.
Note that important outcomes are also raised from the

approach of generalized FðRÞ gravity in braneworld
models. In [13], for instance, the authors obtained
exact solutions for the scalar field, warp factor, and energy
density in a scenario with nonconstant curvature. Analytical
solutions for the equations of motion in the case of constant
curvature were presented in [14]. The modified Einstein
equations were solved for a flat brane in [15]. Furthermore,
cosmological solutions for a fourth-order FðRÞ brane
gravity are presented in [16]. For other works on FðRÞ
branes, check [17–21].
Despite the amount of applications to which FðRÞ brane

models have been applied recently, no efforts have been
accomplished yet in the framework of the so-called con-
figurational entropy (CE) in these scenarios. Gleiser and
Stamatopoulos (GS) first proposed in [22] such a new
physical quantity, which brings additional information about
some parameters of a given model for which the energy
density is localized. It has been shown that the higher the
energy that approximates the actual solution, the higher its
relative CE, which is defined as the absolute difference
between the actual function CE and the trial function CE. As
pointed out in [22], the CE can resolve situations where the
energies of the configurations are degenerate. In this case,
the CE can be used to select the best configuration.
The approach presented in [22] has been used to study

the nonequilibrium dynamics of spontaneous symmetry
breaking [23], obtain the stability bound for compact
objects [24], investigate the emergence of localized objects
during inflationary preheating [25], and, moreover, distin-
guish configurations with energy-degenerate spatial pro-
files [26]. Furthermore, in a recent work [27], solitons,
Lorentz symmetry breaking, supersymmetry, and entropy
were employed using the CE concept. In such a work, the

*rafael.couceiro@ufabc.edu.br
†moraes.phrs@gmail.com
‡dutra@feg.unesp.br
§roldao.rocha@ufabc.edu.br

PHYSICAL REVIEW D 92, 126005 (2015)

1550-7998=2015=92(12)=126005(6) 126005-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.126005
http://dx.doi.org/10.1103/PhysRevD.92.126005
http://dx.doi.org/10.1103/PhysRevD.92.126005
http://dx.doi.org/10.1103/PhysRevD.92.126005


CE for travelling solitons reveals that the best value of the
parameter responsible for breaking the Lorentz symmetry is
1 where the energy density is distributed equally around the
origin. In this way, it was argued that the information-
theoretical measure of travelling solitons in Lorentz sym-
metry violation scenarios can be very important to probe
situations where the parameters responsible for breaking
the symmetries are arbitrary. In this case, the CE was shown
to select the best value of the parameter in the model.
Another interesting work about CE was presented in
Ref. [28], where the CE is responsible for identifying
the critical point in the context of continuous phase
transitions. Finally, in braneworld scenarios [29] it was
shown that CE can be employed to demonstrate a high
organizational degree in the structure of the system
configuration for large values of a parameter of the sine-
Gordon model.
In this work we are interested in answering the following

issues. Can the CE be calculated in FðRÞ brane scenarios?
If it does, how is its profile? Furthermore, what might the
information content in FðRÞ brane models with nonconst-
ant curvature reveal?
We show that the CE provides a stricter bound on the

parameter that is responsible for the FðRÞ model differing
from the standard gravity one.
This paper is organized as follows. In the next section,

we present a brief review of FðRÞ brane models. In
particular, we review the results presented by Bazeia and
collaborators [13]. In Sec. III, we present an overview
regarding CE measure, and we calculate the entropic
information for the FðRÞ brane models. In Sec. IV, we
show a comparison between the results of the information-
entropic measure of FðRÞ brane models and what is
obtained via cosmology. In Sec. V, we present our con-
clusions and final remarks.

II. A BRIEF REVIEW OF FðRÞ BRANE MODELS

In this section a brief overview regarding FðRÞ brane-
world models is presented. Let us start by writing the
action of five-dimensional gravity coupled to a real scalar
field ϕ as

S ¼
Z

d5x
ffiffiffiffiffi
jgj

p �
−
1

4
FðRÞ þ 1

2
gab∇aϕ∇bϕ − VðϕÞ

�
: ð1Þ

Here, 4πGð5Þ ¼ 1 and g ¼ detðgabÞ, with field, space, and
time variables being dimensionless. FðRÞ stands for a
generic function of the Ricci scalar R. Furthermore, the
signature of the metric is adopted as ðþ − − − −Þ. It should
be stressed that VðϕÞ is the potential that describes the
theory.
We study the case where the metric is represented by

ds2 ¼ e2Aημνdxμdxν − dy2; ð2Þ

where y denotes the extra dimension, ημν is the usual
Minkowski metric, and e2A stands for the so-called warp
factor, which depends only on the extra dimension.
Moreover, let us assume that the field ϕ also depends
solely upon y. Hence, from the action (1) the corresponding
equation of motion for the scalar field reads

