PHYSICAL REVIEW D 92, 126001 (2015)

Three-point correlation functions from pulsating strings in AdSs x $°
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One of the most important problems in any conformal field theory is the calculation of three-point
functions of primary operators. In this paper we provide explicit examples of correlators with two scalar
operators in N = 4 super-Yang-Mills theory at large N, corresponding to pulsating semiclassical strings in
AdSs x §3, and an operator with small quantum numbers at strong coupling.
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I. INTRODUCTION

An extremely active area of research in theoretical high-
energy physics in recent years has been the correspondence
between gauge and string theories. Following the impressive
conjecture made by Maldacena [ 1] that type IIB string theory
on AdSs x $° is dual to N = 4 super-Yang-Mills (SYM)
theory with a large number of colors, an explicit realization
of the AdS/CFT correspondence was provided in [2]. Many
convincing results have been achieved thereafter, paving the
way for the subject to become an indispensable tool in
probing such diverse areas as the dynamics of quark-gluon
plasma and high-temperature superconductivity.

A key feature of the duality is the connection between
planar correlation functions of conformal primary operators
in the gauge theory and correlators of corresponding vertex
operators of closed strings with % world sheet topology.
Recently, some progress was accomplished in the study of
three- and four-point functions with two and three “heavy”
vertex operators with large quantum numbers at strong
coupling. The remaining operators were chosen to be various
“light” states (with quantum numbers and dimensions of

order one). It was shown that the large \/Z behavior of such
correlators is fixed by a semiclassical string trajectory
governed by the heavy operator insertions, and with sources
provided by the vertex operators of light states.

Initially this approach was utilized in the calculation of
two-point functions of heavy operators in [3-7]. More
recently the above procedure was extended to certain three-
point correlators in [8—10]. A method based on heavy
vertex operators was proposed in [11]. Further develop-
ments in the computation of correlators with two string
states are presented in [12]. The main goal of these
investigations is elucidation of the structure of three-point
functions of three semiclassical operators [13].
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Recently the authors of [14] noticed that the precise
formulation of such correlators should involve string
energy eigenstates, which necessitates a slight modification
of previous methods. Namely, one should average over all
string solutions with a given energy. Although this alter-
ation does not invalidate the results for the correlation
functions obtained so far, it turns out that in the case of
pulsating strings [15,16] we need to apply strictly the
procedure described in [14], in order to get the correct
answer. In the present paper we consider the three-point
correlation function of two heavy operators, corresponding
to a pulsating string solution in $* C S [17], and one
Bogomol'nyi-Prasad-Sommerfield (BPS) (dilaton or chiral
primary) operator. We provide some limiting cases and
recover known results.

The paper is organized in the following way. In Sec. II
we present a brief review of the procedure for calculating
semiclassically two- and three-point correlation functions
via vertex operators. In Sec. III we proceed with the
derivation of three-point correlators for a particular pulsat-
ing string solution, taking either the dilaton or the chiral
primary operator (CPO) as the light operator. We study a
number of limiting cases of the correlation functions. We
conclude with a short discussion on the results.

II. CORRELATION FUNCTIONS WITH TWO
HEAVY OPERATORS

We commence with a review of the method for obtaining
two-point correlation functions. Their computation in the
leading semiclassical approximation is closely related to
utilizing an adequate classical string solution [5-8]. If
Vi (€1) and Vi, (&) are the two heavy vertex operators,
which are inserted at the &£; and &, points on the string
world sheet, the corresponding two-point correlator in the
limit of large ’t Hooft coupling is obtained from the
stationary point of the action

(Vin(&)Vim(&)) ~e™, (1)
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where [ is the action of the AdSs x S° string sigma model
in the usual embedding coordinates

1= Z/—j/ d*E(0Y y,0YM + 09X, 0X, + fermions),

YuY" =Yi+ Y} + Y3+ Y;+Y;—-Y:=—-R%
Xka = 1 (2)

Throughout the paper we apply conformal gauge and use a
world sheet with Euclidean signature. Correspondingly, the
two-dimensional derivatives are 0 = 9, + i0,, 0 = 0,—
i0,. We also work with the Euclidean continuation of
AdSs. The embedding, global, and Poincaré coordinates of
AdS5 assume the following form

Ys +iY, = Rcoshpe’,
Y, +iY, = Rsinhpcos @e'?1,

. R
Ys + iY, = Rsinhpsin@ei:, v, =~
Z
1 2 2 m
Y4:2_Z(_R + 27 + x"x,,),
1
Ys =5 (R +2 +a"x,). (3)

where x"x,, = x3 +x;x;(m =0,1,2,3;i = 1,2,3).

