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We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection
with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the
delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and
quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity
of amplitudes. We study the classical initial value problem for the partial integro-differential equations of
motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions
due to the presence of future, as well as past, “delays,” a manifestation of acausality. In the quantum theory
we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly
exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal
effects are confined within the compact support regions. We briefly discuss the extension to other types of
fields and prospects of such theories.
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I. INTRODUCTION

Nonlocal field theories is a subject with long, albeit
spotty, history. Despite the success of perturbative renorm-
alization in QED in the late forties, the idea that local
interactions may be a low energy approximation to funda-
mental underlying nonlocality of interactions continued
to be prominent in the fifties and the subject of many
investigations [1]. Subsequently, nonlocality was consid-
ered mostly in the context of axiomatic field theory [2]. In
more recent years it has attracted renewed interest in
connection with nonlocal theories of gravity [3–9], as well
as the nonlocality of string field theory vertices and various
nonlocal models in cosmology and other areas, see [10] and
the extensive reference list therein.
Despite this past work, basic issues have been left in a

murky state. It has long been realized, more or less
explicitly, that UV finiteness (or at least superrenormaliz-
ability in the presence of gauge interactions) can be
achieved by nonlocal interactions. At the same time,
unitarity can be preserved, at least perturbatively, provided
appropriate analyticity conditions can be imposed on the
nonlocal interactions. Causality, however, is a central
concern whose investigation has remained woefully inad-
equate, both in the classical theory, where it is inexorably
connected with the mathematically proper formulation
of the initial value problem (IVP), and in the quantum
theory.
In this paper we address some of these issues in a more

systematic way in the simplest field theory context, i.e.
scalar field theories. (We comment on the extension to other
theories in the last section.) To set the stage we recall that
often, both in the older and more recent literature, nonlocal

interactions have been introduced through the insertion of
an operator of the general form

F̂ ðx − yÞ ¼ efðl2∂2xÞδ4ðx − yÞ; ð1:1Þ

where, in many instances, fðzÞ is an entire analytic
function. Note that ef is then itself an entire function
possessing no zeroes anywhere in the complex plane. In
many cases fðzÞ is simply a polynomial. For example,
fðzÞ ¼ z gives a generic form of vertices in string field
theory, i.e., vertices of the form ½ðexpl2∂2

xÞϕðxÞ�3 for, say,
the dilaton field ϕ. For Euclidean signature this has the
explicit integral kernel form

el
2∂2xϕðxÞ ¼

� ffiffiffi
π

p
l

�
d Z

ddye−
1

4l2
ðx−yÞ2ϕðyÞ

≡
Z

ddyFðx − yÞϕðyÞ: ð1:2Þ

For Minkowski signature, though, the operator on the
left-hand side (l.h.s.) of (1.2) is ill-defined (except, of
course, at d ¼ 1). This is the reason why only even power
polynomials for f were considered in the older nonlocal
QFT literature,1 e.g.,

e−ðl2∂2xÞ2ϕðxÞ ¼
Z

d4yFðx − yÞϕðyÞ; ð1:3Þ

where

*tomboulis@physics.ucla.edu

1In the fifties (1.3) was referred to as the “decay” choice as
opposed to the “oscillatory” choice involving rational functions.
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Fðx − yÞ ¼
� ffiffiffi

π
p
l

�
4
Z

d4ke−ðl2k2Þ2e−ik·ðx−yÞ: ð1:4Þ

This ensures well-defined kernels on the whole real axis
−∞ < k2 < ∞. In the more recent literature more elaborate
choices of well-defined kernels employing transcendental
entire functions fðzÞ have been considered [3,4].
For our purposes, there are three features of the nonlocal

interactions introduced via (1.1) that are of interest. First, f
is such that the Fourier transform kernel F̂ðk2Þ is an entire
analytic function of k2. This is connected to unitarity in
amplitudes. The second feature is that the resulting inter-
actions, even though they may exhibit rapid or exponential
falloff, are truly nonlocal: any two spacetime points x and y
are connected by the interaction integral kernels Fðx − yÞ.
This should generally imply some acausal behavior.
Finally, since entire functions possess convergent series

expansions2 about any point, (1.1) may be viewed as
representing “infinite order” derivative interactions.
Attempts have been made historically to deal with such
interactions in some sort of Hamiltonian formalism with
infinite order derivatives. This has apparently been the
source of a great deal of confusion in the literature. Typical
of more recent work is the scheme in [11] for (1þ 0)-
dimensional, i.e., mechanics systems in which an infinite
order Lagrangian is truncated to order n as a member of a
hierarchy n ∈ N → ∞. In cases where all higher derivatives
appear only in the interaction terms, this allows “reduction”
of the IVP to that of a second order system. It singles out a
subset of solutions that encompass perturbation theory.
This scheme was employed also in [12] in the investigation
of the problems associated with the nonlocality of string
field theory vertices (cf. (1.2)). As pointed out in [12],
however, such schemes completely obscure the existence of
the (infinite) class of all other solutions exhibiting the very
features one might expect associated with the nonlocal
nature of the vertices such as lack of uniqueness of the IVP.
As a general remark in this connection, finite order higher
(time) derivative interactions can indeed be cast into the
Hamiltonian formalism by the so-called Ostrogradsky
construction. In mathematical terms this construction
amounts to the usual procedure of rewriting a Nth order
ordinary differential equation (ODE) as a system of N
coupled first-order ODEs. One cannot, though, view a
transcendental differential operator (pseudo- or fractional-
differential operator) as, e.g., (1.1), as the N ¼ ∞ “limit” of
this procedure.
In this paper we consider a wide class of nonlocal

theories, which includes many of the form (1.1) as a special
subclass. Nonlocal interactions in this wide class are

always defined by specifying the appropriate integral
kernel. This includes the cases where a kernel may be
associated with a transcendental differential operator
[cf. (1.3)–(1.4) above]. Definition by the appropriate
integral kernel allows a consistent, mathematically well-
defined formulation in all cases. By the same token we
eschew any series expansions in derivatives, always dealing
with the complete nonlocal kernel Fðx − yÞ. As implied by
the preceding remarks, such expansions are generally a bad
idea. They derail a proper posing of the classical IVP by
replacing the integro-differential equations of motion by
truncated higher derivative differential equations. In the
quantum theory, e.g., for various models in [3–10], uni-
tarity can appear to be grossly violated in inappropriate
truncations at any finite order by the presence of increas-
ingly large numbers of ghosts, which, however, are not
there in the untruncated theory where the correct analyticity
properties are regained. In fact, as we will see, kernels that
do not even possess expansions about every point in
x-space may comprise the physically most promising class
of nonlocal interactions.
An outline of the paper is as follows. In the following

Sec. II we introduce interactions of delocalized fields. We
then impose conditions on the allowed interactions.
Specifically, we give, a precise statement of the conditions
imposed on the Fourier transform of allowed kernels
dictated by the requirements of good UV behavior and
unitarity. Among kernels that may accommodate these
requirements we distinguish between strictly nonlocal and
quasilocal (bounded support) kernels.
In Sec. III we make a detailed study of the classical IVP

using modern fixed-point (contraction) techniques. We first
review the case of local interactions where the equations of
motion are partial differential equations (PDE) giving a
proof of existence and uniqueness of solutions. We then
turn to the case of nonlocal interactions specified by a given
integral kernel. Varying the action now gives equations of
motion that are nonlinear partial integro-differential equa-
tions. This makes the contrast to the local case rather
transparent. Because of the “spilling-over” effect of the
nonlocal kernel one now has an IVP problem with both past
and future “delays.” Differential and integro-differential/
functional equations with past delays have been extensively
studied in recent decades in a vast literature.3 They imply
specification of functions as data over a time interval (as
opposed to just data on an initial time hypersurface). In our
case some specification must also be made in the future
delay region. We then prove (local) existence of solutions
but uniqueness is totally lost. Physics, however, is more
than mathematics. If the delay regions are of strictly finite

2One should keep in mind, however, that any truncation of
such an expansion, at any order, will fail to reproduce all the
remarkable properties of transcendental entire functions, such as,
for example, those embodied in Piccard’s theorems.

3This is because “real-world” modeling of many systems in
physics, engineering, biology, economics and other fields very
often must include dependence on past history (memory). See,
e.g., [13].
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extent of length order l, they will be masked by the
uncertainties in any measurements probing physics at
scales larger than l. This situation arises with quasilocal
interactions. A proper formulation of such considerations,
however, can only be given in the full quantum context
(Sec. V). In a similar vein, if one assumes quasilocal
interactions being asymptotically turned off (free fields in
asymptotic regions) and such that a global existence result
can be established, uniqueness is recovered as shown at the
end of Sec. III.4

In Sec. IV we digress to briefly consider a Hamiltonian
formulation. The standard procedure gives a positive
“Hamiltonian.” Due to the nonlocal interactions, however,
it necessarily contains implicit functional dependence on a
range of times and thus fails to reproduce the correct
equations of motion. The standard Hamiltonian procedure
is simply inapplicable in the case of general nonlocal
interactions. In the case of quasilocal (compact support)
interactions, however, the results on the IVP in the previous
section suggest that one should instead define a smeared
Hamiltonian appropriate to time-blocking over intervals
longer than scale l. This procedure then indeed correctly
reproduces the equations of motion for evolution over such
time blocks.
In Sec. V we finally turn to the quantum theory.