ϕ00 þ 4A0ϕ0 ¼ Vϕ; ð3Þ

wherein the primes stand for derivatives with respect to the
extra dimension and Vϕ ¼ dV=dϕ.
Here, the energy density ρ is given by

ρ ¼ −e2AL; ð4Þ

with

L ¼ 1

2
gab∇aϕ∇bϕ − VðϕÞ: ð5Þ

Now, after straightforward manipulations, the modified
Einstein equations acquire the form

−
2

3
ϕ02 ¼ −

1

3
A00F0

R þ 1

3
F00
R þ A00FR; ð6Þ

−
1

2
ϕ02 þ VðϕÞ ¼ 2ðA00 þ A02ÞFR − 2A0F0

R −
1

4
F; ð7Þ

with FR ≔ dF=dR. The Ricci scalar is assumed to be an
arbitrary function of the extra dimension, i.e., R ¼ RðyÞ,
yielding from Eq. (6) that

ϕ02 ¼ −
3

2
A00FR þ 1

2
ðA0R0 − R00ÞFRR −

1

2
FRRRR02: ð8Þ

It is worth mentioning that limy→0RðyÞ ¼ 20B2k2, where
limy→∞RðyÞ ¼ 8Bk2 [14]. The potential can be obtained
also from (7):

VðϕÞ ¼ −
1

4
F þ 1

4
FRð8A02 þ 5A00Þ

−
1

4
FRRðA00 þ 7A0R0Þ − 1

4
FRRRR02: ð9Þ

Hence, substituting the equation R ¼ 8A00 þ 20A02 for the
Ricci scalar into Eqs. (8)–(9) yields

ϕ02 ¼ −
3

2
FRA00 þ 4FRRð5A02A00 − 5A002 − 4A0A000−A0000Þ

− 32FRRRð5A0A00 þ A000Þ2; ð10Þ

R. A. C. CORREA et al. PHYSICAL REVIEW D 92, 126005 (2015)

126005-2



VðϕÞ ¼ −
1

4
F þ 1

4
FRð5A00 þ 8A02Þ

−FRRð70A02A00 þ 10A002 þ 24A000A0 þ A0000Þ
−16FRRRð5A0A00 þ A000Þ2: ð11Þ

In order to explicitly find solutions for the above equations,
we can apply the following function to them [14,21],

FðRÞ ¼ Rþ αR2; ð12Þ

where α ∈ R. Hence Eqs. (10)–(11) can be recast as

ϕ02 ¼ −
3

2
A00 − 4αð16A002 þ 5A02A00 þ 2A0000 þ 8A0A000Þ;

VðϕÞ ¼ −
3

4
A00 − 3A02 − 2αð10A04 þ 24A0A000

þ 8A002 þ 2A0000 þ 69A02A00Þ: ð13Þ

Moreover, Eq. (4) can be expressed as

ρðyÞ ¼ e2A
�
3

2
A00 þ 3A02 þ 4αð5A04 þ 16A0A000

37A02A00 þ 12A002 þ 2A0000Þ
�
; ð14Þ

which can be rewritten as

ρðyÞ ¼ −
d
dy

�
e2A

�
3

2
A0 þ 4a

�
13

3
A03 þ 2A000

þ 12A0A00
���

þ 44α

3
A04e2A: ð15Þ

Therefore, once the first term in the above equation does
not contribute to the energy, we can immediately write the
energy of the configurations as

E ¼ 44α

3

Z
dyA04e2A: ð16Þ

Now, in order to work with analytical solutions, the warp
function is adopted to be [30]

AðyÞ ¼ B ln ½sechðkyÞ�; ð17Þ

where B > 0 and k > 0. Hence, the energy density
reads [13]

