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In the current article, the classical analog of the minimal photon sector in the Lorentz-violating Standard-
Model extension (SME) is investigated. The analysis is based on describing a photon classically by a
geometric ray that satisfies the eikonal equation. The action principle, which leads to the eikonal equation
in conventional optics, is demonstrated to work in most (but not all) Lorentz-violating cases as well.
Furthermore it is found that the integrands of the action functional correspond to Finsler structures. Based
on these results, Lorentz-violating light rays in a weak gravitational background are treated through the use
of the minimal-coupling principle. This allows for obtaining sensitivities on Lorentz violation in the photon
sector by measurements of light bending at massive bodies such as the Sun. The computations are carried
out for the currently running ESA mission GAIA and the planned NASA/ESA mission LATOR. Finally, a
range of aspects of explicit Lorentz violation for photons is discussed in the Finsler setting.
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I. INTRODUCTION

During the past 15 years, plenty of progress has been
made in understanding CPT and Lorentz violation and its
possible implications on physics from both a theoretical
and a phenomenological point of view. This was made
possible by establishing the Standard-Model extension
(SME) in 1998 [1] and by the subsequent tireless work
of people in our community eager to study imprints of
Planck-scale physics detectable by experiments operating
at much smaller energies. The SME is a powerful frame-
work incorporating all Lorentz-violating operators into the
Standard Model of elementary particles and general rela-
tivity. It neither modifies the gauge structure of the
Standard Model nor does it introduce new particles. The
power-counting renormalizable contributions of the SME
are grouped into its minimal part where the remaining
higher-order operators comprise the nonminimal SME
[2–4]. This framework allows for astounding experimental
tests of Lorentz invariance and some present experiments
even reach a sensitivity of the Planck scale square (see [5]
for a yearly updated compilation of experimental con-
straints on Lorentz-violating coefficients). Since CPT
violation implies Lorentz violation according to a theorem
by Greenberg [6], the Standard-Model extension involves
all CPT-odd operators as a subset. Note that Lorentz
violation has been predicted by various prototypes of
fundamental theories such as string theory [7–9], loop
quantum gravity [10,11], noncommutative spacetime
[12,13], spacetime foam [14–16], and models with non-
trivial spacetime topology [17,18].

In the recent past, profound studies of modified quantum
field theories based on the SME were performed at tree-
level and beyond, i.e., including quantum corrections. The
result of these studies is that most sectors are free of any
inconsistencies [19–33]. Furthermore, parts of the SME
were explicitly shown to be renormalizable at one loop
[34–38]. Latest computations have even demonstrated
renormalizability of the modified quantum electrodynamics
[39] and the pure Yang-Mills sector [40] at infinite-loop
order using algebraic techniques. Therefore as long as the
SME is restricted to Minkowski spacetime, it seems to be a
reasonable, well-behaved, and model-independent test
framework for Planck-scale physics.
The gravitational sector of the SME was constructed in

the seminal article [41]. In the aftermath, studies of its
theory and phenomenology were performed in a series of
papers [42–51] with recent investigations of even non-
minimal operators in short-range gravity tests [52,53]. One
of the most important theoretical results of [41] is a no-go
theorem stating that explicit Lorentz violation is incom-
patible with the geometric framework of general relativity,
which is Riemannian geometry. Considering Lorentz-
violating matter in a gravitational background results in
modified conservation laws of the energy-momentum
tensor based on Noether’s theorem. However, Lorentz
violation does a priori not modify the geometrical base
such as the Bianchi identities of the Riemann curvature
tensor. Due to the Einstein equations the second Bianchi
identity is tightly bound to the conservation of energy-
momentum, which is then incompatible with the modified
matter sector.
A possibility of circumventing this clash is to
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spontaneous Lorentz violation. This means that a Lorentz-
violating background field arises dynamically as the
vacuum expectation value of a vector or tensor field.
Such models have been studied since the early 1990s
[7,54–58] (even before the SME existed) and they can be
considered as one of the motivations that lead to the
construction of the SME. The crucial point within models
of spontaneous Lorentz violation is to take into account the
Nambu-Goldstone modes that are linked to the symmetry
breaking. This can lead to arduous perturbative calculations
within such a theory.
For these reasons, it would be preferable to have a setup

available that allows for incorporating explicit Lorentz
violation into a curved background without possible ten-
sions with the underlying geometrical properties. A sug-
gestion was already given in [41] along the same lines as the
no-go theorem: introducing an alternative geometrical
framework that can include preferred directions naturally.
Such an extension of Riemannian geometry has been known
in the mathematics community for almost 100 years. It is
named Finsler geometry in reference to the famous math-
ematician Finsler who studied generalized path length
functionals in his Ph.D. thesis [59,60] (cf. [61] for a
comprehensive mathematical overview on the subject).
Finsler geometry has been applied to various fields of

physics [62]. In the context of the Standard-Model exten-
sion, it found its use just a couple of years ago when it was
shown that the minimal Lorentz-violating fermion sector
can be mapped to classical-particle descriptions [63–67].
The corresponding Lagrange functions are closely linked to
Finsler structures, i.e., generalized path length functionals.
Recently a nonminimal case was studied [68] as well as
classical-particle trajectories in electromagnetic fields and
modified spin precession based on an isotropic set of
minimal fermion coefficients [69]. In [70] a particular
class of Finsler spaces known as bipartite is investigated
closer from a physics point of view and [71] suggests
classical-mechanics systems that are linked to three-
dimensional versions of Finsler b space [64]. In a very
recent paper [72] b space is discussed from a mathematical
point of view. Its indicatrix (surface of constant value of the
Finsler structure) is a two-valued deformation from a
sphere that is characterized by singularities with ambiguous
derivatives. Considering the indicatrix as an algebraic
variety, the Hironaka theorem says that such singularities
can be removed [73]. In [72] a coordinate transformation
was found, which allows one to remove the singular sets
and to glue the remaining parts together appropriately. This
results in a well-defined mathematical description of b
space that can be used for future physical investigations.
The goals of the current article are threefold. First,

analogous classical equivalents for the minimal CPT-even
photon sector of the SME will be found. Second, with these
equivalents at hand we study phenomenological aspects of
Lorentz-violating photons in weak gravitational fields. Last

but not least various consequences of this approach will be
drawn based on Finsler geometry. The procedures to be
developed will differ extensively from the SME fermion
counterparts.
The paper is organized as follows. In Sec. II the Lorentz-

violating framework, which all investigations are based on,
is introduced.Abrief reviewonFinsler geometry andFinsler
structures in the SME fermion sector is given in Sec. III,
followed by an explanation of the method to constructing
Finsler structures in the photon sector. In that section we
investigate different cases that are the most interesting ones
from a physics point of view. In the geometric-optics
approximation photons are described by the eikonal equa-
tion, which forms the cornerstone of Sec. IV. It is demon-
strated how the Finsler structures obtained are linked to
the eikonal equation for the different sectors analyzed in the
previous section. Since the isotropic modification of the
CPT-even sector can be considered to be themost important
one, all forthcoming studies will be based on the latter.
Section V is dedicated to investigating the isotropic eikonal
equation in a weak gravitational background. We develop a
phenomenological framework to study light bending at
massive bodies within such a theory. In this context,
prospects are given on detecting isotropic Lorentz violation
of photons propagating in a gravitational background. This
is carried out for two space-based missions: GAIA and
LATOR. The final part of the paper is more theoretical. In
Sec. VI the modified conservation law of the energy-
momentum tensor is investigated, interpreting the results
from the point of view of explicit versus spontaneous
Lorentz violation. Last but not least, in Sec. VII we examine
the properties of the isotropic spacetime studied in Sec. V
from a Finsler-geometric point of view. The most important
findings in total are concluded on and discussed in Sec. VIII.
Essential calculational details can be found inAppendixesA
toC. Throughout the article natural units withℏ ¼ c ¼ 1 are
chosen unless otherwise stated.

II. CONSTRUCTION OF CLASSICAL
LAGRANGIANS

The base of the current article is formed by the minimal
SME photon sector whose action Sγ is comprised of CPT-
even modified Maxwell (mM) [1,74,75] theory and CPT-
odd Maxwell-Chern-Simons (MCS) theory [1,74–76]:

Sγ ¼
Z
R4

d4x½LmMðxÞ þ LMCSðxÞ þ LmassðxÞ�;

ð2:1aÞ
LmMðxÞ ¼ −

1

4
ημρηνσFμνðxÞFρσðxÞ

−
1

4
ðkFÞμνϱσFμνðxÞFϱσðxÞ; ð2:1bÞ

LMCSðxÞ ¼
1

2
mCSðkAFÞκεκλμνAλðxÞFμνðxÞ; ð2:1cÞ
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LmassðxÞ ¼
1

2
m2

γAμðxÞAμðxÞ: ð2:1dÞ

Here FμνðxÞ≡ ∂μAνðxÞ − ∂νAμðxÞ is the electromagnetic
field strength tensor that involves the Uð1Þ gauge field
AμðxÞ. The fields are defined in Minkowski spacetime with
metric ðημνÞ ¼ diagð1;−1;−1;−1Þ. The totally antisym-
metric Levi-Civita symbol in four spacetime dimensions is
denoted as εμνϱσ with ε0123 ¼ 1. The controlling coeffi-
cients characteristic for the framework considered are
comprised in the fourth-rank observer tensor ðkFÞμνϱσ
and the observer vector ðkAFÞκ. Both have dimensionless
components and they do not transform covariantly with
respect to particle Lorentz transformations, which renders
this theory explicitly Lorentz-violating. The field operator
of modified Maxwell theory is of dimension four, whereas
the operator of MCS theory has mass dimension three.
Therefore, MCS theory involves the Chern-Simons mass
scale mCS for dimensional consistency.
It is well known that a photon mass term encoded in

Lmass (with the photon mass mγ) violates Uð1Þ gauge
invariance. It has been introduced here for certain purposes
that will be explained below, but for most occasionsmγ will
be set to zero. Anyhow in [26] it was demonstrated that
certain birefringent cases of modified Maxwell theory
require a nonvanishing photon mass (at least in intermedi-
ate calculations) to have a consistent Gupta-Bleuler quan-
tization. Finally, a gauge fixing term will be omitted in the
action, since all considerations will be carried out at the
classical level.
In the first years of the SME, several people demonstrated

that an MCS term can arise radiatively at one-loop level by
imposing a nonvanishing CPT-odd bμ-term in the fermion
sector. The generated contribution is ambiguous, i.e., its
global prefactor depends on the regularization scheme [77–
82]. Similarly, more recent developments show that modi-
fied-Maxwell terms arise through radiative corrections
based on a CPT-odd Yukawa-type coupling in the fermion
sector with what is known as an “aether field” [83,84].

A. Classical Lagrangians and Finsler structures

The major goal is to understand how Lorentz-violating
photons can be described in the context of gravity. Since
Einstein’s relativity is a classical theory, it is reasonable to
obtain a classical analog of the quantum field theory based
on the action of Eq. (2.1). With such an analog at hand, it
should be possible to study how an explicitly Lorentz-
violating theory of gravity could be constructed consis-
tently. As an introduction to the topic, the mapping
procedure of the SME fermion sector to a classical
point-particle description [63] shall be reviewed. From a
quantum theoretical point of view a particle can be under-
stood as a suitable superposition of free-field solutions with
dispersion relation

fðpμ; mψ ; kxÞ ¼ 0; ðpμÞ ¼
�
p0

p

�
; ð2:2Þ

such that its probability density is nonzero in a localized
region and drops off to zero sufficiently fast outside. Here
p0 is the particle energy, p its three-momentum, mψ the
fermion mass, and kx denotes a particular set of Lorentz-
violating coefficients where x represents a Lorentz index
structure. The physical propagation velocity of such a wave
packet is the group velocity

vgr ≡ ∂p0

∂p : ð2:3Þ

A classical, relativistic pointlike particle is assumed to
propagate with four-velocity uμ ¼ γð1; vÞ where v is the
three-velocity. To map the wave packet to such a classical
particle, it makes sense to identify the group velocity
components with the appropriate spatial four-velocity
components:

vgr¼! −
u
u0

: ð2:4Þ

The minus sign has its origin in the different position of the
spatial index on both sides of the equation. Since the
physics of the classical particle rests on a Lagrange function
L ¼ Lðu0;uÞ, its construction is of paramount importance.
If the Lagrange function is positively homogeneous of
degree one, i.e., Lðλu0; λuÞ ¼ λLðu0;uÞ for λ > 0, the
action is parametrization-invariant. In this case, the physics
does not depend on the way the particle trajectory is
parametrized, which is a very reasonable property to have.
Positive homogeneity gives the following condition on the
Lagrange density according to Euler’s theorem [61]:

L ¼ −pμuμ; pμ ¼ −
∂L
∂uμ ; ð2:5Þ

with the conjugate momentum pμ. The latter is identified
with the momentum that appears in the quantum theoretical
dispersion relation of Eq. (2.2). The global minus sign in its
definition has been introduced such that the nonrelativistic
kinetic energy is positive. Now Eqs. (2.2), (2.4), and (2.5)
comprise a set of five conditions that shall be used to
determine pμ and L. Hence, all four-momentum compo-
nents and the Lagrange function are supposed to be solely
expressed in terms of four-velocity components.
The Lagrange functions corresponding to the standard

fermion dispersion law p2
0 − p2 −m2

ψ ¼ 0 read L ¼
�mψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0Þ2 − u2

p
. The two signs are the classical counter-

parts of the particle-antiparticle solutions at the level of
quantum field theory. It can be checked that the five
equations above are fulfilled for this choice of L. The
latter can also be written in the form L ¼ �mψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rμνuμuν

p
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with rμν known as the intrinsic metric. This metric is
essential to determine lengths of vectors and angles
enclosed by vectors. In the particular case considered it
corresponds to the (indefinite) Minkowski metric:
rμν ¼ ημν. This is not surprising since the starting point
to obtaining the Lagrange function was a field theory
defined in Minkowski spacetime. By a Wick rotation the
Lagrange function is related to a new function F based on a
positive definite intrinsic metric:

FðyÞ≡ Fðy; y4Þ≡ i
mψ

Lðiy4; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rijyiyj

q
;

rij ¼ diagð1; 1; 1; 1Þij: ð2:6Þ

Promoting rij to an arbitrary position-dependent metric
rijðxÞ, the function F becomes dependent on x:
FðyÞ ↦ Fðx; yÞ. It can then be interpreted as the integrand
of a path length functional of a Riemannian manifold M
where y ∈ TxM. A Finsler structure is a generalization of
that obeying the following properties:
(1) Fðx; yÞ > 0,
(2) Fðx; yÞ ∈ C∞ for all y ∈ TxMnfslitsg,
(3) positive homogeneity in y, i.e., Fðx; λyÞ ¼ λFðx; yÞ

for λ > 0, and
(4) the derived metric (Finsler metric)

gij ≡ 1

2

∂2F2

∂yi∂yj ; ð2:7Þ

is positive definite.
Prominent examples for Finsler structures that are outside
the scope of Riemannian geometry are Randers structures,
FðyÞ ¼ αþ β, and Kropina structures, FðyÞ ¼ α2=β, with

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aijyiyj

q
and β ¼ biyi where aij is a Riemannian

metric and bi a one-form. There are certain theorems
available to classify Finsler structures using various kinds
of torsions. The most important one is the Cartan torsion
Cijk, which is given by [85]

Cijk ≡ 1

2

∂gij
∂yk ¼ 1

4

∂3F2

∂yi∂yj∂yk : ð2:8Þ

In some books, Cijk is defined with an additional prefactor
F (see, e.g., [61]). The mean Cartan torsion reads as
follows:

Ii ≡ gjkCijk; ðgijÞ≡ ðgijÞ−1; ð2:9Þ

with the inverse derived metric gij. Deicke’s theorem says
that a Finsler space is Riemannian if and only if Ii vanishes
[86]. The Matsumoto torsion provides a further set of
quantities that are very useful to classify Finsler structures:

Mijk ≡ Cijk −
1

nþ 1
ðIihjk þ Ijhik þ IkhijÞ;

hij ≡ F
∂2F

∂yi∂yj : ð2:10Þ

Here n is the dimension of the Finsler structure considered
[85]. According to the Matsumoto-Hōjō theorem, a Finsler
structure is either of Randers or Kropina type if and only if
the Matsumoto torsion is equal to zero [87]. These
theorems will be used frequently throughout the paper to
classify Finsler structures encountered.
Following the rules recalled at the beginning of the

current section classical Lagrange functions of the SME
fermion sector were derived in [63,66–69]. In the articles
[64–66,68] their corresponding Finsler structures were
examined. In this paper, analogous investigations shall
be performed for the minimal SME photon sector based on
the action of Eq. (2.1). It will become evident that the
possible techniques used differ from the procedures
adopted for the fermion sector.

B. Maxwell-Chern-Simons theory

In the current section, the CPT-even photon sector com-
ponents ðkFÞμνϱσ inEq. (2.1b)will be set to zero restricting our
considerations to the MCS term of Eq. (2.1c) only.
Furthermore, the photon mass mγ will be set to zero as well.
In the seminal article [76] the magnitude of mCSðkAFÞκ was
constrained tightly due to the absence of astrophysical
birefringence. A collection of all constraints on components
ofmCSðkAFÞκ can be found in the data tables [5]. In spite of the
tight bounds,MCS theory is very interesting froma theoretical
point of view. The structure of the quantum field theory based
on MCS theory is quite involved, which was shown by
extensive investigations carried out in [20].1 The smoking-gun
results of the latter reference are that MCS theory is well
behaved as long as the preferred spacetime direction ðkAFÞκ is
spacelike. Issues with either microcausality or unitarity arise
for timelike ðkAFÞκ, though. Interestingly, this behavior
mirrors in the classical Finsler structure of MCS theory that
will be derived as follows. First of all spacelike MCS theory
shall be considered. The modified field equations in momen-
tum space read as follows [1]:

MαδðpÞAδ ¼ 0; ð2:11aÞ

MαδðpÞ ¼ ηαδk2 − kαkδ − 2imCSðkAFÞβεαβγδkγ; ð2:11bÞ

where kμ is the four-momentum to be distinguished from
the four-momentum pμ used for fermions. Imposing
Lorenz gauge kδAδ ¼ 0, the condition of a vanishing
determinant of M results in

1Note that the global prefactor of MCS theory is different in the
latter reference.
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k4 þ 4m2
CS½k2ðkAFÞ2 − ðk · kAFÞ2� ¼ 0; ð2:12Þ

leading to the following dispersion relations:

ω1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2m2

CSðkAFÞ2 � 2mCS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

CSðkAFÞ4 þ ðk · kAFÞ2
qr

: ð2:13Þ

Here the spatial momentum k is not to be confused with the
spatial part kAF of the MCS vector. Following the pro-
cedure outlined in Appendix A 2 leads to the Lagrange
function

Lj�MCS ¼ �mCSð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðkAFÞ2u2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkAF · uÞ2 − ðkAFÞ2u2

q
Þ:

ð2:14Þ

First of all, this result matches the Lagrange function first
obtained in [88]. For spacelike kAF it corresponds to the
Lagrangian of the minimal fermionic bμ coefficient where
here ðkAFÞμ takes the role of bμ and the Chern-Simons mass
mCS takes the role of the fermion mass mψ . This is because
there exists a correspondence between MCS theory and the
fermion theory involving the bμ coefficient whose Lagrange
density has the form bμψ̄γ5γμψ . The associated field
operator is of dimension three and it is CPT-odd [2], which
parallels some of the properties of MCS theory. Therefore
the Wick-rotated version of Eq. (2.14) can be interpreted as
a b space. The form of the Lagrangian of Eq. (2.14) remains
the same even for MCS theory with a timelike kAF, which
can be shown by direct computation. Undoubtedly, issues
arise for timelike kAF, since in this case the Lagrange
function is not a real function anymore.
A classical Lagrange function is of mass dimension one,

which is why Eq. (2.14) is directly proportional to the single
mass scale mCS that appears in this framework. In the limit
mCS ↦ 0 the Lagrange function vanishes, which reveals the
challenge in deriving appropriate Lagrange functions cor-
responding to Lorentz-violating frameworks that do not
have a dimensional scale associated with them. This is
especially the case for a photon theory based on modified
Maxwell theory, which will be discussed as follows.