Quantization is straightforwardly performed via the path
integral. The rapid decay properties required of allowed
kernels, as given in Sec. II, ensure that any graph is UV
finite for wide classes of scalar potentials. Similarly their
analyticity properties, chosen so as not to modify the
Cutkosky cutting rules, ensure that, at least graph by
graph, unitarity is preserved. The main concern, however,
is causality. We examine the structure of the effective
propagator that results from incorporating the nonlocal
kernels it joins to at vertices. This allows us to obtain a
generalization of the Bogoliubov causality condition
equation in the presence of nonlocal interactions. This
generalized equation shows how the Bogoliubov condition
for local interactions gets modified by nonlocality.
Remarkably, for interaction kernels of compact support
of size l, it implies that all non causal effects remain
confined within scale l.
Some further discussion of these results and their

extension and application to other theories is given in
the concluding Sec. VI. The reader who is not interested in
the details of the classical IVP can go directly from Sec. II
to Sec. V. We work mostly in spacetime dimension d ¼ 4
but most considerations extend to general d straightfor-
wardly. We use standard physics and mathematical nota-
tions; in particular, C½U� denotes the space of continuous

functions on domain U, and jj · jjL∞ denotes the L∞

norm: jjϕjjL∞ðUÞ ¼ ess supx∈UjϕðxÞj.

II. DELOCALIZED FIELD INTERACTIONS

We consider the simplest case of a real scalar field, the
extension to complex or multicomponent scalar fields being
immediate. The Lagrangian with local nonderivative inter-
actions is then given by

L ¼ 1

2
∂μϕ∂μϕ −

1

2
m2ϕ2 − VðϕÞ ð2:1Þ

with VðϕÞ ≥ 0. General polynomial interactions are
allowed in VðϕÞ, though it suffices keep in mind the
standard ϕ4 example. Nonpolynomial interactions, in
particular interactions ensuring Lipschitz-continuity of V,
e.g., ϕ4e−κϕ

2

, are also of interest, as we will see, in
connection with the classical IVP.
The class of nonlocal versions of (2.1) considered in this

paper is obtained by replacing the field ϕ in VðϕÞ by a
delocalized field ~ϕ, i.e.

L ¼ 1

2
∂μϕ∂μϕ −

1

2
m2ϕ2 − Vð ~ϕÞ: ð2:2Þ

The delocalized field ~ϕ is defined by

~ϕðxÞ ¼
Z

d4yFðx − yÞϕðyÞ ð2:3Þ

in terms of a delocalization kernel Fðx − yÞ. The local
action (2.1) is then obtained as the special case
Fðx − yÞ ¼ δ4ðx − yÞ. The kernel F is a scalar density
function defined on the spacetime manifold R1þ3, i.e.,
F∶R1þ3 → R. It may be specified by giving its values FðxÞ
in a particular coordinate frame x; under x → Λx they are
then given by F0ðxÞ ¼ FðΛ−1xÞ. (We only need consider
detΛ ¼ 1 here so we ignore the distinction between scalars
and scalar densities.) The kernel F and its Fourier transform
F̂, introduced through

Fðx − yÞ ¼
Z

d4kF̂ðkÞe−ik·ðx−yÞ; ð2:4Þ

will be the quantities of main concern below.
It should be noted that in any interaction term in Vð ~ϕÞ,

such as ~ϕnðxÞ=n!, the delocalized fields ~ϕ interact at a
common spacetime point x, resulting in an interactionR Q

n
i¼1 d

4yiFðx − yiÞϕðyiÞ. This ensures that each inter-
action vertex is proportional to a single spatial momentum
conservation delta-function (times an energy conservation
delta-function) which, as it is well known, is a sufficient
condition for cluster decomposition. This would not
necessarily be the case for generic nonlocal interactions

4Similar existence results in the case of the string field theory
inspired kernel (1.1) in d ¼ 1 (where it is well defined) with a
“future” asymptotic boundary condition were obtained in [14].
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LnðxÞ ¼
λn
n!

Z Yn
i¼1

d4xiFðx; x1;…; xnÞϕðxiÞ: ð2:5Þ

Feynman rules for diagrammatic expansion can, of course,
be read off the nonlocal Lagrangians (2.2)–(2.3), or (2.5),
[15] just as in the local case (2.1).
In what follows we adopt a general point of view and

consider a wide class of delocalization integral kernels.
Kernels in this wide class cannot necessarily be represented
by an expansion in derivatives about every point, those
associated with operators of the form (1.1) being a
particular subclass of possible nonlocal interactions. In
general, the choice of the kernel FðxÞ in (2.3) is restricted
by the imposition of physical requirements. The first two
requirements are controllable UV behavior and unitarity, at
least within the perturbative expansion. These conditions
constrain F̂ðkÞ. Causality and other considerations may
then further guide the choice of F in particular theories.
The two fundamental properties we require F̂ðkÞ to

satisfy are
(I) F̂ðkÞ is an element of the space of functions of rapid

decay, commonly denoted by C∞
↓ ðR1þ3Þ.

A function ψðuÞ ∈ C∞
↓ ðR1þ3Þ is: (i) infinitely

differentiable; (ii) such that

lim
jjujj→∞

jupDqψðuÞj → 0 ð2:6Þ

for every pair of nonnegative integer multi-indices
p, q, with the notation up ≡ up0

0 � � � up3

3 and
Dq ≡ ∂q0þ���þq3=∂uq10 � � � ∂uq33 . Thus, a function of
rapid decay and all its derivatives vanish faster than
any negative power of its arguments as jjujj → ∞.

(II) F̂ðkÞ is an entire analytic function, i.e. it is analytic
in each component kμ in the entire complex
kμ-plane.

Condition (I) is dictated by the requirement of good UV
behavior, and condition (II) by that of unitarity.
We now define two classes of vertices constructed from

products of delocalized fields (2.3) with kernels that can
accommodate the conditions (I), (II) above:
(a) Quasi-local interaction vertices with integral kernels

F which are elements of the space of functions of
bounded support, commonly denoted by C∞

c ðR1þ3Þ.
A function ψ ∈ C∞

c ðR1þ3Þ: (i) is infinitely differ-
entiable; (ii) vanishes identically outside a compact
(bounded, closed) set, i.e. has bounded support (the
closure of the set on which the function has non-
zero value).

(b) Strictly nonlocal interaction vertices with integral
kernels F which are elements of C∞

↓ ðR1þ3Þ but not
of C∞

c ðR1þ3Þ, i.e. elements of the space of functions of
rapid decay that do not have compact support.

An example of a nonlocal kernel, characterized by a length
scale l, would be FðxÞ ¼ exp−½x2=l2�2. Quasilocal ker-
nels are naturally obtained by standard smoothing (“molli-
fying”) of δ4ðxÞ ¼ Q

μδðxμÞ or δðx0ÞδðjxjÞ over a length
scale l. In other words, they may be taken as elements
of a C∞

c delta-family, the local limit being recovered
when l → 0. For example, one may specify the scalar
kernel F by

FðxÞ ¼
Y
μ

1

l
exp½−½l2=ðl2 − jxμj2Þ�� for jxμj < l;

FðxÞ ¼ 0 for jxμj ≥ l ð2:7Þ

in some frame, and thus F0ðx0Þ ¼ FðxÞ in any other frame
x0 ¼ Λx. It is important to note here that a quasilocal kernel
of such or similar shape of size l will have a Fourier
transform which is essentially flat for real momenta less
than of order 1=l, and rapidly decaying for momenta above
1=l; in the local limit l → 0 one recovers F̂ðkÞ ¼constant
for all k. A nonlocal kernel will have a Fourier transform of
approximately similar behavior if the kernel decays
sufficiently fast outside a sufficiently small region of size
l. An interesting class of kernels in this connection is
represented by

FðxÞ ¼ 1

l4
exp½−½l2=ðl2 − jx2jÞ�� for jx2j < l2;

FðxÞ ¼ 0 for jx2j ≥ l2; ð2:8Þ

whose support is limited to a vicinity of the light cone of
size l. Such kernels, though actually belonging to the
class (b) above, behave in most respects like those in (a). It
should also be noted that there are points about which
quasilocal kernels, as well as some nonlocal ones such as
(2.8), though C∞ functions, have Taylor expansions of zero
radius of convergence.
We now recall some mathematical facts (see, e.g., [16]).

