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The notion that the scalar listed as f0ð500Þ in the particle data booklet is a pseudo-Nambu-Goldstone
(NG) boson of spontaneously broken scale symmetry, explicitly broken by a small departure from an
infrared fixed point, is explored in nuclear dynamics. This notion—which puts the scalar (which we shall
identify as the “dilaton”) on the same footing as the pseudoscalar pseudo-NG bosons, i.e., octet π, while
providing a simple explanation for the ΔI ¼ 1=2 rule for kaon decay—generalizes the standard chiral
perturbation theory (χPT) to “scale chiral perturbation theory,” denoted χPTσ , with one infrared mass
scale for both symmetries, with the σ figuring as a chiral singlet NG mode in the nonstrange sector.
Applied to nuclear dynamics, it is seen to provide answers to various hitherto unclarified nuclear
phenomena, such as the success of one-boson-exchange potentials, the large cancellation of a strongly
attractive scalar potential by a strongly repulsive vector potential in relativistic mean-field theory of
nuclear systems and in-medium QCD sum rules, the interplay of the dilaton and the vector meson ω in
dense Skyrmion matter, the Bogomol’nyi-Prasad-Sommerfeld Skyrmion structure of nuclei accounting
for small binding energies of medium-heavy nuclei, and the suppression of hyperon degrees of freedom
in compact-star matter.
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I. INTRODUCTION: THE SCALAR CONUNDRUM
IN NUCLEAR PHYSICS

In this paper, we explore the applicability to nuclei and
nuclear matter the notion recently put forward by Crewther
and Tunstall [1] that the scalar f0ð500Þ, denoted in what
follows as σ,1 is a pseudo-Nambu-Goldstone (pNG for
short) boson arising from spontaneous breaking of scale
invariance (or more generally conformal invariance) with a
small explicit breaking due to the departure from an IR
fixed point and the current quark mass. Whether an IR
fixed point exists in the (matter-free) vacuum of QCD for
three flavors (Nf ¼ 3) is not yet settled.2 There is, however,
neither a clear-cut lattice indication nor a strong theoretical
argument anchored on QCD proper that falsifies it either. In
fact, there is a stochastic numerical perturbation calculation
that “votes for the existence” of an IR fixed point for two
massless quark flavors [4]. Furthermore, it is not implau-
sible that such an IR fixed point could be generated in

medium as an emergent symmetry even if it were absent in
the matter-free vacuum. In fact, there is a compelling
reason, as discussed below, to believe that an IR fixed
point of a sort—dubbed a “dilaton-limit fixed point”
(DLFP)—can emerge through strong nuclear correlations.
The existence of such a symmetry emergence (which we
will simply assume in this paper) has the potential to
resolve several long-standing conceptual problems in
nuclear physics and offers a possibility to probe strongly
compressed neutron-star matter.
A scalar meson with a mass around 600 MeV has figured

importantly in nuclear physics for a long time. The only
scalar mesonic excitation with such a low mass currently
known is f0ð500Þ with a broad width. Despite the observed
large width, when taken as a local bosonic field, it has fairly
successfully accounted for the attractive scalar channel in
nucleon-nucleon potentials, such as the well-known Bonn
boson-exchange potential and (perhaps more significantly)
in the highly popular relativistic mean-field (RMF) theories
for nuclei, nuclear matter, and dense (compact-star) matter.
There has been a long-lasting controversy as to whether the
scalar excitation with such a large width can be considered
as a point particle, depicted in terms of a local field in
phenomenological or effective-theory approaches. If it is a
hadronic particle, then the question is, what is its QCD
structure? Can it be described in a quark model such as, say,
quarkonium of ðqq̄Þm complex with m ≥ 1, a gluonium
(glueball), or a mixture thereof? In certain models such as
the linear sigma model, there is a natural scalar, which is the
fourth component of the chiral four-vector in the linear
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1Not to be confused with the fourth component of the chiral

four-vector ð~π; σÞ in the two-flavor linear sigma model.
2For large Nf as in the techni-dilaton approach to Higgs

physics, there is an indication, supported by lattice calculations,
that such an IR fixed point exists [2]. The nature of IR fixed point
involved is basically different here from the QCD case. None-
theless a dilaton chiral perturbation approach similar to what is
advocated in [1] and adopted in medium in this paper has been
formulated [3].
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sigma model. However, it must have a mass ≳1 GeV to be
compatible with the current algebras, so it is not relevant far
below the chiral scale 4πfπ ∼ 1 GeV. Furthermore, what
figures in Walecka model-type [5] RMF theories—which
are successful in heavy nuclei and nuclear matter–must be a
chiral singlet scalar, not the scalar of the linear sigma
model. If it were the sigma model scalar with a mass
< 1 GeV as needed in nuclear phenomenology, it would
tend to trigger the destabilization of nuclear matter due to
strong attractive many-body forces [6]. As a way out, it has
been suggested that in densities near that of nuclear matter,
the scalar is a chiral singlet scalar, but at high density as the
system approaches chiral restoration, it should transmute to
a q̄q configuration that is expected to dominate at the large-
Nc limit. This feature has been discussed in terms of the
DLFP [7].
The idea of Crewther and Tunstall (CT hereafter for

short) that the scalar is a NG boson (or more precisely a
pNG boson) of spontaneously broken scale symmetry
driven by explicit symmetry breaking provides a simple
way to resolve the above “scalar conundrum” and offers a
new perspective on various aspects of nuclear physics. It is
the objective of this article to explore the possibilities
provided by this point of view. The potential power of the
scheme is that the low-lying scalar is a chiral singlet.
Though as yet unproven rigorously, we take this as an
assumption that may be valid in medium and proceed until
we are “hit by a torpedo” if there is any. We will find along
the way an appealing array of observations that go in the
right direction, suggesting that we are on the right track.
In this paper, we formulate a general framework of our

approach focusing more on concepts, which will be taken
up with practical applications to specific physical systems
in a paper that will follow [8].

II. THE σ AS A DILATON

That there is a scalar Nambu-Goldstone boson on par
with a pseudoscalar Goldstone boson (pion) in low-energy
hadronic interactions is an old idea dating way back to the
late 1960s [9]. What is new here—and potentially powerful
for our purpose if it is proven to be valid—is that it is
formulated in QCD. In terms of the QCD trace anomaly