C. Modified Maxwell theory

In the remainder of the paper, the Chern-Simons mass
mCS will be set to zero and the Lagrange density of MCS
theory, Eq. (2.1c), will not be taken into account anymore.
The observer four-tensor ðkFÞμνϱσ in Eq. (2.1b) will be
decomposed into contributions involving the Minkowski
metric and a (4 × 4) matrix ~κμν according to the non-
birefringent Ansatz [75,89]

ðkFÞμνϱσ ¼
1

2
ðημϱ ~κνσ − ημσ ~κνϱ − ηνϱ ~κμσ þ ηνσ ~κμϱÞ: ð2:15Þ

The matrix ~κμν is supposed to be symmetric and traceless.
Its particular choice amounts to different Lorentz-violating
cases in the minimal, CPT-even photon sector character-
ized by nonbirefringent photon dispersion laws at first
order in the Lorentz-violating coefficients. This means that
resulting dispersion relations for the two physical photon
polarization states coincide with each other at first order in
Lorentz violation. The notation—especially for the con-
trolling coefficients—is mainly based on [74].
First of all the photon mass is kept. The equations of

motion for the photon field Aμ in momentum space then
take the following form [1,88]:

MαδðkÞAδ ¼ 0; ð2:16aÞ

MαδðkÞ ¼ ηαδðk2 −m2
γÞ − kαkδ − 2ðkFÞαβγδkβkγ:

ð2:16bÞ

Now different interesting cases of modifiedMaxwell theory
(including a photon mass term) will be examined. The
simplest case is undoubtedly the isotropic one, which is
characterized by a single controlling coefficient ~κtr and one
preferred timelike spacetime direction ξμ. The matrix ~κμν is
then diagonal and it is given as follows:

~κμν ¼ 2~κtr

�
ξμξν −

1

4
ξ2ημν

�
¼ 3

2
~κtrdiag

�
1;
1

3
;
1

3
;
1

3

�
μν

;

ð2:17aÞ

ðξμÞ ¼ ð1; 0; 0; 0ÞT: ð2:17bÞ

The dispersion equation, which follows from claiming a
vanishing determinant of Mαδ in Eq. (2.16) using Lorenz
gauge kδAδ ¼ 0, results in

m2
γ ¼ aμνkμkν; ð2:18aÞ

aμν ¼ diagð1þ ~κtr;−½1 − ~κtr�;−½1 − ~κtr�;−½1 − ~κtr�Þμν:
ð2:18bÞ

The next case to be considered is a nonbirefringent,
anisotropic one that is characterized by a single (parity-
even) controlling coefficient ~κ11e− and one spacelike direc-
tion ζμ. Furthermore ~κ22e− ¼ ~κ11e−, ~κ33e− ¼ −2~κ11e− and all
remaining ones vanish. The matrix ~κμν for the nonbire-
fringent Ansatz is given as follows:
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~κμν ¼ 3~κ11e−

�
ζμζν −

1

4
ζ2ημν

�
¼ 3

4
~κ11e−diagð1;−1;−1; 3Þμν;

ð2:19aÞ

ðζμÞ ¼ ð0; 0; 0; 1ÞT: ð2:19bÞ

The latter has a similar structure compared to Eq. (2.17a)
and it is again diagonal. However, its spatial coefficients
differ from each other revealing the anisotropy. The
modified photon dispersion equation can be written in
the same form as for the isotropic case:

m2
γ ¼ bμνkμkν; ð2:20aÞ

bμν ¼ diag

�
1þ 3

2
~κ11e−;−

�
1þ 3

2
~κ11e−

�
;

−
�
1þ 3

2
~κ11e−

�
;−

�
1 −

3

2
~κ11e−

��
μν

: ð2:20bÞ

The third particular case of modified Maxwell theory to be
examined in this context is characterized by three (parity-
odd) controlling coefficients ~κ23oþ, ~κ31oþ, and ~κ12oþ where all
remaining ones that are not related by symmetries vanish.
Furthermore, there are two preferred spacetime directions:
a timelike direction ξμ and a spacelike one ζμ. The matrix
~κμν in the nonbirefringent Ansatz can be cast into

~κμν ¼ 1

2
ðξμζν þ ζμξνÞ − 1

4
ðξ · ζÞημν; ð2:21aÞ

ðξμÞ ¼ ð1; 0; 0; 0ÞT; ðζμÞ ¼ −2ð0; ζÞT;
ζ ¼ ð~κ23oþ; ~κ31oþ; ~κ12oþÞT: ð2:21bÞ

Due to observer Lorentz invariance the coordinate system
can be set up such that ζ points along its third axis. The first
photon dispersion equation is quadratic and reads as
follows:

m2
γ ¼ cμνkμkν; ð2:22aÞ

cμν ¼

0
BBBBB@

1 0 0 −E
0 −1 0 0

0 0 −1 0

−E 0 0 −1

1
CCCCCA

μν

;

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~κ23oþÞ2 þ ð~κ31oþÞ2 þ ð~κ12oþÞ2

q
: ð2:22bÞ

Note that the latter has an equivalent structure to
Eqs. (2.18a), (2.20a). However, the second dispersion
equation is quartic and it is given by

0 ¼ ðk2 −m2
γÞ2 − ðk · ζÞðk · ξÞðk2 −m2

γÞ

þ 1

4
fðk · ζÞ2 þ ζ2½ðk · ξÞ2 − k2�gk2: ð2:23Þ

For mγ ¼ 0 the right-hand side of the latter factorizes into
k2 and a quadratic dispersion relation that differs from
Eq. (2.22) (for mγ ¼ 0) at second order in the controlling
coefficients. The nonbirefringent Ansatz of Eq. (2.15)
prevents birefringence to occur only at leading order in
Lorentz violation.
Now the classical Lagrange functions for all cases

previously introduced are given as follows. The derivation
for one particular of those is shown in Appendix A 1
and it works analogously for the remaining ones. For the
isotropic case (denoted as ⊚) the Lagrange functions
read

Lj�⊚ ¼ �mγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aμνuμuν

p
; ð2:24aÞ

ðaμνÞ ¼ diag

�
1

1þ κtr
;−

1

1 − κtr
;−

1

1 − κtr
;−

1

1 − κtr

�
¼ ðaμνÞ−1: ð2:24bÞ

For the nonbirefringent, anisotropic case (⦶) they are given
by

Lj�⦶ ¼ �mγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bμνuμuν

q
; ð2:25aÞ

ðbμνÞ ¼ diag

�
1

1þ ð3=2Þ~κ11e−
;−

1

1þ ð3=2Þ~κ11e−
;

−
1

1þ ð3=2Þ~κ11e−
;−

1

1 − ð3=2Þ~κ11e−

�
¼ ðbμνÞ−1: ð2:25bÞ

Finally for the first dispersion relation of the parity-odd
case (⊗) we obtain

Lj�⊗ ¼ �mγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cμνuμuν

p
; ð2:26aÞ

ðcμνÞ ¼

0
BBB@

1=ð1þ E2Þ 0 0 −E=ð1þ E2Þ
0 −1 0 0

0 0 −1 0

−E=ð1þ E2Þ 0 0 −1=ð1þ E2Þ

1
CCCA

¼ ðcμνÞ−1: ð2:26bÞ

Finding a classical Lagrangian that corresponds to the
quartic dispersion equation of Eq. (2.23) is a challenging
task that we leave for the future. The examples for
Lagrange functions of Lorentz-violating photons in
Eq. (2.24a), Eq. (2.25a), and Eq. (2.26a) reveal the general
behavior. When the photon dispersion equation is of the
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form Qμνkμkν ¼ m2
γ with an invertible (4 × 4) matrix Q the

associated Lagrange function generically reads as (see [63]
for the fermion analog):

L� ¼ �mγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q−1

μν uμuν
q

: ð2:27Þ

These Lagrange functions rely on the existence of a
nonzero photon mass. In general, Lagrange functions are
of mass dimension one, which is why they have to involve
some dimensionful scale characteristic for the physical
problem considered. For the classical fermionic point-
particle analogs studied in [63] this scale corresponds to
the particle mass. In MCS theory, the Chern-Simons mass
mCS takes the role of the characteristic dimensionful scale
as we saw in Eq. (2.14). However, since modified Maxwell
theory does not involve a dimensionful scale, a photon
mass mγ had to be introduced to construct Lagrange
functions for the classical point-particle analogs.

D. Classical wavefront

A photon mass is undoubtedly not an attractive feature in
a theory since the mass term violates gauge invariance.
Even if a photon mass has to be introduced as an
intermediate ingredient to regularize infrared divergences
in quantum corrections or to grant a consistent quantization
of a particular Lorentz-violating framework, cf. [26], it
should be possible to consider the limit mγ ↦ 0 at the end
of any calculation. For this reason, an alternative procedure
shall be developed to obtain the classical analog of
(Lorentz-violating) photons. Classically, an electromag-
netic pulse makes up a wavefront that can be interpreted
as a surface in four-dimensional spacetime: w¼wðt;xÞ¼0.
In a Lorentz-invariant theory it fulfills the following
equation [90]: �∂w

∂t
�

2

− ð∇wÞ2 ¼ 0: ð2:28Þ

Computing the square root and choosing one particular sign
results in:

∂w
∂t −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�∂w
∂x

�
2

þ
�∂w
∂y

�
2

þ
�∂w
∂z

�
2

s
¼ 0: ð2:29Þ

The latter is a Hamilton-Jacobi equation where w is
understood as the action S and the expression on the
right-hand side as the Hamilton function:

∂S
∂t þHðx;∇SÞ ¼ 0; Sðt;xÞ ¼ wðt;xÞ;

Hðx;kÞ ¼ −
ffiffiffiffiffiffi
k2

p
; ð2:30Þ

where k is the wave vector (momentum). Examples that
obey Eq. (2.29) are

w ¼ t − â · x; jâj ¼ 1; ð2:31aÞ

w ¼ t −
ffiffiffiffiffi
x2

p
: ð2:31bÞ

The first describes a plane wavefront with unit normal
vector â and the second a spherical wavefront. This can be
seen by equating w with zero and considering a fixed value
for t. Introducing λ as a parameter for the trajectory of the
wave, both wavefronts can be differentiated with respect to
λ, which leads to

∂w
∂λ ¼ u0 − â · u; ð2:32aÞ

∂w
∂λ ¼ u0 −

ffiffiffiffiffi
u2

p
; u0 ≡ dt

dλ
; u≡ dx

dλ
: ð2:32bÞ

At a first glance, it may be assumed that the latter are
suitable Lagrange functions since they are positively
homogeneous of degree one. However, computing the
derived metrics gμν according to

gμν ≡ 1

2

∂2L2

∂uμ∂uν ; ð2:33Þ

quickly reveals that their resulting determinants vanish.
Therefore, such a gμν is not invertible and definitely fails to
describe a possible (pseudo-)Finsler structure. This is a
result that can be shown to hold in general. Assume that a
Lagrange function L exists describing the classical wave-
front analog of photons. Then the associated conjugated
momentum pμ must be lightlike to obey the photon
dispersion relation:

pμ ¼ −
∂L
∂uμ ; pμ ¼ −fðu0; uÞ

�
1

�1

�
μ

: ð2:34Þ

Due to rotational symmetry in the Lorentz-invariant case it
is sufficient to consider a (1þ 1)-dimensional spacetime,
which is why a lightlike pμ must be of the form stated in
Eq. (2.34) with a C∞ function fðu0; uÞ where u≡ juj. The
derived metric is then given by

gμν ¼
1

2

∂2L2

∂uμ∂uν ¼ L
∂2L

∂uμ∂uν þ
∂L
∂uμ

∂L
∂uν

¼ L

�
fð1Þ fð2Þ

�fð1Þ �fð2Þ

�
μν

þ
�

f2 �f2

�f2 f2

�
μν

¼
�

Lfð1Þ þ f2 Lfð2Þ � f2

�ðLfð1Þ þ f2Þ �ðLfð2Þ � f2Þ

�
μν

; ð2:35Þ

where (1) denotes differentiation with respect to u0 and
(2) means differentiation by u. It clearly holds that
detðgμνÞ ¼ 0 irrespective of the unknown function f.
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Therefore, a Lagrange function L with an invertible derived
metric cannot exist in the photon case. Because of this an
alternative procedure has to be developed to assign a
possible (pseudo-)Finsler structure to photons, which will
be examined in what follows.

III. FINSLER STRUCTURES OF THE
PHOTON SECTOR

In the previous section, it was intimated that the usual
method to finding Finsler structures in the fermion sector
does not seem to work in the minimal CPT-even photon
sector. The reason is the absence of a dimensionful physical
scale needed for dimensional consistency of a Lagrange
function. Photons must be treated differently from fermions
to obtain something like a classical description. This shall
be undertaken in the current section.

A. Lorentz-invariant case

To become familiar with our goals, the situation in
standard electrodynamics will be described first. In a
Lorentz-invariant vacuum Maxwell’s equations in momen-
tum space read as follows:

k ×Bþ ωE ¼ 0; k ×E − ωB ¼ 0; ð3:1aÞ

k · E ¼ 0; k ·B ¼ 0: ð3:1bÞ

Here E is the electric field, B the magnetic flux density, k
the wave vector, and ω the frequency. The dispersion
relation can be derived directly from the wave equation.
The latter is obtained by computing the cross product of the
wave vector and, e.g., the first of Eq. (3.1a) where the
second equation has to be plugged in subsequently:

k × ðk × BÞ þ ωk ×E

¼ kðk ·BÞ − k2Bþ ω2B

¼ ðω2 − k2ÞB ¼ 0: ð3:2Þ

Here the second of Eq. (3.1b) is used as well, which says
that in a Lorentz-invariant vacuum the magnetic field is
transverse. Equation (3.2) has nontrivial solutions for the
magnetic field only in case of ω2 ¼ k2, which immediately
leads to the dispersion relation ω ¼ jkj of electromagnetic
waves. The dispersion equation

ω2 − k2 ¼ 0 ð3:3Þ

is the base to determine the Finsler structure associated
with standard Maxwell theory. The method is introduced
in [62] and will be described as follows. Let M be a
Finsler manifold and F ¼ Fðx; yÞ the corresponding
Finsler structure with x ∈ M and y ∈ TxM where TxM
is the tangent space at x. The indicatrix SxM at a point x of a

Finsler space is the set of all y where the Finsler structure
takes the constant value 1, i.e., SxM ¼ fy ∈
TxMjFðx; yÞ ¼ 1g. Note that a Finsler structure defines
an indicatrix, but conversely each indicatrix determines a
Finsler structure [91].
Finsler himself expressed the idea that an indicatrix

might model the phase velocity of light waves in both
isotropic and anisotropic materials. Hence, what is needed
to associate a Finsler structure to a photon theory is an
indicatrix [62]. The phase velocity vector is defined as
vph ≡ k̂vph with vph ¼ ω=jkj and the unit wave vector is
k̂≡ k=jkj. Since Eq. (3.3) still depends on both the energy
and the momentum components, we divide it by jkj2. This
results in an equation that involves the phase velocity and
quantities of zero mass dimension:

v2ph − 1 ¼ 0: ð3:4Þ

Now Eq. (3.4) can be considered as the indicatrix of the
associated Finsler structure that is still to be found. This is
accomplished using Okubo’s technique, which is outlined
in [61,62]. Consider a surface within a Finsler manifold M
that is described by an equation fðx; yÞ ¼ 0. A function
FðyÞ taking a constant value 1 on such a surface can be
found by solving the equation fðx; y=FðyÞÞ ¼ 0 with
respect to FðyÞ where the solution does not necessarily
have to be unique. Denoting the phase velocity by vph ≡ juj
with u≡ ðu1; u2; u3Þ we perform the replacement ui ↦
ui=FðuÞ and obtain from Eq. (3.3)

u2

FðuÞ2 − 1 ¼ 0: ð3:5Þ

The latter can be solved for FðuÞ immediately:

FðuÞj�LI ¼ �
ffiffiffiffiffi
u2

p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rijuiuj

q
; rij ¼ diagð1; 1; 1Þij:

ð3:6Þ

As long as the intrinsic metric rij is positive definite, which
is the case for the particular rij given, FðuÞjþLI fulfills all
properties of Sec. II A. Therefore, it can be interpreted as a
three-dimensional Finsler structure where the derived
metric g�LI;ij corresponds to the intrinsic metric. Since the
Cartan torsion vanishes, it must be a Riemannian structure
according to Deicke’s theorem.

B. Isotropic case

In the Lorentz-violating case modified Maxwell’s equa-
tions can be constructed by using Eqs. (4)–(6) of [74]. A
Lorentz-violating vacuum behaves like an effective
medium for electromagnetic waves, which is why
Maxwell’s equations now involve nontrivial permeability
and permittivity tensors. In momentum space, they read as
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follows (where the spatial indices of k are understood to be
upper ones):

k ×Hþ ωD ¼ 0; k ×E − ωB ¼ 0; ð3:7aÞ

k · D ¼ 0; k ·B ¼ 0: ð3:7bÞ

The first two of these deliver relationships between the
electric displacement D, the magnetic field H, the electric
field E, and the magnetic flux density B. The trans-
formation between ðD;HÞ and ðE;BÞ is governed by
(3 × 3) matrices κDE, κDB, κHE, and κHB comprising
the controlling coefficients and they are given by Eq. (4)
in the latter reference. In the isotropic case considered here
thematrices κDB and κHE do not contribute. It then holds that

H ¼ μ−1B; μ−1 ¼ 13 þ κHB ¼ 13 − κDE; ð3:8aÞ

D ¼ εE; ε ¼ 13 þ κDE; ð3:8bÞ

κDE ¼ ~κtrdiagð1; 1; 1Þ ¼ −κHB; ð3:8cÞ

εμ ¼ n2diagð1; 1; 1Þ; n−1 ¼ A≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~κtr
1þ ~κtr

s
: ð3:8dÞ

Maxwell’s equations in momentum space will be needed to
obtain the dispersion relations. Each of the equations
involves different fields. However, to obtain the dispersion
relation, a single equation is required that contains one of
the four fields only. Since according to Eq. (3.8) the
different fields are related by matrices proportional to
the unit matrix, the standard procedure outlined in
Sec. III A works here:

k × ðk ×EÞ − ωðk ×BÞ
¼ k × ðk ×EÞ − ωμðk ×HÞ
¼ k × ðk ×EÞ þ ω2μD ¼ k × ðk ×EÞ þ ω2εμE ¼ 0:

ð3:9Þ

Writing the equation explicitly in matrix form leads to

0
B@
n2ω2−ðk22þk23Þ k1k2 k1k3

k1k2 n2ω2−ðk21þk23Þ k2k3
k1k3 k2k3 n2ω2−ðk21þk22Þ

1
CA

×

0
B@
E1

E2

E3

1
CA¼

0
B@
0

0

0

1
CA; ð3:10Þ

where E≡ ðE1; E2; E3ÞT is the electric field strength
vector. Lowering the indices of the components of k does
not lead to changes since the components always appear in

bilinear combinations. The condition of a vanishing deter-
minant of the coefficient matrix, which is necessary such
that nontrivial solutions exist for the electric field, leads to
the dispersion equation

0 ¼ n2ω2ðn2ω2 − k2Þ2: ð3:11Þ

From this, we obtain the spurious solution ω ¼ 0 associ-
ated with a nonpropagating wave and the modified
dispersion relation ω ¼ Ajkj. Now we again need an
indicatrix. A reasonable choice to start with is
Eq. (3.11). Dividing the latter by the prefactor and
computing the square root does not change the set of
physical zeros for ω, i.e., we can also take

n2ω2 − k2 ¼ 0: ð3:12Þ

A subsequent division by jkj2 results in the indicatrix of the
related Finsler structure:

v2ph −A2 ¼ 0: ð3:13Þ

Using Okubo’s technique we obtain FðuÞ immediately:

0 ¼ u2

FðuÞ2 −A2; ð3:14aÞ

FðuÞj�⊚ ¼ � 1

A

ffiffiffiffiffi
u2

p
¼ � 1

A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rijuiuj

q
;

rij ¼ diagð1; 1; 1Þij; ð3:14bÞ

where the symbol ⊚ denotes “isotropic.” Comparing
Eq. (3.14b) to Eq. (3.6) we see that the only difference
in comparison to the Lorentz-invariant case is the prefactor
1=A. This is not surprising, as the case considered is
isotropic and the result involves the spatial velocity
components only. For a positive definite rij, FðuÞjþ⊚ fulfills
all properties of a Finsler structure where the derived metric
is given by g�⊚;ij ¼ rij=A2. Due to the isotropy the latter is
still Riemannian, which can be explicitly checked via the
Cartan torsion. In comparison to the Lorentz-invariant case,
it involves a global scaling factor.

C. Anisotropic, nonbirefringent case

The anisotropic case with a single modified dispersion
relation reveals some peculiar properties. The matrices
relating the different electromagnetic fields with each other
are given by

κDE ¼ 3

2
~κ11e−diagð1; 1;−1Þ ¼ −κHB; ð3:15aÞ

κDB ¼ κHE ¼ 03; ð3:15bÞ
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with the (3 × 3) zero matrix 03. The matrices κDE and κHB
are diagonal as well, but the difference to the isotropic case
is that they are no longer proportional to the identity matrix.
This is not surprising due to the preferred spacelike
direction ζ pointing along the third spatial axis where
there is a residual isotropy in the plane perpendicular to this
axis. Therefore the first two components of the diagonal
matrix εμ are equal, but the third differs from those:

εμ ¼ diagðn21; n22; n23Þ; n1 ¼ n2 ¼
1

B
;

n3 ¼ B; B≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð3=2Þ~κ11e−
1þ ð3=2Þ~κ11e−

s
: ð3:16Þ

Now we again need an equation that can serve as a basis for
the indicatrix of the associated Finsler space. Multiplying
the second of Eq. (3.7a) with μ−1, computing the cross
product with k, and using the first of Eq. (3.7a) leads to an
equation for the electric field vector:

k × ½ðμ−1ðk ×EÞ� þ ω2εE ¼ 0: ð3:17Þ

Multiplying the latter with an appropriate prefactor, in
matrix form it reads as follows:

0
B@

ω2 − k22 − k23n
2
3 k1k2 k1k3n23

k1k2 ω2 − k21 − k23n
2
3 k2k3n23

k1k3n23 k2k3n23 ðω2 − k21 − k22Þn23

1
CA

×

0
B@

E1

E2

E3

1
CA ¼

0
B@

0

0

0

1
CA: ð3:18Þ

Lowering the components of k does not produce any
changes. The determinant condition for this system of
equations leads to

0 ¼ ω2ðω2 − k2⊥ − k2∥n
2
3Þ2; ð3:19aÞ

k∥ ≡ k · ζ; k⊥ ≡ jk − k∥ζj: ð3:19bÞ

For convenience, the three-momentum k is decomposed
into a component k∥ along the preferred spatial direction
ζ ¼ ð0; 0; 1ÞT and into a component k⊥ perpendicular to ζ.
This results in the spurious solution ω ¼ 0 and a single
dispersion relation for electromagnetic waves:

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ B2k2∥

q
: ð3:20Þ

Here the remaining isotropy perpendicular to the preferred
direction becomes evident as well. The photon will only be
affected by Lorentz violation in case it has a momentum
component pointing along the preferred direction. Note that

the result of Eq. (3.20) is very interesting from the
perspective that the underlying Lorentz-violating frame-
work is anisotropic, but in spite of this anisotropy there is
only a single dispersion relation. In contrast, birefringence,
i.e., the property of having two different dispersion laws
dependent on photon polarization seems to always occur in
anisotropic media in nature. The reason that there is a single
dispersion relation here only is the extreme fine-tuning of
permeability and permittivity [cf. Eq. (3.15a)], which can
most probably not be found in any materials.
Now, the equation for the indicatrix follows from

ω2 − k2⊥ − k2∥n
2
3 ¼ 0; ð3:21Þ

in dividing it by k2. Introducing the angle ϑ between the
wave vector k and the preferred spatial direction ζ leads to

0 ¼ v2ph − sin2ϑ − B2cos2ϑ; ð3:22aÞ

cosϑ≡ k̂ · ζ; k̂≡ k
jkj : ð3:22bÞ

Thinking of ϑ as the polar angle in spherical coordinates,
Eq. (3.22a) can be reinterpreted using

v2ph ¼ u2; cosϑ ¼ u3

juj ; sin ϑ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1Þ2 þ ðu2Þ2

p
juj ;

ð3:23Þ

as follows:

u4 − ½ðu1Þ2 þ ðu2Þ2 þ B2ðu3Þ2� ¼ 0: ð3:24Þ

The latter is the equation that determines the indicatrix.
Okubo’s technique can again be used to obtain a Finsler
structure directly when u is replaced by u=FðuÞ in
Eq. (3.24):

u4 − FðuÞ2½ðu1Þ2 þ ðu2Þ2 þ B2ðu3Þ2� ¼ 0: ð3:25Þ

This leads to the result

FðuÞj�⦶ ¼ � u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1Þ2 þ ðu2Þ2 þ B2ðu3Þ2

p ; ð3:26Þ

which can also be written in the form

FðuÞj�⦶ ¼ � rijuiujffiffiffiffiffiffiffiffiffiffiffiffiffi
sijuiuj

q ; rij ¼ diagð1; 1; 1Þij;

sij ¼ diagð1; 1;B2Þij: ð3:27Þ

Here ⦶ means “anisotropic.” In principle, the Finsler
structure can be interpreted to involve an intrinsic metric
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rij and a second metric sij. Since the background considered
is flat, it is reasonable to take rij as themetric that determines
the lengths of vectors and the angles between vectors. For
general rij and sij the derived metric is given by

gij ¼ FðuÞj�⦶
∂2FðuÞj�⦶
∂ui∂uj þ ∂FðuÞj�⦶

∂ui
∂FðuÞj�⦶

∂uj ;

ð3:28aÞ

∂FðuÞj�⦶
∂ui ¼ � 1

ðsabuaubÞ3=2
Qiklmukulum; ð3:28bÞ

∂2FðuÞj�⦶
∂ui∂uj ¼ ∓ 3sjn

ðsabuaubÞ5=2
Qiklmukulumun

� 1

ðsabuaubÞ3=2
Qiklm

× ðδkjulum þ δjlukum þ δmjukulÞ; ð3:28cÞ

Qiklm ¼ 2sklrim − rklsim: ð3:28dÞ

This result is not very illuminating. When contracted with
appropriate velocity components it collapses to ðFðuÞj�⦶Þ2,
which follows from its homogeneity of degree 2:

g�⦶;iju
iuj ¼ ðFðuÞj�⦶Þ2; g�⦶;ij ≡ 1

2

∂2ðFðuÞj�⦶Þ2
∂ui∂uj :

ð3:29Þ

Now the following properties of FðuÞj�⦶ can be deduced:
(1) FðuÞjþ⦶ > 0 for u ∈ TMnf0g if rij and sij are

positive definite,
(2) FðuÞj�⦶ ∈ C∞ for u ∈ TMnf0g as well as positive

definite sij,
(3) FðλuÞj�⦶ ¼ λFðuÞj�⦶ for λ > 0, i.e., positive homo-

geneity,
(4) and the derived metric gij is positive definite for u ∈

TMnf0g as long as both rij and sij are sufficiently
small perturbations from the identity matrix.

