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We study the time dependence of the entanglement entropy of disjoint intervals following a global quantum
quench in (1þ 1)-dimensional CFTs at large c with a sparse spectrum. The result agrees with a holographic
calculation but differs from the free field theory answer. In particular, a simple model of free quasiparticle
propagation is not adequate for CFTs with a holographic dual. We elaborate on the entanglement tsunami
proposal of Liu and Suh and show how it can be used to reproduce the holographic answer.
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I. INTRODUCTION

Computation of entanglement entropy in quantum field
theory is a topic of growing interest. Unfortunately, in many
situations it is an extremely difficult quantity to compute.
For strongly coupled systems, one of our best analytical
tools is holography. In a holographic theory, entanglement
entropy is evaluated as the area of an extremal surface in the
dual geometry [1,2]. In some cases, especially in (1þ 1)-
dimensional CFTs, purely field-theoretical arguments can
be given for the form of the entanglement entropy.
We will be using entanglement entropy to study the

approach to equilibrium following a global quantum
quench. Calabrese and Cardy [3,4] famously showed that,
in (1þ 1) dimensions, the entanglement entropy of an
interval increases linearly with time until it saturates at
the thermal value. The field-theoretical results could be
reproduced by a simple intuitive model: the growth and
saturation of the entanglement entropy was effectively
modeled by the free propagation of quasiparticle excita-
tions, which we will review below.
This linear growth in (1þ 1) dimensions was confirmed

in holographic calculations, first numerically [5], and then
analytically [6,7], where it was also extended to higher
dimensions (see also Ref. [8]). In Refs. [9,10], it was
noted that a free-streaming quasiparticle picture was
inadequate to explain the rate of growth beyond the
(1þ 1)-dimensional case, and it was suggested that the
linear growth could be thought of in terms of an “entan-
glement tsunami,” represented by an effective wave front
which propagates into the region under consideration and
entangles interior degrees of freedom with exterior degrees
of freedom. An underlying free-streaming quasiparticle
model for the entanglement tsunami yielded a wave-front
velocity smaller than the velocity calculated holographi-
cally in dimensions higher than (1þ 1). In (1þ 1) dimen-
sions, the holographic calculation and quasiparticle model

both said that the effective wave front moved at the speed of
light. At this level, then, it seemed that quasiparticles were
sufficient to explain the time dependence of the entangle-
ment entropy of a single interval in (1þ 1) dimensions,
even for holographic CFTs which are strongly interacting.
However, when multiple disjoint intervals are consid-

ered, there is a qualitative difference between the holo-
graphic calculation and the quasiparticle model of
Calabrese and Cardy (as noted in Refs. [11,12], and also
present in Ref. [13]): the holographic calculation gives a
nondecreasing entropy, while the quasiparticle model has
both increasing and decreasing behavior as a function of
time. Therefore, already in (1þ 1) dimensions there is a
need to replace the quasiparticle picture. We will elaborate
on the entanglement tsunami proposal, showing how it can
be used as a rule to calculate the entanglement entropy of
one or two intervals in holographic CFTs and provide a
natural upper bound for more than two intervals. We
will make no attempt to derive the entanglement tsunami
from underlying physical excitations, quasiparticle-like or
otherwise.
The remainder of this paper is organized as follows: In

Sec. II we will review the setup for the problem and the
results from both the quasiparticle and holographic view-
points. In Sec. III we will provide a CFT argument for the
holographic result, showing how CFTs with large c and a
sparse spectrum differ from weakly coupled CFTs, and in
particular do not follow the quasiparticle prediction. In
Sec. IV we will propose an entanglement tsunami pre-
scription for the entanglement entropy as a function of time.
Finally, in Sec. V we will describe how these results may be
extended to higher dimensions, where there are still some
unresolved issues, and speculate on possible derivations of
the entanglement tsunami from interactions.

II. SETUP AND REVIEW

A. Quasiparticle model

We are interested in the entanglement entropy of a
subregion A of the real line following a global quench
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in a CFT. Note that A is always the union of a collection of
disjoint intervals. Let Ac denote the complement of A.
Globally, the system is in a pure state jΨi, and the
entanglement entropy for the region A is as given by

S ¼ −TrρA log ρA; with ρA ¼ TrAc jΨihΨj: ð1Þ

jΨi is a time-dependent state, and so S will be time
dependent. A global quench is defined by beginning in
the vacuum state of one theory, and then suddenly changing
the Hamiltonian to that of a different theory. The result is
that the initial state from the point of view of the second
theory (the CFT) is a highly excited state, but it has a simple
entanglement structure. We are interested in the time
dependence of the finite part of the entanglement entropy,
so we will assume that the UV-divergent parts can be
subtracted in a consistent way, whether or not they are
modified by the quench. Henceforth, when we refer to the
entropy, we will mean the finite part of the entropy, or the
vacuum-subtracted entropy. At t ¼ 0, then, we have S ¼ 0.
At late times, the system will effectively thermalize, and