ρðyÞ ¼ g1sh2BðkyÞ þ g2sh2Bþ2ðkyÞ þ g3sh2Bþ4ðkyÞ; ð18Þ

with sh≡ sech and

g1 ≔ −3B2k2ð20αB2k2 þ 1Þ;

g2 ≔ 3Bk2
�
4αk2ð10B3 þ 37B2 þ 32Bþ 8Þ þ Bþ 1

2

�
;

g3 ≔ −12αk4Bð5B3 þ 37B2 þ 44Bþ 12Þ: ð19Þ

The parameter α is bounded by

32k2ð1þ 4BÞ ≤ 3α−1 ≤ −8k2ð8þ 16Bþ 5B2Þ: ð20Þ

Now, substituting the warp function (17) into (16), we
have the energy E of the brane:

E ¼ 11
ffiffiffi
π

p
αk3B4ΓðBÞ=ΓðBþ 5=2Þ: ð21Þ

Thus, in the next section, we use the approach presented
here to obtain the CE in this context. As we will see, the
information-entropic measure shows a higher organiza-
tional degree in the structure of the system configuration,
and consequently we are able to obtain additional infor-
mation content regarding the system.

III. INFORMATION CONTENT
IN FðRÞ BRANE MODELS

As argued in the introduction, GS have recently pro-
posed a detailed picture of the so-called configurational
entropy for the structure of localized solutions in classical
field theories [22]. Analogously to that development, we
present a CE measure in functional space, from the field
configurations where braneworld models can be studied.
The framework is revisited here and subsequently applied.
There is an intimate link between information and

dynamics, where the entropic measure plays a prominent
role. The entropic measure is well known to quantify the
informational content of physical solutions to the equations
of motion and their approximations, namely, the CE in
functional space [22]. GS proposed that nature optimizes
not solely by extremizing energy through the plethora of
a priori available paths, but also from an informational
perspective.
To start, let us write the following Fourier transform:

F ½ω� ¼ 1ffiffiffiffiffiffi
2π

p
Z

dyρðyÞeiωy: ð22Þ

Now the modal fraction measures the relative weight of
each mode ω and is defined by expression [22,24,26,27]:

fðωÞ ¼ jF ½ω�j2R
dωjF ½ω�j2 : ð23Þ

The CE is inspired by Shannon’s information frame-
work, being defined by SC½f� ¼ −

P
fn lnðfnÞ. It repre-

sents an absolute limit on the best lossless compression of
communication [31]. Hence, the CE at first provided the
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informational lining regarding configurations which are
compatible to constraints of arbitrary physical systems.
When N modes labeled by k carry the same weight, it
follows that fn ¼ 1=N and the discrete CE presents a
maximum value at SC ¼ lnN, accordingly. Alternatively,
if the system is embodied by merely one mode, conse-
quently SC ¼ 0 [22].
Similarly, for arbitrary nonperiodic functions in an open

interval, the continuous CE reads

Sc½f� ¼ −
Z

dωf
∘
ðωÞ ln½f

∘
ðωÞ�; ð24Þ

where f
∘
ðωÞ ≔ fðωÞ=fmaxðωÞ is defined as the normalized

modal fraction, whereas the term fmaxðωÞ stands for the
maximum fraction. Hence, Eq. (22) engenders the modal
fraction to achieve the entropic profile of thick brane
solutions. It is worth remarking that Eq. (22) differs from
that provided by GS. In this framework we include the warp
factor in F ½ω�. Hence, the framework brings further
information concerning a warped geometric scenario.
Here, as an interesting example, we calculate the

entropic information for the FðRÞ model. First, the modal
fraction can be computed. Thus, substituting Eq. (14) into
Eq. (22), we obtain

F ½ω� ¼
X2
m¼1

X3
j¼1

Aj;m × 2G
ðj;mÞ
1 ½γj; μj;m; μj;m þ 1;−1�; ð25Þ

where 2G1½⊗;⊚;⊛;⊕� stands for the well-known hyper-
geometric functions with

μj;m ≔
1

2k
ðγjk − ið−1Þmþ1ωÞ:

Moreover, Aj;m and γj are defined as

Aj;m ≔
1ffiffiffiffiffiffi
2π

p 2γj−1gjðγjkþ ið−1Þmþ1ωÞ
ðω2 þ γ2jk

2Þ ; ð26Þ

γj ≔ 2ðBþ j − 1Þ: ð27Þ

Thus, using Eq. (25), the modal fraction (23) becomes

fðωÞ ¼
P

2
p;m¼1

P
3
q;j¼1 Aj;mA�

q;pð2Gðj;mÞ
1 Þð2Gðp;qÞ

1 Þ�P
2
p;m¼1

P
3
q;j¼1

R
dωAj;mA�

q;pð2Gðj;mÞ
1 Þð2Gðp;qÞ

1 Þ�
:

ð28Þ

In Fig. 1 the modal fraction is depicted for different
values of α. The maximum of the distributions is localized
around the mode ω ¼ 0. By taking into account the modal
fraction in (28) and its maximum contribution, Eq. (24) can
now be solved in order to obtain the brane configurational
entropy (BCE). In this case, due to the high complexity of

integration, Eq. (24) must be integrated numerically. The
results are shown in Fig. 2, where the BCE is plotted as a
function of α. By using a recent approach presented by GS
[22], the BCE is correlated to the energy of the system, in
the sense that the lower (higher) the BCE, the lower
(higher) the energy of the solutions. Moreover, BCE further
provides independent criteria to control the stability of
configurations based upon the informational content of
their profiles [24]. In fact, the BCE maximum represents
the boundary between stability and instability, as the case
analysed in [24] for Q-balls.
In the last section we provide the consequences of the

model studied above and point to forthcoming perspectives.

IV. COMPARISON WITH COSMOLOGY

Cosmological models have been constantly derived from
higher order derivative gravity theories.
For instance, in [21] the authors have used the same

functional form used in the present paper for FðRÞ,

FIG. 1 (color online). Modal fractions for α ¼ 0 (blue), α ¼
−0.01 (red) and α ¼ 0.01 (yellow).

FIG. 2 (color online). Configurational entropy as a function of
the parameter α.
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i.e., FðRÞ ¼ Rþ αR2, to derive analytical solutions for
both the warp factor and scalar field as functions of y. As
solutions for some cosmological parameters, as the bulk
CC, the authors have found Λ5 ¼ 477=ð−6728ακ25Þ, with
κ5 representing the five-dimensional coupling constant.
Moreover, another approach that provides similar results
predicts that Λ5 ¼ −B2k2ð3þ 20αB2k2Þ [13]. Note that in
order to obtain a negative bulk CC, α must be positive,
which is in accordance with what was developed in the
previous section. Note also that the negative bulk CC is
responsible for gravity “leaking” from the brane to the extra
dimension but still remaining concentrated in our observ-
able Universe. On the other hand, a positive bulk CC would
accelerate such a process of leaking (check [32]).
Moreover, in [21], for the brane tension, it was found that

λ ¼ 3κ25=ð784αÞ. Such a relation reinforces the positive
sign of α, since a negative tension brane is gravitationally
unstable by itself (check [19]).
Furthermore, an equation that leads to the singularities of

the effective potential on the brane has been constructed
[Eq. (48) of [21]]. Such an equation has solutions only
when α ≳ 1=ð40B2Þ with B > 2. Note that by taking B ¼
2.5 in the latter relation, one obtains exactly the value of α
derived via the study of the BCE presented above, i.e.,
α ¼ 0.0046. Indeed, the parameter space of ðB; αÞ was
analyzed in [21], with the upper limit of α lying on
α ¼ 0.005.
In [13], the allowed region of α for distinct values of B

was also depicted (check the upper panel of Fig. 2 on such a
reference). The result covers α ¼ 0.0046 with the energy
density having a maximum at y ¼ 0.

V. CONCLUDING REMARKS AND OUTLOOK

The entropic information has been studied in braneworld
models, with emphasis on the FðRÞ model, which has been
chosen for its very physical content and usefulness. The
BCE is moreover exerted to evince a higher organizational
degree in the structure of system configuration. The GS
technique was employed to achieve a correlation involving
the energy of the system and its BCE. Moreover, our
analysis is further based upon the CE SðαÞ, depicted in
Fig. 2. Such configurations for α≃ 0.0046 are most
probably found by the system. In fact, in such range of
α the CE SðαÞ approaches zero. Our results are consistent
to the upper limit α≲ 0.005 in [21], and further impose the
value of α corresponding to the best ordering from the BCE
point of view. Such a value for α was supported by results
obtained purely via FðRÞ brane cosmological models, as it
can be realized in Sec. IV.
Once we have developed the formalism of the BCE and

the entropic information as well, we can further apply a
procedure similar to what has been studied in the previous
sections to other thick braneworld models.
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