Therefore as long as both rij and sij are perturbations
from the identity matrix, which, in particular, is the case for
rij and sij given in Eq. (3.27), FðuÞjþ⦶ defines a three-
dimensional Finsler structure, indeed. Furthermore, both
the Cartan and the Matsumoto torsion can be computed to
be able to classify this Finsler structure. The results are
complicated and they do not provide further insight, which
is why they will be omitted. However, they are nonzero in
general whereby according to Deicke’s theorem, Eq. (3.27)
is not a Riemannian structure and according to the
Matsumoto-Hōjō theorem it is neither a Randers nor a
Kropina structure. The result corresponds to Eq. (4.2.2.6)
of [62] where a ¼ B and b ¼ 1 in their notation. They
denote this type of Finsler structure as a second-order
Kropina structure in resemblance to a Kropina structure

FðuÞ ¼ α2=β with α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aijuiuj

q
and β ¼ biui. In the

latter reference Eq. (3.27) appears in the context of light
propagation in uniaxial media. The numerator involves the
Euclidean intrinsic metric rij only, whereas the denomi-
nator is characterized by another metric sij. The latter could
be thought of as the metric governing physics since it
comprises the physical quantity B.

D. Anisotropic, birefringent (at second order) case

The penultimate example provides a case of modified
Maxwell theory that has not been considered in Sec. II C. It
is parity-even and characterized by two preferred spacelike
directions:

ðζμ1Þ ¼
�

0

ζ1

�
; ðζμ2Þ ¼

�
0

ζ2

�
;

ζ1 ¼

0
B@

sin η

0

cos η

1
CA; ζ2 ¼

0
B@

− sin η

0

cos η

1
CA: ð3:30Þ

They are normalized and enclose an angle of 2η. We
consider an observer frame with one nonzero controlling
coefficient G. Then the (4 × 4) matrix employed in the
nonbirefringent Ansatz reads

~κμν ¼ G
�
ζμ1ζ

ν
2 þ ζν1ζ

μ
2 −

1

2
ðζ1 · ζ2Þημν

�
: ð3:31Þ

This corresponds to the following choices for the matrices
that appear in Maxwell’s equations:

κDE ¼ Gdiagð1; cosð2ηÞ;−1Þ ¼ −κHB; ð3:32aÞ

κDB ¼ κHE ¼ 03: ð3:32bÞ

Thus, there are nontrivial permeability and permittivity
tensors, but the electric and magnetic fields do still not
mix.Using thesematrices,modifiedMaxwell’s equations can
be obtained according to the procedure used in Sec. III C. The
conditionof avanishing coefficient determinant for nontrivial
solutions results in an equation for the dispersion relation:

0 ¼ ω2½ð1 − G2Þω2 − ð1þ GÞ½1 − G cosð2ηÞ�k21
− ð1 − G2Þk22 − ð1 − GÞ½1 − G cosð2ηÞ�k23�
× fω2½1þ G cosð2ηÞ� − ð1þ GÞk21
− ½1þ G cosð2ηÞ�k22 − ð1 − GÞk23g: ð3:33Þ

In contrast to the anisotropic case considered in Sec. III C the
current framework is characterized by two distinct modified
dispersion relations. They can be written in the form
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ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G1k21 þ k22 þ G2k23

q
; ð3:34aÞ

ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~G1k21 þ k22 þ ~G2k23

q
; ð3:34bÞ

G1 ≡ 1 − G cosð2ηÞ
1 − G

; G2 ≡ 1 − G cosð2ηÞ
1þ G

; ð3:34cÞ

~G1 ≡ 1þ G
1þ G cosð2ηÞ ;

~G2 ≡ 1 − G
1þ G cosð2ηÞ : ð3:34dÞ

Evidently the contribution associated with the second three-
momentum component stays unmodified which is reason-
able, since the preferred directions of Eq. (3.30) do not
point along the second spatial axis. Each dispersion relation
can be expanded for G ≪ 1 showing that they differ at
second order in Lorentz violation. In general the non-
birefringent Ansatz of Eq. (2.15) works at leading order
only. Besides, the dispersion relations depend on the angle
2η enclosed by the two preferred directions. With the
normalized propagation direction of the electromagnetic
wave given by k̂, the latter encloses the angles θ1, θ2 with
the first and the second preferred direction, respectively.
These are given by

cos θ1 ¼ k̂ · ζ1 ¼ k̂1 sin ηþ k̂3 cos η; ð3:35aÞ

cos θ2 ¼ k̂ · ζ2 ¼ −k̂1 sin ηþ k̂3 cos η: ð3:35bÞ

The components of the propagation direction vector k̂ can
now be expressed in terms of the angles θ1, θ2, and η. Note
that k̂ is a unit vector by construction:

k̂1 ¼ cos θ1 − cos θ2
2 sin η

; k̂3 ¼ cos θ1 þ cos θ2
2 cos η

;

k̂2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðk̂1Þ2 − ðk̂3Þ2

q
: ð3:36Þ

Now the two individual factors of Eq. (3.33) are considered
giving the modified dispersion relations. Dividing each by
the wave-vector magnitude jkj, introducing the phase
velocity, and expressing all propagation direction compo-
nents by the angles of Eq. (3.36), equations for the phase
velocities are obtained as before:

0 ¼ ð1 − G2Þv2ph þ
G
2
f4 cosðθ1Þ cosðθ2Þ

− G½cosð2θ1Þ þ cosð2θ2Þ�g − 1; ð3:37aÞ

0 ¼ ½1þ G cosð2ηÞ�ð1 − v2phÞ − 2G cosðθ1Þ cosðθ2Þ:
ð3:37bÞ

In dividing the second equation by −½1þ G cosð2ηÞ� and
expanding both equations to linear order in G, these results

correspond to each other as expected. Now we are in a
position to interpret the latter equations geometrically,
which will lead us directly to the Finsler structures
associated with this particular sector. In doing so, the
velocity u is introduced and both the phase velocity and the
angles θ1, θ2 are expressed by the magnitude or compo-
nents of u as follows:

vph ¼ juj; ð3:38aÞ

cos θ1 ¼
u1

juj sin ηþ
u3

juj cos η; ð3:38bÞ

cos θ2 ¼ −
u1

juj sin ηþ
u3

juj cos η: ð3:38cÞ

Inserting those into Eq. (3.37a) and using Okubo’s tech-
nique leads to two distinct Finsler structures. The first is
given by

FðuÞjð1Þ�
Ⓥ

¼ � rijuiujffiffiffiffiffiffiffiffiffiffiffiffiffi
sijuiuj

q ; rij ¼ diagð1; 1; 1Þij;

sij ¼ diagðG1; 1;G2Þij; ð3:39Þ

and the second reads as

FðuÞjð2Þ�
Ⓥ

¼ � rijuiujffiffiffiffiffiffiffiffiffiffiffiffiffi
sijuiuj

q ; rij ¼ diagð1; 1; 1Þij;

sij ¼ diagð ~G1; 1; ~G2Þij: ð3:40Þ

Here Ⓥ means “anisotropic and birefringent (at second
order).” The four Finsler structures obtained have a form
analogous to the Finsler structure found in Eq. (3.27) of
Sec. III C. This is not surprising since both sectors are
anisotropic but parity-even. Having birefringence at second
order in Lorentz violation obviously does not affect the
form of the Finsler structure. In such a case, we can obtain
several distinct Finsler structures that differ from each other
at second order in the controlling coefficients via the
metrics sij.
In Eq. (3.27) the latter sij differs from the standard

Euclidean metric only by the component s33. Here both s11
and s33 are modified by Lorentz violation where they also
depend on the angle η enclosed by the two preferred
directions. The component s22 is standard, which again
reflects the fact that the preferred directions have a
vanishing second component. Since sij involves the physi-

cal (dimensionless) constants Gi and ~Gi for i ¼ 1…2, it is
reasonable to say that sij seems to govern the physical
properties of photon propagation in these cases.
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E. Parity-odd case

The final interesting sector considered involves the three
parity-odd coefficients ~κ12oþ, ~κ31oþ, and ~κ23oþ and it will turn out
to be the most complicated one. The preferred spacetime
directions are given in Eq. (2.21b) and the matrices relating
the electromagnetic fields to each other read

κDE ¼ 03; κHB ¼ 03; ð3:41aÞ

κDB ¼

0
B@

0 ~κ12oþ −~κ31oþ
−~κ12oþ 0 ~κ23oþ
~κ31oþ −~κ23oþ 0

1
CA; κHE ¼ −κTDB ¼ κDB:

ð3:41bÞ

The relationships between the fields are given by

D ¼ Eþ κDBB; ð3:42aÞ
H ¼ κHEEþ B ¼ κDBEþB: ð3:42bÞ

In contrast to the aforementioned cases, the parity-odd case
has the peculiarity that the electric fields mix with the
magnetic fields. Therefore obtaining an equation for the
electric field from Maxwell’s equations is more involved
here. Nevertheless it can be accomplished along the
following chain of steps:

0 ¼ κDBðk ×EÞ − ωκDBB; ð3:43aÞ
0 ¼ κDBðk ×EÞ − ωðD −EÞ; ð3:43bÞ
0 ¼ κDBðk ×EÞ þ k ×Hþ ωE; ð3:43cÞ
0 ¼ κDBðk ×EÞ þ k × ðκDBEþ BÞ þ ωE; ð3:43dÞ

0 ¼ κDBðk ×EÞ þ k × ðκDBEÞ þ
1

ω
k × ðk ×EÞ þ ωE:

ð3:43eÞ
Inserting the explicit vectors and performing a subsequent
multiplication with ω leads to the following system in
matrix form:0
B@

0

0

0

1
CA ¼ ðAþ BÞ

0
B@

E1

E2

E3

1
CA; ð3:44aÞ

A¼

0
B@
ω2− ðk22þk23Þ k1k2 k1k3

k1k2 ω2− ðk21þk23Þ k2k3
k1k3 k2k3 ω2− ðk21þk22Þ

1
CA;

ð3:44bÞ

B ¼ ω

0
B@

−2ð~κ31oþk2 þ ~κ12oþk3Þ ~κ31oþk1 þ ~κ23oþk2 ~κ12oþk1 þ ~κ23oþk3
~κ31oþk1 þ ~κ23oþk2 −2ð~κ23oþk1 þ ~κ12oþk3Þ ~κ12oþk2 þ ~κ31oþk3
~κ12oþk1 þ ~κ23oþk3 ~κ12oþk2 þ ~κ31oþk3 −2ð~κ23oþk1 þ ~κ31oþk2Þ

1
CA: ð3:44cÞ

The total system can be completely decomposed into the
standard part of A and a Lorentz-violating contribution
comprised in B. Note that here B gets a global minus sign
when lowering the indices of the k components. Therefore
the determinant condition results in the following equation
for the photon energy:

ω2ðω2 − 2ωζ · k − k2Þ½ðω − ζ · kÞ2 − ð1þ ζ2Þk2� ¼ 0:

ð3:45Þ

Here ζ≡ ð~κ23oþ; ~κ31oþ; ~κ12oþÞT is the spatial part of the second
preferred spacetime direction and k is understood to have
lower components. The second and the third of the three
factors can be solved for the energy giving two distinct
dispersion relations:

ω1 ¼ ζ · kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðζ · kÞ2

q
; ð3:46aÞ

ω2 ¼ ζ · kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2

q
jkj; ð3:46bÞ

cos ϑ ¼ ζ̂ · k̂; ζ̂≡ ζ
E
; k̂≡ k

jkj ;

E ≡ jζj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~κ23oþÞ2 þ ð~κ31oþÞ2 þ ð~κ12oþÞ2

q
: ð3:46cÞ

For convenience, it is again reasonable to set up the
coordinate system such that ζ points along its third axis
where ϑ is the angle between the wave vector k and the
spatial direction. Dividing the first factor of Eq. (3.45) by
k2 then leads to

v2ph − 2Evph cosϑ − 1 ¼ 0: ð3:47Þ

Introducing spherical polar coordinates with vph ¼ juj
results in
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u2 − 2Eu3 − 1 ¼ 0: ð3:48Þ

This is the indicatrix for the first Finsler space that can be
associated with the parity-odd case. We can employ
Okubo’s technique to obtain

0 ¼ u2 − 2EFðuÞu3 − FðuÞ2; ð3:49aÞ

FðuÞjð1Þ�⊗ ¼ −Eu3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ðEu3Þ2

q
; ð3:49bÞ

FðuÞjζð1Þ�⊗ ¼ −ζ · u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ðζ · uÞ2

q
; ð3:49cÞ

where Eq. (3.49c) is the generalization of Eq. (3.49b) for ζ
pointing along an arbitrary direction and the symbol ⊗
denotes “parity-odd.”Without loss of generality, the proper-
ties of the Finsler structure can be investigated with ζ
pointing along the third axis of the coordinate system, which
simplifies the calculations. The derived metric is again
lengthy and does not seem to provide any deeper under-
standing. The derived metric contracted with the spatial
velocity components leads to the square of Eq. (3.49c):

gð1Þ�⊗;ij u
iuj ¼ ðFðuÞjð1Þ�⊗ Þ2; gð1Þ�⊗;ij ≡ 1

2

∂2ðFðuÞjð1Þ�⊗ Þ2
∂ui∂uj :

ð3:50Þ

The following properties of FðuÞjð1Þ�⊗ in Eq. (3.49c) can be
deduced:
(1) FðuÞjð1Þþ⊗ > 0 for u ∈ TMnf0g and E sufficiently

small,

(2) FðuÞjð1Þ�⊗ ∈ C∞ for u ∈ TMnf0g,
(3) FðλuÞjð1Þ�⊗ ¼ λFðuÞjð1Þ�⊗ for λ > 0, and

(4) the derived metric of FðuÞjð1Þ�⊗ is positive definite
for u ∈ TMnf0g and E sufficiently small.

Due to the first item, only FðuÞjð1Þþ⊗ is a Finsler structure.
Its Matsumoto torsion vanishes, whereas the Cartan torsion
does not. Furthermore when taking into account its form,

FðuÞjð1Þþ⊗ must be a Randers structure. This particular type
of geometry was introduced by Randers to account for the
fact that particles always move on timelike trajectories
pointing forwards in time [92]. In contrast to general
relativity, his framework incorporates an additional four-
vector into the metric. However, this four-vector should not
be considered as a preferred spacetime direction since it can
be changed by a kind of gauge transformation without
affecting the arc length traveled by a particle. In the
Lorentz-violating case considered here ζ is a preferred
direction, indeed.
The parity-odd framework is characterized by both a

preferred timelike and a spacelike direction; cf. Eq. (2.21b).
For the isotropic and anisotropic cases, which are parity-
even, the corresponding Finsler structures are expected to

involve only bilinear expressions such as aijuiuj, since
these are invariant under ui ↦ u0i ¼ −ui. Due to parity
violation the Finsler structure of the parity-odd case is
expected to involve terms such as biui, though. The
Randers structure is a very natural possibility with this
property, but it is not the only one as we shall see below.
The Finsler structure of Eq. (3.49c) has the same form as

the corresponding dispersion relation of Eq. (3.46a) not
taking into account additional minus signs. Such structures
could be called “automorphic.” They seem to appear when
the dispersion equation [here Eq. (3.45)] involves one
additional parity-odd contribution.
The parity-odd case of modified Maxwell theory has a

second indicatrix, which follows from the second factor of
Eq. (3.45) using the same procedure:

v2ph − 2Evph cosϑþ E2cos2ϑ − ð1þ E2Þ ¼ 0; ð3:51aÞ

u2 − 2Eu3 þ E2ðu3Þ2
u2

− ð1þ E2Þ ¼ 0: ð3:51bÞ

Okubo’s technique leads to

FðuÞjð2Þ�⊗ ¼ −Eu3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p
juj

1þ E2 − ðEu3Þ2=u2
; ð3:52aÞ

FðuÞjð2Þζ�⊗ ¼ −ζ · u�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p
juj

1þ E2 − ðζ · uÞ2=u2
: ð3:52bÞ

Let us investigate the characteristics of Eq. (3.52a).We again
obtain

gð2Þ�⊗;ij u
iuj ¼ ðFðuÞjð2Þ�⊗ Þ2; gð2Þ�⊗;ij ≡ 1

2

∂2ðFðuÞjð2Þ�⊗ Þ2
∂ui∂uj :

ð3:53Þ

Hence, for FðuÞjð2Þþ⊗ , analog properties hold such as for
Eq. (3.49c), which makes it to a Finsler structure for
sufficiently small E. Note that the latter is not automorphic,
since its off-shell dispersion relation in Eq. (3.45) does not
exclusively involve additional parity-odd terms, but also
contributions like ðζ · kÞ2. For this structure the Matsumoto
torsion does not vanish, which is why it is neither a Randers
nor a Kropina structure. The deviation from a Randers
structure is of second order in the controlling coefficients:

FðuÞjζð2Þ�⊗ ¼ −ζ · u�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p
juj þOð~κ2oþÞ: ð3:54Þ

Recall that the massive-photon dispersion equation of this
mode, Eq. (2.23), was not quadratic, but quartic. For this
reason, it was challenging to derive a classical point-particle
Lagrange function corresponding to the second photon
polarization. It is also interesting to note that a large number
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of complications arise in the quantum field theory based on
the parity-odd framework due to the behavior of this mode
[24]. On the contrary, the first mode ismuch easier to handle.
The Finsler structures obtained seem to reflect these proper-
ties. The first, given by Eq. (3.49c), is a well-understood
Randers structure, whereas the second deviates from such a
structure at second order in Lorentz violation, which makes
its properties much more involved to analyze.
The studies carried out in the current section will prove

to be useful when describing photons in the geometric-
optics approximation. Thereby the eikonal equation will
play an important role. How all these concepts are linked to
each other will be clarified in the forthcoming part of the
article.