we should find Sðt → ∞Þ ¼ Stherm ¼ seqVolðAÞ. In (1þ 1)
dimensions, VolðAÞ is just the sum of the lengths of the
intervals that make up A, but we are emphasizing that the
thermal entropy is extensive with the volume of the system.
seq is the thermal entropy density, which is a property of the
state. At intermediate times, either a CFT calculation or a
holographic calculation can be used to describe the
transition from zero entropy to the thermal result. We will
discuss both of these calculations below, but for now we
will record the expected answer as predicted by the
quasiparticle model.
Calabrese and Cardy showed [3,4] that, following a

global quench, the time dependence of the entropy can be
effectively modeled by the propagation of entangled
quasiparticles, at least for weakly coupled CFTs. At the
time of the quench, we imagine that a uniform density of
EPR pairs of quasiparticles is produced, where each pair
begins localized at a point and consists of a left-mover and a
right-mover. These quasiparticles move in opposite direc-
tions at the speed of light, and there are no interactions
between pairs. To compute the entanglement entropy of A,
we only have to count the number of unpaired particles in
the region at any given time:

SðtÞ ∝
Z
x0∈A

dx0
Z
x00∈Ac

dx00
Z

∞

−∞
dxfδðx0 − x − tÞ

× δðx00 − xþ tÞ þ δðx0 − xþ tÞδðx00 − x − tÞg: ð2Þ

The constant of proportionality is related to the initial
density of EPR pairs, which determines seq. When A
consists of a single interval of length L, computing the
above integral gives the following time dependence:

SðtÞ ¼ 2seq ×

�
t; t ≤ L

2
;

L
2
; t > L

2
:

ð3Þ

First there is a linear growth phase, and then saturation at
the thermal value.
The behavior is a little more complicated when A

consists of two disjoint intervals. For simplicity, consider
the case where the two intervals have equal lengths L and
are separated by a distance R > L. Then the quasiparticle
model gives (see Fig. 1 for a plot)

SðtÞ ¼ 2seq ×

8>>>>>><
>>>>>>:

2t; t ≤ L
2
;

L; L
2
< t < R

2
;

L − ðt − R
2
Þ; R

2
< t < LþR

2
;

Lþ ðt − L − R
2
Þ; LþR

2
< t < 2LþR

2
;

L; t > 2LþR
2

:

ð4Þ

In particular, this result tells us that the entanglement
entropy is not monotonic in time. We can understand the
drop in the entanglement entropy in the following way:
Consider an EPR pair that started propagating from the
region between the two intervals which make up A at the
time of quench, t ¼ 0 (see Fig. 2). At some time t < R=2,
one of the particles will enter region A while the other
remains in the complement. At that time, and for times
immediately following, this pair contributes one unit to the
entanglement entropy. However, at a later time the second
particle will enter the region A as well, and so there is an
opportunity for both particles to be inside A at the same
time. Then they will no longer contribute to the entangle-
ment entropy. This results in decreased entanglement.

B. Holographic calculation

The time evolution of entanglement entropy after a
global quench can also be studied using the AdS-CFT
correspondence [5–7,9,10]. According to the AdS-CFT

FIG. 1. The entropy production as a function of time for a
region consisting of two disjoint intervals of length L, separated
by a distance R > L. The quasiparticle model (left) shows
decreasing behavior between 2t ¼ R and 2t ¼ Lþ R. The holo-
graphic calculation (right) is monotonically increasing before
saturation at 2t ¼ L, after which the entropy remains constant.
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dictionary, a global quench in the boundary theory is dual
to throwing a spatially homogenous and isotropic shell of
matter into the bulk. This shell will eventually collapse to
form a black hole, which is the gravity dual to a thermal
state in the CFT.
After the quench, the geometry of the bulk is given by

the time-dependent AdS-Vaidya geometry (displayed as a
conformal diagram in Fig. 3). As a result, the area of the
boundary-anchored extremal surfaces, and hence the entan-
glement entropy of the boundary region, will depend on
time. Though we are concerned with a (1þ 1)-dimensional
CFT, and hence a (2þ 1)-dimensional bulk, Liu and Suh
were able to perform the calculation in arbitrary dimensions
and with different types of black holes.
The local equilibrium length is given by the horizon

radius, zh. Consider a spatial interval on the boundary of

length L ≫ zh. For times t ≫ zh, but smaller than L=2, the
extremal surface in the bulk anchored to the end points of
the interval has an area that grows linearly with time.
Geometrically, the linear growth is tied to the existence of a
critical extremal surface behind the black hole horizon. The
extremal surface anchored to the boundary interval goes
behind the horizon and approaches the critical surface. The
length of the portion of the extremal surface lying along the
critical surface increases linearly with t, which leads to a
linear growth in area. At t ≈ L=2, there is a transition (the
details of which do not concern us here), after which the
extremal surface lies outside of the horizon in the black
hole portion of the geometry and is no longer influenced by
the collapsing shell. The symmetries of this geometry
ensure that the area is time independent in this region,
and so this represents thermal saturation of the entropy.
To summarize, the vacuum-subtracted entropy for a

single interval as computed holographically is given by

SðtÞ ¼ 2seq ×

�
t; t ≤ L

2
;