θμμ ¼ βðαsÞ
4αs

Ga
μνGaμν þ ð1þ γmðαsÞÞ

X
q¼u;d;s

mqq̄q ð1Þ

there can be exact scale invariance if in the chiral limit
mq → 0 there is an IR fixed point βðαIRÞ ¼ 0. The
suggestion by CT is that such an IR fixed point (non-
perturbative in character) is highly plausible and far below
the chiral scale 4πfπ ∼ 1 GeV, and the QCD β function
flows along the trajectory leading to the IR fixed point. The
scale symmetry associated with the vanishing of θμμ is then
assumed to be spontaneously broken, giving rise to a NG

boson. Note that the chiral symmetry is spontaneously
broken at the IR fixed point as long as the quark condensate
hq̄qi is nonvanishing. That the two spontaneous broken
symmetries are intimately locked to each other is the key
point of our development. The scalar f0ð500Þ is identified
with that scalar NG boson with the mass generated by
spontaneous scale symmetry breaking in the presence of an
“explicit” symmetry breaking encoded in both the depar-
ture of αs from αIR (with a nonzero gluon condensate) and
the current quark mass. Thus the dilaton σ joins the
pseudoscalars—pions and kaons—to form the pseudo-
NG multiplet. What ensues is then a more powerful
effective field theory that combines both chiral symmetry
and scale symmetry with the possibility of doing systematic
expansions both in the chiral counting and in the scale
counting.
Among the advantages in this approach in particle

physics is a simple explanation of the ΔI ¼ 1=2 rule for
kaon decays that is accomplished by elevating next-to-
leading-order (loop) terms in three-flavor chiral perturba-
tion theory (χPT3) into the leading tree order in terms of the
σ field in χPTσ . What we are interested in is what this
scheme with a NG scalar put together with the NG
pseudoscalars does in nuclear phenomena.
When applying this to nuclear matter, the key degrees

of freedom are the nucleon (proton and neutron) and the
pion—the degrees of freedom figuring in the usual χPT.
Implementing the scalar σ, on the other hand, requires three
flavors including the strangeness. In what follows, how-
ever, we will be focusing on nonstrange phenomena that
take place in nuclear systems, so we will be projecting out
the two-flavor sector from SU(3) for most of the consid-
eration, apart from the structure of the σ. To apply this to
strange hadrons, hyperons and kaons need to (and can) be
straightforwardly incorporated.
Before going to the explicit breaking of the scale and

chiral symmetries, let us consider the case of exact chiral-
scale symmetry. Both the charged axial current J5aμ and
the dilatation current Dμ related to the energy-momentum
tensor θμν by

Dμ ¼ xνθμν ð2Þ

will be conserved,

∂μJ5aμ ¼ 0; ∂μDμ ¼ θμμ ¼ 0: ð3Þ

The conserved axial current leads to the celebrated
Goldberger-Treiman ( GTπ) relation for the axial current,

gAmN ¼ fπgπNN; ð4Þ

where fπ is the pion decay constant and gπNN is the
pion-nucleon coupling constant. Similarly, the conserved
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dilatation current gives the analog that we will call the GTσ

relation,3

mN ¼ fσgσNN; ð5Þ

where fσ is the σ decay constant and gσNN is the σ-nucleon
coupling constant [10,11]. We note that one can obtain the
same relations (4) and (5) by using partially conserved
currents (partially conserved axial-vector current (PCAC)
and partially conserved dilatation current (PCDC)).
One can also write down a scalar analog to the Gell-

Mann–Oakes–Renner (GMOR) relation (for the pion)
f2πm2

π ¼ − 1
2
ðmu þmdÞhðūuþ d̄dÞi [1]:

f2σm2
σ ¼ −ð4þ β0Þ

�
βðαsÞ
4αs

G2

�

− ð3 − γmÞð1þ γmÞ
X

q¼u;d;s

hmqq̄qi; ð6Þ

where β0 ¼ ∂
∂αs βðαsÞ. Note that apart from the gluon

condensate, this involves the kaon mass in addition to
the pion mass that figures in the GMOR relation for
the pion.
The GT relations and GMOR relations for π and σ, being

low-energy theorems, are to constitute the leading terms in
chiral-scale perturbation theory χPTσ. What makes sense in
two-flavor chiral perturbation theory is the small up- and
down-quark masses resulting in small pion mass. However,
the σ mass is comparable to the kaon mass, so in addressing
kaon decays it could make sense to consider them (as is
done in the CT approach) on the same scale as the
pseudoscalar NG bosons. In addressing nuclear phenom-
ena, on the other hand, one may wonder whether the σ mass
(∼1=2 GeV) is small enough to be considered on the same
footing as the pion mass. There are currently no systematic
χPTσ calculations in nonstrange sectors, so one cannot say
anything, but there are cases where the mass difference of
the size in question does not obstruct the chiral-perturbative
approach. For instance, in hidden local symmetry theory,
the ρ meson of mass 770 MeV can be treated on the same
footing as the pion mass in formulating chiral perturbation
theory [12]. This aspect is more relevant in nuclear medium
since there is a possible symmetry limit, at high temper-
ature or high density, called the “vector manifestation (VM)
fixed point” [12] at which the ρ and π become degenerate.

As suggested in Ref. [7], the dilaton can also join the pion
at what is called the “dilaton limit fixed point.” This points
to a possible existence of an IR fixed point of the type
suggested by CT in dense medium regardless of whether
such a fixed point is present in the QCD vacuum. These
observations suggest that π, ρ, a1, and σ could be put on the
same footing as discussed in Weinberg’s mended sym-
metries [13], where there is a sense in which they all
become massless with ρ and a1 becoming local gauge
bosons at the chiral-scale symmetry restoration point.

III. SCALE-SYMMETRIC HIDDEN-LOCAL-
SYMMETRY LAGRANGIAN

Following Ref. [1], we write the chiral-scale Lagrangian
in terms of scale dimensions in the “chiral-scale expansion”
in momentum (equivalently in derivative), quark mass, and
Δα ¼ αIR − αs with the counting rule

OðmqÞ ∼Oðp2Þ ∼Oð∂2Þ ∼OðΔαÞ: ð7Þ

This order will be referred to as the “chiral-scale order”
appropriate for χPTσ, to be distinguished from the chiral
order for χPT2. We write the chiral-scale Lagrangian
(following Ref. [1]) as

LχPTσ
¼ Ld¼4

inv þ Ld>4
anom þ Ld<3

mass: ð8Þ

The first term has scale dimension four, the second term is
from the trace anomaly, and the third term is the quark-mass
term. The first is scale invariant, and the second and third
terms break scale invariance explicitly. We should note
that in the chiral limit in the hidden-local-symmetry
(HLS) Lagrangian, only covariant-derivative couplings
involving pions and vector mesons are allowed.
However, in the presence of the dilaton nonderivative
terms involving the scalar are allowed and hence can
produce infrared divergences triggering phase transitions.

A. Meson sector

Let us first treat the meson sector. Apart from the dilaton
σ, we can limit ourselves to the flavor SU(2) sector as
specified above. Baryons will be introduced later.
We start with the HLS Lagrangian with ρ and ω in flavor

U(2) symmetry which, we will assume, is valid in matter-
free space as well as in medium.4 In terms of the chiral
counting, the leading chiral order is Oðp2Þ, consisting of
one term quadratic in the covariant derivative and a
quark-mass term. The next-to-leading chiral order is
Oðp4Þ, at which there are 21 normal-parity terms
and three anomalous-parity terms called “homogeneous

3It is perhaps worth pointing out that this relation makes
quantitative sense, giving a result in the right ballpark. In
relativistic mean-field approaches in nuclear physics (to be
commented on in Sec. IV) the scalar (σ) NN coupling required
for nuclear phenomenology comes out to be gσNN ≃ 9–10, and
by using fσ ≃ fπ (suggested on the assumption of an approxi-
mate equality in scale between chiral symmetry breaking and
conformal symmetry breaking [1]) we would get mN ≃ 10fπ≃
0.84–0.94 GeV.