The stationary solution satisfies the string equations of
motion with singular sources given by Vg(&) and
Vs (&,). Utilizing the conformal symmetry of the theory,
we are able to map the &-plane world sheet to a Euclidean
cylinder with (z, ) coordinates

-4
E-&

Under this Schwarz-Christoffel mapping the singular sol-
ution on the £ plane goes to a smooth solution on the
cylinder [5-7] with ¢ = k7, where « is a constant parameter
proportional to the string energy. The quantum numbers of
the latter solution coincide with the quantum numbers of
the heavy vertex operators, guaranteeing that there is no
loss of information.

The considerations above can also be applied to a
physical integrated vertex operator dependent on a point
x on the boundary of the Poincaré patch of AdSs [3,5]

e‘r+io‘

4)

Va(x) = / PEV (&),
Vi(Ex) = Viz(@).x(0) = x. X&) (5)

Again the semiclassical two-point correlation function
(Vi1 (x1)Vaa(x,)) is determined by the classical action
evaluated on the stationary point solution. Applying the
conformal mapping (4), we obtain the corresponding
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smooth spinning string solution in terms of Poincaré
coordinates, with the boundary conditions’

T—>—00=>27—0, X = Xy,

T — 400 =z -0, X = X5 (6)

In a similar fashion we can calculate three-point corre-
lation functions with two heavy and one light operators
[9,11]

G5(X1,X2.X3) = (V1 (X1) V2 (%2) V. (X3))
:/DXW*/Q%ﬂ%m%wm
X (E13%1) V(625 %) Vi (E3:%3), (7)

where [ DXM is the integral over (Y. X;). We note that
the contribution of the light operator in the stationary point
equations can be neglected, so that one can use the same
classical string solution as in the case of the two-point
function of two heavy operators. In this way we obtain [11]

G3(X1,X2,X3) )

el [ ey 60 - X))
where (z(&), x(€), Xi(¢)) denote the respective string
solution with the same quantum numbers as the heavy
vertex operators, and with the boundary conditions in (6)
mapped to the & plane by the Schwarz-Christoffel mapping
(4). Using the two-dimensional conformal invariance, we
can also provide (8) in terms of the cylinder ( f d*c =
=, dr [37 do),

G; (X1, %3, X3)

G (x1,%x2)
N Y 5
= lim — dry | d°oV(z(tr — 19, 0),
T—o -T/2
x(7 = 79, 0) — X3, X4 (1, 6) ) e~ (A= A1)Km0 (9)

where, as was detailed in [14], we have averaged over all
solutions in AdS (parametrized by different values of ;)
with the same energy in order to obtain the needed energy
eigenstate. We have denoted the conformal dimension of
Vi with A and that of Vi, with A,.

The global conformal SO(2,4) symmetry fixes the
spacetime dependence of two- and three-point functions®

C1204, a,

A4,
X12

Gy (X1, %) = X = [x; = x|, (10)

J

'We refer to [7] for details.
‘We assume that V, = Vj;;, which is valid for the correlation
functions we are interested in.
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C123

T A TA A, A tA-A, A tA-A, (11)
X12 X3 X3

G;(x1, X3, X3)

where A; are the dimensions of corresponding operators.
Choosing properly x;, we can suppress the dependence on
X;; in (9), and apply the prescription given in (9) to compute
the structure constant Cip; [9,11]. Having in mind that
A; & A, and setting C;, = 1 in (10), we determine that

— Cirs <£> RGE

%[ [%2 |

G5(x1. X, X3 = 0)
Gy (x1,%,)

For further details we refer the interested reader to
[6,7,11,14].

III. THREE-POINT CORRELATORS FROM
PULSATING STRINGS IN R x §3

In the present section we use the approach outlined
above for the calculation of specific three-point correlators.
Without loss of generality we can fix x; = (=1,0,0,0) and
X, = (1,0,0,0), from which follows that R =1. We
consider a particular pulsating string in R x $* C AdSs x
§> [17] as the string solution that describes the semi-
classical trajectory. Using that the string energy is E = /A
and the spin is J = VAT, the solution is defined as

a_
t=«xr, p=0, cos0(r)—a_sn(ima+r,—),
at

@ ()= —LH [am <ima+1,a—_> ,a%,a—_] » @r=mo,
a

ma. + a
. 2
K =—0+ ,jz + m?cos?6,
n-6
) _K2+m2i\/(K2—m2)2+4m2J2
@ = — , (13)

where we have assumed the notation of [18] for Jacobi
elliptic functions, and (6, @1, ¢, ) parametrize S C S with
metric

ds3; = dO” + sin*0dg] + cos*0dgs. (14)