IV. CLASSICAL RAY EQUATIONS

Propagating electromagnetic waves can be treated in the
geometric-optics approximation as long as their wave
lengths can be neglected in comparison to other physical
length scales. For example, this is possible for waves with
low energies propagating over large distances when physi-
cal phenomena related to the wave character (such as
diffraction) do not play a role. This physical regime could
be called “classical” and the wave then corresponds to a
geometric ray. The goal of the current section is to establish
ray equations that describe the physical behavior of
propagating rays.
Each electromagnetic pulse has a wavefront, which

separates the region with nonzero electromagnetic fields
from the region with vanishing fields. At any instant of time
the wavefront can be considered as a two-dimensional
surface in three-dimensional space, i.e., it can be described
by an equation of the form ψðxÞ ¼ t where x are spatial
coordinates and t is the time. The gradient ∇ψ points along
the propagation direction. There is a relation between ∇ψ
and the refractive index n of the medium; it reads j∇ψ j ¼ n.
The latter is called the eikonal equation in a subset of the
literature. In what follows, n is assumed to depend on the
position x only, but not on the velocity u, i.e., n ¼ nðxÞ.
Consider a wave propagating along a trajectory xðsÞ

where s is the arc length of the curve. In this para-
metrization, the tangent vector has magnitude 1, which
is why the ray equations read as follows:

dx
ds

¼ ∇ψ
j∇ψ j ; n

dx
ds

¼ ∇ψ : ð4:1Þ

Computing an additional derivative of the latter with
respect to s, its right-hand side can be expressed in terms
of the refractive index as well:

d
ds

∇ψ ¼
�
dx
ds

· ∇
�
∇ψ

¼ 1

n
∇ψ · ½∇ð∇ψÞ� ¼ 1

2n
∇ð∇ψÞ2 ¼ 1

2n
∇n2 ¼ ∇n:

ð4:2Þ

Trajectories may not necessarily be parametrized by arc
length. For an arbitrary parametrization with parameter t
we obtain

d
ds

¼ dt
ds

d
dt

¼
�
ds
dt

�
−1 d

dt
¼ 1

juj
d
dt
: ð4:3Þ

Now the ray equations (4.1) can be cast into the following
final form:

d
ds

�
n
dx
ds

�
¼ ∇n; ð4:4aÞ

d
dt
ð∇ψÞ ¼ juj∇n; ∇ψ ¼ n

u
juj : ð4:4bÞ

The literature seems to be discordant about which equation
should actually be called the eikonal equation. Some sources
call the first one of Eq. (4.4b) the eikonal equation, whereas
others denote it as the vector magnitude of the second one.
Note that the latter leads us back to j∇ψ j ¼ n (cf. the
beginning of this section). In the current paper whenever
referring to the eikonal equation, wewill be talking about the
first one of Eq. (4.4b). For clarity, thevectormagnitude of the
second one will be called the wavefront equation.
Equation (4.4b) can be understood as the Euler-Lagrange
equations resulting from the condition that the following
functional becomes stationary:

L½x;u� ¼
Z

B

A
dsnðxÞ ¼

Z
TB

TA

dtV;

V ¼ Vðx;uÞ ¼ nðxÞjuj: ð4:5Þ

The integrand of this functional is the infinitesimal optical
path length and the functional itself gives the total optical
path length traveled by a ray along its trajectory between two
points A and B. Here TA is the departure time of the ray at A
andTB the arrival time atB. The optical path length is defined
to be the path length equivalent that light has to travel in
vacuo to take the same time as for a given path in a medium
with refractive index nðxÞ. The functional of Eq. (4.5) can be
understood as the base of the Fermat principle, cf. [93,94],
where V is a velocity.

A. Wavefront and eikonal equation in modified
Maxwell theory

The analog of the wavefront equation in Eq. (4.4b) in the
context of modified Maxwell theory was partially studied
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in [95]. The authors of the latter reference chose the
coefficients contained in κDE and κHB as nonvanishing
where both the trace of these matrices and the matrices
mixing electric and magnetic fields were assumed to be
zero. The trace components can be restored without any
effort by just replacing their βE by κDE and their βB by κHB.
The wavefront equation then follows from the matrixMe in
their Eq. (38):

Mij
e ¼ ð1 − j∇ψ j2Þδij þ ∂iψ∂jψ þ κijDE

− κklHBε
inkεjml∂nψ∂mψ ; ð4:6Þ

where εijk is the totally antisymmetric Levi-Civita symbol
in three dimensions with ε123 ¼ 1. This matrix is multiplied
with the time derivatives of the fields, which are singular on
the wavefront. Therefore their Eq. (33) can only have
nontrivial solutions if the determinant ofMe vanishes. This
condition directly leads to the wavefront equation within
the framework considered. For the isotropic case
(cf. Sec. III B), the anisotropic, nonbirefringent case
(cf. Sec. III C), and the anisotropic, birefringent sector
(cf. Sec. III D) we obtain

1 ¼ A2j∇ψ j2; ð4:7aÞ

1 ¼ ð∂1ψÞ2 þ ð∂2ψÞ2 þ B2ð∂3ψÞ2; ð4:7bÞ

1 − G2 ¼ j∇ψ j2 þ Gfð∂1ψÞ2½1 − cosð2ηÞ�
− ð∂3ψÞ2½1þ cosð2ηÞ�g
− G2fð∂2ψÞ2 þ ½ð∂1ψÞ2 − ð∂3ψÞ2� cosð2ηÞg;

ð4:7cÞ

1þ G cosð2ηÞ ¼ j∇ψ j2 þ Gfð∂1ψÞ2
þ ð∂2ψÞ2 cosð2ηÞ − ð∂3ψÞ2g: ð4:7dÞ

These are the analogs of the wavefront equation j∇ψ j2 ¼ n2

in modified Maxwell theory. Following the lines in con-
nection to Eq. (2.30) classical Hamilton functions can be
obtained as parts of the Hamilton-Jacobi equation describing
a classical ray. For the sectors considered a few lines above
they read as follows:

Hj⊚ ¼ −A
ffiffiffiffiffiffi
k2

p
; ð4:8aÞ

Hj⦶ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ B2k23

q
; ð4:8bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − G2

p
Hjð1Þ

Ⓥ
¼ −fk2 þ Gfk21½1 − cosð2ηÞ�
− k23½1þ cosð2ηÞ�g
− G2½k22 þ ðk21 − k23Þ cosð2ηÞ�g1=2;

Hjð1Þ
Ⓥ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G1k21 þ k22 þ G2k23

q
; ð4:8cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ G cosð2ηÞ

p
Hjð2Þ

Ⓥ
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ G½k21 þ k22 cosð2ηÞ − k23�

q
;

Hjð2Þ
Ⓥ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~G1k21 þ k22 þ ~G2k23

q
; ð4:8dÞ

with G1, G2 of Eq. (3.34c) and ~G1, ~G2 taken from Eq. (3.34d).
These Hamilton functions are directly linked to the modified
dispersion relations, cf. the paragraph below Eq. (3.11) for
the isotropic case, Eq. (3.20) for the anisotropic (nonbire-
fringent) sector, and Eq. (3.34) for the anisotropic (birefrin-
gent) case. This nicely demonstrates that all computations are
consistent with each other.
The wavefront equations (4.7) are not suitable for our

calculations since they involve first derivatives of the
wavefront that are unclear how to be treated. Having the
eikonal equations involving the refractive indices and
velocity components only would be of advantage. As a
cross check with the previously obtained results, the
refractive indices can be derived from Eq. (4.7). For the
isotropic case, using the second of Eq. (4.4b) we obtain
j∇ψ j2 ¼ n2, which by inserting into Eq. (4.7a) directly
leads to the isotropic result nj⊚ ¼ 1=A. In Eq. (4.7b) of the
anisotropic (nonbirefringent) sector we can introduce

ð∂1ψÞ2 þ ð∂2ψÞ2 ¼ n2sin2ϑ; ∂3ψ ¼ n cos ϑ; ð4:9Þ

leading to nj⦶ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ϑþ B2cos2ϑ

p
. The latter depends

on the angle ϑ between the propagation direction and the
preferred direction ζ. For the anisotropic (birefringent)
sector we insert

∂1ψ ¼ n
cos θ1 − cos θ2

2 sin η
; ∂3ψ ¼ n

cos θ1 þ cos θ2
2 cos η

;

∂2ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − ð∂1ψÞ2 − ð∂3ψÞ2

q
; ð4:10Þ

both in Eq. (4.7d) and Eq. (4.7c) to obtain two refractive
indices differing at second order in Lorentz violation:

njð1Þ
Ⓥ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − G2

1þ GfðG=2Þ½cosð2θ1Þ þ cosð2θ2Þ� − 2 cos θ1 cos θ2g

s
; ð4:11aÞ

M. SCHRECK PHYSICAL REVIEW D 92, 125032 (2015)

125032-16



njð2Þ
Ⓥ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ G cosð2ηÞ
1þ G½cosð2ηÞ − 2 cos θ1 cos θ2�

s
: ð4:11bÞ

Based on these refractive indices the integrands of the action
functional in Eq. (4.5) can be computed. The results are
consistent with Eqs. (3.14b), (3.27):

VðuÞj⊚ ¼ nj⊚juj ¼
1

A

ffiffiffiffiffi
u2

p
¼ FðuÞjþ⊚; ð4:12aÞ

VðuÞj⦶ ¼ nj⦶juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1Þ2 þ ðu2Þ2 þ ðu3Þ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ϑþ B2cos2ϑ

p

¼ ðu1Þ2 þ ðu2Þ2 þ ðu3Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1Þ2 þ ðu2Þ2 þ B2ðu3Þ2

p
¼ FðuÞjþ⦶; ð4:12bÞ

VðuÞjð1Þ
Ⓥ

¼ njð1Þ
Ⓥ
juj ¼ FðuÞjð1Þþ

Ⓥ
;

VðuÞjð2Þ
Ⓥ

¼ njð2Þ
Ⓥ
juj ¼ FðuÞjð2Þþ

Ⓥ
; ð4:12cÞ

where for the latter two Eq. (3.38) has to be employed.
The refractive indices obtained from thewavefront equations
correspond to the refractive indices computed directly from
their definitions via the inverse phase velocity:
n≡ v−1ph ¼ jkj=ω.

nj⊚ ¼ vphj−1⊚ ¼ jkj
ωj⊚

¼ 1

A
; ð4:13aÞ

nj⦶ ¼ vphj−1⦶ ¼ jkj
ωj⦶

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2

k2⊥ þ B2k2∥

s

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ϑþ B2cos2ϑ

p ; ð4:13bÞ

njð1Þ
Ⓥ

¼ ðvphjð1ÞⓋ
Þ−1 ¼ jkj

ω1jⓋ
;

njð2Þ
Ⓥ

¼ ðvphjð2ÞⓋ
Þ−1 ¼ jkj

ω2jⓋ
: ð4:13cÞ

The studies previously performed do not reveal any incon-
sistencies. The essential conclusion is that it should be
warranted to describe the isotropic, anisotropic (nonbire-
fringent), and anisotropic (birefringent) sectors of modified
Maxwell theory (in the geometric-optics approximation)
with an adapted version of the eikonal equation, Eq. (4.4b).
Last but not least the parity-odd sector of Sec. III E shall

be elaborated on. The wavefront equations for the parity-
odd case were not derived in [95] since in the latter
reference all controlling coefficients mixing electric and
magnetic fields were set to zero. Adapting the procedure
used allows one to derive them nevertheless. The authors of

[95] consider the values of the fields directly on the
wavefront, e.g., for the electric field: E0ðxÞ ¼
Eðt;xÞjt¼ψðxÞ. In what follows, all fields evaluated on
the wavefront will be denoted by an additional “0” as an
index. The spatial derivative on the wavefront is then
given by

∂E0

∂xj ¼ ∂E
∂xj þ _E

∂ψ
∂xj : ð4:14Þ

Based on this procedure, from Maxwell’s equations four
equations can be derived that involve field components on
the wavefront and field derivatives only:

∇ ×E0 ¼ − _Bþ ∇ψ × _E; ∇ ×H0 ¼ _Dþ ∇ψ × _H;

ð4:15aÞ

∇ ·D0 ¼ ∇ψ · _D; ∇ ·B0 ¼ ∇ψ · _B; ð4:15bÞ

D ¼ Eþ κDBB; H ¼ κDBEþ B: ð4:15cÞ

These must be combined to obtain an equation that involves
the time derivatives of only a single field, e.g., the electric
field and field values on the wavefront that may not
necessarily include only a single field. This can be carried
out via the following chain of steps:

∇ ×E0 ¼ − _Hþ κDB
_Eþ ∇ψ × _E; ð4:16aÞ

∇ψ × ð∇ ×E0Þ
¼ −∇ψ × _Hþ ∇ψ × κDB

_Eþ ∇ψ × ð∇ψ × _EÞ;
ð4:16bÞ

∇ψ × ð∇ ×E0Þ
¼ _D − ∇ ×H0 þ ∇ψ × κDB

_Eþ ∇ψ × ð∇ψ × _EÞ;
ð4:16cÞ

∇ψ × ð∇ × E0Þ
¼ _Eþ κDB

_B − ∇ ×H0 þ ∇ψ × κDB
_E

þ ∇ψ × ð∇ψ × _EÞ; ð4:16dÞ

∇ψ × ð∇ ×E0Þ
¼ _Eþ κDBð∇ψ × _E − ∇ ×E0Þ − ∇ ×H0

þ ∇ψ × κDB
_Eþ ∇ψ × ð∇ψ × _EÞ: ð4:16eÞ

The resulting equation then reads
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_Eþ κDB∇ψ × _Eþ ∇ψ × κDB
_Eþ ∇ψ × ð∇ψ × _EÞ

¼ ∇ψ × ð∇ × E0Þ þ ∇ ×H0

þ κDB∇ ×E0: ð4:17Þ

The condition for a vanishing determinant of the matrix on
the left-hand side for the existence of nontrivial solutions
leads to the wavefront equation for the parity-odd case:

ð1þ 2ζ · ∇ψ − j∇ψ j2Þ½1 − ð1þ ζ2Þj∇ψ j2
þ 2ðζ · ∇ψÞ þ ðζ · ∇ψÞ2� ¼ 0: ð4:18Þ

Inserting the second of Eq. (4.4b) into the first factor of
Eq. (4.18) results in

1þ 2ζ · ∇ψ − j∇ψ j2 ¼ 1 − 2nζ · û − n2¼! 0: ð4:19Þ

The latter can be solved with respect to the refractive index n
to give

njζð1Þ⊗ ¼ −ζ · ûþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðζ · ûÞ2

q
¼ −E cosϑþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2cos2ϑ

p
; ð4:20Þ

where only the positive-sign solution delivers a physically
meaningful refractive index. Hence, the result obtained from
the eikonal equation is consistentwith Eq. (3.49c), which can
be seen upon close inspection:

VðuÞjζð1Þ⊗ ¼ njζð1Þ⊗ juj ¼ −ζ · uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ðζ · uÞ2

q
¼ FðuÞjζð1Þþ⊗ : ð4:21Þ

The sameprocedure applied to the second factor ofEq. (4.18)
leads to

1 − ð1þ E2Þn2 − 2nðζ · ûÞ þ n2ðζ · ûÞ2 ¼ 0: ð4:22Þ

Therefore, the refractive index reads

njζð2Þ⊗ ¼−ζ · ûþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p

1þ E2− ðζ · ûÞ2 ¼−E cosϑþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þE2

p

1þE2sin2ϑ
; ð4:23Þ

which is consistent with Eq. (3.52)

VðuÞjζð2Þ⊗ ¼ njζð2Þ⊗ juj ¼ −ζ · uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p
juj

1þ E2 − ðζ · uÞ2=u2
¼ FðuÞjζð2Þþ⊗ :

ð4:24Þ

The refractive indices obtained from thewavefront equations
for the isotropic and anisotropic cases, Eqs. (4.7a)–(4.7d),
respectively, are consistent with the usual definition of the

refractive index via the inverse phase velocity
[cf. Eqs (4.13a)–(4.13c)]. However, this does not seem to
be the case for the parity-odd sector. Inspecting Eqs. (3.46a),
(3.46b) and the latter results for the refractive indices of
Eqs. (4.20), (4.23) reveals the inconsistency:

jkj
ω1j⊗

¼ 1

E cos ϑþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2cos2ϑ

p ≠ njζð1Þ⊗ ; ð4:25aÞ

jkj
ω2j⊗

¼ 1

E cos ϑþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p ≠ njζð2Þ⊗ : ð4:25bÞ

The definition of the refractive index via the inverse of the
phase velocity rests on the existence of a nonzero permeabil-
ity and permittivity. However, for the parity-odd case they
both vanish and the electric fields evenmixwith themagnetic
fields, which is why the ordinary definition of the refractive
index does not seem to be reasonable. A further origin of the
issue may be that Okubo’s method does not produce Finsler
structures in a unique manner. We conclude that it may be
problematic to treat the parity-odd case ofmodifiedMaxwell
theory with the eikonal equation. Finding a solution to this
clash is an interesting open problem.

B. Usefulness of Finsler structures

The quantity V that was dealt with on the last few pages
is a velocity, which is not to be confused with the phase or
group velocity in a Lorentz-violating vacuum. It is the
integrand of the path length functional in a nontrivial
medium with refractive index nðxÞ. In the previous sections
it was clarified that V can be understood as a Finsler
structure. These Finsler structures are the analogs of
classical Lagrangians in the fermion sector obtained in
[63–67]. It was shown that they are directly connected to
the refractive indices of the corresponding Lorentz-
violating vacua that are comprised in the eikonal equation.
Both the eikonal equation and Finsler structures will play
an essential role for phenomenology in Sec. V and for the
discussion of explicit Lorentz violation in Secs. VI, VII.
In [62] slightly different conventions are used and such a

Finsler structure is interpreted as a phase describing the
state of evolution of a wave. The reason is due to the form
of a plane wave: expðiφÞ with φ ¼ ωðnk̂ · x − tÞ where k̂
is the wave unit vector and x a vector in configuration
space. Note that a product of the refractive index and a
spatial distance (optical path length) is comprised both in
the latter phase φ and the integrand of the path length
functional in Eq. (4.5).
Having such a Finsler structure V at hand, their lines of

constant value in two spatial dimensions can be inves-
tigated. If the Finsler structure is purely Riemannian these
lines are either concentric circles, cf. Eq. (3.14b), or ellipses
whose axes may not be aligned with the coordinate axes
[Fig. 1(a)]. In contrast, Finsler structures that are not
Riemannian have a vast number of novel properties. For
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the structure of Eq. (3.27) the previously mentioned lines
may have notches, i.e., regions of negative (extrinsic)
curvature. These lines look like two merged circles that
have been smoothed out at their intersections [Fig. 1(b)]. In
the case of a Randers structure, Eq. (3.39), we have circles
whose centers are displaced from the coordinate origin
[Fig. 1(c)]. For the second-order deviation of a Randers
structure, Eq. (3.40), each displaced circle has an additional
notch [Fig. 1(d)]. At such notches the density of lines is
larger compared to other regions, which means that these
regions are very steep in a three-dimensional plot ofV. Thus,
plenty of physical information is comprised in the Finsler
structure V: the shape of the state of wave development
(shapes other than circles and ellipses for non-Riemmanian
structures), how quickly the state of development changes in
different directions (steep regions near notches versus flat
regions otherwise), andwhether the centers of these states lie
on a point or a curve (the latter, e.g., for Randers structures).
Reducing the notion of waves to the picture of rays, V

delivers information on whether it suffices to describe the
dynamics of the corresponding ray with Riemannian
geometry. An isotropic theory is characterized by a
preferred timelike direction and it can be interpreted as a
Riemannian framework. This is not entirely surprising

since such a theory can only involve a scaling factor
(denoted asA in Sec. III B) that affects all spatial directions
equivalently. For an anisotropic framework, the situation is
already different (cf. the anisotropic, nonbirefringent or the
parity-odd theory). The corresponding classical analogs are
connected to Finsler structures. Promoting the refractive
index to a position-dependent function and computing the
extremal traveling time of a light ray between two points,
the geodesic equation of Riemannian geometry is not
sufficient anymore. In fact, such setups are closely linked
to the Zermelo navigation problem of a ship or plane in a
current [96] and the related geodesics are no longer
Riemannian. To compute geodesics based on the functional
of Eq. (4.5), the Finsler structures of Eqs. (3.14b), (3.27),
(3.39), (3.40), (3.49c), and (3.52b) will be needed. It is
reasonable to have them at hand for future purpose.
Last but not least, the Finsler spaces associated with the

minimal SME photon sector may be of interest to mathe-
maticians investigating their properties. Note that b space
[63,64,67],which is connected to the fermonicbμ coefficient,
has raised some mathematical interest; cf. [72]. Although its
form is quite simple it has a rich set of interesting properties.
This may also be the case for the “second-order Kropina
structures” of Eqs. (3.27), (3.39), (3.40).