L
2
; t > L

2
;

ð5Þ

where seq is related to the AdS radius LAdS, horizon radius
zh, and Newton’s constant GN by

seq ¼
1

4GN

2LAdS

zh
: ð6Þ

This holographic result for a single interval agrees with the
predictions of the quasiparticle picture (3).
We can deduce the holographic result for an arbitrary

collection of intervals by using the answer for a single
interval. For example, consider the case of a pair of
intervals, ½x1; x2� and ½x3; x4�. We need to find the bulk
extremal surface with minimal area anchored to those
intervals on the boundary. This is called the Hubeny-
Rangamani-Takayanagi (HRT) surface [2]. There are two
candidate HRT surfaces, which we display in Fig. 4. First,
there is the union of the bulk extremal surfaces associated

FIG. 2 (color online). An EPR pair produced at the points
marked in green at the bottom of the figure. When the constituent
particles are at the positions marked in red at the intermediate
time, they contribute to the entanglement entropy. At a later time,
when the particles are at the positions marked in blue, they do not
contribute to the entanglement entropy. This process leads to a
decrease in the entanglement entropy in the quasiparticle picture.

FIG. 3 (color online). Penrose diagram of the time-dependent
geometry following the quench. The red vertical line on the right
is the AdS boundary (z ¼ 0 in the Poincaré patch). The green
diagonal line is the infalling shell, and the blue diagonal line is the
horizon. The dashed curve is a late-time extremal surface, which
asymptotes to the critical surface, indicated by the solid curve.
The linear growth of entanglement entropy comes from the
portion of the extremal surface lying along the critical surface
behind the horizon.

FIG. 4 (color online). Here we display the extremal surfaces for
two intervals. The first candidate HRT surface is the union of the
two smaller arcs (marked in red and labeled A1 and A2). The
second candidate is the union of the two larger arcs (marked in
green and labeled A3 and A4).
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with the two intervals ½x1; x2� and ½x3; x4� individually (A1

and A2 in Fig. 4). But the union of the bulk extremal
surfaces associated with ½x1; x4� and ½x2; x3� is a second
choice (A3 and A4 in Fig. 4). The holographic prescription
is to compute the total area in both cases and take the
minimum value. But in each case the extremal surfaces are
just unions of extremal surfaces associated to intervals, and
the time dependence of those surfaces is given by (5).
Let L1 ¼ x2 − x1, L2 ¼ x4 − x3, and R ¼ x3 − x2.

Suppose L1 < L2. Then the first possible pair of extremal
surfaces (A1 and A2 in Fig. 4) would have a time
dependence given by

Sð1ÞðtÞ ¼ 2seq ×

8>><
>>:

2t; t < L1

2
;

tþ L1

2
; L1

2
< t < L2

2
;

L1þL2

2
; t > L2

2
;

ð7Þ

while the second choice of extremal surfaces (A3 andA4 in
Fig. 4) has

Sð2ÞðtÞ ¼ 2seq ×

8>><
>>:

2t; t < R
2
;

tþ R
2
; R

2
< t < L1þL2þR

2
;

L1þL2þ2R
2

; t > L1þL2þR
2

:

ð8Þ

At each time we take the minimum of Sð1ÞðtÞ and Sð2ÞðtÞ to
get SðtÞ. The interesting case is when R is the smallest
of the three lengths, which means that our two disjoint
intervals are close together. Then we have

SðtÞ ¼ 2seq ×

8>><
>>:

2t; t < R
2
;

tþ R
2
; R

2
< t < L1þL2−R

2
;

L1þL2

2
; t > L1þL2−R

2
:

ð9Þ

In the other two cases, L1 < R < L2 and L1 < L2 < R, we
have

SðtÞ ¼ 2seq ×

8>><
>>:

t; t < L1

2
;

tþ L1

2
; L1

2
< t < L2

2
;

L1þL2

2
; t > L2

2
:

ð10Þ

A plot of the case L1 ¼ L2 < R is in Fig. 1. Unlike the
quasiparticle model, the holographic calculation gives a
nondecreasing answer for the entropy. It is easy to see why
this is the case. For an arbitrary boundary region, each of
the candidate HRT surfaces is the union of a collection of
extremal surfaces anchored on boundary intervals. But each
surface anchored on a boundary interval has a nondecreas-
ing area. Therefore each candidate HRT surface has a
nondecreasing area, and so the true HRT surface has a
nondecreasing area (even though the identity of the true
surface may change as a function of time).

