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For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field
generates an electric current—this is the chiral magnetic effect (CME). We study the dynamical real-time
evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME
current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse
cascade of magnetic helicity toward the large distances, and that at late times this cascade becomes self-
similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade
represents the transition from linked electric and magnetic fields (Hopfions) to the knotted configuration of
magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses
of the CME current directed along the magnetic field lines. We devise an experimental signature of these
phenomena in heavy ion collisions, and speculate about implications for condensed matter systems.
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I. INTRODUCTION

The anomaly-induced transport of charge in systems
with chiral fermions has attracted a significant interest
recently. This interest stems from the possibility to study a
new kind of a macroscopic quantum dynamics. While the
macroscopic manifestations of quantum mechanics are
well known (for example, superfluids, superconductors,
and Bose-Einstein condensates), so far they have been
mostly limited to systems with broken symmetries char-
acterized by a local order parameter, e.g., the density of
Cooper pairs in superconductors. The effects induced by
quantum anomalies in systems with chiral fermions are of a
different nature.
Let us consider as an example the chiral magnetic effect

(CME) in systems with charged chiral fermions—the
generation of electric current in an external magnetic field
induced by the chirality imbalance [1], see Refs. [2–6] for
recent reviews and references. In this case, no symmetry
has to be broken, and the system is in its normal state.
However the chirality imbalance is linked by the Atiyah-
Singer theorem to the nontrivial global topology of the
gauge field. Since the global topology of the gauge field
cannot be determined by a local measurement, there is no
corresponding local order parameter, and we deal with
“topological order.”
This has very interesting implications for the real-time

dynamics of a system composed by charged chiral fermions
and a dynamical electromagnetic field. Indeed, let us
initialize the system by creating a lump of chirality
imbalance localized within a magnetic flux that forms a
closed loop, see Fig. 1(a). A magnetic field will induce the
CME current flowing along the lines of magnetic field B

(note that this effect is absent in Maxwell electromagnet-
ism). Because the vector CME current acts as a source for
the magnetic field, the current flowing along B will twist
the magnetic flux [see Fig. 1(b)] and induce a nonzero
expectation value for the magnetic helicity known since
Gauss’s work in the 19th century and introduced in
magnetohydrodynamics by Woltjer [7] and Moffatt [8],
see also [9]:

hm ≡
Z

d3xA · B; ð1:1Þ

where A is the vector gauge potential. Magnetic helicity is a
topological invariant (Chern-Simons three-form) character-
izing the global topology of the gauge field. It is math-
ematically related to the knot invariant, and measures the
chirality of the knot formed by the lines of the magnetic
field. Because of this, the generation of magnetic helicity
will create the chiral knot out of the closed loop of magnetic
flux—so the topology of magnetic flux will change. In this
paper we will quantify this statement, and study how the
topology of magnetic flux changes in real time. We will find
that as a consequence of chiral anomaly and the CME, the
magnetic field evolves to the self-linked Chandrasekhar-
Kendall states [see Fig. 1(d)]. During the evolution, the size
of the knot of magnetic flux increases. Moreover, at late
times this evolution becomes self-similar, and is character-
ized by universal exponents.
The evolution of magnetic helicity has been studied

previously in the framework of the Maxwell-Chern-Simons
theory in Refs. [10–12] (see Ref. [13] for study with
Maxwell theory). The anomaly-driven inverse cascade is
discussed in Refs. [14–16]. However the self-similar
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evolution of magnetic helicity has not been reported in
these papers. The closest to our present study is the paper
[17] by Tashiro, Vachaspati and Vilenkin, where a sim-
plified version of the anomalous magneto-hydrodynamic
equation has been applied to cosmic magnetic fields. The
authors found the power law decay (in terms of conformal
time) of the chiral chemical potential at the late stage of
evolution (see also Ref. [15]).
We extend the previous studies by elucidating the top-

ology of magnetic flux throughout the evolution of magnetic
helicity. This is made possible by the use of the eigenfunc-
tions of the curl operator in a spherically symmetric domain.
Previous studies [11,15] have used the eigenfunctions of curl
operator in a free-space, i.e., the polarized plane waves. In
our treatment we can track the magnetic reconnections that
transfer helicity from linked to self-linked configurations of
magnetic flux. We also identify the final state of the system
as the Chandrasekhar-Kendall state that minimizes the
magnetic energy at fixed helicity.
This paper is organized as follows. In Sec. II we describe

the topologyofmagnetic fluxanddescribe thecorresponding
solutions. In Sec. III, we introduce magnetic helicity spec-
trumandpresentaqualitativepictureof the inversecascadeof
magnetic helicity and the role played by the anomaly. In
Sec. IV, we introduce theMaxwell-Chern-Simons equations
whichwewill use to study the evolution ofmagnetic helicity
and axial charge density. The results of evolution are
presented in Sec. V. In Sec. VI, we discuss the relevance

of our findings for heavy-ion collision experiment. We
conclude anddiscuss possible extensions of the currentwork
in Sec. VII.