4In the specific applications given [8], there is evidence that the
U(2) should break down at high density. For the discussion in this
paper, for simplicity, we will however continue with the unbroken
symmetry.
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Wess-Zumino” (hWZ) terms. The details [14] are unillu-
minating, so they will be skipped here. They are also not
needed for our discussion. We will drastically simplify the
Lagrangian for the discussion here. Fortunately, it turns out
that for semiquantitative applications to baryon structure
and dense baryonic matter in terms of Skyrmions, one can
take only one term out of the 21 in the Oðp4Þ Lagrangian,
as explained in Ref. [15]. For our purpose, we can simply
write

LHLSðξL; ξR; VμÞ ¼ Lð2Þ
HLS þ Lð4Þ

HLS þ Lð4Þ
hWZ þ Lmass ð9Þ

with U ¼ expðiπ=fπÞ ¼ ξ†LξR. The first two terms are of
normal parity, the third term is the abnormal-parity hWZ
term Lagrangian, and the last term stands for the quark-
mass term of Lðp2Þ in chiral order. The number in the
superscript stands for n in OðpnÞ in the chiral counting. As
given, their scale dimensions are5

d̂½Lð2Þ
HLS� ¼ 2; d̂½Lð4Þ

HLS� ¼ d̂½Lð4Þ
hWZ� ¼ 4: ð10Þ

We will postpone the quark-mass term until later.
Now, how do we incorporate σ and arrive at the effective

Lagrangian (8)?
We follow the standard procedure using the “conformal

compensator field” χ related to the dilaton σ field by

χ ¼ feσ=f; ð11Þ

where we introduced the spurion field f of mass dimension
one and d̂½f� ¼ 0. In medium, the “vacuum” j0i changes to
j0mi, and hence the vacuum expectation value changes
with density. Therefore at the end of the day, we put hχi ¼
fehσi=f ¼ fσ for the given vacuum.6 As an NG boson, σ
transforms nonlinearly,

σ → σ þ f ln λ; ð12Þ

so

χ → λχ; ð13Þ

i.e., d̂½χ� ¼ 1.
What we wish to do is to write down an effective χPTσ

Lagrangian in terms of the effective fields π, ρ, (a1 if
needed), and σ and also ω that we will put together with
ρ in flavor U(2). There are two terms coming from the

scale-dimension-two term in Eq. (9), one scale invariant
and the other scale breaking,

Lð2Þ
HLSðξL; ξR; Vμ; χÞ ¼ cð2ÞHLSL

ð2Þ
HLS

�
χ

f0σ

�
2

þ ð1 − cð2ÞHLSÞLð2Þ
HLS

�
χ

f0σ

�
2þβ0

; ð14Þ

where f0σ ¼ h0jχj0i, the vacuum expectation value of the
matter-free vacuum. Here and also below, the coefficients
CHLS are unknown constants. The first term in the above
equation gives rise to the scale-invariant first term of Eq. (8)
and the second term to the scale-breaking second term of
Eq. (8). Now one can do the same for the second and third
terms in Eq. (9), which are both scale invariant as is. For
instance, for the second term one has

Lð4Þ
HLSðξL; ξR; Vμ; χÞ ¼ cð4ÞHLSL

ð4Þ
HLS

þ ð1 − cð4ÞHLSÞLð4Þ
HLS

�
χ

f0σ

�
β0

: ð15Þ

Similar separations can be done in a by-now-obvious way
for the χ kinetic energy term and any other terms that are
introduced.
Next we consider the third term of Eq. (8)—the quark-

mass term—which written in the chiral Lagrangian is of the
form7

Lmass ¼
f20π
4

TrðMU† þ H:c:Þ; ð16Þ

whereM is the mass matrix with diagM ¼ ðm2
π; m2

π; 2m2
K −

m2
πÞ for SU(3) flavor (as needed for the mass formula for

the dilaton) and f0π is the pion decay constant in the matter-
free vacuum. Taking the mass matrix M as a spurion
field with scale dimension d̂½M� ¼ 1, the scale-symmetry-
implemented mass term, including the anomalous
dimension, is

Ld<3
mass ¼

f20π
4

�
χ

f0σ

�
3

TrðMU† þ H:c:Þ: ð17Þ

Finally, we have nonderivative terms involving the χ field
only,

−Vχ ¼ v1χ4 þ v2χ4þβ0 : ð18Þ

It is clear that each term comes in with an unknown
parameter, so in general there will be far too many
unknown parameters to control in the effective

5The vector-meson kinetic energy term is ofOðp2Þ in the HLS/
chiral counting [12], so it should belong to the part Lð2Þ

HLS, but it is
of scale-dimension four, and hence will not figure explicitly in
what follows.

6The vacuum change due to the medium will be denoted with
an asterisk. 7From here on, we will ignore the anomalous dimension γm.
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Lagrangian.8 When applying this to nuclear matter and
dense hadronic matter, however, one can rely on the
observation that when one sets σ ¼ 0, the resulting theory
is the standard chiral perturbation theory (SχPT) which is
accurate in nuclear processes that do not involve scalar
degrees of freedom. In terms of the chiral-scale counting
given before, the β0 contribution is of higher order in the
bare constants involving the matter fields. Therefore we

can safely set cðnÞHLS ¼ 1 for n ¼ 2, 4. This is the widely
resorted-to approximation that recognizes that the proper-
ties of non-NG fields are affected little by the explicit
breaking of scale invariance, whereas the spontaneous
breaking (closely linked to that of chiral symmetry)
cannot be ignored. This is consistent with the standard
procedure of introducing the dilaton using the conformal
compensator [9,16].
The simplified Lagrangian that we shall consider is

LM
χPTσ

ðπ;χ;VμÞ ≈ Lð2Þ
HLS

�
χ

f0σ

�
2

þLð4Þ
HLS

þ chWZL
ð4Þ
hWZ þ ð1− chWZÞLð4Þ

hWZ

�
χ

f0σ

�
β0

þ f20π
4

�
χ

f0σ

�
3

TrðMU† þH:c:Þ

þ 1

2
∂μχ∂μχþ v1χ4 þ v2χ4þβ0 : ð19Þ

Note that we have retained in this Lagrangian the potential
effect of the explicit scale symmetry breaking in the hWZ
term that brings in the ω degree of freedom. This is because
the presence of ω in dense Skyrmion matter has a drastic
effect on the behavior of hadrons in dense matter, which
requires a basic change in the structure of the anomalous-
parity term in the presence of density.
The possible role of the explicit scale symmetry breaking

in the potential will be discussed below. The potential is
given by the nonderivative terms

−V ¼ v1χ4 þ v2χ4þβ0 þ f20π
4

�
χ

f0σ

�
3

TrðMU† þ H:c:Þ:

ð20Þ

This gives the trace of the energy-momentum tensor

θμμ ¼ − β0v2χ4þβ0

þ f20π
4

TrðMU† þ H:c:Þ
�

χ

f0σ

�
3

: ð21Þ

The potential is minimized by

½4v1χ þ v2ð4þ β0Þχ1þβ0

þ 3
f20π
4f30σ

TrðMU† þ H:c:Þ�χ¼fσ ¼ 0. ð22Þ

This determines fσ ¼ hχi in the bare Lagrangian as a
function of β0, v1, v2, and the quark-mass matrix M, which
carry information on the intrinsic density dependence
through the condensates. At present, only the mass matrix
M in matter-free space out of the four constants is known,
so we are not able to make an estimate. We will suggest (as
in Ref. [1]) that fσ ≈ fπ in the matter-free vacuum and also
in medium.
There is an important point to note here. Consider the

chiral limit. The potential is then

−V ¼ v1χ4 þ v2χ4þβ0 : ð23Þ

If there were no explicit scale symmetry breaking, i.e.,
β0 ¼ 0, then the potential would be of the form κχ4. In this
case, Poincaré-4 invariance requires that κ be zero [17,18],
in which case hχi ¼ fσ is undetermined because the
potential is flat. This is because spontaneous scale sym-
metry breaking is possible only in the presence of an
explicit breaking, i.e., either β0 ≠ 0 or M ≠ 0 or both are
nonzero, a feature that differentiates scale symmetry from
global symmetries [19].