C∞
c supplemented with an appropriate notion of conver-

gence becomes DðRÞ, the test function space of distribu-
tions, the latter being defined as elements ofD0ðRÞ, the dual
space to DðRÞ. C∞

↓ supplemented with an appropriate
notion of convergence becomes S ðRÞ, the test function
space of tempered distributions which are elements of the
dual spaceS 0ðRÞ. Thus our delocalized fields replace local
fields (tempered distributions in the usual formalism) by
their convolution with an element of the corresponding test
function (sub)space.
A basic result for us here is that if a function is in C∞

↓ its
Fourier transform exists and is also in C∞

↓ . Now, C
∞
c is a

subspace of the space of functions of rapid decay C∞
↓ . Note,

however, that the Fourier transform of a function in C∞
c will

not be also in C∞
c , though, of course, it will in C∞

↓ . (This is
in fact what necessitates the introduction of C∞

↓ in order to
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have the distributional extension of classical Fourier
theory.) It follows that the Fourier transforms of kernels
of both types (a) and (b) above satisfy condition (I).
Another basic fact is that the Fourier transform of a

function in C∞
c is an entire analytic function of its argu-

ment. Thus, the Fourier transforms of functions in C∞
c form

a subset of C∞
↓ consisting of functions that can be extended

from the real axis to the complex domain as entire
functions.5 It follows that the Fourier transforms F̂ðkÞ of
quasilocal kernels (a) above satisfy also condition (II). In
contrast, condition (II) is not automatically satisfied for
general nonlocal kernels (b), i.e. general elements of C∞

↓ ,
though it can be satisfied for large subclasses of them, (1.4)
being a simple example.
Within this framework, operators of the form (1.1) are

considered as defined in terms of the corresponding integral
kernels, as exemplified by the right-hand side (r.h.s.) in
(1.2), (1.3). Thus, (1.4), being indeed of rapid decay, gives
a nonlocal interaction of type (b) above. Note also that it
may not always be possible to give a closed kernel form in
both coordinate and k-space, but being in C∞

↓ in either
space is sufficient. In contrast, in the case of (1.2) for d ≥ 2

the integral kernel is not of rapid decay for large negative
values of its argument ðx − yÞ2, and is not included in the
class (b); its Fourier transform cannot be properly defined
to satisfy (II) with the consequent lack of analyticity
presumably implying instability.
In general, assuming they are well defined by appropriate

choice of the function f, from among the kernels that may
be introduced via (1.1) a large subset are of the nonlocal
type (b). Another subset though, e.g., some of those
employed in [3], also [4], though well defined, are not
of rapid decay and do not belong to the class (b). On the
other hand, general kernels of type (b) constitute a rather
larger set than the rapid decay subset that can be generated
via (1.1). Quasilocal vertices of type (a) cannot, of course,
be generated via (1.1).
In summary, we introduced nonlocality by the replace-

ment of fields in local interaction vertices by delocalized

fields, i.e., replacement of (2.1) by (2.2)–(2.3). The Fourier
transform of the delocalization kernel is required to satisfy
the fundamental conditions (I) and (II) above. We then
defined two general classes of kernels, the nonlocal kernels
of rapid decay, and the quasilocal kernels of bounded
support. Both satisfy condition (I). Quasilocal kernels also
satisfy condition (II). General nonlocal kernels do not
automatically satisfy condition (II), but a large subset in this
class does. In what follows we examine the extent to which
these classes of interactions may allow physically viable
theories.

III. THE CLASSICAL THEORY—TIME
EVOLUTION AND IVP

The equation of motion is derived as usual by varying the
action (2.2). The resulting field equation is

□ϕðxÞ þm2ϕðxÞ þ
Z

ddzFðx − zÞV 0ð ~ϕðzÞÞ ¼ 0; ð3:1Þ

with, as usual, V 0ðwÞ≡ dVðwÞ=dw. Equation (3.1) is a
nonlinear wave functional equation in d spacetime dimen-
sions. The functional field dependence introduces “delays.”
Differential/functional equations with past delays have
been extensively studied in recent years. The novel feature
here is that the delocalized field interactions introduce
future, as well as past, delays. We need then examine what
effect this has on time evolution and the existence of
solutions of (3.1). In this section we set m ¼ 0 since this
simplifies formulas without affecting the main issues we
discuss here—the nonzero mass case is quite analogous.6

A common approach to existence and uniqueness ques-
tions for nonlinear wave equations is to convert them to an
integral equation. This is done by substituting the nonlinear
interaction for the inhomogeneous term in the known
solutions to the linear inhomogeneous problem. In the
case of (3.1) with m ¼ 0 in d ¼ 2 (x ¼ ðx1; tÞ)
d’Alembert’s formula results in the integral equation

ϕðx1; tÞ ¼ φðx1; tÞ − 1

2

Z
t

0

ds
Z

x1þt−s

x1−tþs
dy

Z
d2zFðy − z1; s − z0ÞÞV 0ð ~ϕðz1; z0ÞÞ

¼ φðx1; tÞ − 1

2

Z
Dðx1;tÞ

dsdy
Z

d2zFðy − z1; s − z0ÞÞV 0ð ~ϕðz1; z0ÞÞ; ð3:2Þ

whereas in d ¼ 4 (x ¼ ðx; x0Þ) Kirchhoff’s formula leads to

5Given appropriate norms, these functions comprise the sequence of Z spaces of entire functions in the Gel’fand-Shilov extension of
generalized function theory into the complex plane [16]. They possess special properties of potential interest in particular models of
interactions, but we will not make specific use of them in the general considerations in this paper.

6In any case, one may always include the mass term as a local addition to the potential as is usually done in the mathematical
literature.
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ϕðx; tÞ ¼ φðx; tÞ − 1

4π

Z
Bðx;tÞ

d3y
Z

d4z
Fðy − z; t − jx − yj − z0Þ

jx − yj V 0ð ~ϕðz; z0ÞÞ: ð3:3Þ

In (3.2) and (3.3) φ denotes the solution, in d ¼ 2 and 4,
respectively, to the linear homogeneous problem

□φðx; tÞ ¼ 0: ð3:4Þ

In (3.2) Dðx1; tÞ denotes the triangular region (domain
of dependence) enclosed by the t ¼ 0 axis and the
two characteristics lines x1 � t emanating from the
point ðx1; tÞ. In (3.3) Bðx; tÞ ¼ fy ∈ R3∣jx − yj ≤ tg ¼
f the closed ball inR3 centered atx and of radius t > 0g.7
The presence of the unrestricted z-integration in (3.2) and
(3.3) is due to the nonlocal nature of the kernel F, and is the
crucial feature distinguishing the nonlocal from the
local case.
The integral equation formulation allows application of

fixed point theorems to investigate existence of solutions
[17]. In an appropriately defined space of functions X
(cf. below) the r.h.s. of (3.2) or (3.3) defines a nonlinear
mapping A∶X → X. A fixed point of this mapping, i.e.

ϕðx; tÞ ¼ A½ϕ�ðx; tÞ; ð3:5Þ

if it exists, is then a solution to these integral equations.
This formulation also makes immediately apparent the
difference between the local and nonlocal cases.

A. Local interaction

It will be useful to first review here an existence and
uniqueness proof of this kind [17] in the familiar case of
local interactions, i.e. (3.3) with Fðx − yÞ ¼ δ4ðx − yÞ. The
r.h.s. of (3.3) then defines the mapping:

A½ϕ�ðx; tÞ ¼ φðx; tÞ − 1

4π

Z
Bðx;tÞ

d3y
1

jx − yjV
0ðϕðy; trÞÞ

ð3:6Þ

with tr ¼ t − jx − yj. The solution φ to the linear problem
(3.4) satisfies initial data

φðx; 0Þ ¼ gðxÞ; ∂tφðx; 0Þ ¼ hðxÞ: ð3:7Þ

We then seek solutions to (3.5) for (3.6).
Let X denote the set of functions

X≡ fϕ∈Cð½0;T�×R3Þ j ϕðx;0Þ ¼ gðxÞ; jjϕ−φjjL∞ ≤ 1g;

a subset of the complete metric space S ≡ fϕ ∈ Cð½0; T�×
R3Þ∣ϕðx; 0Þ ¼ gðxÞg. Assuming smooth g, h in (3.7), φ is
smooth, and it follows that if ϕ ∈ X there exists a constant
C0 such that

jjϕjjL∞ð½0;T�×R3Þ ≤ C0: ð3:8Þ

For the mapping (3.6) then, if ϕ, ψ ∈ X one has

jjA½ϕ� − A½ψ �jjL∞ð½0;T�×R3Þ ≤ sup
x∈R3;0≤t≤T

�
1

4π

Z
Bðx;tÞ

d3y
1

jx − yj jV
0ðϕðy; trÞÞ − V 0ðψðy; trÞÞj

�

≤ C1 sup
x∈R3;0≤t≤T

�
1

4π

Z
Bðx;tÞ

d3y
1

jx − yj jϕðy; trÞ − ψðy; trÞj
�

≤ C1jjϕ − ψ jjL∞ð½0;T�×R3Þ sup
x∈R3;0≤t≤T

�
1

4π

Z
Bðx;tÞ

d3y
1

jx − yj
�

≤
1

2
C1T2jjϕ − ψ jjL∞ð½0;T�×R3Þ: ð3:9Þ

The constant C1 comes from

jV 0ðϕðy; trÞÞ − V 0ðψðy; trÞÞj ≤ max
jwj≤C0

jV 00ðwÞjjϕðy; trÞ − ψðy; trÞj

≤ C1jϕðy; trÞ − ψðy; trÞj; ð3:10Þ

7Note the amusing fact that whereas Dðx1; tÞ is 2-dimensional, Bðx; tÞ is only 3-dimensional. This is because Huygen’s principle
holds in odd space dimensions ðd − 1Þ ≥ 3 but not for ðd − 1Þ ¼ 1—the latter behaving like even space dimensions.
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where it is assumed that VðwÞ is at least twice continuously differentiable and use is made of (3.8), and also
ð 1
4π

R
Bð0;RÞ d

3y 1
jyjÞ ¼ R2=2. Take T small enough and/or couplings in V weak enough so that 1

2
C1T2 < 1. It follows then

from (3.9) that the mapping A is a contraction. Similarly, if ϕ ∈ X,

jjA½ϕ� − φjjL∞ð½0;T�×R3Þ ≤ sup
x∈R3;0≤t≤T

�
1

4π

Z
Bðx;tÞ

d3y
1

jx − yj jV
0ðϕðy; trÞÞj

�

≤
1

2
C1T2jjϕjjL∞ð½0;T�×R3Þ

≤
1

2
C0C1T2 ð3:11Þ

so that indeed, under the same conditions, A∶X → X.