In Poincaré coordinates (3) the AdS part of the solution is

B 1
cosh[k(z —79)]’
X = tanh[k(z — 7p)], x; =0, (15)

where we have left the integration constant 7, unfixed,
because we will need to average our expressions over
it. It can be shown that the above solution possesses
the right asymptotic behavior, namely, lim, . ,z=0
and lim,_ ,xo = £1. Note that by taking J =0 we
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would get the original solution for pulsating strings in
R x $? [15].

We will proceed with the study of the corresponding
three-point correlation functions with two heavy and one
light operators. We will examine two choices for the light
operator—dilaton or superconformal primary scalar (chiral
primary operator).

A. Dilaton as light operator

It is known that the ten-dimensional dilaton field is
decoupled from the metric in the Einstein frame [19].
Consequently, it is described by a free massless ten-
dimensional Laplace equation in AdSs x S°. The respec-
tive string vertex operator is proportional to the world
sheet Lagrangian (j >0 is the S° momentum of the
dilaton)

Vi(x = 0) = VI (0) = 2Ky XI[(Ox,,0x™ + 020z) /22

+ 90X 0X, + fermions],

Z A A
<27> LX=X i, = e,
-+ x"x,

(16)

Ka

where ¢, is a constant determined by the normalization of
the dilaton. The conformal dimension of the dilaton is
A =4+ j to the leading order in the large 't Hooft
coupling expansion. The corresponding operator in the

dual gauge theory is proportional to tr(F2,Z/ + - --). For

j =01t is given by the SYM Lagrangian.

From (9), (12), and (16) we obtain that

C123 = 4CA llm dTo/ dr
-T/2
/2
X / doK \Ue™ BBk, (17)
0

U = X/[(9x,,0x™ + 020z) /2> + 0X,0X,],

CA:2_A6'A. (18)

The authors of [11] calculated the normalization constant of
the dilaton ¢, as

Vi
87N

Ca = Capj = G+DU+2)G+3). (19)

Evaluating U on the pulsating string solution (13), we get

. 2 .o
U= <K2 +6 - J 9+ m cos20> 9 = 2m2cos20e'io1
sin?

(20)

so that the expression in (17) takes the following form

126001-3



D. ARNAUDOYV and R. C. RASHKOV
. 1 T/2 o
C123 = 8mch lim — dl'o/ dr
T-c T -T/2 —c0

/2 Coszeei.f(/’l_jjfo
X o -
/) cosh**/[k( — 74)]

Arm? 0 dr e—jjr’ li 1
= ————— lim —,
ea /_oo * cosh™ (xt') Toeo T
T/2 o
N / drcos?@elin=iJT, (21)
-1/2

where in the integral over 7, we have changed the
integration variable to 7 = 7y — 7. The first integral in
the second line could be computed in terms of hyper-
geometric functions. The second integral, however, is
difficult to calculate analytically due to the presence of
an elliptic integral of the third kind in the exponent.
Therefore, we will study the structure constant for particu-
lar values of the parameters. First, we note that when m = 0
we get the three-point function with light operator corre-
sponding to a pointlike string. In this case, as has been
explained in [17], the equation of motion for @ leads to
6 = r/2. Thus, it follows that k = 7, which means that
E = J as expected for a BPS solution. It can be easily seen
that if we set m = 0 in (21), we will indeed get a vanishing
structure constant. Next, let us concentrate on the most
significant case of j = 0. It can be obtained that

lozm?> 1 [T/
C123 :T?CATII_)HSO?/_ dTCOSzg

T/2
167 m2a® R Y 5. a_
=— cplim — dwsn” | ima t,— |.
3 K T—-oo T =) a,

(22)

The resulting integral is divergent. In order to obtain a finite
result, we analytically continue m — —im. We will reverse
this operation in the end. We get for the integral

167 m2a> 1 [7/2 a
Ciy3 =————cx lim = drsn? ,—
123 3 K CAT1—>noloT -T/2 i <ma+7 a+>
167 m*a? 1 ma., T/2 _
__orma cp lim / ; dxsn2<x,a—).
3 x T=coma T | _pa,1)2 ay
(23)

The integrand is a periodic function over the real numbers,
so we need to integrate over only one period in order to
obtain the average