B. Baryon sector

One natural way (justifiable in the large-Nc limit) of
bringing baryons into the chiral-scale Lagrangian (8) or
(19) is (as discussed in Ref. [14]) to generate them as
solitons, i.e., Skyrmions, in the mesonic Lagrangian. Here
we simply introduce baryons as massive matter fields
coupled to π and Vμ in a hidden local symmetric way.
As noted, the baryon field has d̂½ψ � ¼ 3=2 and the covariant
derivative has d̂½Dμ� ¼ 1. Thus the baryon couplings to π
and Vμ are scale invariant. The baryon mass term, however,
has d̂½mBψ̄ψ � ¼ 3 so it needs to be multiplied by χ

f0σ
to

make it scale invariant. As in the meson sector, one could
also account for the effect of quark-gluon mixing in the
baryon sector, incorporating the effect of the explicit
breaking of scale symmetry β0. It is clear from the scalar
GT mass formula for the nucleon (5) that the explicit
symmetry breaking can be ignored and the nucleon mass is
dominated by gluon effects [1]. There is evidence for this
in the study of dense baryonic matter where the nucleon
mass remains nonvanishing and large when hq̄qi goes to
zero [14]. We have then

LB
χPTσ

ðψ ; π; χ; VμÞ ≈ LHLS;baryon −
χ

f0σ
mBψ̄ψ : ð24Þ8For instance, the 21 Oðp4Þ terms will bring in an additional

21 unknown parameters.
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IV. APPLICATIONS IN NUCLEAR PHYSICS

A. Nuclear χPTσ

To date, the effective field theory approach to nuclear
dynamics anchored on chiral symmetry has been chiral
perturbation theory using only the pion field, either with or
without baryon fields, the latter via solitons. This is the
standard (two-flavor) chiral perturbation theory (χPT). The
standard χPT is based on the assumption that more massive
meson degrees of freedom than pions can be integrated out
with their effects inherited in the parameters of the χPT
Lagrangian. This is evidently justifiable for the vector
mesons ρ and ω. It has been unclear, however, where the
scalar degree of freedom that has figured in phenomeno-
logical nuclear potential models (such as the Bonn poten-
tial) and also in a class of density-functional models (in
particular, the RMF approach initiated by Walecka) fits into
the chiral perturbative scheme. An implicit assumption was
that a scalar of mass around 600 MeV can be treated as a
local scalar field. On the contrary, in χPT, such scalar
excitations are to be generated at higher-order chiral
perturbation, invoking dispersion relations, higher-loop
unitarity corrections, etc. That such a χPT with baryons
included seems, at higher chiral order, to successfully
describe nuclear matter [20] indicates that multiloop
corrections do generate appropriate scalar attraction neces-
sary for binding in nuclei and nuclear matter.
The power of the CT approach is that the pseudodilaton

is to capture the dynamics of the scalar channel at the
leading (tree) order together with the pion, relegating loop
terms to small corrections. Having σ and π (and also K) on
the same footing at the same chiral-scale order would make
the calculation of nuclear potentials vastly simpler and
more efficient. The role of the dilaton would resemble the
scalar exchange in the popular Bonn one-boson-exchange
two-nucleon potential. It has the advantage of enabling one
to make systematic error estimates of higher-order terms, a
power that is lacking in phenomenological potential mod-
els. It will also affect medium-range three-body potentials
mediated by σ exchanges. In what follows, we will describe
certain features that show promise for novel developments.

B. Relativistic mean-field treatment of hidden
local symmetry with scale invariance

In this subsection we treat the chiral-scale Lagrangian
with the baryon field explicitly incorporated. In the next
subsection we will introduce baryons as Skyrmions from
the chiral-scale Lagrangian.
The Lagrangian we take is given by the sum of Eqs. (19)

and (24),

L1 ¼ LB
χPTσ

ðψ ; π; χ; VμÞ þ LM
χPTσ

ðπ; χ; VμÞ: ð25Þ

The dilaton potential defined by nonderivative terms
[Eq. (20)] should be changed in the presence of baryons to

−V ¼ v1χ4 þ v2χ4þβ0 þ f20π
4

�
χ

f0σ

�
3

TrðMU† þ H:c:Þ

−
χ

f0σ
mBψ̄ψ : ð26Þ

As mentioned, the dilaton potential (26) is to be minimized
at the matter-free vacuum at which hχin¼0 ¼ f0σ . Let us
consider that the vacuum is changed to one in which the
baryon density n > 0, which we call the “m(edium)-
vacuum” and denote as j0mi. Then the dilaton condensate
in that m-vacuum must be changed to h0mjχj0mi ¼ hχi� ≡
f�σ as a solution of Eq. (26). In this m-vacuum, we shift the
dilaton field

χ ¼ f�σ þ χ0 ð27Þ

and substitute this into Eq. (25). We get two terms: one
without χ0 and one with χ0. The first one gives back the
original baryon HLS Lagrangian (without the conformal
compensator field) with two parameters changed as

fπ → f�π ¼
f�σ
f0σ

f0π; ð28Þ

mπ → m�
π ¼

ffiffiffiffiffiffiffi
f�σ
f0σ

s
mπ; ð29Þ

with the hidden gauge coupling g and a remaining
unchanged.9 As a consequence the vector-meson and
nucleon masses will be modified as10

mV ¼ ffiffiffi
a

p
fπg → m�

V ¼ af�πg ¼
f�σ
f0σ

mV; ð30Þ

mN → m�
N ¼ f�σ

f0σ
mN: ð31Þ

We should mention briefly how the density-dependent
f�σ (which figures crucially in the low-density regime) is
determined. More precise discussions will be given below
in Sec. V.
In principle, if we know how f�σ depends on QCD

variables, then its “intrinsic density dependence” (IDD)
will be known in terms of the density dependence of those
QCD variables that enter. It will be encoded in the effective
in-medium dilaton potential, which is presently not known
without precise knowledge of the scale symmetry breaking,
both explicit and spontaneous. For low density one can,
however, exploit the relations (28) and (29) linking the σ
decay constant to the pion decay constant, since the pion

9a is a parameter in HLS, a ¼ fσ̄=fπ , where σ̄ is the would-be
Nambu-Goldstone boson that is eaten up by the ρ to become
massive via the Higgs mechanism.