Starting then with some initial field configuration
ϕ0 ∈ X, one obtains a succession of configurations by

ϕn ¼ A½ϕn−1�: ð3:12Þ

By the contraction mapping theorem this has a unique fixed
point which provides the unique solution to (3.5)–(3.6) on
D ¼ ½0; T� ×R3 (Fig 1). Further arguments [17], in par-
ticular consideration of the corresponding integral equa-
tions for derivatives, show that, assuming V is smooth, all
derivatives are similarly bounded, so the solution is in fact
smooth. Depending on the form of the interaction V
continuation of the solution to any T, i.e. global existence,
may be proven in many cases (such as a ϕ4 interaction). In
fact, under the stronger assumption that the interaction is
Lipschitz continuous it may be proven that a weak solution
always exists for any T.

B. Nonlocal interaction

In the nonlocal case A½ϕ� is given by the r.h.s. of (3.3)
involving nonlocal kernel F:

A½ϕ� ¼ φðx; tÞ − 1

4π

Z
Bðx;tÞ

d3y

×
Z

d4z
Fðy − z; t − jx − yj − z0Þ

jx − yj V 0ð ~ϕðz; z0ÞÞ:

ð3:13Þ

In considering (3.12) the difference from the local case is
now apparent. It is no longer true that to compute ϕnþ1 one

needs ϕn only inD. There is a “spill-over” or “delay” effect
since in (3.3) ðx; tÞ is connected to ðz; z0Þ which now can
range outside Bðx; tÞ. Similarly, in the d ¼ 2 case, on the
r.h.s. in (3.2) the point ðx1; tÞ is connected via the kernel to
ðz1; z0Þ which can range outside Dðx1; tÞ. Note that there is
a past as well as a future delay. The delay regions then form
a collar in R ×R3nD (Fig. 2). For kernels of bounded
support this collar is of finite extent. For nonlocal kernels
this extent is strictly infinite even though, for sufficiently
rapid decay rate, it may appear essentially finite for all
practical purposes.

1. Quasilocal interactions

We now restrict to the case of bounded support kernels of
scale l. Let ~DðkÞ ¼ D∪DðkÞ

c be the extension of the domain

D to include a collar region DðkÞ
c of width 2lk with integer

k ≥ 1. Given some initial configuration ϕ0, to compute ϕ1

inD via the mapping A one needs ϕ0 in ~Dð1Þ; to compute ϕ2

in D one needs ϕ1 in ~Dð1Þ, hence ϕ0 in ~Dð2Þ, and so on: for
n > m ≥ 0, to compute ϕn in D one needs ϕm in ~Dðn−mÞ.
Since, to apply a fixed point argument, n → ∞ one sees
that the field need be computed at essentially all points.
This may at first sight appear not to be a problem since,
given some initial configuration ϕ0, say, identically vanish-
ing except inside some bounded spacetime region, one
may apply the mapping A to generate the field value of
subsequent configurations at any spacetime point. Because
A involves integration, however, it is easily seen that
upon subsequent iterations it will generate fields that grow

FIG. 1. Local nonlinear wave equation IVP on domain D →
½0; T� ×R3 stitched together from the conical dependence
domains of (3.6) for points on t ¼ T hypersurface.

FIG. 2. Nonlocal version of the IVP on domain D, now
bordered by past and future delay regions (light shading) due
to “spilling over” by the nonlocality of the interaction. The delays
are of finite width for kernels of bounded support as shown here.
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as t2 at spacetime point x ¼ ðx; tÞ. This was already seen in
the local interaction case above; there, however, for
solutions on a fixed interval 0 ≤ t ≤ T only the values
of fields within this interval were needed in successive
iterations. In contrast, in the case of nonlocal interaction to
establish existence of solutions on ½0; T� in the same
manner would require field values at all points with the
attendant boundedness problem. We must then proceed
differently.
The existence of local solutions on suitably small

intervals can, in fact, be demonstrated in the case of
nonlocal interaction, but uniqueness is completely lost.
To demonstrate existence on ½0; T� ×R3 one has to extend
the definition of the mapping A to specify fields in the

collar region Dð1Þ
c ≡Dc. In the past delay region of the

collar, fx ∈ Dc ∩ ft ≤ 0gg, the fields are specified as
initial data (cf. [13]). One may take8 the solution of the
linear problem (3.4) with initial data

φðx;−t0Þ ¼ gðxÞ; ∂tφðx;−t0Þ ¼ hðxÞ ð3:14Þ

at some time t ¼ −t0 where t0 ≥ 2l, and set ϕðxÞ ¼ φðxÞ
on −t0 ≤ t ≤ 0. Let

~A½ϕ�ðxÞ ¼

8>><
>>:

Ac½ϕ�ðxÞ for x ∈ Dc ∩ ft > 0g
A½ϕ�ðxÞ for x ∈ D

φðxÞ for x ∈ Dc ∩ ft < 0g
: ð3:15Þ

Ac½ϕ� is specified by extending the values ϕðxÞ,
x ∈ ∂D ∩ ft > 0g, given by A½ϕ� into the collar region

Dc ∩ ft > 0g in some prescribed continuous fashion. E.g.,
parametrizing points in Dc ∩ ft > 0g by

x ¼ yþ sνðyÞ; s ∈ ½0; 2l�; y ∈ ∂D; ð3:16Þ
where νμðyÞ denotes the outward (timelike) normal at
y ∈ ∂D, we may define

Ac½ϕ�ðxÞ ¼ ζðxÞ½A½ϕ�ðyÞ − φðyÞ� þ φðxÞ: ð3:17Þ

In (3.17) ζðxÞ is a C∞
c ð½0; 2l� ×R3Þ function such that 0 ≤

ζ ≤ 1 and ζðxÞ≡ 1 in a neighborhood of ∂D ∩ ft > 0g.
Adopting one such prescription, (3.15) defines then a
mapping ~A on ~D ¼ D∪Dc.
Let X denote the set of functions

X ≡ fϕ ∈ Cð½−2l; T þ 2l� ×R3ÞjϕðxÞ ¼ φðxÞ
on − t0 ≤ t ≤ 0; jjϕ − φjjL∞ð½0;Tþ2l�×R3Þ ≤ 1g:

Assuming smooth g, h in (3.14), it follows that if ϕ ∈ X
there exists a constant C0 such that

jjϕjjL∞ð½0;Tþ2l�×R3Þ ≤ C0: ð3:18Þ

Furthermore,

jj ~ϕjjL∞ð½a;b�×R3Þ ¼ sup
a≤t≤b;x∈R3

����
Z

d4yFðx − yÞϕðyÞ
����

≤ CjjϕjjL∞ð½a−l;bþl�×R3Þ ð3:19Þ

where C ¼ R
d4ujFðuÞj.

If ϕ, ψ ∈ X one has

sup
0≤z0≤Tþl

z∈R3

jV 0ð ~ϕðz; z0ÞÞ − V 0ð ~ψðz; z0ÞÞj ≤ max
jwj≤C0

jV 00ðwÞj sup
0≤z0≤Tþl

z∈R3

j ~ϕðz; z0Þ − ~ψðz; z0Þj

≤ C1Cjjϕ − ψ jjL∞ð½−2l;Tþ2l�×R3Þ: ð3:20Þ

Note also that jjϕ − ψ jjL∞ð½−2l;Tþ2l�×R3Þ ¼ jjϕ − ψ jjL∞ð½0;Tþ2l�×R3Þ. Making then use of (3.18), (3.19) and (3.20),

jjA½ϕ� − A½ψ �jjL∞ð½0;T�×R3Þ ≤ sup
0≤t≤T;x∈R3

�
1

4π

Z
Bðx;tÞ

d3y
Z

d4z
Fðy − z; tr − z0Þ

jx − yj · jV 0ð ~ϕðz; z0ÞÞ − V 0ð ~ψðz; z0ÞÞj
�

≤ sup
0≤t≤T;x∈R3

1

4π

Z
Bðx;tÞ

d3y
Z

d4z
Fðy − z; tr − z0Þ

jx − yj
· C1Cjjϕ − ψ jjL∞ð½−2l;Tþ2l�×R3Þ

≤
1

2
C1C2T2jjϕ − ψ jjL∞ð½−2l;Tþ2l�×R3Þ: ð3:21Þ

8Alternatively, one may specify an arbitrary smooth function ψ on −t0 ≤ t ≤ 0 as past delay initial data, and replace (3.14) with
φðx; 0Þ ¼ ψðx; 0Þ and ∂tφðx; 0Þ ¼ ∂tψðx; 0Þ.
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Also, for x ∈ Dc ∩ ft > 0g,