III. LARGE-c CFT CALCULATION

A. Vacuum state entanglement

In this section we review the standard machinery for
calculating the entanglement entropy of disjoint intervals in
a (1þ 1)-dimensional CFT. The idea is to use the replica
trick [4,14,15] to write the entanglement entropy as a limit
of correlation functions of twist operators. The symmetries
of the CFT are used to evaluate those correlation functions,
which lets us find the entropy. In this section, the
correlation functions will be vacuum correlation functions,
and we will review how the large-c, sparse spectrum
assumption reproduces the holographic answer in these
cases. In the following section, we will consider the time-
dependent situation of a global quench, where the relevant
correlation functions are those of a BCFT.
We calculate the entanglement entropy of a region A

using the replica trick, which realizes the entropy as a limit
of traces of powers of the density matrix:

S ¼ lim
n→1

1

1 − n
log TrρnA: ð11Þ

A standard way to compute TrρnA is via a path integral on an
n-sheeted cover of the original surface, with branch points
located at the end points of A. This means that the sheets of
the cover are sewn together along A, which is the path-
integral representation of the matrix multiplication that
defines ρnA. Alternatively, Trρ

n
A can be computed as a certain

correlation function in the theory CFTn, consisting of n
copies of the original CFT. The twist operator T nðxÞ is
defined in the CFTn theory as the operator which imple-
ments the boundary conditions of the n-sheeted cover:
monodromy around the twist operator shifts a local
operator OkðxÞ in the kth copy of the CFT to the same
operatorOkþ1ðxÞ in the kþ 1st copy of the CFT. When the
region A consists of a union of intervals, TrρnA can be
computed (up to a constant of proportionality) as the
correlation function of twist operators inserted at the end
points of the intervals. The twist operator T n is inserted at
all of the left end points, and the antitwist operator T −n
(which sends Ok → Ok−1) is inserted at the right end
points. To actually evaluate these correlation functions,
we make use of the fact that twist operators are primary
with scaling dimension

Δn ¼
c

12n
ðn2 − 1Þ; ð12Þ

where c is the central charge of the CFT.
As an illustration, consider the region A consisting of

two intervals, ½x1; x2� and ½x3; x4�, with xi < xiþ1. Then
TrρnA can be computed as a four-point function of twist
operators. Defining the cross ratio η as
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η ¼ ðx2 − x1Þðx4 − x3Þ
ðx3 − x1Þðx4 − x2Þ

; ð13Þ

noting that η ∈ ½0; 1�, and the new coordinate w as

wðzÞ ¼ ðz − x1Þðx4 − x3Þ
ðx3 − x1Þðx4 − zÞ ; ð14Þ

we can write the required four-point function as

hT nðx1ÞT −nðx2ÞT nðx3ÞT −nðx4Þi

¼
���� η

ðx2 − x1Þðx4 − x3Þ
����
2ΔnhT nð0ÞT −nðηÞT nð1ÞT −nð∞Þi

ð15Þ

¼
���� 1 − η

ðx3 − x2Þðx4 − x1Þ
����
2ΔnhT nð0ÞT −nðηÞT nð1ÞT −nð∞Þi;

ð16Þ

where the correlation function appearing on the right-hand
side is defined via the limit

hT nð0ÞT −nðηÞT nð1ÞT −nð∞Þi
≡ lim

w→∞
jwj2ΔnhT nð0ÞT −nðηÞT nð1ÞT −nðwÞi: ð17Þ

A general four-point function can be evaluated using the
conformal block decomposition:

hO1ð0ÞO2ðηÞO3ð1ÞO4ð∞Þi
¼

X
p

Cp
12C

p
34F ðc; hp; fhig; ηÞF ðc; h̄p; fh̄ig; η̄Þ: ð18Þ

The sum is over all primary operators in the theory, with hp
(h̄p) being the (anti-)holomorphic scaling dimension of the
primary operator. This sum is sometimes called the
s-channel decomposition, but there is also a t-channel
decomposition which features the coefficients Cp

23C
p
14

instead. Evaluating this sum requires an expression for
the conformal blocks F , which there are efficient algo-
rithms for computing, as well as knowledge of the
coefficients Cp

ij, which depend on the theory in question.
We are only interested in correlations of twist operators,
so we can set all of the hi equal to the same value,
hi ¼ h̄i ¼ h ¼ Δn=2. For small η, the Taylor series of the
conformal block gives F ¼ ηhp−2hð1þOðηÞÞ. So at small
η, the dominant term in the sum comes from hp ¼ 0, which
is the identity block [16]. This is the disconnected part of
the four-point function: keeping this term alone reduces it
to a product of two 2-point functions:

hT nðx1ÞT −nðx2ÞT nðx3ÞT −nðx4Þi

≈
���� 1

ðx2 − x1Þðx4 − x3Þ
����
2Δn

¼ hT nðx1ÞT −nðx2ÞihT nðx3ÞT −nðx4Þi: ð19Þ

This is a manifestation of the cluster decomposition prin-
ciple. A nontrivial fact about large-c CFTs with a sparse
spectrum is that this is the dominant contribution even for
finite values of η, all the way to η ¼ 1=2 [16]. This can be
proved by looking at a large-c expansion of the conformal
blocks, where it is seen explicitly that the identity block
makes the largest contribution. Here the assumption of a
sparse spectrum means that the number of operators with
scaling dimensions less that OðcÞ should not scale with c.
For η ≈ 1, the contribution of the identity block in the

t-channel decomposition says

hT nðx1ÞT −nðx2ÞT nðx3ÞT −nðx4Þi

≈
���� 1

ðx3 − x2Þðx4 − x1Þ
����
2Δn

¼ hT nðx3ÞT −nðx2ÞihT nðx4ÞT −nðx1Þi: ð20Þ

Again, at large c with a sparse spectrum, this formula is
expected to hold down to η ¼ 1=2. In the c → ∞ limit there
is a sharp phase transition between the s-channel and
t-channel results at η ¼ 1=2. Finite-c corrections should
smooth this transition, but consideration of those effects is
beyond the scope of this work. Taking the appropriate limit
as n → 1, these results show that the vacuum entanglement
entropy of a pair of intervals at large c is given by

S¼min

�
c
3
log

ðx2−x1Þðx4−x3Þ
ϵ2

;
c
3
log

ðx4−x1Þðx3−x2Þ
ϵ2

�
;

ð21Þ
where ϵ is the UV cutoff scale. This matches the holo-
graphic answer [1].
When there are N intervals, we must compute a 2N-point

function of twist operators. There are many possible
decomposition channels, and the dramatic simplification
at large c with a sparse spectrum is that there is always
some channel in which the identity block provides the
dominant contribution, and in this channel the 2N-point
function decomposes as a product of N two-point func-
tions. Taking the n → 1 limit to extract the entanglement
entropy, this precisely reproduces the Ryu-Takayanagi
formula for arbitrary numbers of intervals [16,17].

B. Global quench

Following the setup of Refs. [4,18,19], the global
quench is effectively modeled as a BCFT calculation.
The correlation functions we need can be computed at
large c with a sparse spectrum using the techniques of
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Ref. [16]. The leading-order holographic result is obtained
by assuming that the only primary operator of scaling
dimension less than OðcÞ is the identity, which contributes
an amount of OðcÞ to the entanglement entropy. This will
also be the dominant contribution when the spectrum is
sparse, since other primary operators will contribute at
Oð1Þ to the entropy. If the number of operators scales with
c, then clearly this will compete with the identity con-
tribution, and the holographic result does not apply.
We wish to compute the four-point function of the twist

operators after a quantum quench, where we take the state to
be jΨðtÞi ¼ UðtÞjΨi. We are interested in times well after
the local equilibration time, and so it turns out to be useful to
model the local equilibration by an initially Euclidean
evolution over a small imaginary time τ0, which can be
thought of as a regulator for the calculation. Introducing the
coordinate z ¼ xþ iτ, the path integral preparing the ket
state at t ¼ τ ¼ 0 is then a path integral over the strip
Imz ∈ ½−τ0; 0Þ, with a boundary wave function at z ¼ −iτ0,
while the bra state can be obtained by integrating over the
strip Imz ∈ ð0; τ0�. To find the correlation functions at real
times t ≫ τ0, we would continue to path-integrate over a
real-time contour before inserting our operators, as in the
Schwinger-Keldysh formalism. Alternatively, we can com-
pute correlation functions in the strip Imz ∈ ½−τ0; τ0� for
arbitrary values of the imaginary time τ and then afterward
analytically continue the answers to real time.
For a collection of N intervals, we need to compute

a 2N-point function of twist operators in the strip
Imz ∈ ½−τ0; τ0�:

Trρn ¼ hT nðx1 þ iτÞT −nðx2 þ iτÞ � � �
× T nðx2N−1 þ iτÞT −nðx2N þ iτÞistrip; ð22Þ

for arbitrary values of the imaginary time τ ∈ ½−τ0; τ0�.
We will take τ to be a real number initially, and then
analytically continue τ → it in the final answer to extract
the real-time postquench correlation functions.
We can conformally transform the strip to the upper half

plane by setting

wðzÞ ¼ exp

�
π

2τ0
ðzþ iτ0Þ

�
: ð23Þ

Then the lines z ¼ ∓iτ0 map to the positive and negative
real w axes, respectively. The z ¼ iτ line maps to argw ¼
π=2þ τ=2τ0. We can write the correlation function as

TrρnA ¼
����
�

π

2τ0

�
2N
e

π
2τ0

P
xi

����
ΔnhT nðw1ÞT −nðw2Þ � � �

× T nðw2N−1ÞT −nðw2NÞiUHP; ð24Þ

where the wi are the images of the xi.