10These are the scalings that were obtained in 1991 [21].
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properties can be extracted from deeply bound pionic
systems that can be accessed experimentally.
Now the Lagrangian with χ0 describes σ coupling (in a

way consistent with scale symmetry) to the vector mesons
and the nucleon, with the modified parameters given above.
Particularly important to nuclear dynamics as explained
below is the σNN coupling11

LσNN ¼ −
mN

f0σ
ψ̄ψχ0 ¼ gσNNψ̄ψσ þ � � � ; ð32Þ

where the ellipsis stands for higher fluctuating σ fields and
the GTσ relation (5) is used in the last equality. It is worth
noting that the σNN coupling remains unscaling at the
order considered.
The resulting Lagrangian is then applicable to the

description of nuclear dynamics in a baryonic medium
with density n. It is easy to see that when expanded to
lowest order in the fields with only the baryon N, scalar σ,
and isoscalar vector field ωμ appropriate for symmetric
nuclear matter,12 it reproduces the Walecka model
Lagrangian [5] with, however, the mass parameters given
a prescribed density dependence,

L ¼ N̄½iγμð∂μ þ igvωμÞ −m�
N þ gσNNσ�N

−
1

4
F2
μν þ

m�
ω
2

2
ω2 þ 1

2
ð∂μσÞ2 −

m�
σ
2

2
σ2: ð33Þ

The in-medium σ mass m�
σ is subtler and requires a lot

more care. We will return to it in Sec. VA. Apart from m⋆
σ ,

this Lagrangian has implicit density dependence in only
one quantity, Φ ¼ f�σ=f0σ, reflecting the interlocking of
scale and chiral symmetries. As mentioned in Sec. V, the
matching of the effective Lagrangian to QCD at the
matching scale endows an “intrinsic density dependence”
inherited from QCD in the “bare” parameters of the
Lagrangian which manifests itself at a density above that
of nuclear matter n0. For the moment, we ignore this at least
up to n0. This can be justified, as discussed in Ref. [8].
As mentioned, without knowing the precise mechanism

for the explicit breaking of scale symmetry, we cannot
calculate the in-medium properties of the parameters v1;2,
β0, etc. of the potential (20). However, f�π=f0π can be
measured in certain experiments such as deeply bound
pionic systems [22]. If we ignore for the moment the IDD
in other parameters in Eq. (33) (which will be justified
later), Eq. (28) allows one to apply the mean field to the
Lagrangian (33) and see how it fares for nuclear matter. It in
fact is found to work well. This has been done by adjusting

the “bare” (that is, unstarred) parameters of the Lagrangian
in the standard manner to fit nuclear matter properties [23].
This model improves, more significantly, on the original
linear model of Walecka in that the density dependence of
the parameters removes one of the defects of Walecka’s
linear model, namely the compression modulus which is
too big (roughly by a factor of 4) compared with the
empirical value. In relativistic mean-field models, the
remedy is made by incorporating higher field terms that
are consistent with the strategy (e.g., naturalness, etc.) of
effective field theory and their condensates “renormalizing”
the parameters of the Lagrangian. The Lagrangian (33) is
found to nearly fully implement this nonlinear effect by
the dilaton condensate reflecting the role of the sliding
m-vacuum.

C. Vector and scalar mean field

The RMF approaches—belonging to the general para-
digm of density functional theory and generalizing the
Walecka linear mean-field model—are found to work
remarkably well for finite nuclei and nuclear matter [24],
and are now being applied, with some success, to highly
dense matter expected to be found in the interior of compact
stars. The most outstanding feature of RMF approaches as
applied to nuclear matter is the large cancellation of the
scalar mean-field energy (which is attractive) and the vector
mean-field energy (which is repulsive) [5]. The binding
energy that results, ∼16 MeV, is tiny compared with the
respective mean-field energies ∼300 MeV. We can capture
what is happening here in terms of the nucleon self-
energies in nuclear matter obtained in in-medium QCD
sum-rule calculations. The detailed analysis made in
Ref. [25] can be succinctly summarized by the nucleon
self-energies in medium at density n,

Σs=mN ≈ −
σπN
m2

πf2π
n; ð34Þ

Σv=mN ≈
8mq

m2
πf2π

n; ð35Þ

where σπN is the πN sigma term andmq is the average light-
quark mass. It is found numerically that at nuclear matter
density, Σs=mN ≈ −ð0.3–0.4Þ and Σv=mN ≈ ð0.3–0.4Þ. In
terms of the σ-implemented hidden local symmetry
Lagrangian, these self-energies correspond to two tadpole
diagrams: one involving a σ pole giving the scalar attraction
and the other a ω exchange leading to the vector repulsion.
Both are big but the sum is tiny. We will see below in
the description relying on Skyrmion structure that this feature
emerges in what appears to be a totally different mechanism.
The near cancellation of the QCD sum-rule self-energies

supports the near cancellation found in RMF analyses.
This cancellation will persist at a higher density than the
normal, becoming however more intricate due to the

11For the chiral-scale Lagrangian to reproduce, at tree order,
the low-energy theorem (5), the sign for the coupling constant is
chosen so that gσNN > 0.

12Both ρ and π fields can be used in a HLS-symmetric way for
asymmetric nuclear systems.

SCALAR PSEUDO-NAMBU-GOLDSTONE BOSON IN NUCLEI … PHYSICAL REVIEW D 92, 125033 (2015)

125033-7



scaling properties of the dilaton and the ω meson at higher
densities. This feature must play a crucial role in generating
repulsion in the equation of state (EoS) needed to lead to
the massive neutron stars observed recently. An explicit
calculation in Ref. [8] does indeed confirm this prediction.
The simplest way to understand the impressive success

of the RMF approach in nuclei and nuclear matter is that the
system is at the Landau Fermi-liquid fixed point [26] and
that the RMF approach captures the Landau Fermi-liquid
fixed point theory. This suggests that the RMF approxi-
mation could be valid in dense medium as long as the
system is a Fermi liquid.

V. MATCHING TO QCD, VECTOR
MANIFESTATION, AND MENDED SYMMETRIES

While the method presented above with Eq. (25) that can
be given some theoretical and phenomenological support
near nuclear matter density could be extended to somewhat
above the equilibrium density, there are reasons to expect
that it will ultimately fail within the hadronic phase at some
density not too far above n0. One reason is that the Fermi-
liquid structure could be broken down at high density. This
will be discussed later. Another reason has to do with the
IDD that the effective field theory inherits from QCD at the
scale where effective field theory is matched to QCD. This
effect is embedded in the parameters of the Lagrangian at
the scale that the effective field theory is defined. While the
density dependence brought in by the Φ factor is more or
less under control (most likely up to nuclear matter density
and perhaps slightly above), ignoring the IDD in other
parameters of the effective Lagrangian cannot be valid at
higher density, particularly as the chiral restoration density
is approached. Among others, the most compelling reason
is the VM property of HLS [12].
As alluded to above without precision, the ultraviolet

completion of the effective Lagrangian—a requirement for
an effective field theory for QCD—is made by matching the
correlators of the EFT [the dilaton-implemented HLS
(sHLS)] to those of QCD at a matching scale ΛM slightly
below the chiral scaleΛχ ∼ 4πfπ . From it, the parameters of
the “bare” sHLS Lagrangian inherit from QCD the depend-
ence on nonperturbative quantities, i.e., the condensates,
hq̄qi, hG2i, etc. defined at the scale ΛM in the matter-free
vacuum. In applying this Lagrangian to in-medium systems
at low energy, twooperations are required.One is to take into
account the vacuum structure caused by density, and the
other is to renormalization-group (RG)-decimate fromΛM to
the low-energy scale where physics is done. The first is
captured by the density dependence of the condensates that
we call IDD (mainly in the quark condensate since the gluon
condensate is insensitive to density [25]13), and the second is

performed by doing quantum (loop) corrections using the
density-dependent parameters.
One can classify two classes of IDD. One involves the

matter fields, vector mesons, and baryons. It comes from
matching the isovector-vector and axial-vector correlators
at the scale ΛM (at n ¼ 0). We shall call this IDDm. The
other involves pNG bosons, σ and π. It is found by
matching the trace of the energy-momentum tensor. We
shall call the resulting density dependence IDDpNG. The
IDDpNG embodies the common IR scale for the scale and
chiral symmetries leading to the relations (28) and (29).
Due to the interplay between the two symmetries, IDDpNG

affects also the matter fields giving rise to the scalings (30)
and (31). The masses and coupling constants involving the
matter fields carry, in addition, the IDDm.
In doing the mean-field approximation with, e.g.,