jAc½ϕ�ðxÞ − Ac½ψ �ðxÞj ≤ jA½ϕ�ðyÞ − A½ψ �ðyÞj: ð3:22Þ

Thus, for ϕ, ψ in X,

jj ~A½ϕ� − ~A½ψ �jjL∞ð½0;Tþ2l�×R3Þ

≤
1

2
C1C2T2jjϕ − ψ jjL∞ð½0;Tþ2l�×R3Þ: ð3:23Þ

Similarly, one verifies that

jj ~A½ϕ� − φjjL∞ð½0;Tþ2l�×R3Þ ≤
1

2
C0C1C2T2: ð3:24Þ

Hence, for T and/or couplings in the interaction V chosen
sufficiently small, ~A∶X → X and is a contraction. It follows
that there is a solution to the integral equation (3.3) on ½0; T�
satisfying the initial data on ½−t0; 0�.
The solution is unique for a given mapping ~A, but this

mapping depends on its specification in the future collar
regionDc. There is then a unique solution on ½0; T� for each
such choice of specification. In other words, there is local
existence but complete loss of uniqueness for the solution of
the IVP associated with (3.3) [or (3.2)]. This reflects the
loss of causality due to the nonlocality of the interaction. To
obtain a solution on ½0; T�, in addition to initial data on
some past delay region ½−t0; 0�, some specification of fields
in the future delay region [T, T þ 2l] has to be provided,
thus converting the IVP to a combined IVP-BVP of sorts.

For physics at length scales appreciably longer than l,
however, this dependence on the acausal delay from
[T, T þ 2l] would be masked in field measurements
necessarily averaged over scales longer than order l.
This becomes even more pertinent when going from the
classical to the quantum context where all fluctuations are
included (Sec. V). This suggests that one should consider
time evolution smeared over regions of order l. We return to
this below.
There are circumstances in which uniqueness of the

classical IVP can be obtained. This is the case when the
nonlocal interactions are confined within the interval ½0; T�
for which existence can be demonstrated. This is of
particular importance if existence for any T, i.e. global
existence (at least of a weak solution) can be proven. One
may then consider the asymptotic “switching-off of inter-
actions” outside a (large) spacetime region, as commonly
done in scattering theory. This is implemented by letting
VðϕÞ → gðxÞVðϕÞ where gðxÞ is a C∞ function such that
gðxÞ≡ 1 for jx0j ≤ T0 − ϵ and gðxÞ≡ 0 for jx0j ≥ T0 þ ϵ.
In the rest of this section we redefine V to include the
variable coupling gðxÞ.
To obtain a global existence result we will assume that V 0

is Lipschitz-continuous, i.e.,

jV 0ðϕÞ − V 0ðψÞj ≤ C1jϕ − ψ j; ð3:25Þ

for some constant C1. We also introduce the norm (cf., e.g.,
[13,18])

jjfjjL∞
ρ ð½a;b�×R3Þ ¼ ess sup

a≤t≤b;x∈R3

e−ρtjfðt;xÞj: ð3:26Þ

Let X denote the set of functions

X ≡ fϕ ∈ Cð½−t0; T� ×R3ÞjϕðxÞ ¼ φðxÞ on − t0 ≤ t ≤ 0; T > T0 þ ϵg:

If ϕ, ψ ∈ X, one now has

jV 0ð ~ϕðz; z0ÞÞ − V 0ð ~ψðz; z0ÞÞj ≤ C1j ~ϕðz; z0Þ − ~ψðz; z0Þj

≤ C1

Z
dw4jFðz − w; z0 − w0Þjjϕðw; w0Þ − ψðw; w0Þj

≤ C1eρz
0

Z
dw4jFðz − w; z0 − w0Þje−ρðz0−w0Þ · jjϕ − ψ jjL∞

ρ ð½0;T�×R3Þ

≤ C1Ceρz
0

eρljjϕ − ψ jjL∞
ρ ð½0;T�×R3Þ; ð3:27Þ

using (3.25) and the fact that, in the next to last inequality, jz0 − w0j ≤ l due to the bounded support of F. For (3.3), with
initial data (3.14), we define the mapping ~A by

~A½ϕ�ðxÞ ¼
�
A½ϕ�ðxÞ for x ∈ D

φðxÞ for − t0 ≤ t ≤ 0
: ð3:28Þ

Then

NONLOCAL AND QUASILOCAL FIELD THEORIES PHYSICAL REVIEW D 92, 125037 (2015)

125037-9



jjA½ϕ� − A½ψ �jjL∞
ρ ð½0;T�×R3Þ ≤ sup

0≤t≤T;x∈R3

�
1

4π
e−ρt

Z
Bðx;tÞ

d3y
Z

d4z
jFðy − z; tr − z0Þj

jx − yj · jV 0ð ~ϕðz; z0ÞÞ − V 0ð ~ψðz; z0ÞÞj
�

≤ sup
0≤t≤T;x∈R3

1

4π
C1Ceρle−ρt

Z
Bðx;tÞ

d3y
Z

d4z
jFðy − z; tr − z0Þj

jx − yj · eρz
0 jjϕ − ψ jjL∞

ρ ð½0;T�×R3Þ

≤ sup
0≤t≤T;x∈R3

1

4π
C1Ceρle−ρt

Z
Bðx;tÞ

d3y
Z

d4z
jFðy − z; tr − z0Þj

jx − yj · eρtreρljjϕ − ψ jjL∞
ρ ð½0;T�×R3Þ

using (3.27) and, again, that jtr − z0j ≤ l due to the compact support of F. Since tr ¼ t − jx − yj we finally obtain

jjA½ϕ� − A½ψ �jjL∞
ρ ð½0;T�×R3Þ ≤ sup

0≤t≤T;x∈R3

1

4π
C1C2e2ρl

Z
Bðx;tÞ

d3y
e−ρjx−yj

jx − yj jjϕ − ψ jjL∞
ρ ð½0;T�×R3Þ

¼ C1C2e2ρl
�
1

ρ2
½1 − e−ρt� − t

ρ
e−ρt

�
jjϕ − ψ jjL∞

ρ ð½0;T�×R3Þ

≤ C1C2
e2ρl

ρ2
jjϕ − ψ jjL∞

ρ ð½0;T�×R3Þ: ð3:29Þ

Equation (3.29) holds for any T > T0. Take, say, ρ ¼ 1=2l,
and the scale l and/or couplings in V sufficiently small, so
that C1C2ðe2ρl=ρ2Þ < 1. Then (3.29) shows that A is a
contraction. It follows that a unique solution to the integral
equation (3.3) satisfying the initial data on ½−t0; 0� exists on
any interval ½0; T� with T > T0.

2. Strictly nonlocal interactions

The case of strictly nonlocal interactions differs in basic
ways. For such interactions the future delay is of infinite
extent and each point inside a given domain D (Fig. 2)
contributes to it. Hence, asymptotic switching off of
interactions no longer makes the argument leading to
(3.29) possible. The demonstration of local existence of
solutions still formally goes through since one may always
specify an extension of the mapping A over the infinite
extent delay region. Existence of an infinity of solutions
can thus be established. The acausal effects, however, are
no longer confined in a (small) finite region and cannot, in
principle, be masked at larger scales as in the quasilocal
case. Still, strictly nonlocal interactions may approximately
behave as quasilocal ones if their delocalization kernel falls
off sufficiently rapidly beyond a characteristic scale l, the
long-range acausal tails leaking out at long distances
producing extremely small effects.
The classical IVP, though it serves well to demonstrate

how nonlocality entails causality problems, is ultimately
not of prime physical relevance. For this we have to turn to
the quantum theory where one sums over configurations
not restricted to solutions of the classical equations of
motion.