The upper half-plane correlation functions should be
computed in the context of BCFT, which tells us that each
primary operator in the upper half plane can be thought of
as the product of a holomorphic operator at its location
times another holomorphic operator at the conjugate
location (reflected over the real axis) [20,21]. Then the
2N-point function in the upper half plane can be computed
as a 4N-point function in the full plane, which is just a
vacuum correlation function. It is useful to parametrize the
four-point function in terms of ð2N

2
Þ real parameters ηij,

which are invariant cross ratios characterizing the separa-
tion of wi and wj,

ηij ≡ 1 −
wiīwjj̄

wij̄wjī
¼ wijwj̄ ī

wij̄wjī
; ð25Þ

where we have used the notation wij ¼ wi − wj and
wij̄ ¼ wi − w̄j. Note that ηij ∈ ½0; 1�. Also, the UHP 2N-
point function we started with should only depend on
4N − 3 real degrees of freedom (after making use of the
part of the conformal symmetry which maps the real axis
to itself), so the ηij parameters are not all independent. They
are still a useful parametrization, however. When ηij ≈ 1,
the operators at wi and wj are much closer to their
respective image points than to each other. Likewise, at
ηij ≈ 0 the operators at wi and wj are closer to each other
than to their respective images. This behavior helps
determine efficient OPE expansion channels, as we will
see below.
The time dependence of the correlation function is

reflected in the time dependence of the ηij cross ratios,
which in the τ0 → 0 limit are given by

ηijðtÞ ¼ 1 −
2cosh2ðπt=2τ0Þ

coshðπjxi − xjj=2τ0Þ þ coshðπt=τ0Þ

≈
1

1þ exp ½ πτ0 ðt −
jxi−xjj

2
Þ�
: ð26Þ

We see that there are sharp transitions between ηij ≈ 1

and ηij ≈ 0, which occur at half the light-crossing time,
jxi − xjj=2.
At early times (meaning for times less than the length

scales defining the intervals, but still much greater than the
local equilibrium scale τ0), all of the ηij are approximately
equal to 1. Then the upper half-plane 2N-point function
approximately factorizes into 2N full-plane two-point
functions: this is the cluster decomposition limit where
each operator in the upper half plane is paired with its
image point in the lower half plane. Then we find

Trρn ¼
���� π

2τ0
e−πt=2τ0

����
2NΔn

: ð27Þ
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This leads to a linear growth of the entanglement entropy
at a rate which is N times as fast as it would have been for
a single interval (in agreement with the quasiparticle
picture).
At very late times, all of the ηij parameters are very

small. One can check that this corresponds to a different
cluster decomposition limit: now adjacent operators in the
upper half plane are paired with each other, and their image
points are paired with each other. So again we find a
product of 2N full-plane two-point functions. One can
check that in this limit the thermal entropy formula
S ¼ seqVA is produced.
At intermediate times, when some of the ηij are small

and others are approximately equal to 1, we need to be
more careful. This is where the real difference between
holographic and weakly coupled CFTs lies. To simplify the
notation, we will restrict ourselves to N ¼ 1 and N ¼ 2,
though similar arguments hold for all N.
At N ¼ 1 there are no real surprises, but it is useful to go

through it to illustrate some of the key points. There is only
a single interval and a single cross ratio η, and the two-point
function in the upper half plane can be written as a four-
point function in the full plane, which we analyzed above.
The conformal block decomposition of the four-point
function implies that we can write the UHP two-point
function as

hT nðw1ÞT −nðw2ÞiUHP ¼
1

jw11̄w22̄ηj2Δn
FnðηÞ: ð28Þ

Even thoughFnðηÞmay be a very complicated function, the
cluster decomposition limits tell us that Fn → 1 both when
η → 0 and when η → 1, since the prefactor alone repro-
duces both of those limits. This makes the global quench
computation easy to perform when τ0 → 0 (i.e., at times
and distances much greater than the equilibration scale),
since η makes a rapid transition from 0 to 1 in that case.
Then for arbitrary CFTs, the factor FnðηÞ is completely
inconsequential and can be dropped; the result agrees with
both the quasiparticle model and the holographic calcu-
lation. However, we would like to point out that a stronger
statement can be made about large-c CFTs with a sparse
spectrum. In the limit c → ∞, we have an exact formula for
FnðηÞ that comes from demanding that the full-plane four-
point function always factorize in either the s channel or t
channel:

FnðηÞ ¼
�
ηΔn ; η > 1=2;

ð1 − ηÞΔn ; η < 1=2:
ð29Þ

Although this formula did not make a difference for a single
interval, we will now see how things change with multiple
intervals.
With two intervals, N ¼ 2, the relevant correlation

function is a four-point function in the upper half plane.