(a) (b)

(c) (d)

FIG. 1 (color online). Lines of constant V for the isotropic Finsler structure of Eq. (3.14b) (a), the anisotropic structure of Eq. (3.27) (b)
for B ¼ 1, the first parity-odd structure in Eq. (3.49c) for E ¼ 1 (c), and the second parity-odd structure in Eq. (3.52b) for E ¼ 1 (d).
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V. GRAVITATIONAL BACKGROUNDS

The physics for a classical point-particle equivalent to a
massive fermion rests on its Lagrangian. The procedure of
deriving those within the framework of the SME works for
massive particles only where in the limit of a vanishing
particle mass the Lagrangian goes to zero. So far we have
demonstrated that the important quantity to describe the
physics of electromagnetic waves in the geometric-optics
approximation is the refractive index. The reason is that the
motion of photons is much more restricted than the motion
of a massive particle. After all, for a particle with mass
moving in a potential the initial position, direction, and
velocity can be chosen freely. On the contrary, for a photon
the initial position and direction only are not fixed, whereas
its initial speed is determined by the refractive index at its
starting point.
In the previous sections, it was shown how to establish

connections between various cases of the minimal SME
photon sector and certain Finsler geometries. The Finsler
geometries found were discovered to be closely related to
the various refractive indices where only for the parity-odd
case of the CPT-even sector such a connection is not
manifest. The refractive indices found are independent of
the spacetime position just as the controlling coefficients,
which corresponds to the analog of a homogeneous
medium in optics. However, the refractive index can
depend on the three spatial velocity components. In other
words, in such cases the refractive index depends on angles
enclosed between the propagation direction and preferred
directions. This situation is reminiscent of anisotropic
media in optics. Hence, Finsler structures related to the
CPT-even photon sector are three-dimensional in contrast
to the Finsler structures obtained from Wick-rotating
classical Lagrangians of massive particles. Besides, note
that in the photon case no Wick rotation is necessary since
the intrinsic metric involved is already of a Euclidean
signature.
These results shall serve as a base for studying light rays

in the geometric-optics approximation in the presence of
Lorentz violation. As we saw, for most cases these can be
described by the eikonal equation; cf. Eq. (4.4b):

d
ds

�
n
dx
ds

�
¼ ∇xn; ð5:1Þ

where n is the refractive index of the medium considered.
On the right-hand side, the gradient is understood to be
computed with respect to the position vector x. The photon
trajectory is given by x ¼ xðsÞ and it is parametrized by the
arc length s. For an isotropic and homogeneous medium,
the refractive index is a mere constant. In this case, one
immediately sees that the resulting ray equation is

d2x
ds2

¼ 0; ð5:2Þ

whose solution is a straight line as expected. For homo-
geneous, but anisotropic, media the refractive index
depends on at least one angle, n ¼ nðϑÞ, where further
angles are suppressed for brevity. For a straight-ray
trajectory, the angle ϑ is fixed by the initial direction
and it does not change during propagation, i.e., it is not a
function of s. Furthermore due to homogeneity the refrac-
tive index does not change along the trajectory as well,
which is why ∇xnðϑÞ ¼ 0 for points on the trajectory.
Therefore in this case we again end up with Eq. (5.2). For
inhomogeneous media with n ¼ nðxÞ the eikonal equation
cannot have straight-line solutions, though.
In what follows the formalism and knowledge attained

shall be applied to propagating light rays in curved
spacetimes with metric gμν ¼ gμνðxÞ. The trajectory of a
ray in a spacetime is described by a four-vector xμ ¼ xμðsÞ
and it propagates with the four-velocity uμ ≡ dxμ=ds.
Propagation occurs along geodesics combined with the
nullcone condition gμνuμuν ¼ 0 that has to hold locally at
each spacetime point. For practical reasons, which will
become clear in the course of the current section,
all forthcoming investigations will be performed in a
spacetime characterized by a line interval of the form

dτ2 ¼ 1

Aðr; θ;ϕÞ dt
2

− Aðr; θ;ϕÞðdr2 þ r2dθ2 þ r2sin2θdϕ2Þ: ð5:3Þ
Here t is the time, ðr; θ;ϕÞ are spherical coordinates, and A
is a time-independent function. Such metrics were pro-
posed in [97] and they are denoted as “generally isotropic”
where metrics with A ¼ AðrÞ are called “spherically
symmetric.” The parentheses in the spatial part of
Eq. (5.3) give the volume element of a three-dimensional
ball and it is multiplied by Aðr; θ;ϕÞ. The choice
Aðr; θ;ϕÞ ¼ 1 in Eq. (5.3) describes Minkowski spacetime
in three-dimensional spherical coordinates. In this case, the
spatial coordinate surfaces with constant r are two-spheres.
For arbitrary Aðr; θ;ϕÞ these surfaces are still two-spheres
topologically, but their local geometry depends on r, θ, and
ϕ. Note that the metric describing a weak gravitational field
can be brought into the generally isotropic form:

ðgμνÞ ¼ diagðð1þ 2ΦÞ;−ð1 − 2ΦÞ;−ð1 − 2ΦÞ;−ð1 − 2ΦÞÞ

¼ diag

�
1

1 − 2Φ
;−ð1 − 2ΦÞ;−ð1 − 2ΦÞ;

− ð1 − 2ΦÞ
�
þOðΦ2Þ: ð5:4Þ

HereΦ ¼ ΦðrÞ ¼ −GM=r ≪ 1 is the Newtonian potential.
In the latter paper [97] it was shown that there is a link

between the eikonal equation of the geometric-optics
approximation and the null geodesic equations of a
spacetime based on a line interval of Eq. (5.3). A suitable
combination of the geodesic equations leads to
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d
ds

�
Aðr; θ;ϕÞ dx

ds

�
¼ ∇Aðr; θ;ϕÞ; ð5:5Þ

i.e., Aðr; θ;ϕÞ of Eq. (5.3) can be understood as an
inhomogeneous and anisotropic refractive index.
Therefore as long as weak gravitational fields are consid-
ered, light behaves according to the geometric-optics
approximation. The approximation is expected to break
down as soon as strong gravitational forces appear such as
in the direct vicinity of a black hole. In this case the original
geodesic equations have to be studied instead of the eikonal
approach. Note that the converse is true as well. If the
eikonal equation is known to be valid (also in flat
spacetime) this corresponds to a propagating ray in a
generally isotropic spacetime of Eq. (5.3).

A. Isotropic case

The eikonal approach has a great potential to be applied
to the propagation of light rays in a weak gravitational field
permeated by a Lorentz-violating background field. It is
reasonable to start with the simplest case, which is the
isotropic one investigated in Sec. III B. With the constant
refractive index n ¼ 1=A (in Minkowski spacetime) given
by Eq. (3.8) or Eq. (4.13a) the eikonal equation and the
corresponding spacetime, Eq. (5.3), read as follows:

d
ds

�
1

A
dx
ds

�
¼ ∇

�
1

A

�
; ð5:6aÞ

dτ2¼Adt2−
1

A
ðdr2þ r2dθ2þ r2sin2θdϕ2Þ:

ð5:6bÞ

The coordinate surfaces of the associated spacetime are
spheres whose radii are scaled by 1=

ffiffiffiffi
A

p
. This intermediate

result can now be used to introduce a gravitational back-
ground. Via the principle of minimal coupling the flat
Minkowski metric is replaced by a curved spacetime metric,
ημν ↦ gμνðxÞ, and the constant refractive index n is pro-
moted to a spacetime-position dependent function:
n ↦ nðr; θ;ϕÞ. The curved spacetime metric is taken to
be Eq. (5.4) for a weak gravitational field. Since the latter is
spherically symmetric, it is reasonable to assume spherical
symmetry for the position-dependent refractive index, i.e.,
nðrÞ ¼ 1=AðrÞ. The corresponding eikonal equation and the
line interval then read as follows:

d
ds

�
nðrÞ dx

ds

�
¼ ∇nðrÞ; nðrÞ≡ 1 − 2ΦðrÞ

AðrÞ ; ð5:7aÞ

dτ2¼ 1

nðrÞdt
2−nðrÞðdr2þ r2dθ2þ r2sin2θdϕ2Þ:

ð5:7bÞ

Hence, the minimal-coupling principle amounts to a refrac-
tive index that is the product of a spatial com-
ponent of the weak gravitational field metric and the
spacetime-position dependent refractive index 1=AðrÞ asso-
ciated with the isotropic Lorentz-violating framework
considered.
The approach introduced has a paramount advantage.

The physics of a Lorentz-violating photon in a (weak)
gravity field can be studied without field theory and the
geodesic equations in a curved spacetime. Instead, a
classical method is used replacing photons by light rays
and working in the geometric-optics approximation with
the eikonal equation. In this context, Lorentz symmetry
violation is treated as explicit, which is known to clash with
the existence of gravitational backgrounds [41]. The latter
Secs. VI and VII will be dedicated to this issue where for
now we will delve into phenomenology.
One possible application of the used approach lies in the

(modified) deflection of light in the vicinity of a massive
body (cf. Fig. 2), which is an important test of gravitational
theories. From a technical point of view the eikonal
equation is nonlinear, which makes it challenging to solve
analytically in general. However, for the isotropic case, i.e.,
a refractive index only depending on the radial coordinate
r, the formula of Bouguer follows from the eikonal
equation (see, e.g., Sec. 3.2.1 of [98]):

nðrÞr sin α ¼ C: ð5:8Þ

Here C is a constant and α the angle between the tangent
vector of the trajectory and the radial vector pointing from
the coordinate origin to a particular point on the trajectory.
The latter relationship is the equivalent of energy and
angular momentum conservation for a massive particle in
classical mechanics. Since both the distance r of a
particular point from the origin and the angle α associated
with this point does not depend on the parametrization of
the trajectory, we choose to parametrize it by spherical
coordinates. Thereby the problem is restricted to the

FIG. 2 (color online). Deflection of light near a massive body,
e.g., the planet Jupiter. (The picture of Jupiter was taken by the
Cassini spacecraft; cf. http://www.nasa.gov/audience/forstudents/
5‑8/features/nasa‑knows/what‑is‑jupiter‑58.html.)
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x − z-plane with θ ¼ π=2. The trajectory then reads x ¼
rêr where r ¼ rðϕÞ and êr ¼ êrðϕÞ is the unit vector
pointing in radial direction. The angle α is given as follows:

sin α ¼ rðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðϕÞ þ _r2ðϕÞ

p ; _r≡ dr
dϕ

: ð5:9Þ

Now the formula of Bouguer delivers a differential equa-
tion for ϕðrÞ. Its solution is obtained by solving the latter
with respect to dϕ=dr and by performing a subsequent
integration:

ϕðrÞ ¼ C
Z

r

d

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðrÞ2r2 − C2

p ; ð5:10Þ

where d is the distance of minimal proximity and the
condition ϕðdÞ ¼ 0 has been set. By doing so, solving the
eikonal equation has been reduced to computing a one-
dimensional integral. Now consider a classical light ray
approaching a massive body with impact parameter d∞,
which is the distance between the particle propagation
direction in the asymptotically flat region and the parallel
going through the center of mass of the body (at the
coordinate origin). The photon will travel such that its
distance to the body steadily decreases until reaching a
minimum where it increases again afterwards. At the
minimum distance d we have that _r ¼ 0 and therefore
α ¼ π=2. The minimum distance corresponds to the impact
parameter to a very good approximation: d ≈ d∞. This is
why Eq. (5.8) immediately tells us that

C ¼ nðdÞd ≈ nðd∞Þd∞: ð5:11Þ

Without the massive body, the change Δϕ in the angle
would be equal to π for a photon coming from an
asymptotically flat region, passing near the coordinate
origin, and propagating back to infinity. Due to the body
there is a deflection, which changes Δϕ to an angle that is
slightly larger than π. Performing the integration in
Eq. (5.10) from r ¼ d to infinity gives half of this
contribution since it only takes into account the second
half of the trajectory. Therefore, the deflection angle φ is
given by

φ ¼ Δϕ − π ¼ 2C
Z

∞

d

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðrÞ2r2 − C2

p − π: ð5:12Þ

It can be checked that Eq. (5.12) gives φ ¼ 0 for nðrÞ ¼ 1
as expected. For a constant refractive index n it holds that
C ¼ nd. By inspecting Eq. (5.12) it follows immediately
that a constant n does not lead to any deflection. This is in
contrast to [99] where for certain Lorentz-violating frame-
works with constant Lorentz-violating coefficient it was
shown that there is a change in the deflection angle caused
by Lorentz violation, indeed. However, note that in the

latter reference a Schwarzschild black hole was considered
whose line interval had not been cast into generally
isotropic form; cf. Eq. (5.3). A discussion of this difference
leading to more insight into Bouguer’s formula is relegated
to Appendix B, since it is quite technical and probably not
of relevance for all readers.

B. Phenomenology for the isotropic framework

With the technique further developed, we are ready to
carry out phenomenological calculations. The goal is to
obtain predictions for the change of the light deflection angle
caused by particular Lorentz-violating frameworks. These
predictions will be compared to experiment with obtaining
sensitivities on controlling coefficients in the minimal SME
photon sector. As the most important example, light deflec-
tion at the Sun will be discussed first. However, light can be
deflected at any other massive bodies such as planets.
First of all, we intend to recapitulate the standard result.

For vanishing Lorentz violation the deflection angle of
Eq. (5.12) can be computed analytically. Thereby the
integral 2.266 of [100] is helpful:

Z
dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ βxþ γx2

p ¼ 1ffiffiffiffiffiffi
−α

p arcsin

�
2αþ βx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4αγ

p �
;

α < 0; β2 − 4αγ > 0: ð5:13Þ

For the Lorentz-invariant case we have

α ¼ −
d
RS

�
d
RS

þ 2

�
; β ¼ 2; γ ¼ 1; ð5:14Þ

with the Schwarzschild radius RS ¼ 2GM=c2 of the mas-
sive body. Here G is the gravitational constant,M the mass
of the body, and c the speed of light. The conditions for α, β,
and γ stated in Eq. (5.13) are fulfilled and the full analytical
result for the deflection angle is given as follows:

φ ¼ 1þ 2ξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ξ

p
�
π þ 2 arcsin

�
2ξ

1þ 2ξ

��
− π ¼ 4ξþOðξ2Þ;

ξ ¼ RS

2d
; ð5:15Þ

where the latter is the first-order expansion in the dimen-
sionless parameter ξ ≪ 1. Now considering a light ray
directly passing the surface of the Sun (scraping incidence),
d is given by the radius r⨀ of the Sun. Using the values of
Table I and multiplying the previous equation with 180 ×
602=π leads to the well-known result φ ≈ 1.7500, which lies
within few standard deviations from the mean value
observed during the total eclipse in 1919 [101,102].
Now the refractive index is modified due to Lorentz

violation according to Eq. (5.7a). Therefore the isotropic
Lorentz-violating coefficient ~κtr is promoted to a spacetime-
position dependent function (cf. Fig. 3). It is assumed to
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only depend on the radial coordinate r to keep the
framework isotropic:

~κtr ↦ ~κtrðrÞ ¼ ~κtr½1 − fðrÞ�; ð5:16Þ

with a function f having special properties. The latter shall
be constructed such that 1 − f ≥ 0 for r=d ≥ 1. This means
that the sign of ~κtrðrÞ is fixed by the sign of the constant
prefactor ~κtr. Furthermore limr↦∞ ~κtrðrÞ ¼ ~κtr, whereby in
the asymptotically flat region the position-dependent con-
trolling coefficient is identified with the corresponding
SME photon coefficient ~κtr in Minkowski spacetime. The
refractive index then reads as

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~κtrðrÞ
1 − ~κtrðrÞ

s �
1þ RS

r

�
: ð5:17Þ

From Eq. (5.7b) the coordinate velocity of light in this
framework is given by

c ¼ jdrj
dt

¼ 1

nðrÞ ; ð5:18Þ

i.e., for ~κtr > 0 it is reduced in comparison to the Lorentz-
invariant case.
The position dependence shall reflect the properties of

the gravitational background. The curvature radius RS is the
physical scale of the background, i.e., it is reasonable to
associate it with ~κtrðrÞ as well. Note that we are only
interested in the behavior of the function outside of the
massive body, which means r ≥ d. Generic functions with
these properties are

fðrÞ≡
�
1þ a

�
r − d
RS

�
2
�
−1
; ð5:19aÞ

gðrÞ≡ 2 arctan fa½1 − ðr − dÞ2=R2
S�g þ π

2 arctanðaÞ þ π
; ð5:19bÞ

wherea ≤ 1 is a free, dimensionless parameter. Therefore for
these particular sample functions it holds that fðdÞ ¼ 1 and
limr↦∞fðrÞ ¼ 0. Whatever the underlying theory for a
possible violation of Lorentz invariance looks like, it is
reasonable to assume that the amount of Lorentz violation is
influenced by a gravitational background field. Referring to a
small-scale structure of spacetimewhere simplemodelswere
shown to produce Lorentz-violating particle dispersion
relations [14,15] the argument could be along the following
lines. A gravitational field has an energy density associated
with it; cf. [103] for the case of spheres andblack holes. Since
a spacetime foam is caused by energy fluctuations, an
additional contribution of energy density associated with a
gravitational fieldmay have some influence on it. Thiswould
render the effective controlling coefficients for Lorentz
violation spacetime-position dependent. Hence, for the
isotropic framework considered the refractive index directly
at the surface of the Sun may have a dip for ~κtr > 0 or a peak
for ~κtr < 0 in its position dependence (cf. Fig. 3). As long as
the underlying description is not available, it is challenging to
deliver a more rigorous argumentation. Thus, a ~κtrðrÞ
including Eq. (5.19) with the parameter a controlling the
width of the dip/peak must be interpreted as a phenomeno-
logical description of such effects.
Now the modified deflection angle can be calculated in

two different ways. The first is to compute the integral
according to Bouguer’s formula of Eq. (5.12). The second
is to solve the eikonal equation directly. In Appendix C the
eikonal equation is brought into a form that is suitable for
solving it. For a refractive index that has a radial depend-
ence only, Eq. (C5) results in

0 ¼ ðr2 þ _r2Þr ∂n∂r þ nðr2 þ 2_r2 − r̈rÞ: ð5:20Þ

Bouguer’s formula is a first integral of the eikonal equation
that follows from angular momentum conservation.
Therefore using it allows us to avoid the computation of
one integral. Nevertheless as a cross check it is reasonable

TABLE I. Gravitational constant, masses, and radii of the Sun
(☉), Jupiter (♃), and Saturn (♄). For Jupiter and Saturn the
average of the pole and equatorial radii is used.

Quantity Unit Value

G m3=ðkg · s2Þ 6.67384 × 10−11

M☉ kg 1.98910 × 1030

M♃ kg 1.89813 × 1027

M♄ kg 5.68319 × 1026

r☉ m 6.95508 × 108

r♃ m 6.99110 × 107

r♄ m 5.82320 × 107

FIG. 3 (color online). Spacetime-position dependent refractive
index (and controlling coefficient) as a function of the dimen-
sionless parameter r=d where d corresponds to the Sun radius r⨀
in this example. (The picture of the Sun was taken by SOHO—
EIT Consortium, ESA, NASA; cf. http://science.nasa.gov/
science‑news/science‑at‑nasa/2003/22apr_currentsheet/.)
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to carry out the computation with the two techniques. Both
the integral of Eq. (5.12) and the eikonal equation are
challenging to be solved analytically for a refractive index
that is modified by Lorentz violation. Therefore we attempt
to treat both cases numerically with Mathematica.
To gain some physical understanding, the eikonal

equation is solved numerically for hypothetical values of
RS and ~κtr first. At the distance of minimal proximity d the
sample functions of Eq. (5.19) vanish by construction.
Therefore nðdÞ ¼ 1þ RS=d, which is why C ¼ nðdÞd and
the impact parameter is given by

d∞ ¼ C
nðr ¼ ∞Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~κtr
1þ ~κtr

s
ðdþ RSÞ: ð5:21Þ

For realistic situations, i.e., light bending at stars, the
Schwarzschild radius is much smaller than the distance
of minimal proximity. Note that for scraping incidence, d
corresponds to the radius of the star. Since bounds on the
isotropic coefficient ~κtr in flat, asymptotic spacetime are
strict, it holds that d ≈ d∞ to a good approximation. For the
hypothetical values that we choose for illustration purposes
this is not necessarily warranted. Taking d=RS ¼ 5 and
~κtr ¼ 1=20 we obtain the results depicted in Fig. 4(a). The
curves show the solutions of the eikonal equation where the
refractive index has been modeled according to Eq. (5.17)
using the sample function fðrÞ of Eq. (5.19a) for different
choices of the parameter a. Recall that the latter character-
izes the width of the dip/peak in the refractive index directly
at the surface of the massive body, which is caused by
Lorentz violation. Since for comparison all curves should
meet at a single point, the impact parameters d∞ have to be
adapted properly, which is why they differ from each other.
The observation is that for increasing a and ~κtr > 0 the

deflection angle is reduced. As long as the light ray is far

away from the massive body it experiences a refractive
index that increases when the distance to the body
decreases. This is the standard behavior of the refractive
index whose origin lies in nonvanishing Riemann curvature
components. Upon approaching the massive body, the light
ray suddenly experiences the dip where the refractive index
becomes smaller for decreasing distance. The ray then
behaves contrary to the standard case and tends to be bent
away from the body, which can be clearly seen in Fig. 4(a).
Note that for ~κtr < 0 the dip in the refractive index turns
into a peak. Hence, the behavior is opposite and the ray is
bent towards the body even stronger; cf. Fig. 4(b).
From a technical point of view to solve the eikonal

equation, proper initial conditions have to be considered.
Since the ray is assumed to arrive from an asymptotically
flat region, the initial angle is ϕ0 ¼ π. In practice, an angle
lying close to π must be chosen where the direction of the
ray initially is assumed to point along the positive hori-
zontal axis. We express the solution of the eikonal equation
as rðϕÞ ¼ dξðϕÞwith the dimensionless function ξðϕÞ. The
initial conditions are then fixed to be ξðϕ0Þ ¼ Δ and
ξ0ðϕ0Þ ¼ − cotðϕ0ÞΔ where ϕ0 ¼ π − arcsinðd∞=ΔÞ.
Here Δ is a length scale with the property Δ ≫ d, which
is tuned to increase the precision of the numerical result.
Theoretically Δ should approach infinity, which is not a
possible value to choose in practice, though. Setting the
final angle in the numerical integration to ϕ1 ≲ 0 leads to
numerical instabilities, which is why ϕ1 is taken to be only
slightly smaller than zero. This is supposed to be sufficient
for small bending angles that appear in realistic scenarios.
Note that ϕ1 ¼ −π=2 would correspond to the upper
infinite integration limit in Bouguer’s formula. Since it
is impossible to choose the latter value for ϕ1 there is a
(maximum) systematic error of around 8 × 10−10 μarcs
between angles obtained in both methods. This systematic

(a) (b)

FIG. 4 (color online). Solutions of the eikonal equation in the x-y plane (in dimensions of d) for ~κtr ¼ 1=20 (a) and for ~κtr ¼ −1=20
(b). The massive body resides in the origin and the hypothetical value d=RS ¼ 5 has been chosen. The black (plain) curve shows
standard light deflection where for the remaining [red (dotted), blue (dashed), green (dashed-dotted), orange (dashed with large spaces)�
curve a ¼ f1; 1=10; 1=102; 1=103g has been taken successively.
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deviation cancels when angle differences of both tech-
niques are compared to each other leaving back purely
numerical uncertainties. To reduce those as much as
possible the working precision is set to a large number
and the maximum number of steps is taken to be infinite.
There are at least two space-based missions available that

could test gravity based on light deflection. Two of the most
promising ones are GAIA and LATOR. In what follows we
will discuss the perspective of these missions in obtaining
constraints on Lorentz violation in the (isotropic) photon
sector by performing measurements of light deflection at
massive bodies. Thereby the theoretical tools developed so
far will be of great use.