IV. EVOLUTION VIA TIME-BLOCKED
HAMILTONIAN

Though in this paper we adopt the Lagrangian formu-
lation as the proper framework for both classical and
quantum treatment of nonlocal field theories, we digress
here to discuss a Hamiltonian formulation. Given our
Lagrangian (2.2) one may proceed, as usual, to define a
canonical momentum

πðx; tÞ ¼ ∂L
∂ _ϕðx; tÞ ¼

_ϕððx; tÞ ð4:1Þ

and the corresponding “Hamiltonian”

HðtÞ ¼
Z

dðd−1Þx
�
1

2
πðx; tÞ2 þ 1

2
ð∇ϕðx; tÞÞ2

þ 1

2
m2ϕðx; tÞ2 þ Vð ~ϕðx; tÞÞ

�
: ð4:2Þ

This Hamiltonian is positive. Through the ~ϕ dependence in
the potential, however, it involves field functional depend-
ence over times other than the time t at which it is defined.
Hence, as it is easily seen, the corresponding canonical
equations fail to reproduce the correct equation of motion
(3.1). The usual Hamiltonian formalism cannot be imple-
mented in the presence of nonlocal interactions.
Our results in the previous section, however, suggest that

one should, instead, define a smeared Hamiltonian over
time intervals longer than those in the delocalization kernel
F. In this section we only consider kernels of compact
support. Let UðtÞ denote a C∞

c ðRÞ “bump” function such
that 0 ≤ U ≤ 1 and
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UðtÞ ¼
�
1 for jtj ≤ 2l − ϵ

0 for jtj ≥ 2lþ ϵ
: ð4:3Þ

We now define a smeared Hamiltonian

~HðtÞ ¼
Z

dz0Uðt − z0ÞHðz0Þ ð4:4Þ

which, by (4.3), averages over an interval of length 2ð2lþ ϵÞ
centered at t. In terms of this Hamiltonian one now has

δ ~H
δπðx; tÞ ¼ Uð0Þπðx; tÞ ¼ πðx; tÞ ð4:5Þ

and

δ ~H
δϕðx; tÞ ¼ Uð0Þ½−∇2ϕðx; tÞ þm2ϕðx; tÞ� þ

Z
dz0Uðt − z0Þ

Z
dz3Fðx − z; t − z0Þ ∂Vð ~ϕðz; z

0ÞÞ
∂ ~ϕðzÞ

¼ ½−∇2ϕðx; tÞ þm2ϕðx; tÞ� þ
Z

dz0
Z

dz3Fðx − zÞ ∂Vð ~ϕðzÞÞ∂ ~ϕðzÞ ; ð4:6Þ

where in the second equalitywe used the fact that the compact
supportofF enforces jt − z0j ≤ l, andUðwÞ ¼ 1 for jwj ≤ l.
The canonical equations for ~H then

δ ~H
δπðx; tÞ ¼

_ϕðx; tÞ; δ ~H
δϕðx; tÞ ¼ − _πðx; tÞÞ ð4:7Þ

reproduce the equation of motion (3.1).
We may then split the time axis into segments of size 4l

and define a blocked Hamiltonian (4.4) on each segment.
Take the cover of the time axis given by the union of the
intervals

Ik ¼
�
4l

�
k −

1

2

�
− ϵ; 4l

�
kþ 1

2

�
þ ϵ

�
;

k ¼ 0;�1;�2;…;

Ik being centered at tk ≡ 4lk. Defining UkðtÞ ¼ Uðtk − tÞ,
and

ukðtÞ ¼
UkðtÞP
lUlðtÞ

; ð4:8Þ

one has the corresponding partition of unity on R:

1 ¼
X
k

ukðtÞ: ð4:9Þ

Note that, by (4.3), for any given t, at most two terms can be
nonzero in the sum in the denominator in (4.8); and at most
two terms can be nonzero in the sum in (4.9).
We now define the blocked Hamiltonian on Ik ×R3

~HðtkÞ≡ ~Hk ¼
Z

dz0ukðz0ÞHðz0Þ; ð4:10Þ

the canonical equations for which, as seen above, give the
correct equations of motion at time tk. The system may thus
be described as evolving over successive time blocks via
the blocked Hamiltonians ~Hk in a description that does not
probe scales of order or smaller than the nonlocality scale
l. The description is invariant under shifts in the choice of
times tk since any partition of unity (4.9) is. This amounts
to a quasilocal conservation statement for the blocked
Hamiltonians in the following sense. Consider

_~HðtÞ ¼ −
Z

dz0
d
dz0

uðt − z0ÞHðz0Þ ¼
Z

dz0uðt − z0Þ _Hðz0Þ

¼
Z

dz0d3zuðt − z0Þ
��

ϕ̈ðz; z0Þ − ½∇ϕðz; z0Þ�2 þm2ϕðz; z0Þ
�
_ϕðz; z0Þ þ V 0ð ~ϕðz; z0ÞÞ _~ϕðz; z0Þ

�

¼
Z

dz0d3z

�
uðt − z0Þ

�
ϕ̈ðz; z0Þ − ½∇ϕðz; z0Þ�2 þm2ϕðz; z0Þ

�

þ
Z

dy0d3yuðt − y0ÞV 0ð ~ϕðy; y0ÞÞFðy − z; y0 − z0Þ
	
_ϕðz; z0Þ: ð4:11Þ

For a given k consider z0 such that uðtk − z0Þ ≠ 0, i.e. z0 ∈ Ik. In the integrand in the last line in (4.11), the bounded support
of kernel F implies jy0 − z0j ≤ l. It follows that

X
l¼k;k�1

uðtl − z0Þ ¼
X

l¼k;k�1

uðtl − y0Þ ¼ 1;
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where, in fact, only at most two out of the three terms in
these sums can be nonzero. For any given k then (4.11)
gives

_~Hk−1þ _~Hkþ _~Hkþ1≡
X

j¼k;k�1

d
dκ

~Hðtjþ κÞ∣κ¼0¼ 0 ð4:12Þ

by the equations of motion (3.1). We thus have quasilocal
conservation of blocked Hamiltonians, i.e., conservation
involving a blocked Hamiltonian and at most one of its
neighbors contributing in the overlap or “spill-over”
regions between neighboring block intervals Ik.

V. THE QUANTUM THEORY

Quantization of (2.1) is straightforwardly performed via
the path integral. The kinetic energy term, being of the
standard local form, gives the usual scalar propagator

Δðx − yÞ ¼
Z

d4kΔðkÞe−ikðx−yÞ

¼
Z

d4k
ð2πÞ4

i
ðk2 −m2 þ iϵÞ e

−ikðx−yÞ: ð5:1Þ

An n-point interaction term gn ~ϕ
n in Vð ~ϕÞ gives a nonlocal

vertex factor −ign
Q

n
i¼1 Fðx − xiÞ, and thus contributes a

kernel factor Fðx − xiÞ to a propagator attached to point xi.
Hence the propagator Δðx − yÞ in each internal line in a
graph is effectively replaced by a propagator:

~Δðx − yÞ ¼
Z

d4ud4vFðx − uÞΔðu − vÞFðv − yÞ: ð5:2Þ

An equivalent set of rules is then given by local vertex
factors −ign and propagators (5.2):

~Δðx − yÞ ¼
Z

d4k ~ΔðkÞe−ikðx−yÞ

¼
Z

d4k
ð2πÞ4

iF̂ðkÞ2
ðk2 −m2 þ iϵÞ e

−ikðx−yÞ: ð5:3Þ

The amplitude for the general Feynman graph with I
internal lines, L loops and V vertices then takes the form

AðfpjgÞ ¼ Gð−iÞV
Z YL

i¼1

d4ki
YI
j¼1

~ΔðqjÞ

¼ Gð−iÞV iI

ð2πÞ4I
Z YL

i¼1

d4ki
YI
j¼1

F̂ðqjÞ2
ðq2j −m2 þ iϵÞ ;

ð5:4Þ

where ki denote L independent loop momenta, qj denote
the momenta for the internal lines, each qj being a linear

combination of the ki and the external momenta pj, and G
is the product of the coupling constant factors from the
vertices.

A. UV behavior and unitarity

Assume interactions of the form ϕn in V in (2.1)–(2.2).
All amplitudes (5.4) are then UV finite. Indeed, before the
introduction of delocalization kernels such interactions
produce power divergences of superficial degree of diver-
gence 4 − Eþ ðn − 4ÞVn, where E is the number of
external legs and Vn the number of vertices in the graph.
The introduction of the delocalization kernel resulting in
the F̂2 factor for each internal line in (5.4) removes any
such power divergences by its rapid decay property (2.6)
(property I of admissible kernels, Sec. II). The same applies
to a range of other interactions VðϕÞ, in particular,
transcendental potentials admitting convergent power
series expansions.9

The other property required of admissible kernels is that
F̂ðkÞ is an entire function of k (Property II of Sec. II). This
ensures that the Landau equations for locating the singu-
larities of any given amplitude (5.4) are not changed by the
presence of F̂ factors in the integrand. Their derivation [19]
is the same whether F̂ is a polynomial entire function as in
local theories, or a transcendental entire function as in the
nonlocal theory case. Similarly, the derivation of the
Cutkosky discontinuity (cutting) rules [20,19] is unaffected
since it only assumes that any F̂ factors in the integrand in
(5.4) are entire functions of their arguments. It follows that,
at least order by order in the perturbative expansion, the
theory is unitary.
An important difference between polynomial and tran-

scendendal F̂ is that in the latter case continuation from
Euclidean to Minkowski momenta by Wick rotation is
generally no longer possible. It is not generally possible to
“close the contour at infinity” due to the different growth
behavior of transcendental entire functions in different
directions in the complex plane. Note, again, in this
connection that the rapid decay property is required to
hold for all real values of the arguments, and so for both
Minkowski and Euclidean momenta configurations.