Following Ref. [22], we will parametrize the four-point
function as

hT nðw1ÞT −nðw2ÞT nðw3ÞT −nðw4ÞiUHP
¼ 1Q

ijwi − w̄ijΔn

�
η13η24

η12η23η14η34

�
Δn

FnðfηijgÞ: ð30Þ

The function Fn (different from above, but with the same
name) is in principle very complicated, but since we only
care about ηij ≈ 1 or ηij ≈ 0, only the values of Fn at those
points are necessary to find the entanglement entropy. So,
as time passes and the ηij transition from 1 to 0, Fn

effectively becomes a piecewise constant function of time.
This translates into an additive term in the entropy, which
is usually argued to be subleading in the τ0 → 0 limit.
However, this reasoning does not apply if the leading
constant term in Fn is zero during any given phase. Then
we have to consider terms which are proportional to some
of the nearly vanishing ηij, which are exponentially small
and in particular time dependent. This is what happens for
theories with a holographic dual. At large c and with a
sparse spectrum, the eight-point function in the full plane,
which is equal to the four-point function we wish to
compute in the upper half plane, always factorizes in some
channel into a product of two-point functions [16]. By
comparing this result to (30), we find that the effective Fn
factors are proportional to the ηij whenever the quasipar-
ticle model [i.e., the prefactor in (30)] says that the entropy
should decrease. In particular, the resulting time depend-
ence of Fn precisely cancels out the time dependence of the
prefactor, meaning that the entropy remains saturated at its
thermal value and does not decrease.

IV. ENTANGLEMENT TSUNAMI

It would be desirable to have a picture of propagating
interacting quasiparticles to replace the free-streaming
quasiparticle picture that seems to work well for free
theories. Such a picture should reproduce the linear growth
rate evident at early times, but avoid decreases in entropy.
We have not been able to derive such a picture in terms of
particles, but a simple heuristic which gives the correct
answer is the “entanglement tsunami” of Refs. [9,10],
which we will elaborate on here. We will begin with a
discussion that applies to one or two disjoint intervals,
where the holographic entropy can be reproduced exactly,
and then explain how to extend the idea to arbitrary
numbers of disjoint intervals where we only have an upper
bound on the entropy.

A. One or two intervals

Our picture of the entanglement tsunami is as a wave
which begins at each of the end points of A at t ¼ 0 and
flows outward in both directions (see Fig. 5). This wave is
not a physical wave representing the propagation of
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particles or energy: it is merely a tool for understanding the
entanglement. In particular, note that the quench state is
homogeneous, while the wave begins at particular locations
picked out by the region A we have chosen. At any time
t > 0, the wave divides the space into two regions: one
which has already been overtaken by the wave, and one
which has yet to be overtaken by the wave. We will call the
former region the “entangled” region, and the latter region
the “unentangled” region. This picture is reminiscent of a
vacuum decay, where at t ¼ 0 we have tunneling events at
each of the end points of A and the entanglement tsunami
wave front is like a bubble wall which converts the
metastable vacuum (the unentangled region) into the true
vacuum (the entangled region). (We should emphasize once
more, though, that there is no physical sense in which the
entanglement tsunami is changing the vacuum; it just has
the same cartoon picture.) If A has more than one end point;
i.e., it is not just a half line, then eventually the entangle-
ment tsunami wave fronts starting from adjacent end points
will collide. For all times after the collision, the entire
interval between those two end points will be part of the
entangled region.
We still have to give a rule for computing the entangle-

ment entropy of the region A given this tsunami picture. Let
the entangled region at time t be denoted by EðtÞ. When A
consists of just one or two intervals, then its entanglement
entropy is

SðtÞ ¼ seq × minðVolðEðtÞ∩AÞ;VolðEðtÞ∩AcÞÞ: ð31Þ

It is not hard to see that this rule agrees with the holo-
graphic prescription for entanglement entropy: for one
interval it is trivial, and for two intervals the two options
essentially coincide with the two possible HRT surfaces.
Also, note that the entropy is symmetric with respect to A
and Ac, which is as it should be for a globally pure state.
Although we have emphasized that the entanglement

tsunami does not represent the propagation of a physical
excitation, there is a suggestive interpretation in which we
do imagine a collection of excited particles living in EðtÞ.
Suppose that a finite density of qubits populates the region
EðtÞ, and that those quibits are in a typical pure state. Then

the entanglement entropy of the qubits in EðtÞ∩A will
follow the Page rule, meaning that their entanglement
entropy will be proportional to either the number of
qubits in EðtÞ∩A or the number in EðtÞ∩Ac, whichever
is smaller [23]. This is precisely the entanglement tsunami
prescription.