1. Sensitivity of GAIA

GAIA2 [104] is a space probe that was launched in
December 2013 by ESA. The mission goal is to perform
measurements of positions and radial velocities of about
1% of the galactic stellar population, which shall generate a
three-dimensional map of our galaxy. This is supposed to
give information on the galactic history, dark matter as well
as extra-solar planetary systems. GAIA can measure angles
with a sensitivity of around 10 μarcs, which is why it can
test deflection of light at massive bodies to a high precision.
However, the mission parameters do not allow light to be
measured grazing the surface of the Sun. Such measure-
ments will be possible for Jupiter and Saturn only (see
Table III in [104]).
Now we intend to perform phenomenology of light

bending in an isotropic Lorentz-violating framework based
on the possibilities of GAIA. Thereby sample functions are
taken according to Eq. (5.19) with different values for the
parameter a ¼ 1=10i and the range i ¼ 0…15. Choosing a

particular controlling coefficient ~κtr, the deflection angle of
light in the vicinity of Jupiter is computed with two
methods. The first uses the formula of Bouguer,
Eq. (5.12). The second solves the eikonal equation (5.20)
numerically in analogy to what was described above. The
bending angle is then computed via the scalar product of
the initial and final normalized tangent vectors. This gives
an excellent cross check for the results since the two
methods are independent of each other.
The bending angle obtained is then compared to the

standard result. This procedure is repeated for a decreasing
isotropic coefficient ~κtr until the difference between the
modified and the standard result approximately matches
the precision that GAIA can measure angles with. This sets
the sensitivity of the experiment with respect to ~κtr in a
curved background. However, it is challenging to compute
the integral or to solve the eikonal equation with a high
precision. We use the difference of the results obtained
from the two methods as a measure for how meaningful
they are. For a conservative estimate of the sensitivity one
should keep results only if this theoretical uncertainty is
much smaller than the difference between the modified and
the standard bending angle.
First of all for ~κtr > 0 the difference between the standard

bending angle φ�
♃ and the modified bending angle is

positive, which shows that the bending angle is reduced
by a positive Lorentz-violating coefficient ~κtr (see the third
column of Table II). For ~κtr < 0 the behavior is vice versa
and the absolute numbers mainly deviate in the third digit,
which is why they are omitted in the table. We stated all
differences φ�

♃ − φ♃ that are larger than and lie in the
vicinity of the experimental precision of GAIA, i.e.,
10 μarcs. Such modifications can be expected to be
detectable by this mission. From the results it becomes
clear that the sensitivity of the isotropic coefficient reduces
when the width of the dip, which is controlled by the
parameter a, decreases. If the width lies in the order of
magnitude of Jupiter’s radius the sensitivity for j~κtrj is
10−14. In case the width lies 15 orders of magnitude below

TABLE II. Numerical results for modified light deflection angles at Jupiter (scraping incidence) in the isotropic
framework. The first column states (ranges of) the parameter a used in Eq. (5.19). The second column gives the
value of the isotropic coefficient. In the third and fourth columns differences between the standard deflection angle
φ�
♃ ≈ 16.6 marcs and the modified angle φ♃ are shown in suitable units. For the third column the modeling function

fðrÞ of Eq. (5.19a) is used and for the fourth column we employ gðrÞ of Eq. (5.19b). Each number is understood to
be associated with the proper parameter a in the first column where both lists are in order. The results for a negative
~κtr are (almost) equal to the corresponding numbers for a positive ~κtr where the global sign of φ�

♃ − φ♃ is reversed.
The deviation in the absolute values shows up in the third digit for almost all differences.

fðrÞ gðrÞ
− log10ðaÞ − log10ð~κtrÞ φ�

♃ − φ♃ [10 μarcs] φ�
♃ − φ♃ [10 μarcs]

0 14 1.61 1.40
1…4 13 9.07; 5.10; 2.87; 1.61 8.80; 4.97; 2.80; 1.57
5…8 12 9.07; 5.10; 2.87; 1.61 8.84; 4.97; 2.80; 1.57
9…12 11 9.07; 5.10; 2.86; 1.60 8.84; 4.97; 2.79; 1.56
13…15 10 8.81; 4.70; 2.34 8.58; 4.57; 2.26

2The acronym originally meant “Global Astrometric Interfer-
ometer for Astrophysics.” Although the foreseen measurement
technique was changed upon construction of the apparatus, the
acronym was kept.
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that the sensitivity of j~κtrj is still 10−10. Hence, the
sensitivity does not decrease as quickly as the parameter
a. The numbers are meaningful, since the difference of the
results obtained with Bouguer’s formula and by solving
the eikonal equation directly is around 4 × 10−9 μarcs at
the maximum. The latter is interpreted as the theoretical
uncertainty and it is much smaller than jφ�

♃ − φ♃j.
Obtaining the modified deflection angles for Saturn

works completely analogously. The sensitivity on ~κtr lies
in the same order of magnitude. The only difference is that
even smaller a could be probed based on a modeling
according to Eq. (5.19). The reason is that

d♄
RS;♄

≈ 2.78
d♃
RS;♃

; ð5:22Þ

whereby the additional dimensionless factor increases the
contribution of a.

2. Sensitivity of LATOR

LATOR (Laser Astrometric Test of Relativity) [105,106]
is a mission that is being planned by a collaboration of
NASA and ESA. It is a Michelson-Morley-type experiment
that shall perform curvature measurements in our solar
system to determine the Eddington post-Newtonian param-
eter γ with a precision of 1 part in 108. It is considered to be
a test mission for general relativity and it is supposed to
detect the frame-dragging effect and to determine the solar
quadrupole moment. The primary objective will be to
measure the gravitational deflection of light by the Sun
to an accuracy of 0.02 μarcs. Such an astounding precision
shall be made possible by an improved laser ranging and a
long-baseline optical interferometry system.
We carry out phenomenology as we did before by

choosing different parameters a for the sample functions
of Eq. (5.19). The calculations are completely analogous to
before where the only difference is that they are carried out
for the Sun using the appropriate parameters of Table I. The
essential numerical results are stated in Table III. The
bending angle behaves similarly to before, i.e., it is reduced

for ~κtr > 0 and it increases for ~κtr < 0. The differences φ�
☉ −

φ☉ are listed that lie in the vicinity of the experimental
precision expected for LATOR, i.e., 0.02 μarcs. If the width
of the dip/peak in the refractive index of the Lorentz-
violating vacuum lies in the order of magnitude of the Sun’s
radius the sensitivity for the isotropic coefficient j~κtrj is
10−16. The lowest sensitivity in case of a very narrow dip/
peak is 10−11. Comparing the results determined from
Bouguer’s formula to the results from the numerical
solution of the eikonal equation reveals differences of
ca. 6 × 10−12 μarcs. Therefore, the theoretical uncertainty
is still much smaller than jφ�

☉ − φ☉j. Note that for the
model function gðrÞ the modification of the deflection
angle for j~κtrj ¼ 10−16 is smaller than 1.50 × 10−2 μarcs.
Therefore assuming this model function, the sensitivity of
LATOR will not be sufficient to detect a j~κtrj lying in the
order of magnitude of 10−16.

3. Discussion

According to the current (2015) version of the data
tables [5] the strictest lower bounds on ~κtr lie in the order of
magnitude of −10−16 where the best upper bounds are
around 10−20. The isotropic coefficient of modified
Maxwell theory is challenging to be constrained in labo-
ratory experiments, which is why these bounds are related
to ultrahigh energy cosmic rays. With the precision of
LATOR there would be a space-based experiment per-
formed under controlled conditions that could have a
sensitivity comparable to the best current constraints on
a negative ~κtr. This is astonishing taking into account that
the precision of a man-made experiment may match the
sensitivity reached by the most energetic particles propa-
gating through interstellar space for distances of many
light-years. It illustrates the versatility of the technique
presented to constrain Lorentz violation in the photon
sector by precise measurements of light bending at massive
bodies. Note that the sensitivity does not largely depend on
the model function used. This independence could be
checked for further model functions, which can be regarded
as an interesting future project.

TABLE III. Numerical results for modified light deflection at the Sun in the isotropic framework (see Table II for
the meaning of each column). The standard deflection angle for scraping incidence at the Sun is φ�

☉ ≈ 1.75 arcs [see
Eq. (5.15) and the subsequent paragraph]. In the second line a ¼ 0 is associated with the first value in the fourth
column.

fðrÞ gðrÞ
− log10ðaÞ −log10ð~κtrÞ φ�

☉ − φ☉ [10−2 μarcs] φ�
☉ − φ☉ [10−2 μarcs]

0 16 1.57 —
ð0Þ1…4 15 8.84; 4.97; 2.80; 1.57 13.6; 8.58; 4.84; 2.72; 1.53
5…8 14 8.84; 4.97; 2.79; 1.56 8.61; 4.84; 2.72; 1.52
9…11 13 8.57; 4.56; 2.26 8.35; 4.43; 2.18
12…13 12 9.99; 3.91 9.49; 3.64
14…15 11 13.9; 4.64 12.7; 4.21
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C. Anisotropic (nonbirefringent) case

The anisotropic case of modified Maxwell theory exhib-
iting a single modified dispersion relation was discussed in
Sec. III C. This particular case is characterized by a
preferred spacelike direction (chosen to point along the
positive z axis) and one controlling coefficient. The
refractive index was found in Eq. (4.13b) and it was
expressed in terms of the angle ϑ enclosed between the
propagation direction and the preferred axis. The possible
trajectory of a light ray is parametrized by rðϕÞ ¼ rðϕÞêϕ
such as for the isotropic case. The angle ϑ in the refractive
index is then given by the scalar product of the tangent
vector t and the preferred direction ζwhere it is sufficient to
work in two spatial dimensions:

cosϑ ¼ t · ζ
jtj ¼ rðϕÞ cosϕþ _rðϕÞ sinϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðϕÞ2 þ _rðϕÞ2
p : ð5:23Þ

Note that for the anisotropic case angular momentum is not
conserved and Bouguer’s formula loses its meaning.
Hence, there does not seem to be an alternative to solving
the eikonal equation directly, which is carried out numeri-
cally for hypothetical values of RS and the controlling
coefficient ~κ11e−. The results are shown in Fig. 5. In contrast
to the isotropic case, cf. Fig. 4, where the trajectory is not
modified for a spacetime position independent ~κtr this is not
the case here. For the anisotropic sector, the shape of the
trajectory gets distorted where the final impact parameter
decreases for ~κ11e− > 0. Physically this means that the ray
loses angular momentum. An interesting future research
project would be to perform a similar kind of phenom-
enological analysis as we did for the isotropic case.

VI. MODIFIED ENERGY-MOMENTUM
CONSERVATION

The phenomenology in the previous section was carried
out in an explicitly Lorentz-violating framework, which is
known to cause tensions in a gravitational background [41].
The purpose of the current section is to investigate where
exactly these problems occur in our classical description and
how they can be interpreted from the point of view of an
inhomogeneous medium. Therefore the energy-momentum
tensor and its conservation law will be derived for the
isotropic case. The (Belinfante-Rosenfeld) energy-
momentum tensor follows from varying the corresponding
Lagrangian with respect to the metric. The Finsler structure
FðuÞjþ⊚ of Eq. (3.14b) is the equivalent to a Lagrangian, since
it appears as the integrand of the path length functional that is
stationary for the trajectory travelled by the light ray. Instating
an auxiliary metric tensor ψμν leads to the following result:

F ¼ njuj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~κtrψμνξ

μξν

1 − ~κtrψρσξ
ρξσ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ψ ijuiuj

q
: ð6:1Þ

Note that in Minkowski spacetime it holds that ημνξμξν ¼
ξ2 ¼ 1 and −ηijuiuj ¼ u2 where the minus sign in the latter
term is due to the signature of themetric chosen.Variation has
to be carried out for all independent degrees of freedom. A
useful formula is

δðAμAμÞ ¼ δðψμνAμAνÞ
¼ ψμνδAμAν þ ψμνAμδAν þ δψμνAμAν

¼ 2AνδAν þ δψμνAμAν; ð6:2Þ
which states the variation of a scalar product of fields.
Employing this rule, the variation ofF can then be computed
as follows:

δF ¼ ðδnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ψ ijuiuj

q
þ nδð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ψ ijuiuj

q
Þ

¼ ~κtr
nð1 − ~κtrÞ2

δðψμνξ
μξνÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ψ ijuiuj

q
þ n

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ψ ijuiuj

q δð−ψ ijuiujÞ

¼ ~κtr
nð1 − ~κtrÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ψ ijuiuj

q
ð2ξνδξν þ δψμνξ

μξνÞ

−
n

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ψ ijuiuj

q ð2ujδuj þ δψ ijuiujÞ: ð6:3Þ

Now everything is available to obtain the energy-momentum
tensor from δF by considering all terms comprising a
variation of the metric. An additional prefactor containing
the metric has to be taken into account in the definition.
However, we are interested in the covariant conservation law
ofTμν forMinkowski spacetime, i.e., for a spacetime-position
dependent refractive indexwithout an additional gravitational
field. In this case ψμν ¼ ημν whereby

FIG. 5 (color online). Solution of the eikonal equation in the
x-y plane (in dimensions of d) with d=RS ¼ 5. The blue (plain)
curve shows the solution for the Lorentz-invariant case, whereas
the red (dashed) curve depicts the solution for the anisotropic case
with ~κ11e− ¼ 0.65. The massive body resides in the coordinate
center.
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Tμν ≡ 2ffiffiffiffiffiffijψ jp δð ffiffiffiffiffiffijψ jp
FÞ

δψμν

����
ψμν¼ημν

¼ 2~κtr
nð1 − ~κtrÞ2

ffiffiffiffiffiffiffiffi
uiui

q
ξμξν −

nffiffiffiffiffiffiffiffi
uiui

p ~uμ ~uν

¼ n
ffiffiffiffiffiffiffiffi
uiui

q �
1

2

�
n2 −

1

n2

�
ξμξν −

~uμ ~uν

uiui

�
: ð6:4Þ

Here ψ ≡ detðψμνÞ and ð ~uμÞ≡ ð0;uÞT , i.e., ~uμ involves the
spatial velocity and its zeroth component vanishes. Upon
inspection of the latter result we see that the 00-component of
Tμν is made up by the preferred timelike spacetime direction
ξμ and it vanishes for n ¼ 1, i.e., in a Lorentz-invariant
vacuum. The spatial part solely comprises products of three-
velocity components and themixed components vanish.Now
the partial derivative of the energy-momentum tensor in
Minkowski spacetime leads to

∂μTμν ¼ ð∂μnÞ
ffiffiffiffiffi
u2

p �
1

2

�
n2 −

1

n2

�
ξμξν −

~uμ ~uν

u2

�

þ n
ffiffiffiffiffi
u2

p
∂μ

�
1

2

�
n2 −

1

n2

��
ξμξν

¼ Tμν

n
∂μnþ

�
n2 þ 1

n2

� ffiffiffiffiffi
u2

p
ξμξνð∂μnÞ

¼
ffiffiffiffiffi
u2

p �
1

2

�
3n2 þ 1

n2

�
ξμξν −

~uμ ~uν

u2

�
ð∂μnÞ: ð6:5Þ

An interesting observation is that the timelike contribution
can be expressed in terms of the metric ~gμν appearing in
Eq. (5.7b):

ð~g2Þμμ ¼ 3n2 þ 1

n2
; ð6:6aÞ

~gμνðrÞ≡ diag

�
1

nðrÞ ;−nðrÞ;−nðrÞ;−nðrÞ
�

μν

: ð6:6bÞ

Note that ~gμν is not associated with a gravity field but only
with a nonconstant refractive index. The result obtained in
Eq. (6.5) describes the conservation of energy and momen-
tum of a light ray. Its properties are in order. First, it vanishes
for a constant refractive index, i.e., energy andmomentumof
the ray are conserved in a homogeneous medium, in the
Lorentz-invariant vacuum, and a Lorentz-violating vacuum
with a constant controlling coefficient. Second, in an
inhomogeneous medium or in a Lorentz-violating vacuum
with spacetime-dependent controlling coefficient the energy-
momentum tensor is not conserved, since the partial deriva-
tive of the refractive index does not vanish in this case. As
long as the refractive index is not time-dependent, ∂0n ¼ 0,
which is why ∂μTμ0 ¼ 0. Since the case under consideration
is isotropic, the controlling coefficient and the refractive
index, respectively, can only depend on the radial coordinate:
~κtr ¼ ~κtrðrÞ, n ¼ nðrÞ. Thus, ∂μn has a nonvanishing

component along the radial basis vector only, i.e., ∂rn ≠ 0
and ∂θn ¼ ∂ϕn ¼ 0. Decomposing the spatial velocity into a
radial part ur and transverse components uθ, uϕ,

u ¼ urer þ uθeθ þ uϕeϕ; ð6:7Þ
the spatial part of the conservation law reads as

∂μTμi ¼ −
1ffiffiffiffiffi
u2

p ð∇n · uÞui ¼ −
ffiffiffiffiffi
u2

p
ð∇n · ûÞûi

¼ −
ffiffiffiffiffi
u2

p
ð∂rnÞûrûi; û ¼ u

juj : ð6:8Þ

Several observations can be made upon inspecting the result.
For a constant refractive index, the right-hand side of the latter
equation is zero, which means that the spatial part of the
energy-momentum conservation law is valid as well in this
case. For ∂rn ≠ 0 it even holds when the radial velocity
component vanishes: ur ¼ 0. This is a special situation that
can occur for a light ray in an inhomogeneous, isotropic
mediumwhose refractive index has a particular r-dependence
and when the ray is emitted tangentially to a circle with its
center lying in the coordinate origin (cf. [107] for a beautiful
paper on geometric-ray optics and its implications for certain
optical systems). The trajectory of the ray is then a circle
where the refractive index is constant. The magnitude of the
three-momentum vector does not change, but only its
direction. So momentum is not exchanged between the light
ray and the medium because any momentum transfer would
change themagnitude of themomentumvector. For any other
case with nonzero ∂rn, momentum has to be exchanged,
which iswhyTμν of the ray cannot be conserved.The net term
obtained above points in the direction û of the ray at the point
considered. However, the total energy-momentum tensor
withTμν

med of themedium included is expected tobe conserved
because any momentum change of the light ray will cause a
momentum change of the medium itself.
In general relativity local diffeomorphism invariance is

tightly linked to energy-momentum conservation. In [41] it
was shown that explicit Lorentz violation in gravity leads to
a loss of diffeomorphism invariance, which then causes the
energy-momentum tensor to be no longer covariantly
conserved. Note that in the latter reference the energy-
momentum tensor Tμν

e is considered that follows by varying
the Lagrangian with respect to the vierbein instead of with
respect to the metric tensor. It is different from the
Belinfante-Rosenfeld energy-momentum tensor considered
here even in case there is no Lorentz violation [108]. The
covariant derivative of Tμν

e in [41] involves the covariant
derivative of the Lorentz-violating controlling coefficients,
i.e., a term of the structure JxDνkx. Here kx is a generic
controlling coefficient with a particular Lorentz index
structure x contracted with an appropriate operator Jx.
For general, curved manifolds there is no spacetime-
position dependent function satisfying Dνkx ¼ 0, but only
for parallelizable manifolds such as the circle S1 or the
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two-torus T2 ¼ S1 × S1. In four dimensions, such mani-
folds are rare, though, and they do not seem to be of
particular interest in the context of general relativity.
The conservation law without gravitational fields is given

by ∂μðΘcÞμν ¼ Jx∂νkx with the canonical energy-momen-
tum tensor ðΘcÞμν [41]. Therefore, if the controlling coef-
ficient kx is dependent on spacetime position the
conservation law is modified even in flat spacetime. From
a physical perspective, this is not surprising since such a
controlling coefficient implies that the vacuum behaves like
an effective, inhomogeneous medium. In general, the
magnitude of the three-momentum of a light ray is not
conserved aswas argued above. Thereforemomentumhas to
be exchanged between the ray and the medium. When
considering explicit Lorentz violation the effective medium
is considered to be nondynamical, which is why it can
neither absorb nor deliver momentum to the light ray.
Interestingly the situation is different when spontaneous

violations of diffeomorphism invariance and local Lorentz
symmetry are considered. In these cases, the ground state
violates these symmetries dynamically by an emergent
vacuum expectation value of a vector or tensor field in a
potential [7,41,42,54–58]. Suchmodels have in common that
they involve massless (Nambu-Goldstone) modes where the
latter appear when any global, continuous symmetry is
broken spontaneously. When the symmetry is local there
can be an additional Higgs-type mechanism absorbing the
massless modes to produce massive gauge fields. Since for
spontaneous Lorentz violation the dynamics of the Lorentz-
violating background field is taken into account, the energy-
momentum conservation law is restored in these theories. In
the corresponding equation, there is no contribution Jx∂νkx.
From the perspective of an inhomogeneous medium

translational and rotational symmetry are violated sponta-
neously by the atomic lattice. The Nambu-Goldstone
modes (gapless excitations) linked to the spontaneous
violation of these symmetries are the two transverse and
the longitudinal types of phonons.3 Since the medium is
now dynamical, it can absorb momentum from the ray upon
producing phonons. Hence, the conservation law for the
light ray remains valid in this case.