Eq. (33), the IDDpNG effect is included via the dilaton
condensate, but the IDDm effect (which is difficult to
calculate except near the VM fixed point) is not taken into
account. Fortunately, there is a good reason to believe that
the latter effect could be negligible far away from the chiral
restoration point. Thus for instance, the ρ-meson mass
should scale with f�σ , but not with the gauge coupling g or
with the parameter a. In fact, it has been verified phenom-
enologically that the density dependence is fairly well
captured by the dilaton condensate, at least up to nuclear
matter density [27]. But this cannot continue to be valid as
the matter approaches the chiral restoration density nc.
Among others, the most compelling indication for the
breakdown comes from the VM property of HLS [12].
It was shown in Ref. [12] that as the chiral symmetry

becomes unbroken, by temperature or density or other
mechanisms so that the quark condensate goes to zero, the ρ
mass should approach zero (in the chiral limit) as

m�
ρ ∼ g� ∼ hq̄qi� → 0: ð36Þ

Thus while the ρ mass drops at low density mainly due to
the decrease of f�π with the gauge coupling g and a
remaining constant, at high density it is the decreasing
gauge coupling that should take over, as indicated in
Eq. (36). It is found also that the pion decay constant does
remain more or less constant starting from a density
∼ð2–3Þn0 up to near the chiral transition. The explanation
for this could be that the dilaton decay constant is
controlled at high density by the gluon condensate with
the quark condensate strongly suppressed, and the locking
of the scale and chiral symmetries makes the pion decay
constant behave the same as the dilaton decay constant.
There is an effective change in the role for the precursor for
chiral symmetry restoration between f�σ (or equivalently
f�π) and the hidden gauge coupling g� at n ∼ 2n0. This
suggests that the ρ mass, not f�π , plays the role of an order
parameter for chiral restoration. A similar phenomenon also

13The decrease of the gluon condensate is estimated to be ∼5%
at nuclear matter density. Given the large uncertainty, the effect of
this change could be ignored in our analysis.
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takes place for the nucleon mass. We will comment on this
in Sec. VII.

A. The mass of pseudo-Nambu-Goldstone bosons

Now, what about the dilaton mass in dense medium?
This is an extremely intricate matter, a clear answer to
which requires a deep understanding of both explicit and
spontaneous symmetry breaking of scale invariance, which
is at present missing. The only thing one can say is that
since the dilaton is a pseudo-NG boson, its behavior could
be closer to that of the pion than to the vector meson and the
nucleon.
To get some insight, let us proceed with the property of

the pion in medium, which is fairly well studied both in
experiments and in theory. For the latter, standard chiral
perturbation theory is surely suitable. Let us see what we
can expect.
From Eq. (29) we have

mπ�

mπ
≈

ffiffiffiffiffi
f�π
fπ

s
: ð37Þ

It has been established from the study of deeply bound
pionic systems that ðf�π=fπÞ2 ≈ 0.64 at nuclear matter
density n ¼ n0 [22]. This gives mπ�

mπ
≈ 0.9. However, this

is not the whole story in nuclear matter because what is
observed in nature [22] also contains pion fluctuation
effects. The latter can be computed reasonably well with
the chiral Lagrangian containing “bare” parameters. It turns
out to give a ∼10% increase to the mass at n ¼ n0 [28]. To
compare with experiment, one has to combine the two. The
net effect is 0.9 × 1.1 ≈ 1. This means that the pion mass
should remain unshifted by matter, at least up to nuclear
matter density. This seems to be somewhat at odds with the
measurement of the pion mass shift which sees a small
increase in mass, but this could be due to uncertainty in the
interpretation. It could depend on how the in-medium mass
for the pion is defined (which is not unique) in the analysis
of the experimental data.
It is not feasible at the moment to exploit a similar

strategy for the in-medium mass of the dilaton. This is
because the mechanism for the explicit scale symmetry
cannot be pinned down given the numerous unknown
constants such as v1, v2, β0, etc. in the effective
Lagrangian. We can, however, make an indirect argument
based on QCD sum-rule analyses of gluon condensates
using Eq. (6). Ignoring the pion mass relative to the kaon
mass, we have in medium14

m�
σ
2 ≈ f�σ−2

��
−ð4þ β0Þ

�
βðαsÞ
4αs

G2

��
þ 3m�

K
2f�π2

��
:

ð38Þ

From QCD sum rules, one knows that the gluon condensate

is little affected by density [25]. Since hβðαsÞ
4αs

G2i�∼
β0v2hχ4þβ0 i�, this indicates that f�σ ¼ hχi� is also insensitive
to density, particularly above some density.15 Also, the
s-quark condensate hs̄si is expected to be less sensitive to
density than the light-quark condensate, so the kaon mass
would also be little affected for not too high density. Thus
the in-medium σ mass is affected primarily by the
σ-decay constant appearing in the denominator. As men-
tioned, the single infrared mass scale assumption could
apply in medium, in which case f�σ ≈ f�π . This suggests that
the σ mass would stay more or less unscaled or even go up a
little rather than down at some density.

B. Mended symmetries

However, at high density very near the VM fixed point,
both the chiral symmetry and the scale symmetry are
supposed to be restored (β0 ¼ 0 and hq̄qi ¼ 0) and the
situation is changed dramatically such that both the pion
mass and the dilaton mass are expected to vanish. That the
σ tends, in the chiral-scale limit, to a massless excitation
could be understood as reflecting its NG boson property
manifested on the same footing as the pion. In the large-Nc
limit, both are dominated by a qq̄ component [1]. Near the
VM fixed point, the ρ and a1 tend to become massless
(joining the pion), revealing a generalized hidden local
symmetry [30]. This multiplet structure of π, σ, ρ, and a1 at
the chiral transition could be interpreted as a case of
Weinberg’s mended symmetries [13]. As stressed in
Ref. [13], the nonderivative coupling associated with the
scalar and the possible massless gauge fields ρ and a1
emerging at the critical point could play an important role
in the critical behavior of dense matter.

C. How could vector repulsion win
over scalar attraction?

Let us consider what can happen as density exceeds
that of nuclear matter by a large amount. Extrapolating
the mean-field treatment given above for densities in the
vicinity of nuclear matter, we look at the scalar and vector
self-energies of the nucleon which can be given by the
scalar and vector potentials, SN and VN ,

14Given that the process must take place near the IR fixed
point, one can expand β near the fixed point and set
βðαsÞ ≈ ðαIR − αsÞβ0ðαIRÞ. Note that it is the departure from
the IR fixed point that represents the explicit breaking of scale
symmetry.