B. Causality

As it is well known any formulation of causality in
relativistic quantum field theory involving causal relations
between spacetime events necessarily suffers from the fact
that spacetime points cannot be pinpointed by wave packets
built from physical, i.e. on-shell particles. Conditions can
then be generally stated only in terms of some Green’s or
correlation functions. The relevant basic property is the

9As noted before, interactions ensuring manifest Lipschitz-
continuity in the classical theory (cf. Sec. III B on the classical
IVP) would be examples of interest here.
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decomposition of the causal (Feynman) propagator (5.1)
into positive and negative frequency parts:

ΔðxÞ ¼ θðx0ÞΔþðxÞ þ θð−x0ÞΔ−ðxÞ ð5:5Þ
with

Δ�ðxÞ ¼
Z

d4k
ð2πÞ3 θð�k0Þδðk2 −m2Þe−ikx

≡
Z

d4kΔ�ðkÞe−ikx: ð5:6Þ

When the basic structure (5.1) is modified as in (5.3), this
decomposition no longer holds in the form (5.5). Inserting
(5.5) in (5.2) one obtains

~Δðx− yÞ ¼
Z

d4ud4vFðx− uÞFðv− yÞ

· ½θðu0 − v0ÞΔþðu− vÞ þ θðv0 − u0ÞΔ−ðu− vÞ�
ð5:7Þ

¼
Z

d4qe−iqðx−yÞ
Z

dω
2π

i
ωþ iϵ

· fe−iωðx0−y0ÞF̂2ðq; q0 þ ωÞΔþðq; q0Þ
þ e−iωðy0−x0ÞF̂2ðq; q0 − ωÞΔ−ðq; q0Þg: ð5:8Þ

Equation (5.8) can be written in the form

~Δðx − yÞ ¼ ~Δcðx − yÞ þ ~Δncðx − yÞ: ð5:9Þ

Here ~Δc is a causal propagator defined by

~ΔcðxÞ ¼ θðx0Þ ~ΔþðxÞ þ θð−x0Þ ~Δ−ðxÞ; ð5:10Þ

where

~Δ�ðxÞ≡
Z

d4qF̂2ðqÞΔ�ðqÞe−iqx

¼
Z

d3q
ð2πÞ3

1

2ωq
F̂2ðq;�ωqÞeiq·xe∓iωqx0 ð5:11Þ

with ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
. The remainder

~Δnc ¼
Z

d4qe−iqðx−yÞ
Z

dω
2π

i
ωþ iϵ

·

�
e−iωðx0−y0Þ½F̂2ðq; q0 þ ωÞ − F̂2ðq; q0Þ�Δþðq; q0Þ

þ e−iωðy0−x0Þ½F̂2ðq; q0 − ωÞ − F̂2ðq; q0Þ�Δ−ðq; q0Þ
	

ð5:12Þ

is the non-causal contribution. Expanding the entire func-
tions F̂2ðq; q0 � ωÞ in an ω-power series (5.12) may be
given in the form

~Δncðx − yÞ ¼ i
X
m≥1

im−1

m!
δðm−1Þðx0 − y0Þ

× ½ ~ΔþðmÞðx − yÞ − ~Δ−ðmÞðx − yÞ�; ð5:13Þ

where

~Δ�ðmÞðxÞ≡
Z

d4qF̂2ðmÞðqÞΔ�ðqÞe−iqx

¼
Z

d3q
ð2πÞ3

1

2ωq
F̂2ðmÞðq;�ωqÞeiq·xe∓iωqx0

ð5:14Þ

with

F̂2ðmÞðqÞ ¼ ∂mF̂2ðq; q0Þ=∂qm0 ; m ¼ 1; 2;…: ð5:15Þ

Some remarks concerning these formulas should be
made. Equations (5.9)–(5.15) hold for any entire function
F̂. In particular, they hold for polynomial F̂ which is in fact
the familiar case of local theories with finite order deriva-
tive couplings and/or nonzero spin fields (modulo the
appropriate tensor structures). In that case the sum in
(5.13) is finite, i.e., ~Δnc consists of a finite number of
contact terms. These contact terms arise from transporting
derivatives across the theta functions in (5.5) into the Δ�
functions [cf. (5.11)]. Such contact terms are simply
dropped since they can be absorbed into a finite number
of local counterterms as discussed in the textbooks.10

In the case of nonlocal interactions, however, the sum in
(5.13) is an infinite sum that no longer can be removed by a
finite number of local counterterms. The contact terms now
sum up to a transcendental entire function, a nonlocal
contribution that cannot be dropped: the nonpolynomial
asymptotic behavior renders the propagator ~Δ, given by
(5.3), not equal to the causal propagator ~Δc given by (5.10).
By the same token the usual derivation of a (appropriately
subtracted) Kallén-Lehmann representation, which directly
relies on the decomposition (5.10), cannot be carried
through for (5.3) which is of the form (5.9). Note in this
connection that in the expression (5.13) for ~Δnc the quantity

~ΔþðmÞðx − yÞ − ~Δ−ðmÞðx − yÞ

¼
Z

d4qF̂2ðmÞðqÞ½ΔþðqÞ − Δ−ðqÞ�e−iqx

10This is the known ambiguity in the definition of the (free)
Feynman Green’s function: polynomial factors, due, for example,
nonzero spin, can either be included in the definition of the Δ�s
or act on the entire scalar propagator (5.5); the latter convention is
nearly universally adopted. The ambiguity amounts to (Lorentz
noninvariant) local counterterms. The most complete and math-
ematically careful discussion is given in the classic textbook [21],
see also [15].
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involves the field commutator Fourier transform ΔþðqÞ − Δ−ðqÞ, which, however, upon integration will not vanish for
spacelike distances due to the presence of the F̂2ðmÞ factors. In momentum space (5.13) is given by

~ΔncðkÞ ¼
Z

d4x ~ΔncðxÞeikx

¼ i
X
m≥1

1

m!

1

2ωk
½F̂2ðmÞðk;ωkÞðk0 − ωkÞm−1 − F̂2ðmÞðk;−ωkÞðk0 þ ωkÞm−1�

≡ iVðkÞ ð5:16Þ

as the convergent expansion in positive powers of an entire function. Thus, ~Δnc manifestly does not contribute to absorptive
parts and can in fact be viewed as a nonlocal vertex iVðkÞ (Fig. 3).
In the case of kernels of bounded support the following observation can now be made. If jx0 − y0j > 2l in (5.7), then one

necessarily has signðu0 − v0Þ ¼ signðx0 − y0Þ and (5.7) gives

θðjx0 − y0j − 2lÞ ~Δðx − yÞ ¼ θðjx0 − y0j − 2lÞ
Z

d4ud4vFðx − uÞFðv − yÞ

· ½θðx0 − y0ÞΔþðu − vÞ þ θðy0 − x0ÞΔ−ðu − vÞ�
¼ θðjx0 − y0j − 2lÞ ~Δcðx − yÞ: ð5:17Þ

Hence

~Δðx − yÞ ¼ θðjx0 − y0j − 2lÞ ~Δðx − yÞ þ θð2l − jx0 − y0jÞ ~Δðx − yÞ
¼ θðjx0 − y0j − 2lÞ ~Δcðx − yÞ þ θð2l − jx0 − y0jÞ ~Δðx − yÞ
¼ ~Δcðx − yÞ þ θð2l − jx0 − y0jÞ½ ~Δðx − yÞ − ~Δcðx − yÞ�: ð5:18Þ

Thus, in coordinate space, the difference between ~Δ and the

causal propagator, i.e., ~Δnc ¼ ~Δ − ~Δc, arises entirely from
inside the bounded region of the kernel support and its
effect is confined in it. In momentum space, since for
sufficiently small l, F̂ðkÞ is essentially constant for all k
less than of order 1=l, and is of rapid decay for k > 1=l, it
is evident from (5.16) that ~ΔncðkÞ is appreciably non-
vanishing only for momenta of order 1=l. Note how the
(classical) picture of evolution over time-blocks of size
≳2l in the Sec. IVaccords with these quantum propagation
properties.
Having examined the structure of the propagator we may

now consider the conditions imposed on amplitudes by
causality.

1. Local interaction

It will be useful to first recall the local case. The general
causality condition is the Bogoliubov causality condition
[21,22]. It can be stated, in various slightly different but
equivalent versions, in terms of amplitudes and thus in
terms of diagrams. (Conditions on n-point Wightman
functions under appropriate permutations of their argu-
ments, a special case of which is the frequently stated
condition of commutativity of field operators at spacelike
distances, reduce, when diagrammatically expressed, to
special versions of the Bogoliubov conditions.)
In the local interaction case the propagators are given by

(5.1), (5.5) and (5.6) with local vertex factors −ign.
Following [23,15] we conveniently state the Bogoliubov
causality condition in the form:

ð5:19Þ
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Here the blob represents any given diagram or collection
of diagrams with a given number of external legs. The
external vertices, labeled 1 and 2, to which two or more of
these legs are attached, have been selected and explicitly
indicated; nothing else is depicted explicitly, see Fig. 4(a).
Vertices 1 and 2may be any interactionvertices present in the
Lagrangian or represent the insertion of operators used to
probe the process. The broken line arises from the

momentum space representation of theta functions intro-
duced for time-ordering vertices 1 and 2 in the coordinate
space statement of the condition [21]; it amounts to a
(noncovariant) propagator connecting the two vertices given
in Fig. 4(b). The shaded lines in (5.19) represent the sumover
all Cutkosky cuts placed in the manner indicated. Energy
flows from the unshaded to the shaded side, each cut
propagator being replaced by ΔþðkÞ [Fig. 5(a)].
Because energy is conserved at vertices a region on the

unshaded side must be connected to incoming lines, and a
region on the shaded sided to outgoing lines. On the shaded
side Feynman rules are those of S†, i.e., complex con-
jugated propagators and vertex factors. Thus, the second
term represents the sum over all Cutkoski cuts with vertices
1 and 2 on the unshaded side; the sum in the third term is
over cuts with vertex 2 on the shaded side and vertex 1 on
the unshaded side. An efficient derivation proceeds from
the Veltman largest time equation which employs the
representation (5.5) leading to general cutting formulas
for any (set of) graph(s) [23]. (5.19)) is then obtained as a
particular application of these cutting formulas.11 The well-
known details are given in [23,15].