VII. PROPERTIES OF THE ISOTROPIC
FINSLER SPACE

In the previous section, the modified conservation
law for the Belinfante-Rosenfeld energy-momentum tensor
for a light ray in an isotropic, inhomogeneous medium
was considered and discussed. It was found that the

energy-momentum tensor is not conserved since the non-
trivial medium is nondynamical corresponding to a back-
ground violating Lorentz symmetry explicitly. This issue
persists even in Minkowski spacetime since in inhomo-
geneous media light rays behave similarly to rays propa-
gating in gravitational backgrounds. The most prominent
example for a common effect is light bending.
The conservation law of the energy-momentum tensor for

a medium with spherically symmetric refractive index,
Eq. (6.8), involves both the first derivative of the refractive
index and the propagation direction of the ray at a given
point. Recall that in gravitational theories with explicit
Lorentz violation nonconservation of the energy-momentum
tensor clashes with the Bianchi identities of Riemannian
geometry [41]. Although wework with an effective Lorentz-
violating theory for light rays based on a nontrivial refractive
index, this issue can be encountered here as well.
The purpose of the current section is to figure out

whether explicit (isotropic) Lorentz violation can be
considered in a weak gravity field in the framework of
Finsler geometry such that no inconsistencies arise. As a
basis, we use the spacetime metric of Eq. (5.7b), which was
shown to be closely linked to the isotropic case. The
properties of the latter metric shall be studied from a
Finslerian point of view where we use the conventions of
[61] for all geometrical quantities. The latter are treated
based on the indefinite signature of the metric in Eq. (5.7b).
As a starting point, an appropriate Finsler structure has to
be constructed whose derived metric should correspond to
Eq. (5.7b). This works for the following choice; cf. the
similarity to Eq. (3.14b):

Fðr; yÞ ¼
ffiffiffiffiffi
y2

q
;

y2 ¼ 1

n
ðytÞ2 − nðyrÞ2 − n½ðyθÞ2 þ ðyϕÞ2sin2θ�r2;

ð7:1Þ

where the refractive index solely has a radial dependence.
In what follows we write nðrÞ ¼ n for brevity, i.e., the
argument of the refractive index will be omitted. The vector
y ∈ TM is expressed in three-dimensional spherical coor-
dinates as y ¼ ytet þ yrer þ yθeθ þ yϕeϕ with suitable
basis vectors, so is the spatial part of the Finsler structure.
The corresponding Finsler metric is then computed accord-
ing to the usual definition and it corresponds to the result of
Eq. (5.7b) (with the spatial part transformed to spherical
coordinates):

gμν ≡ 1

2

∂2F2

∂yμ∂yν ¼ diag

�
1

n
;−n;−nr2;−nr2sin2θ

�
μν

:

ð7:2aÞ

The inverse metric simply reads as

3The number of spontaneously broken translational and rota-
tional generators is six. However, as they are not independent
from each other, the total number of Nambu-Goldstone bosons is
reduced by these constraints to be three. Relations between
broken symmetries and Nambu-Goldstone bosons in certain
nonrelativistic systems such as crystals, ferromagnets, and super-
fluids are nicely described in [109].
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gμν ¼ diag

�
n;−

1

n
;−

1

nr2
;−

1

nr2sin2θ

�
μν

: ð7:2bÞ

Since themetric does not depend on y, the Cartan connection
[61] vanishes:

Aμνϱ ≡ F
2

∂gμν
∂yϱ ¼ F

4

∂3F2

∂yμ∂yν∂yϱ ¼ 0. ð7:3Þ

Therefore according to Deicke’s theorem [86] the Finsler
space considered is Riemannian. Now the base has been set
up to study the geometry of the space defined by Eq. (7.1).
The first step is the obtain the coefficients of the affine
connection (Christoffel symbols of the second kind) that are
defined in analogy to the Christoffel symbols in Riemannian
geometry:

γμνρ ¼
1

2
gμα

�∂gαν
∂xρ −

∂gνρ
∂xα þ ∂gρα

∂xν
�
: ð7:4Þ

Note that summation over equal indices is understood based
on Einstein’s convention. The nonzero contributions read as
follows:

γttr ¼ −
n0

2n
; γrtt ¼ −

n0

2n3
; γrrr ¼

n0

2n
;

γrθθ ¼ −
rð2nþ rn0Þ

2n
; ð7:5aÞ

γrϕϕ ¼ −
rð2nþ rn0Þ

2n
sin2θ; γθrθ ¼

1

r
þ n0

2n
;

γθϕϕ ¼ − sin θ cos θ; ð7:5bÞ

γϕrϕ ¼ 1

r
þ n0

2n
; γϕθϕ ¼ cot θ: ð7:5cÞ

Since torsion is assumed to vanish, the Christoffel symbols
are symmetric in the latter two indices. The connection
coefficients with at least one index equal to the radial
coordinate r involve the first derivative of the refractive
index. Furthermore they do not involve the angle ϕ as
expected for spherically symmetric metrics. As a next step,

the geodesic spray coefficients are needed: Gμ ≡ γμνϱyνyϱ.
The latter appear in the geodesic equations in Finsler
geometry:

Gt ¼ −ytyr
n0

n
; ð7:6aÞ

Gr ¼ −ðytÞ2 n0

2n3
þ 1

2n
fðyrÞ2n0 − rð2nþ rn0Þ½ðyθÞ2

þ ðyϕÞ2sin2θ�g; ð7:6bÞ

Gθ ¼ yryθ
�
2

r
þ n0

n

�
− ðyϕÞ2 sin θ cos θ;

Gϕ ¼ yϕ
�
2yθ cot θ þ yr

�
2

r
þ n0

n

��
: ð7:6cÞ

The geodesic spray coefficients can be used to define the
nonlinear connection [61] on TMnf0g:

Nμ
ν ≡ 1

2

∂Gμ

∂yν : ð7:7Þ

The reasons for introducing these connection coefficients is
as follows. On the one hand, the basis vectors ∂=∂xν and
∂=∂yν are unsuitable to be chosen as a local basis of TTM
since the ∂=∂xν transform in a complicatedway. On the other
hand, if fdxμ; dyμg is chosen as a local basis of the cotangent
bundle T�TM the transformation properties of dyμ are
involved. To have the desired transformation properties for
the basis of the tangent and the cotangent bundle of TMnf0g
the following basis vectors can be introduced using the
nonlinear connection:�

δ

δxν
; F

∂
∂yν

	
;

δ

δxν
≡ ∂

∂xν − Nμ
ν
∂
∂yμ ; ð7:8aÞ

�
dxμ;

δyμ

F

	
; δyμ ≡ dyμ þ Nμ

νdxν: ð7:8bÞ

For the particular case studied here the nonlinear connection
coefficients can be comprised in a (3 × 3)matrix that reads as

ðNμ
νÞ ¼

1

2

0
BBB@

−yrn0=n −ytn0=n 0 0

−ytn0=n3 yrn0=n −yθrð2nþ rn0Þ=n −yϕrsin2θð2nþ rn0Þ=n
0 yθð2=rþ n0=nÞ yrð2=rþ n0=nÞ −yϕ sinð2θÞ
0 yϕð2=rþ n0=nÞ 2yϕ cot θ yrð2=rþ n0=nÞ þ 2yθ cot θ

1
CCCA: ð7:9Þ

To compute directional derivatives of tensor fields on Finsler manifolds, a further connection has to be found to define a
covariant derivative. It was shown that the pulled-back bundle π�TM has a linear connection associated with it, which is
called the Chern connection Γμ

νϱ. Explicitly it can be obtained from the Finsler metric using the nonlinear connection Nμ
ν:

M. SCHRECK PHYSICAL REVIEW D 92, 125032 (2015)

125032-30



Γμ
νϱ ¼

1

2
gμα

�
δgαν
δxϱ

−
δgνϱ
δxα

þ δgϱα
δxν

�

¼ 1

2
gμα

�∂gαν
∂xϱ − Nβ

ϱ
∂gαν
∂yβ −

�∂gνϱ
∂xα − Nβ

α
∂gνϱ
∂yβ

�

þ ∂gϱα
∂xν − Nβ

ν
∂gϱα
∂yβ

�
: ð7:10Þ

The Chern connection is unique and formally it has
the same index structure as the formal Christoffel
symbols. The difference to the latter is that the derivative
δ=δxμ is used instead of the ordinary partial derivative
∂=∂xμ. However, in the particular case studied here,
Γμ

νϱ ¼ γμνϱ, since the Finsler metric gμν does not depend
on the components of y. Finally the Chern connection is
needed to define a Finslerian version of the Riemann
curvature tensor:

Rν
μ
ϱσ ¼

δΓμ
νσ

δxϱ
−
δΓμ

νϱ

δxσ
þ Γμ

αϱΓα
νσ − Γμ

ασΓα
νϱ

¼ ∂Γμ
νσ

∂xϱ − Nβ
ϱ
∂Γμ

νσ

∂yβ −
�∂Γμ

νϱ

∂xσ − Nβ
σ
∂Γμ

νϱ

∂yβ
�

þ Γμ
αϱΓα

νσ − Γμ
ασΓα

νϱ: ð7:11Þ

Since the Chern connection coefficients correspond to
the formal Christoffel symbols and the latter are indepen-
dent of yμ, the curvature components correspond to the
Riemannian ones. They involve an additional derivative of
the Christoffel symbols, which is why they comprise
second derivatives of the refractive index. Explicitly the
independent curvature tensor components are stated as
follows:

Rt
r
tr ¼

nn00 − 2n02

2n4
; Rt

θ
tθ ¼

n0ð2nþ rn0Þ
4rn4

¼ Rt
ϕ
tϕ;

ð7:12aÞ

Rr
t
tr ¼

nn00 − 2n02

2n2
; Rθ

t
tθ ¼

rn0ð2nþ rn0Þ
4n2

;

Rθ
ϕ
θϕ ¼ rn0ð4nþ rn0Þ

4n2
; ð7:12bÞ

Rϕ
t
tϕ ¼ rn0ð2nþ rn0Þ

4n2
sin2θ;

Rϕ
θ
θϕ ¼ −

rn0ð4nþ rn0Þ
4n2

sin2θ: ð7:12cÞ

The components related by symmetries are omitted. Since
the Finsler structure of Eq. (7.1) is Riemannian according to
Deicke’s theorem, we will first use the Riemannian defi-
nitions of the Ricci tensorRicμν ≡ Rμ

α
αν and the curvature

scalar (Ricci scalar)Ric. These are denoted by calligraphic
letters and they follow from suitable contractions of the

Riemann curvature tensor. TheRicci tensor componentswith
equal indices deliver nonzero contributions only:

Rictt ¼
1

2rn4
½rn02 − nð2n0 þ rn00Þ�;

Ricrr ¼ −
1

2rn
ð2n0 þ rn00Þ; ð7:13aÞ

Ricθθ ¼
r
2n2

½rn02 − nð2n0 þ rn00Þ�;

Ricϕϕ ¼ r
2n2

½rn02 − nð2n0 þ rn00Þ�sin2θ; ð7:13bÞ

Ric≡Ricμ
μ¼gμνRicμν¼

1

2rn3
½2nð2n0 þrn00Þ−rn02�:

ð7:13cÞ

In Riemannian geometry, the curvature tensor obeys the
first and the second Bianchi identities. Especially the second
one,

0≡DηRλ
μ
νκ þDκRλ

μ
ην þDνRλ

μ
κη; ð7:14aÞ

DλRμ
ν
ρσ ¼ ∂λRμ

ν
ρσ − Γα

μλRα
ν
ρσ þ Γν

αλRμ
α
ρσ

− Γα
ρλRμ

ν
ασ − Γα

σλRμ
ν
ρα; ð7:14bÞ

is important in the context of general relativity, because it
leads to the statement that the Einstein tensor Gμν is
covariantly constant:

DμGμ
ν ¼ ∂μGμ

ν þ Γμ
αμGα

ν − Γα
νμGμ

α ≡ 0;

Gμν ≡Ricμν −
Ric
2

gμν; ð7:15aÞ

which was checked to be valid for the particular metric
gμν of Eq. (7.2a). This identity is the reason why explicit
Lorentz violation is incompatible with Riemannian geom-
etry. Due to the Einstein equations it forces the energy-
momentum tensor to be covariantly conserved as well,
which does not necessarily hold when there is a space-
time-dependent background. At this point it is reasonable
to wonder how Finsler geometry can help us to solve that
problem. For the isotropic metric considered the identity
DμGμ

ν ≡ 0 is inherited from the Riemannian to the
Finslerian framework, since the Finsler metric of
Eq. (7.2a) does not comprise any dependence on yμ.
Assuming that Finsler geometry provides the necessary
tools to circumvent the no-go theorem of [41] in a general
explicitly Lorentz-violating setting, then it should also
work for the special isotropic case studied here.
One possible approach (there may be others) might be to

consider a suitable equivalent of the Einstein equations in
Finsler geometry. Such an equivalent can be based on an

EIKONAL APPROXIMATION, FINSLER STRUCTURES, … PHYSICAL REVIEW D 92, 125032 (2015)

125032-31



alternative definition of the Einstein tensor Gμν constructed
from curvature-related tensors in the Finsler framework.
These objects will be introduced in what follows. The first
is obtained from the curvature tensor by contracting the
latter with two vectors yμ=F according to

Rμ
ϱ ≡ yν

F
Rν

μ
ϱσ
yσ

F
: ð7:16Þ

Note that this construction does not correspond to the Ricci
tensor of Riemannian geometry. In particular, it is some-
times referred to as the predecessor of flag curvature, which
is a generalization of sectional curvature in Finsler geometry.
For the special case hereRμ

ϱ are the components of a (4 × 4)
matrix. The trace of this matrix is taken to obtain the
generalization of the Ricci scalar in Finsler geometry:
Ric≡ Rϱ

ϱ. Since the explicit expressions for Rμ
ϱ and Ric

are complicated and not illuminating, theywill not be stated.
The flag curvature in Finsler geometry is computed

similarly to the sectional curvature in Riemannian geom-
etry. The latter is defined in a tangent space at a point x of
the manifold where two arbitrary, linearly independent
directions are needed for its computation. The resulting
quantity only depends on the plane considered, but not on
the particular choice of the directions. The flag curvature in
Finsler geometry carries the same spirit where one direction
is chosen to correspond to y and the other one, say L, is
supposed to be orthogonal to y. These vectors are then
suitably contracted with the curvature tensor of Eq. (7.11).
Note that y and the vector orthogonal to it can be
considered to span a flag where y is assumed to point
along the flag pole. This explains the name for the
curvature. For an n-dimensional Finsler manifold R is
the sum of n − 1 flag curvatures. It only depends on r and y,
but not on the direction L chosen orthogonal to y.
Although Rμϱ of Eq. (7.16) is not understood to be the

generalization of the Ricci tensor in Finsler geometry, it is
still possible to define the latter. The definition
(cf. Eq. (7.6.4) in [61]) involves both the Finsler structure
F and the Finslerian version of the Ricci scalar Ric:

Ricμν ≡ 1

2

∂2ðF2RicÞ
∂yμ∂yν : ð7:17Þ

For Finsler metrics that are Riemannian, i.e., for the
isotropic metric considered in Eq. (7.2a) it also holds that
Ricμν ¼ Rμ

α
αν. Hence, in our case the Finslerian definition

of the Ricci tensor corresponds to the Riemannian expres-
sion, computing an appropriate trace of the curvature
tensor. The expression of Eq. (7.17) can be used to obtain
the Ricci scalar in Finsler geometry by contracting the Ricci
tensor with two vectors yμ=F (cf. (7.6.5) in [61]):

Ric≡ Ricμν
yμ

F
yν

F
: ð7:18Þ

Recall that the latter corresponds to Rϱ
ϱ that is obtained

from tracing Eq. (7.16). This object is distinguished from
the Ricci scalar Ric in a Riemannian setting, which
follows from tracing the Ricci curvature tensor Ricμν;
cf. Eq. (7.13c). Note that the quantity of Eq. (7.18) is the
direct Finslerian equivalent of the Ricci scalar. Since the
Finsler metric considered is Riemannian, Ric only
involves dependences on r, whereas Ric depends on yμ

as well. In general and especially here Ric ≠ Ric.
At this stage, there are several possibilities of defining

the Einstein tensor Gμν in a Finsler framework using
different combinations of Ricμν, Ric, Rμν, Ricμν, and
Ric. The following have been tried:

ðGμ
νÞð1Þ ≡Ricμ

ν −
1

2
δμνRic; ð7:19aÞ

ðGμ
νÞð2Þ ≡ Rμ

ν −
1

2
δμνRic; ð7:19bÞ

ðGμ
νÞð3Þ ≡ Rμ

ν −
1

2
δμνRic: ð7:19cÞ

A reasonable test of whether one of these choices is
suitable requires computing their covariant derivatives,
i.e., DμðGμ

νÞðiÞ for i ¼ 1…3. The wishful result would be
a nonvanishing covariant derivative bearing resemblance to
the modified covariant conservation law of the energy-
momentum tensor in Eq. (6.8). This makes sense when
we assume that the modified Einstein tensor (in a Finslerian
framework) is linked to the energy-momentum tensor in an
explicitly Lorentz-violating theory. The corresponding
covariant derivative to be used involves both the nonminimal
connectionNμ

ν and theChern connectionΓμ
νϱ being equal to

the Christoffel symbols Γμ
νϱ in this case:

DμðGμ
νÞðiÞ ¼

∂ðGμ
νÞðiÞ

∂xμ − Nβ
μ
ðGμ

νÞðiÞ
∂yβ

þ Γμ
αμðGα

νÞðiÞ − Γα
νμðGμ

αÞðiÞ: ð7:20Þ

Starting from the Finsler metric of Eq. (7.2a) there have been
up to three derivatives with respect to the coordinates
involved, which is why in Eq. (7.20) the third derivative
of the refractive index appears in general.
The more of the higher derivatives of a Taylor expansion

of nðrÞ are taken into account, the smaller are the structures
in changes of nðrÞ to be resolved. Therefore relying on the
geometric-optics approximation it is reasonable to consider
only the first-order change of nðrÞ incorporated in its first
derivative and to neglect the higher-order derivatives,
which describe small-scale changes of nðrÞ. Within this
approximation it makes sense to set nðrÞ ¼ 1, since
modifications lead to higher-order contributions.
Furthermore the Finsler structure that the isotropic case

was identified with is three-dimensional; cf. Eq. (3.14b),
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and it involves spatial velocity components only. Hence, yt

can be considered as auxiliary and will be set to zero at the
end. With this physical input the covariant derivative of
each Einstein tensor proposed in Eq. (7.19) can be
computed. The final result for the third possibility looks
rather promising:

DμðGμ
νÞð3Þjyt¼0 ¼

1

ðyrÞ2 þ r2½ðyθÞ2 þ ðyϕÞ2sin2θ�
n0

r2

×

0
BBB@

0

ðyrÞ2
yryθr2

yryϕr2sin2θ

1
CCCA

ν

þ…; ð7:21Þ

where terms of Oðn00; n000; n02; n03Þ have been neglected.
Using the inverse metric gμν of Eq. (7.2b) the second
index can be raised. Besides we identify the spatial
components of y with the spatial components of the
physical velocity, i.e., yr ¼ ur, yθ ¼ uθ, and yϕ ¼ uϕ

where the spatial flat metric in spherical polar coordinates
is given by ðrijÞ ¼ diagð1; r2; r2sin2θÞ. This leads to the
final result

DμðGμνÞð3Þjyt¼0 ¼ −
n0

u2r2

0
BBB@

0

ðurÞ2
uruθ

uruϕ

1
CCCA

ν

þ…; ð7:22aÞ

DμðGμiÞð3Þjyt¼0 ¼ −
n0

r2
ûrûi þ…; ð7:22bÞ

with the normalized three-velocity vector û ¼ u=juj.
Comparing the obtained result to Eq. (6.8) reveals that
the structure of both expressions is very similar. The differ-
ence is a global prefactor of the form r2

ffiffiffiffiffi
u2

p
. The

dimensionful factor of r2 is not surprising. Both the
Riemann curvature tensor and the (modified) Einstein
tensor involve two derivatives, which is why their mass
dimensions is−2. However, the energy-momentum tensor is
based on the “Lagrangian” of a classical light ray, Eq. (6.1),
which is a dimensionless quantity. The discrepancy in mass
dimensions is compensated by the only dimensionful length
scale available, which is r. It seems that an alternative
definition of the Einstein tensor in the framework of
Finsler geometry can compensate for the modified energy-
momentum conservation law when explicit Lorentz
violation is considered. This result is interesting and deserves
further study, e.g., whether it holds for anisotropic theories
as well.

VIII. CONCLUSIONS AND OUTLOOK

In this work classical-ray analogs to the photon sector of
the minimal Standard-Model extension were discussed. It
was shown that a nonvanishing photon mass allows for
deriving classical point-particle Lagrangians in analogy to
the fermion sector. However, in case the photon mass
vanishes the standard method used for the fermion sector is
not applicable. The reason is that a light ray does not have
as many degrees of freedom as a massive particle.
Instead, for the photon sector an alternative technique

had to be employed which made it possible to derive a
Lagrangian-type function for a classical ray directly from
the modified photon dispersion relation. This was carried
out for several interesting cases of the minimal, CPT-even
photon sector, which is characterized by dimensionless
controlling coefficients. Subsequently it was shown that the
results obtained are consistent with the eikonal equation
approach that describes the geometric-optics limit of an
electromagnetic wave. Mathematically the Lagrangian-type
functions can be interpreted as Finsler structures. In
contrast to the fermion sector, they only involve the spatial
velocity components and they are closely linked to an
effective refractive index of the Lorentz-violating vacuum.
It has been known for some time that there is a connection

between the geodesic equations for a light ray in a gravi-
tational background and the eikonal equations. This link is
warranted for weak gravitational fields at least, e.g., in the
solar system. It was crucial to set up a phenomenological
description of light rays subject to Lorentz violation in a
weak gravitational field. This descriptionmade it possible to
obtain sensitivities on the isotropic controlling coefficient ~κtr
that could be probed by the space missions GAIA and
LATOR employing measurements of light deflection at
massive bodies. The upshot is that the planned mission
LATOR may have a sensitivity on j~κtrj in the order of
magnitude of 10−16 where the running mission GAIA can
reach 10−14. The difference in sensitivity originates from the
different precision of measuring angles for both missions.
The final part of the paper was dedicated to investigating

the properties of the (isotropic) curved spacetime, which the
phenomenological studies were based on, from a Finslerian
point of view. It was demonstrated that in the classical limit
(neglecting higher spacetime derivatives of the refractive
index) an Einstein tensor can be defined that is not subject to
the usual Bianchi identities in Riemannian geometry.
Therefore its covariant derivative is nonzero and it has
a form that is related to the modified conservation law
of the energy-momentum tensor based on the classical
Lagrangian-type function studied in this context. Hence,
it seems that Finsler geometry provides new geometrical
degrees of freedom that can serve as a kind of “buffer” to
allow for a momentum transfer whenever the momentum of
the light ray changes. These geometrical degrees of freedom
take the role of the Nambu-Goldstone modes appearing
when spontaneous Lorentz violation is considered.
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To summarize, the current article provides a technique in
treating Lorentz-violating photons in a curved background
in a geometric-optics approximation. As an outlook, it will
be interesting to apply the setup to anisotropic frameworks,
first to obtain sensitivities on related controlling coeffi-
cients and second to study the properties of the underlying
Finsler geometry.
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APPENDIX A: CLASSICAL LAGRANGIANS FOR
MASSIVE LORENTZ-VIOLATING PHOTONS

The first part of the appendix shall briefly demonstrate
how to derive the classical Lagrange functions in Sec. II C
from the set of equations (2.2), (2.4), and (2.5). The
demonstration will be performed for the nonbirefringent,
anisotropic case of the CPT-even sector and for a particular
choice of the CPT-odd framework. The calculation is
easier for the CPT-even theory, which is why it will be
studied first.