167 m*a? 1 K@) a
Cin = ———— — oy — Y d 2 ,—
123 3 % CA 2K(Z—;) /-K(Z—> xsn <x a+)
167 m*a*> % E(%)
=———r>5 |1 —52~ ). 24
3k A2 ( K(Z—;)) (24)
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We go back to real m, and finally get

167 m2a? E(55)
Cipy =——cp| 1 =2 ). 25
123 p CA( K(a)> (25)

ay

As pointed out in [10,14], the structure constant should be
proportional to the derivative of the string energy with
respect to the square root of the 't Hooft coupling

162 OE(J, 1y, m,/2)

Cin=—Fcr——F=, (26)
3 VA

where [, is the action variable corresponding to 6.

Differentiating the expression for /, obtained in [17], we
are able to confirm the validity of (26).

Let us describe two particular cases of (25). If we

consider the case of large energy, namely large

k = E/\/A, we will get for the structure constant

8 8T%—m? 4Am*J?* - m*
Cion — 2 1— _ )
123773 ’“A( 8«2 T

(27)

Another interesting case is when 7 < k. Then we get

Cirs ~ ?KCA <1 - Eg) . (28)

B. Superconformal primary scalar as light operator

The string state that corresponds to the chiral primary
operator results from the trace of the graviton in the S°
section of the geometry [19,20]. As detailed in [9,21],
the lgosonic part of the respective operator takes the
form’

Vi (x=0) = VQS.CPO) (0) = e KA X/ [(Ox,,0x™ — 020z) /2>

— 0X,0X,],

A
Z .
Kya=l———"7—]| , X=X, +1iX, =7,
A <Z2 —I—x’”xm) ! 2

(29)

where ¢, is again given by the normalization. The
corresponding operator in the dual gauge theory is the
Berenstein-Maldacena-Nastase (BMN) operator trZ/
with dimension A = j.

‘We neglect derivative terms that will not influence our
calculations since we have made the restriction x; = —X,.
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We can infer from (9), (12), and (29) that

C123 = 4CA llm TO / dr
-7/2

PHYSICAL REVIEW D 92, 126001 (2015)

V7

= jzv(j+1)\ﬁ~ (32)

3
>
o>

The expression for U evaluated on the solution (13)

% /”/2 doK yUe Bt (30) leads to
0
, - - _ 2 2
U = X/[(x,,0x™ — 020z7) /2> — 0X,0X,). _ K J ij
et s o V= 2<Cosh2 [x(r = 70)] sin?0 m200529> e 33
cp = 278¢,, (31) 0
where the constant ¢, of the superconformal scalar is [9,21] so that (30) gives
|
T/2 YR NAD K2 j2
Ci3 = 4rcpli d - —m?cos’ @ |. 34
123 = HCA M o 12 TO/ COSh/ [k(z —10)] <cosh2[1<(r—ro)} sing " ) (34)

Analogous to the dilaton case the integrals cannot be calculated analytically, so we take [ to be small and consider only the
first term in the resulting series. We also change the variable 7, to 7 = 7, — 7 and get

o dr 1 (72
Crps =4 LA T
123 #Ca /_oo cosh’/ (k7’) T T /-T/z

o dr
A2
= s /_oo cosh/*2(k7)

:4ﬂ3/2KCAFF[%]A <E(%)_ 1 >

LAAKE T

Unfortunately, the structure constant in the present case
cannot be related to the derivative of the string energy with
respect to the 't Hooft coupling as in (26), so we are not able
to check the obtained result in this way.

IV. CONCLUSION

The AdS/CFT correspondence has been through signifi-
cant development in recent years. One of the active areas of
research has been the holographic calculation of three-point
functions at strong coupling. The correlation functions of
three massive string states escape full comprehension so far
[13], but we have uncovered almost all features of
correlators containing two heavy and one light states in
the semiclassical approximation [9-12].

In the present paper we calculated three-point correlation
functions of two string and one supergravity states from

&2
! (cosh2 (x7')

) dr’ 1 T/2
dam2c, / — " lim-— / drcos?0

- mzcos2¢9>

—co COSh (k7') T=0 T J_75

(35)

|
string theory in AdSs x S at strong coupling, applying the
approach of [11] for computing correlators using the
respective vertex operators. We examined the method,
which had been correctly modified by the authors of
[14], for the occasion of a particular pulsating string
solution, providing some limiting cases.

One of the possible future directions for exploration is
the connection of our work to recent developments in the
calculation of correlation functions with heavy states based
on integrability methods in AV = 4 SYM [22].
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