15It is not yet clear how to pin down this density in this
formalism. In the Skyrmion crystal description of dense matter
[29] this behavior, reflected in the pion decay constant f�π ≈ f�σ ,
appears at the density at which Skyrmions fractionize into half-
Skyrmions, n1=2 ∼ 2n0. We equate the two densities in Ref. [8] in
applying the formalism to the EoS of dense matter.
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SN ≈ −
g�σNN

2

m�
σ
2
nS; ð39Þ

VN ≈
g�ωNN

2

m�
ω
2
nB; ð40Þ

where nS is the scalar density∝ hN̄Ni� and nB is the baryon
number density ∝ hN†Ni�. In applications to nuclei,
g�σNN ∼ 9–10, m�

σ ∼ 500–600 MeV, g�ωNN ∼ 13, and
m�

ω ∼ 700–800 MeV. In medium, nS < nB, so one can
see that there is a large cancellation between SN and VN ,
leaving a small binding energy B=mN ∼ 0.01, essentially
giving the QCD sum-rule results. A highly provocative
consequence of this cancellation is that it can enable one to
understand the tiny binding energy observed in medium
nuclei, in a way similar to what the Bogomol'nyi-Prasad-
Sommerfield (BPS) Skyrmion structure does as described
in Sec. VI C.
Assuming that the mean-field approximation holds at

higher density than normal, we can make a simple estimate
of what can happen as density increases. In compact-star
matter, the mean field of the ρ meson must enter, i.e, in the
symmetry energy, but let us focus on the effects of the
scalar σ and the vector ω. To be quantitatively accurate,
the IDD inherited from the matching needs to be accounted
for (as is seen in the vector-manifestation property of the ρ
meson), but one can already see what is going on from what
we have discussed above. There are two effects that
enter here.
(1) As density increases, the scalar density gets increas-

ingly suppressed relative to the baryon density.
(2) The σ mass could increase (albeit slowly) inversely

proportional to some power of f�σ which could
decrease, whereas the ω mass could drop propor-
tionally to some power of f�σ . Thus, effectively, the
scalar attraction will decrease while the vector
repulsion will increase as density goes up above n0.

The consequence is that at some density, the repulsion will
take over. To pinpoint where this can happen would require
a more sophisticated calculation, taking into account the
IDD in the parameters β0, v2, etc. ignored in the above
estimation, but it seems highly plausible that it will happen.
It will give rise to the changeover from a soft EOS to a stiff
EoS at some density above n0, typically at ∼2n0 as
observed in the dense Skyrmion matter.

D. Solution to the “hyperon problem”

So far we have been considering nuclear systems without
strangeness. The dilaton à la CT has a greater power when
the strangeness flavor is considered, given that the mass
scale of the dilaton is the same as that of the kaon. A
particularly interesting question is the effective mass of
hyperons in dense medium because it has to do with the
EoS in compact-star matter. A standard approach to hyper-
ons in star matter is the relativistic mean-field theory and

this could be done with the three-flavor HLS Lagrangian
with baryons. In this approach, we can again resort to self-
energies of the hyperons involved.
Whether or not hyperons enter in dense neutron-rich

matter as in compact-star matter can be addressed in terms
of the in-medium mass of hyperons. Most relevant to the
issue is Λ, with the other hyperons less likely to figure. Λ’s
appearing at densities ∼ð2–3Þn0 are understood to soften
the EoS, with the consequence that ∼2 solar-mass stars
could not be stabilized. This is known as the “hyperon
problem.”
In our approach it suffices to consider, in the RMF

approximation, the self-energy of the Λ in neutron matter as
in nuclear matter. The binding energy of a Λ is estimated to
be ∼28 MeV in nuclear matter [31], about 12 MeV bigger
than that of a nucleon in nuclear matter. The only difference
from the nucleon case is the couplings gωΛΛ and gσΛΛ in
place of N. We therefore expect that there will be the same
changeover as in the nucleon case from attraction to
repulsion at some density comparable to or perhaps some-
what higher than that of nuclear matter. It is also expected
that the same mechanism would make Λ − Λ interactions
negligible. This could provide an extremely simple model
for the mechanism put forward by Bedaque and Steiner—
taking place at n≳ 2n0—that could avoid the “hyperon
problem” [31]. Numerically it is found to be in the range
1.5≲ n=n0 ≲ 2.0 [8].

VI. DENSE BPS MATTER

A. Skyrmion matter

In the discussions up to this point, baryons were
explicitly included as matter fields. Alternatively—and
potentially more predictively—one can introduce baryons
as Skyrmions from meson-only HLS Lagrangians.
Particularly interesting is the Lagrangian obtained in
holographic QCD obtained by Sakai and Sugimoto [32],
which is given by a five-dimensional Yang-Mills (YM)
action in warped space plus a Chern-Simons action that
encodes anomalies:

S ¼ SYM þ SCS; ð41Þ

SYM ¼ Ncλ

54π3

Z ffiffiffiffiffiffi
−g

p 1

8
trðF 2

ABÞd4xdz; ð42Þ

SCS ¼
Nc

16π2

Z
Â∧trF2 þ Nc

96π2

Z
Â∧F̂2: ð43Þ

Here Â and F̂ are the U(1) component of the U(2) gauge
field A and its field tensor, respectively, and unhatted
quantities are SU(2) components. This action—valid for
large Nc and a large ’t Hooft constant λ ¼ g2sNc, where gs
is the QCD gauge constant—has U(2) local gauge invari-
ance and supports an approximate instanton that can be
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identified as the baryon. It works fairly well for baryon
properties [33], particularly for the vector-dominance
structure of nucleon EM form factors that arises when
dimensionally reduced à la Klein-Kaluza from five to four
dimensions, with the resulting action consisting of pions
and infinite towers of hidden local fields, i.e., isovector and
isoscalar vector mesons. Details, successes, and failures can
be found in Ref. [34].
In terms of large Nc and large λ, the leading term is the

OðNcλÞ term in the YM action (42) in flat space. The
warping and the Chern-Simons term are subleading in λ,
i.e., OðNcλ

0Þ. If one ignores the warping and the Chern-
Simons term, then the leading five-dimensional YM action
in flat space supports an exact instanton configuration with
baryon quantum number 1. Reduced to four dimensions,
the action will consist of the pion and the infinite tower of
hidden gauge bosons, i.e., the isovector mesons, i.e., ρ, ρ0,
ρ00 � � � and a1, a01, a

00
1 � � �. The isoscalar vector mesons, i.e.,

ω mesons, decouple and do not figure in the leading order.
An extremely interesting observation made by Sutcliffe
[35] is that the Skyrmion in the presence of only the
isovector mesons approaches more closely to the BPS
Skyrmion as more vector mesons are included in the
Lagrangian. Applied in the limit of bringing in infinite
vector mesons, the A-Skyrmion system becomes a BPS
state with zero binding energy for an A-nucleon nuclei.
This gets closer to what is observed in nature with a very
small binding energy for medium-mass nuclei.