1. CPT-even minimal photon sector

The base is Eq. (2.19) where for convenience we set
ð3=2Þ~κ11e− ≡ κ. For the remaining CPT-even cases, the
procedure works analogously. First of all the modified
dispersion relation for a massive photon subject to this
particular Lorentz-violating framework reads

ð1þ κÞðk20 − k21 − k22Þ − ð1 − κÞk23 ¼ m2
γ : ðA1Þ

To obtain the group velocity components it is often
reasonable not to solve the dispersion relation to obtain
k0 directly, but to differentiate it implicitly with respect to
the spatial momentum components:

2ð1þ κÞk0
∂k0
∂k1 − 2ð1þ κÞk1 ¼ 0⇔

∂k0
∂k1 ¼

k1
k0

; ðA2aÞ

2ð1þ κÞk0
∂k0
∂k2 − 2ð1þ κÞk2 ¼ 0⇔

∂k0
∂k2 ¼

k2
k0

; ðA2bÞ

2ð1þ κÞk0
∂k0
∂k3 − 2ð1 − κÞk3 ¼ 0⇔

∂k0
∂k3 ¼

1 − κ

1þ κ

k3
k0

:

ðA2cÞ

For the particular case studied, Eq. (2.4) leads to the
following three equations:

k1
k0

¼ −
u1

u0
;

k2
k0

¼ −
u2

u0
;

1 − κ

1þ κ

k3
k0

¼ −
u3

u0
: ðA3Þ

Evidently only the third one is modified by Lorentz violation
mirroring the spatial anisotropy. These relations can be
solved directly to express the spatialmomentumcomponents
via k0:

k1 ¼ −
k0u1

u0
; k2 ¼ −

k0u2

u0
; k3 ¼ −

1þ κ

1 − κ

k0u3

u0
:

ðA4Þ

We can now use Eq. (2.5) and express the spatial momentum
components by taking into account the previously obtained
results of Eq. (A4):

L ¼ −ðk0u0 þ k1u1 þ k2u2 þ k3u3Þ

¼ k0
u0

�
−ðu0Þ2 þ ðu1Þ2 þ ðu2Þ2 þ 1þ κ

1 − κ
ðu3Þ2

�
: ðA5Þ

The latter is solved with respect to k0 giving an expression
comprising the (unknown) Lagrange function and the four-
velocity components:

k0 ¼ −L
ð1 − κÞu0

ð1 − κÞ½ðu0Þ2 − ðu1Þ2 − ðu2Þ2� − ð1þ κÞðu3Þ2 :

ðA6Þ

Now all four-momentum components in the dispersion
relation can be eliminated via Eq. (A4) and a subsequent
insertion of Eq. (A6):

0 ¼ 1þ κ

1 − κ

k20
ðu0Þ2 fð1 − κÞ½ðu0Þ2 − ðu1Þ2 − ðu2Þ2�

− ð1þ κÞðu3Þ2g −m2
γ ; ðA7aÞ

0 ¼ L2
ð1 − κÞð1þ κÞ

ð1 − κÞ½ðu0Þ2 − ðu1Þ2 − ðu2Þ2� − ð1þ κÞðu3Þ2 −m2
γ :

ðA7bÞ

The final equation comprises a polynomial of the
Lagrangian whose coefficients depend on four-velocity
components only. The polynomial must be solved to
give L:

L� ¼ �mγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ κ
½ðu0Þ2 − ðu1Þ2 − ðu2Þ2� − 1

1 − κ
ðu3Þ2

r
:

ðA8Þ
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The result corresponds to Eq. (2.25a). The procedure shown
is typically applied to derive classical Lagrangians. Four of
the five equations are employed to eliminate all four-
momentum components and to obtain a polynomial equation
in L that only comprises the four-velocity. The latter is then
solved with respect to L finally.

2. CPT-odd minimal photon sector

Due to observer Lorentz invariance without a loss of
generality ðkAFÞκ ¼ ð0; 0; 0; 1Þκ will be chosen for the
spacelike case. The modified dispersion relation involves
an isotropic contribution and a second term that does not
comprise the momentum component parallel to the pre-
ferred spacetime direction:

ðk20 − k2Þ2 − 4m2
CSðk20 − k21 − k22Þ ¼ 0: ðA9Þ

The group velocity components are obtained by implicit
differentiation of Eq. (A9) with respect to the spatial
momentum components:

0 ¼ 4ðk20 − k2Þ
�
k0

dk0
dk1

− k1

�
− 8m2

CS

�
k0

dk0
dk1

− k1

�

¼ 4ðk20 − k2 − 2m2
CSÞ

�
k0

dk0
dk1

− k1

�
; ðA10aÞ

0 ¼ 4ðk20 − k2 − 2m2
CSÞ

�
k0

dk0
dk2

− k2

�
; ðA10bÞ

0 ¼ 4ðk20 − k2Þ
�
k0

dk0
dk3

− k3

�
− 8m2

CSk0
dk0
dk3

¼ 4ðk20 − k2 − 2m2
CSÞk0

dk0
dk3

− 4ðk20 − k2Þk3: ðA10cÞ

Since the preferred spacetime direction points along the third
axis of the coordinate system, the first and second group
velocity components remain standard where only the third
one is modified:

dk0
dk1

¼ k1
k0

;
dk0
dk2

¼ k2
k0

;
dk0
dk3

¼ k3ðk20 − k2Þ
k0ðk20 − k2 − 2m2

CSÞ
:

ðA11Þ

Therefore Eq. (2.4) results in

k1
k0

¼ −
u1

u0
;

k2
k0

¼ −
u2

u0
;

k3ðk20 − k2Þ
k0ðk20 − k2 − 2m2

CSÞ
¼ −

u3

u0
: ðA12Þ

The first twoof these relationships allow forwritingk1 andk2
in terms of k0. However, the third equation would lead to a
cumbersome third-order polynomial to be solved, which is
not a reasonable step to take. It is better to insert the first two
of Eq. (A12) into Eq. (2.5) and to solve the latter with respect
to k3. Then it is possible to express k3 via k0 only:

k3 ¼
1

u0u3
fk0½ðu1Þ2 þ ðu2Þ2 − ðu0Þ2� − Lu0g: ðA13Þ

Now we can express all spatial momentum components via
k0. Thus,we can eliminate all of them inEq. (A9) to obtain an
equation that only involves k0. This can be solved towrite k0
in terms of four-velocity components and the Lagrangian
where one of the solutions reads

k0 ¼ −u0
L

ffiffiffiffiffiffi
u2⊥

p
þmCSðu3Þ2 þ ju3j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 2mCS

ffiffiffiffiffiffi
u2⊥

p
Lþm2

CSðu3Þ2
q
u2

ffiffiffiffiffiffi
u2⊥

p ; ðA14aÞ

ðuμ⊥Þ ¼ ðu0; u1; u2; 0ÞT: ðA14bÞ

Here u0 > 0 has been assumed for simplicity. The last step is
to eliminate all four-momentum components in the third of
Eq. (A12) to obtain a polynomial equation for L:

L2 þ 2mCS

ffiffiffiffiffiffi
u2⊥

q
Lþm2

CSðu3Þ2 ¼ 0; ðA15Þ

which leads to the Lagrange functions

L� ¼ mCS½�
ffiffiffiffiffi
u2

p
−

ffiffiffiffiffiffi
u2⊥

q
�: ðA16Þ

Reinstating the preferred spacetime direction, it is possible to
write the latter in the form of Eq. (2.14). Using the other
solution of k0 similar to Eq. (A14) the Lagrangians with the
opposite signs are obtained. A computation for u0 < 0 leads
to analogous results. Due to observer Lorentz invariance the
form of the Lagrangian stays the same for general space-
like kAF.

APPENDIX B: LIGHT DEFLECTION IN
SCHWARZSCHILD SPACETIMES

In [99] it was found that a constant refractive index n ≠ 1
due to Lorentz violation leads to a change in light
deflection. This result is in contrast to what we obtain
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from Bouguer’s formula in Sec. VA. A rough explanation
is that Bouguer’s formula relies on the eikonal equation,
which is equivalent to the null geodesic equations only for a
weak gravitational field. However, the latter reference is
based on a Schwarzschild metric,

dτ2 ¼
�
1 −

2GM
r

�
dt2 −

�
1 −

2GM
r

�
−1
dr2

− r2ðdθ2 þ sin2θdϕ2Þ; ðB1Þ

which in this form is not generally isotropic. To get a more
profound understanding, consider the geodesic equations
for a photon in a generally isotropic spacetime of Eq. (5.3)
with A ¼ AðrÞ. The Christoffel symbols are computed in
Riemannian geometry according to Eq. (7.4) and the
geodesic equations read

dxμ

dλ
þ γμνϱ

dxν

dλ
dxϱ

dλ
¼ 0; ðxμÞ ¼ ðt; r; θ;ϕÞT: ðB2Þ

In what follows, differentiation with respect to the curve
parameter λ and with respect to r, respectively, will be
denoted by a dot and a prime. The geodesic equations can
then be cast into the following form:

0 ¼ ̈t −
A0

A
_r _t; ðB3aÞ

0 ¼ ̈rþ A0

2A
_r2 −

A0

2A3
_t2 −

�
1þ A0

2A
r

�
r_θ2

−
�
1þ A0

2A
r

�
rsin2ðθÞ _ϕ2; ðB3bÞ

0 ¼ θ̈ þ
�
2

r
þ A0

A

�
_r _θ− sinðθÞ cosðθÞ _ϕ2; ðB3cÞ

0 ¼ ϕ̈þ
�
2

r
þ A0

A

�
_r _ϕþ2 cotðθÞ_θ _ϕ; ðB3dÞ

0 ¼ 1

A
_t2 − A_r2 − Ar2½_θ2 þ sin2ðθÞ _ϕ2�; ðB3eÞ

where the fifth of those is the condition for a null-trajectory.
They correspond to the equations stated in [97] in case thatA
is a function of the radial coordinate r only. Now the right-
hand side of Eq. (B3a) can be written as the derivative of a
conserved quantity that is denoted as K0 in [97]:

0 ¼ A
d
dλ

�
_t
A

�
⇒ K0 ¼

_t
A
; _t ¼ K0A: ðB4Þ

With the choice of θ ¼ π=2 Eq. (B3c) is fulfilled automati-
cally. Using the previous results, Eq. (B3d) can be expressed
as the time-derivative of another conserved quantity K1:

0 ¼ 1

Ar2
d
dλ

ðAr2 _ϕÞ ⇒ K1 ¼ Ar2 _ϕ; _ϕ ¼ K1

Ar2
: ðB5Þ

Looking at Eq. (B16) we see that bothK0 andK1 correspond
to the conserved quantities that are obtained via the Killing
vectors; cf. Appendix B 1. From now on the trajectory shall
beparameterizedwith respect to proper time: λ ¼ τ. SinceK0

is then linked to infinitesimal time translations, it is reason-
able to identify it with the total photon energyE. Furthermore
K1 is connected to infinitesimal changes in the angle ϕ,
which is why it corresponds to the angular momentum L.
When these conserved quantities are compared to Eqs. (5.7a,
b) in [99] we see that the energy is the same, but the angular
momentum differs by an additional factor of A. Finally
Eq. (B3b) can be written as follows:

0 ¼ 1

2A_r
d
dτ

�
A_r2 − E2Aþ L2

r2A

�

⇒ K2 ¼ A_r2 − E2Aþ L2

r2A
: ðB6Þ

Therefore the latter comprises even another conserved
quantity K2. Setting K2 ¼ 0 is in accordance with the
null-trajectory condition of Eq. (B3e). Taking into account
that _r ¼ ðdr=dϕÞ _ϕ where _ϕ is again expressed by the
conserved angular momentum, it is possible to solve
Eq. (B6) with respect to dϕ=dr:

dϕ
dr

¼ L

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2AðrÞ2r2 − L2

p ;

ϕðrÞ ¼ L
Z

∞

r0

dr

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2AðrÞ2r2 − L2

p : ðB7Þ

Comparing to Eq. (5.10) we see that C ¼ L=E, i.e.,
the constant appearing in Bouguer’s formula can be
understood as the ratio of angular momentum and total
energy.
Now there are some differences between the final result

of Eq. (B7) and the corresponding Eq. (5.9) in [99]. In the
latter paper, a black-hole gravitational background is
considered in Schwarzschild coordinates. This line interval
does not have the form of a generally isotropic metric given
in Eq. (5.6a). In fact, there are isotropic coordinates
allowing us to write the Schwarzschild solution in the
form (see, e.g., page 93 of [102]):

ϱ ¼ 1

2
ðr −GM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2GMÞ

p
Þ; ðB8aÞ

dτ2 ¼
�
1 −GM=ð2ϱÞ
1þ GM=ð2ϱÞ

�
2

dt2

−
�
1þGM

2ϱ

�
4

½dϱ2 þ ϱ2dθ2 þ ϱ2sin2θdϕ2�: ðB8bÞ
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Using this set of coordinates the equation encoding angular
momentum conservation and the change in the angle ϕwith
respect to the new radial coordinate ρ read as follows:

L ¼ gρρρ2 _ϕ; ðB9aÞ

dϕ
dρ

¼ L
ρ

ffiffiffiffiffiffiffiffiffiffiffigρρgtt
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2g2ρρρ2 − L2gρρgtt
q

¼ L
ρ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2g2ρρρ2 − L2

q þO
�
GM
2ρ

�
2

: ðB9bÞ

The first corresponds to Eq. (B5) and the second to Eq. (B7)
neglecting second-order gravity effects. Multiplying the
modified line interval of Eq. (4.12) in [99] by the constantffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
leads to

d~τ2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
�
1 −

2GM
r

�
dt2

−
ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p �
1

1 − 2GM=r
dr2 þ r2dΩ2

�
: ðB10Þ

Since photons move on null-trajectories, d~τ2 ¼ 0 anyhow,
which is why a multiplication of the line element by a
constant should not change the physics. In this case, the
Lorentz-violating contribution governed by a position-inde-
pendent ϵ drops out of dϕ=dρ when taking into account
Eq. (B9a). Therefore in the isotropic coordinates the par-
ticular Lorentz-violating contribution of their case 3 produ-
ces second-order gravity effects associated with Lorentz
violation. Far away from the black-hole event horizon there
are no novel physical effects and this corresponds to the
outcome of the eikonal approach.

1. Killing vectors of a spherically symmetric spacetime

In the current paragraph the Killing vectors for a
spherically symmetric spacetime, cf. Eq. (5.3) with
Aðr; θ;ϕÞ ¼ AðrÞ, will be listed. The Killing vectors ξμ
describe infinitesimal isometries for a spacetime and they
are linked to underlying symmetries and conserved quan-
tities. In general they are obtained from a set of partial
differential equations called the Killing equations:

Dαξβ þDβξα ¼ 0; Dνξλ ¼ ∂νξλ − γμνλξμ; ðB11Þ

with the covariant derivative Dα and the Christoffel
symbols γμνλ. The latter can be directly extracted from
Eq. (B3). For the spherically symmetric spacetime, it is
possible to solve the Killing equations analytically. To do
so, it is reasonable to make a certain Ansatz, e.g., one with
vanishing spatial components of ξμ. This simplifies the set
of equations dramatically where several are immediately
fulfilled automatically. They are then solved successively to

obtain four Killing vectors. Since the metric is isotropic, it
is reasonable to make an Ansatz for ξμ that only involves a
nonvanishing timelike component that does not depend on
time itself:

ðξμÞ ¼

0
BBB@

ξ0ðr; θ;ϕÞ
0

0

0

1
CCCA: ðB12Þ

In this case the following three differential equations must
to be solved:

ξ0
A0

A
þ ∂ξ0

∂r ¼ 0;
∂ξ0
∂θ ¼ 0;

∂ξ0
∂ϕ ¼ 0: ðB13Þ

The remaining ones are fulfilled automatically. The latter
two tell us immediately that ξ0 neither depends on θ nor ϕ.
Therefore the first differential equation is an ordinary one
that can be solved directly by integration:

ξ0
0

ξ0
¼ −

A0

A
⇒ ln jξ0j ¼ − ln jc0Aj

⇒ ξ0ðrÞ ¼
~c0

AðrÞ ; c0; ~c0 ∈ R: ðB14Þ

A similar approach leads to the remaining Killing vectors.
In total one obtains

ξð1Þμ ¼

0
BBB@

1=A

0

0

0

1
CCCA; ξð2Þμ ¼ r2A

0
BBB@

0

0

sinϕ

sin θ cos θ cosϕ

1
CCCA;

ðB15aÞ

ξð3Þμ ¼ r2A

0
BBB@

0

0

cosϕ

− sin θ cos θ sinϕ

1
CCCA;

ξð4Þμ ¼ r2A

0
BBB@

0

0

0

sin2θ

1
CCCA: ðB15bÞ

Suitable contractions of the Killing vectors with ð_xμÞ ¼
ð_t; _r; _θ; _ϕÞT (and additional linear combinations) lead to
conserved quantities. The first conserved quantity follows
from a contraction with the first Killing vector:
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ξð1Þμ _xμ ¼ _t
A
¼ const: ðB16aÞ

The latter corresponds to the result obtained in Eq. (B16a)
and it is related to energy conservation. The second con-
served quantity involves the remainingKilling vectors where
it is understood to be evaluated at θ ¼ π=2:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼2

ðξðiÞμ _xμÞ2
����
θ¼π=2

vuut ¼ Ar2 _ϕ ¼ const: ðB16bÞ

This conserved quantity is the same as what was obtained in
Eq. (B5) and it means angular momentum conservation.
Hence, the Killing vectors ξðiÞ for i ¼ 2…4 are related to
rotational symmetry of the spherically symmetric spacetime.

APPENDIX C: EIKONAL EQUATION FOR
INHOMOGENEOUS AND ANISOTROPIC MEDIA

The current section serves with providing some general
results on the physics of the eikonal equation, which are
used in Sec. V extensively. In general, the eikonal equation
provides a set of three coupled nonlinear differential
equations. In what follows a refractive index bearing a
dependence on the radial distance r and an angle ϕ is
assumed [cf., e.g., Eq. (5.23)]. The photon trajectory shall
be parametrized by the angle ϕ, i.e., rðϕÞ ¼ rðϕÞêrðϕÞ. Its
first and second derivative read

r0 ¼ _rêr þ rêϕ; r00 ¼ ð̈r − rÞêr þ 2_rêϕ: ðC1aÞ

The arc length depends on ϕ and we obtain a set of useful
relationships:

sðϕÞ ¼
Z

ϕ
dϕ0jr0j ¼

Z
ϕ
dϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ _r2

p
;

ds
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ _r2

p
; ðC1bÞ

�
ds
dϕ

�
−2

¼ 1

r2 þ _r2
;

d
dϕ

�
ds
dϕ

�
−1

¼ d
dϕ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ _r2
p

�
¼ −

ðrþ ̈rÞ_r
ðr2 þ _r2Þ3=2 ; ðC1cÞ

dr
ds

¼ dr
dϕ

�
ds
dϕ

�
−1
: ðC1dÞ

Now the derivative on the left-hand side of the eikonal
equation can be computed. Instead of differentiating with
respect to the arc length we have to calculate derivatives with
respect to ϕ, which leads to three terms:

d
ds

�
n
dr
dϕ

�
ds
dϕ

�
−1
�
¼ dn

ds
dr
dϕ

�
ds
dϕ

�
−1

þ n
d2r
dϕ2

�
ds
dϕ

�
−2

þ d
ds

�
ds
dϕ

�
−1
n
dr
dϕ

¼ dn
dϕ

dr
dϕ

�
ds
dϕ

�
−2

þ n
d2r
dϕ2

�
ds
dϕ

�
−2

þ d
dϕ

��
ds
dϕ

�
−1
��

ds
dϕ

�
−1
n
dr
dϕ

:

ðC2Þ

Now employing the derivatives of Eq. (C1a) and the
identities given in Eq. (C1b) the eikonal equation can be
expressed in terms of the radial coordinate r, the angleϕ, and
the basis vectors:

êr
∂n
∂r þ

1

r
∂n
∂ϕ êϕ

¼ 1

r2 þ _r2

�
dn
dϕ

ð_rêr þ rêϕÞ þ n½ð̈r − rÞêr þ 2_rêϕ�
	

− nð_rêr þ rêϕÞ
ðrþ ̈rÞ_r
ðr2 þ _r2Þ2 ðC3Þ

Sorting terms associated with êr and êϕ, respectively, results
in a system of two differential equations:

∂n
∂r ¼ 1

r2 þ _r2

�
dn
dϕ

_rþ nð̈r − rÞ
�
− n

ðrþ ̈rÞ_r2
ðr2 þ _r2Þ2 ; ðC4aÞ

1

r
∂n
∂ϕ ¼ 1

r2 þ _r2

�
dn
dϕ

rþ 2n_r

�
− n

ðrþ ̈rÞr_r
ðr2 þ _r2Þ2 : ðC4bÞ

Multiplying the second with _r=r and subtracting it from the
first eliminates various terms, which simplifies the equation
drastically:

∂n
∂r −

_r
r2

∂n
∂ϕ ¼ n

r2 þ _r2

�̈
r −

2_r2

r
− r

�
; ðC5aÞ

0 ¼ ðr2 þ _r2Þ
�
r
∂n
∂r −

_r
r
∂n
∂ϕ

�
þ nðr2 þ 2_r2 − r ̈rÞ: ðC5bÞ

This is the final result that we are interested in and that shall
be used for practical purposes. However, multiplying the
latter with r_r=ðr2 þ _r2Þ3=2, it can be written in a form that
allows for a deeper physical understanding:

d
dϕ

ðnr sin αÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ _r2

p ∂n
∂ϕ ¼ 0; sin α ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ _r2
p :

ðC6Þ

If the refractive index only depends on the radial
coordinate the second term on the left-hand side vanishes,
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which then leads us directly to the formula of Bouguer.
Physically this result means angular momentum conser-
vation. For a refractive index that additionally depends on
the angle ϕ angular momentum is not a conserved

quantity any more. Instead, there is a driving term that
modifies the angular momentum. The change is bigger the
larger the velocity is and the stronger the refractive index
changes with the angle.
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