B. Multiple intervals

When A consists of more than two intervals, there does
not appear to be a simple rule like (31) which correctly
reproduces the holographic answer. One can attempt the
following simple and natural generalization, which
involves a refinement of our notion of the entangled region
EðtÞ. Instead of a single region, the entangled region is
naturally the union of disjoint intervals:

EðtÞ ¼ ⋃
i
EiðtÞ; ð32Þ

where each EiðtÞ is an interval representing a single
connected component of EðtÞ. The number of EiðtÞ regions
changes with time. For N intervals, EðtÞ has N þ 1
connected components at early times (each being a small
neighborhood around an end point of an interval) and only
a single connected component at late times. A collision of
entanglement tsunami wave fronts indicates that two of the
EiðtÞ are merging, and thereafter will be treated as a single
unit. We illustrate this behavior in Fig. 6.
With this refinement of the entangled region, we have the

following upper bound on the holographic entanglement
entropy1:

SðtÞ ≤ seq
X
i

minðVolðEiðtÞ∩AÞ;VolðEiðtÞ∩AcÞÞ: ð33Þ

In other words, we have a separate minimization problem
for each connected component of the entangled region, and
at the end we add them all up. This rule is numerically the

FIG. 5 (color online). The quench for two intervals of length L
separated by a distance R when L > R. On the left, we show the
entanglement tsunami wave front as a function of time (jagged
black line). The region A is marked as red. The intervals between
the disconnected components of A are marked as blue. On the
right we show the entanglement entropy as a function of time.

FIG. 6 (color online). Entanglement tsunami for many inter-
vals. The region A is marked as red. The intervals between the
disconnected components of A are marked as blue. Note that at
time t1, EðtÞ consists of four disconnected components (orange
solid lines) separated by the entanglement tsunami wave front
(jagged black line). But at time t2, the first pair and second pair
have merged, leaving two disconnected regions. At time t3, there
is only a single connected region.

1We would like to thank Mark Mezei for providing us with an
example of three disjoint intervals where equality fails.
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same as (31) for one or two intervals, and so there is
equality. For more than two intervals, (33) corresponds to
the area of one of the candidate HRT surfaces, though not
necessarily the minimal one. Therefore it represents only an
upper bound on the entropy. Forthcoming work from
Casini, Liu, and Mezei discusses such an upper bound
beyond the context of holography [24]. We also note that
(33) is manifestly symmetric with respect to A and Ac, even
though each minimization subproblem is free to choose to
use region A or Ac independently for its contribution to the
entropy.
There is also still a suggestive qubit picture for the right-

hand side of (33). Now instead of one collection of qubits in
EðtÞ, there is an independent collection of qubits in each of
the EiðtÞ, and the total qubit state is a product state over the
connected components. We can imagine that the qubits are
somehow being emitted at the end points of the intervals,
and when two qubit chains come into contact (i.e., when
two wave fronts merge), the two qubit chains undergo a
very rapid mixing and end up in a typical pure state of the
composite system. Even though this picture only provides
an upper bound on the entropy, it could be that a similar
picture is accurate for the real system.

V. DISCUSSION

A. Summary

We have seen that for a (1þ 1)-dimensional CFT in the
limit of large c, with a sparse spectrum of operators, the
time dependence for the entanglement entropy of multiple
intervals is not correctly captured by the quasiparticle
model of Refs. [3,4]. The correct answer, which is correctly
reproduced holographically, is nondecreasing with time,
whereas the quasiparticle model features crops in the
entropy. A heuristic model which gives the correct time
evolution is provided by the entanglement tsunami, a
picture originally introduced in Refs. [9,10] which we
have developed into a rule for calculating the entanglement.
There are many unanswered questions about this model,
which we will now discuss.

B. Higher dimensions

In higher dimensions, as in (1þ 1) dimensions, the
entanglement entropy for disjoint regions in the quasipar-
ticle picture will experience periods of decrease that are not
present in the holographic calculation. The entanglement
tsunami picture will solve this problem, since, like the
holographic calculation, it does not allow for decreases in
the entropy. There remains the puzzle of the velocity of the

entanglement tsunami wave front. In (1þ 1) dimensions, it
seems natural to say that the wave front moves at the speed
of light. But this would cause the entanglement to grow
more quickly than the holographic calculation indicates. At
the same time, a wave front made up of quasiparticles
traveling in random directions moves too slowly. A field-
theoretic derivation of the entanglement tsunami velocity
would do much to clarify the picture.

C. Interacting quasiparticles?

A natural guess for fixing up the quasiparticle picture is
simply to add interactions. Instead of free-streaming, the
particles would bump into each other and generate multi-
partite entanglement. It is not clear whether a simple picture
of this type can accurately reproduce the holographic
calculation, but the entanglement tsunami prescription
may provide a useful starting point. In the entanglement
tsunami, it appears as though there are clouds of particles
being emitted by the end points of the region A (or, in
higher dimensions, by the boundary of A), beginning at the
quench time. The unphysical aspect of this model is that it
is not homogeneous: the boundaries of A are not preferred
locations in the state, so it does not make sense to say that
they are the sources of particles. Instead, the state should
describe a finite density of interacting particles everywhere
at once. However, since we are asking about the entangle-
ment entropy of A, there may be a sense in which the
particles in a neighborhood of the boundary of A are the
only ones that matter. Then the entanglement tsunami
would represent a growing sphere of influence, picking
out the parts of the homogenous matter distribution which
determine the entanglement. We leave an exploration of
this possibility to future work.
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