2. Nonlocal interaction

In the presence of nonlocal interactions (5.5) is replaced
by (5.9). The presence of ~Δnc means that the derivation
leading to (5.19) no longer holds. To obtain an appropriate
extension of (5.19) in the nonlocal case we proceed as
follows. Start with the causal propagator given by (5.10)–
(5.11). Using this causal propagator the derivation leading
to (5.19) now applies, and one regains (5.19) but now with
propagators ~Δc and cut lines ~Δþ. (Incidentally, this would
be the Bogoliubov causality condition equation for nonzero
spin fields and/or local derivative interactions, i.e., cases
with appropriate polynomial F, as discussed above.) We
next substitute ~Δc ¼ ~Δ − ~Δnc for each propagator. In this
manner we obtain:

ð5:20Þ

FIG. 3 (color online). The propagator ~ΔðkÞ can be decomposed
in the sum of a causal propagator ~ΔcðkÞ and ~ΔncðkÞ which is
entire analytic in the energy plane and thus can be treated as a
nonlocal vertex iVðkÞ for which momentum conservation holds
as usual.

FIG. 4. Diagrammatic notation in (5.19) (cf. text).

11The unitarity equations expressing the absorptive parts as a sum over Cutkosky cuts can also be obtained as another application of
these cutting formulas.
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The l.h.s in (5.20) is as in (5.19) but now applied to the our
nonlocal theory (2.2)–(2.3), i.e. all propagators are given
by ~ΔðkÞ on the unshaded side and its complex conjugate on
the shaded side, whereas all cut lines represent ~ΔþðkÞ,
cf. Fig. 5(b). To each term on the l.h.s. there corresponds a
set of reduced graphs, indicated by the insertion of the label
R, obtained by replacing its propagators (uncut internal
lines) by the nonlocal vertex −iVðkÞ in all possible ways. A
simple example is given in Fig. 6. The r.h.s. in (5.20) then
consists of summing over all such reduced graphs. (5.20)
is our extension of the Bogoliubov causality equation in
the presence of nonlocal interactions. The r.h.s. represents
the corrections to the local theory condition (5.19) due to
nonlocality.
In the case of quasilocal, i.e., bounded support inter-

actions these corrections are generally extremely small
since, as pointed above, a nonlocal vertex VðkÞ differs from
zero essentially only around momenta of order 1=l. Of
particular relevance are processes involving scales longer
than the nonlocality scale l. Except for internal momenta
circulating in loops, momenta flowing through the diagram
are below 1=l and the corresponding internal lines gives
essentially zero contribution to the nonlocal vertex (5.16).
It is natural in such a case to consider, in particular, the two
external vertices 1 and 2 used to probe causality to be
connected to the rest of the diagram by tree branches
carrying momenta well below 1=l into the diagram. This
would represent measurements over spacetime scales
(much) larger than l. Contributions from the nonlocal
vertex in internal loops are small because of the rapid decay
properties of F̂ cutting off momenta above 1=l—cf. remark
following (5.18). The theory at scales longer than l
behaves essentially as a local theory with a cutoff 1=l.
This may be viewed as providing the quantum

underpinning of our remarks in the classical context in
the latter part of Sec. III B.
In the case of strictly nonlocal, i.e., unbounded support

interactions characterized by some scale l the noncausal
effects can “leak” out of regions of size l and be more or
less pronounced depending on the form of the delocaliza-
tion kernel F. If F decays exponentially outside a region of
size l, any noncausal effects can be extremely small at
large distances relative to l. Such nonlocal interactions
would be hardly distinguishable from quasilocal ones, at
least as long as small acausal effects leaking out do not
accumulate in some special processes.

VI. DISCUSSION AND OUTLOOK

In summary, we studied scalar field theories with
interactions of delocalized fields, the delocalization being
specified through a nonlocal integral kernel Fðx − yÞ. We
imposed conditions on such kernels to insure UV finiteness
and unitarity of amplitudes. Kernels satisfying such con-
ditions are smooth functions of rapid decay and classified
as either strictly nonlocal or quasilocal (bounded support)
kernels. In the quantum theory this may be described as the
kernels being chosen in the appropriate test function spaces
that regularize the quantum fields (tempered distributions).
Using this framework we gave a detailed treatment of the
classical IVP. The introduction of nonlocal kernels results
into partial integro-differential equations of motion and an
IVP with past and future delays. We gave rigorous proofs of
the existence but also the accompanying complete lack
of uniqueness of solutions due to the future delays. This is,
of course, the manifestation of acausality. We saw how the
acausality effects are mitigated when confined in a region
of limited extent. Passing to the quantum theory we derived
a generalization of the equation for the Bogoliubov
causality condition on amplitudes. This generalization,
eq. (5.20), explicitly shows how the terms in the equation
expressing causal propagation must be supplemented to
include the effects of nonlocality.
As discussed in Sec. V the structure of these acausal

corrections is such that, for quasilocal kernels of length size
l, their effect is confined within regions of size l. This is
no longer true for strictly nonlocal kernels where the
acausal effects leak out. But they can be very small for
sufficiently (exponentially) fast decaying kernels. In this
connection one may recall the example of the Lee-Wick
prescription which, though unrelated to the nonlocal

FIG. 5. Propagator and cut lines in (a) local theory, Eq. (5.19);
(b) nonlocal theory, Eq. (5.20).

FIG. 6 (color online). The set of reduced graphs that arise from a cut box graph.
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theories studied here, also entails acausal tails but generally
falling off only as powers of the distance. They, nonethe-
less, apparently produce tiny effects [24,25]. For strictly
nonlocal interactions, however, the possibility always
remains of devising certain processes where small acausal
effects leaking out to longer distances may accumulate.
In any event our results indicate that quasilocal inter-

actions are the most appealing. They possess the good UV
behavior conferred by nonlocality while they mitigate
acausal effects by actually confining them within the
bounded support region of the kernels given by some
characteristic scale l. In fact, as we saw in the last section,
for physics at momenta below a cutoff of order 1=l they
essentially behave as local theories. Microscopic acausal-
ities confined within a small length scale l are not
necessarily bad, and may even be desirable for certain
applications, in particular, in the very early universe [25].
We dealt exclusively with scalar theories in this paper.

Coupling to fermions would not appear to present any
problems. Extension to include gauge interactions, how-
ever, is not straightforward. This is because gauge invari-
ance relates the interaction and the free parts of the action.
Thus, they no longer can be independently modified
without breaking the invariance. In particular, one cannot
delocalize just the interactions. One approach is to delo-
calize gauge invariant or covariant field combinations such
as Fμν or Rμν. This is the approach followed in [3], also
[4,6]. It typically results in superrenormalizability rather
than complete UV finiteness, as was already realized in the
early work on nonlocal QED [1]. Ways in which finiteness
may be achieved within this approach have recently been
considered in [26]. Another approach [27] is to first modify
the interactions, thus breaking gauge invariance, and then
try to restore it by the iterative addition of an infinite series
of new interaction terms to the action. Such constructions,
though, are rather unwieldy and of doubtful action

convergence properties, and have not been completely
carried out explicitly. These, however, are not the only
possible approaches for introducing nonlocality in gauge
theories. Gravity, in particular, is special in the sense that
the basic fields are tensors rather than connections, and
this offers some additional possibilities, which we will
consider elsewhere.
Returning to scalar fields, one may remark that, at least

in the absence of supersymmetry, they are difficult to
accommodate within the usual framework of local field
theory, i.e., incorporate as nontrivial (nonperturbatively
existing) theories. In that they may be somewhat similar to
gravity (the other even-spin bosonic field). There is always
an inherent, wide arbitrariness in the potential of scalar
fields that may be only resolved by the presence of a non-
Gaussian (Wilson-Fisher type) UV fixed point assuring
existence. Nonlocality, which, as expounded above, can
accommodate general potentials, may offer another way to
accomplish this. It is in fact amusing that quasilocal
interactions to some degree mimic the presence of an
UV fixed point, as will be discussed elsewhere.
Finally, one might consider the deeper question of

how delocalized fields such as those studied here may
arise. In this paper we introduced a scalar density function
FðxÞ on the spacetime manifold whose role is to delo-
calize fields. We then investigated the properties F must
possess and the behavior of the resulting theories of
interacting delocalized fields in some detail. We did not
inquire as to any possible physical basis or mechanisms
underlying the presence of F. Addressing this question
would require a deeper theory.
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