B. Skyrmion crystal: avoiding the ω disaster

That something goes wrong in the presence of the ω
meson has been noted when Skyrmions are put on a crystal
lattice with the Lagrangian of the form

L2 ≈ Lð2Þ
HLS

�
χ

f0σ

�
2

þ LhWZ

�
χ

f0σ

�
δ

þ � � �

þ f2π
4

�
χ

f0σ

�
3

TrðMU† þ H:c:Þ

þ 1

2
∂μχ∂μχ − VðχÞ; ð44Þ

where V represents a generic dilaton potential. For illus-
tration, only the quartic term in the hWZ Lagrangian is
shown, with the others being subsumed in the ellipsis. It is
the hWZ terms that bring ω mesons coupling to other
hadrons. In Ref. [36], it was found that the Skyrmion matter
constructed with Eq. (44) with δ ¼ 0 had the property that
the in-medium pion decay constant f�π increased as density
increased. Similarly, the matter was stabilized only when
the ω mass increased.16

Both of the above observations are totally at odds with
nature. In particular, the pion decay constant is expected
almost model independently in theory (QCD) (and has been
experimentally observed up to normal nuclear matter
density n0) to decrease as density increases.
However it was noted then that if one took (for no good

reason) δ≳ 2, both diseases were simply cured by an
intricate interplay between the scalar σ and the vector ω
[37]. Unfortunately, the analysis of Ref. [37] was found to
be incomplete because the hWZ terms were truncated to
only one term (out of three) proportional to ∼ωμBμ, where
Bμ is the baryon current, and a full account of the three
hWZ terms is found to be needed for quantitative accuracy
[14]. However, what is clear and noteworthy is that a term
of that type with δ ¼ β0 is required to repair the disastrous
results. It should be noted that this resolution would
correspond to picking chWZ ¼ 0 and β0 ≳ 2 in Eq. (19).
It is tempting to conjecture that the hWZ term reflecting the
chiral anomaly carries information on the explicit scale
symmetry breaking in medium encoded in the trace
anomaly via the identification δ ¼ β0.17

C. BPS structure in heavy nuclei and dense matter?

The two observations—i.e., the emergence of the BPS
structure with the infinite tower of vector mesons in the
absence of the dilaton field and the ω field on the one hand,
and the near cancellation of the strong scalar attraction and
the strong vector repulsion leaving a small binding energy
in medium and heavy nuclei on the other—must be closely
related. We have interpreted these in terms of the interplay
between the chiral symmetry and the conformal symmetry
operative in medium. In some sense, related to these
observations is (as mentioned) the suppression of the ρ
tensor forces in the symmetry energy so that the pion plays
the dominant role in the EoS of asymmetric nuclear matter
relevant to compact stars. What results at high density
therefore seems to be very simple: the dense matter is given
by weakly interacting quasiparticles with only the pions
intervening in the interactions.
An extremely simple but puzzling case is the BPS matter

for heavy nuclei constructed in Ref. [38]. There the main
ingredient in the Lagrangian is a topological term quadratic
in the topological current (hence BPS), corrected by small
terms such as Coulomb and isospin breaking. The model
has no obvious connection to QCD. Yet, with a mild
parameter adjustment, the model (without pionic inter-
actions) is found to describe the Bethe-Weizäcker mass
formula extremely well. This picture is the complete
opposite of that of the Skyrme model which is built of
pions in a Lagrangian that encodes current algebras, thus

16This analysis was done with a Coleman-Weinberg-type
dilaton potential, but the qualitative feature of the Skyrmion
crystal should not depend on the potential.

17Whether the magnitude β0 ∼ 2 is reasonable or not is not
clear. It is interesting, however, that in Ref. [23] a large positive
anomalous dimension ∼2 was found to be relevant, though in a
different context.
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accounting for low-energy nuclear interactions. However,
both have difficulties. While it has an indirect link to QCD
as an effective field theory, the Skyrmion model with or
without vector mesons fails badly to explain nuclear
binding energy: the binding energy comes out much too
big. On the other hand, the BPS model, while surprisingly
successful for nuclear binding energies, with no obvious
link to QCD, fails to describe pion-nuclear interactions.
The question is, can these defects in both models be
repaired? This is a problem that begs to be resolved for
the models anchored on topology to be viable. Nobody
knows what the resolutions are. One possible conjecture for
the BPS model is that one could have the pions couple to
the BPS matter at the surface of the “compacton,” a bag
containing the BPS matter, somewhat like the bag model
for the nucleon, i.e., the chiral bag model with the pions
coupled at the surface with certain boundary conditions.

VII. DISCUSSIONS

In concluding this paper, we comment on a few issues
that could be closely related to what we have discussed
elsewhere or that remain poorly understood.
The structure of the dilaton and the χPTσ confirms the

finding in the Skyrmion-matter calculation of Ref. [14] that
the bulk of the nucleon mass, ∼70%, does not come from
the vacuum realignment by density, i.e., the partial restora-
tion of broken chiral-scale symmetry. It supports the thesis
that the baryon mass comes predominantly from gluons.
It is significant that f�σ ≈ f�π in dense matter [14,21]. We

consider this as an indication that there is a single infrared
mass scale for chiral symmetry and scale symmetry in
medium.
Some of the issues that are not yet resolved or to be

worked out are as follows.
(i) It is unclear what the source of αIR could be if it

existed. So far it has not been detected in lattice
QCD. And it may be difficult to pinpoint the location
of the fixed point. However, it cannot be ruled out
that such an IR fixed point could be present in a
highly correlated medium and is detectable. One
possibility is that scale invariance emerges in a phase
at a certain density that is different from the phase
at lower density that is continuously connected to
the matter-free vacuum. An example is the half-
Skyrmion phase uncovered at high density, ≳2n0, in
dense Skyrmion matter simulated on a crystal lattice
[29]. The question then is how to develop an
expansion in β0 in χPTσ.

(ii) So far the treatment in dense medium was based on
the assumption that the dense baryonic matter can be
treated reliably by Fermi-liquid theory. This is the

underlying reason why the density-functional ap-
proach as well as RMF theories are successful up to
nuclear matter density. But the presence of the
dilaton scalar with nonderivative coupling could
induce baryonic matter to deviate drastically from
the Fermi-liquid structure, changing into a non-
Fermi liquid as density increases. Such non-Fermi
liquid structure, perhaps an “un-Fermi-liquid” as in
condensed matter physics [39], could invalidate
what has been taken for granted in the past.

(iii) Applied to nuclear matter, χPTσ could have an
impact (via the scalar) on many-body forces and
hence on nuclear saturation, phase transitions, etc.
Reformulating a systematic nuclear chiral-scale
perturbation theory is an open problem.

(iv) RG studies showed that scalar exchange between a
nucleon and kaon is particularly important for kaon
condensation. If the scalar involved is the dilaton
associated with the IR fixed point structure, this
feature will play a crucial role in kaon condensation
[40]. This is more so if the argument for the
suppression of hyperons in compact-star matter
discussed above is correct.

In this paper, we exploited the possible equivalence of
the RMF approach to Landau Fermi-liquid theory and its
power in addressing the notion of f0ð500Þ as the scalar
pseudo-NG boson σ and in studying the interplay of the
scalar σ and the vector ω in a high-density EoS. The
arguments developed are quite general. In order to confront
nature it is, however, more efficient to resort to the “double-
decimation approach” described in Ref. [27], where the
first decimation is made to obtain VlowK , and then the
second decimation is performed (using the VlowK) to
approach the Landau Fermi-liquid fixed point. This method
is used in Ref. [8] to have the general framework discussed
in this paper confront nature via the EoS of compact-star
matter.
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