II. THE CHIRAL ANOMALY AND TOPOLOGY
OF MAGNETIC FLUX

Consider a link K of N knots of magnetic field with
fluxes ϕi. The corresponding magnetic helicity (1.1) of this
link is given by [8,18–20]

hmðKÞ ¼
XN
i¼1

ϕ2
iSi þ 2

X
i;j

ϕiϕjLij; ð2:1Þ

where Si is the Călugăreanu-White self-linking number,
and Lij is the Gauss linking number.1 The linking numbers
in (2.1) do not always detect the topology of the link; the
development of the appropriate knot invariants is a very
active area of modern mathematics. The link between the
Jones invariant of the knot and Chern-Simons theory has
been uncovered by Witten [21]. The recent progress
includes the HOMFLY knot polynomials, Vasiliev invar-
iants, Khovanov and Heegaard-Floer homologies, but the

FIG. 1 (color online). The topology of Abelian magnetic flux: (a) upper left—untwisted loop; (b) upper right—twisted magnetic flux;
(c) lower left—the self-linked magnetic flux (trefoil knot shown); (d) lower right—the self-linked Chandrasekhar-Kendall state.

1The same formula applies to the helicity of vortex flows, with
the substitution of gauge potential A by the velocity field v,
magnetic field B by vorticity ω ¼ ∇ × v, and the flux ϕi by the
circulation κi.
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ultimate solution is still lacking. In view of this, we will
base our discussion on formula (2.1).
In magnetohydrodynamics (MHD), the lines of magnetic

field are “frozen” into the fluid, and so the magnetic helicity
(2.1) is conserved. Moreover, in the absence of dissipation
the reconnections of the magnetic field are absent, and so
the topology of the knotted configuration is preserved as
well—so the two terms in (2.1) are conserved separately.
As we will now discuss, in fluids with charged chiral
fermions the situation changes dramatically due to the
presence of chiral anomaly. Indeed, the anomaly relation

∂μj
μ
A ¼ CAE · B ð2:2Þ

describes the generation of chirality by electric E and
magnetic B fields in a topologically nontrivial configura-
tion characterized by Chern-Pontryagin number density
E · B. The anomaly coefficient CA for the case of QCD
plasma containing Nc colors and Nf flavors of quarks is
given by CA ¼ NcCEMe2=2π2, with CEM ¼ P

fq
2
f. The

Chern-Pontryagin number is easily seen to be equal to the
time derivative of magnetic helicity:

Z
d3xE · B ¼ −

1

2

∂hm
∂t : ð2:3Þ

This means that when chirality of the fermions is changed,
this change is accompanied by the change of magnetic
helicity, implying the reconnection of magnetic flux.
Reconnections of magnetic flux in particular can cause
transitions between the self-linked [see Figs. 1(c) and 1(d)]
and linked configurations of the magnetic field described by
the first and the second terms in (2.1) respectively. Below we
will show that such transitions indeed happen as a conse-
quence of the anomaly, and the system evolves towards the
state in which magnetic flux is self-linked, i.e. the entire
magnetic helicity is given by the first term of (2.1).
Before proceeding to the calculations, let us discuss the

possible topologies of magnetic flux. The Maxwell equa-
tions in free space allow for simple solutions with nonzero
magnetic helicity—these solutions are just circularly polar-
ized plane waves. This is intuitively clear since magnetic
helicity is parity-odd, and left- and right-circularly polar-
ized waves are the simplest P-odd states of an electro-
magnetic field. Since we are interested in describing the
plasma of a final extent in space, we have however to
impose the boundary conditions on an electromagnetic
field. In this case the solutions of Maxwell equations are
given by Hopfions [22]—configurations in which the loops
of magnetic and electric fields are linked.
On the other hand, the dynamics of electromagnetic

fields in the presence of chiral anomaly is described by
Maxwell-Chern-Simons theory. In particular, the chiral
imbalance between the left- and right-handed fermions
quantified by the chiral chemical potential μA leads to the

generation of electric CME current [1] along the magnetic
field:

jCME ¼ CAμAB ¼ σAB; ð2:4Þ
where we introduced the “chiral magnetic conductivity” σA
to allow for the frequency dependence [23]. Unlike the
usual Ohmic current, the CME current is topologically
protected and hence nondissipative. Hence at late times
when Ohmic currents have already dissipated away, the
r.h.s. of the Maxwell equation ∇ × B ¼ j will contain only
the CME current and will thus acquire the form

∇ × B ¼ σAB: ð2:5Þ
The solutions of (2.5) have been found independently2 by
Chandrasekhar and Kendall [24]; we will refer to them as
CK states, and illustrate their structure in Fig. 1(d). It has
been found by Woltjer [7] that these “force-free” configu-
rations of magnetic field that obey (2.5) minimize the total
magnetic energy

EM ≡ 1

2

Z
d3xB2 ð2:6Þ

at a given magnetic helicity (1.1). We thus expect that the
CME currents will lead to the transition from Hopfion
states to CK states at late times, once the Ohmic currents
have dissipated. We will see below that explicit computa-
tions indeed yield this result.

III. INVERSE CASCADE OF MAGNETIC
HELICITY DRIVEN BY ANOMALY

A. Magnetic helicity spectrum and
Chardrasekhar-Kendal (CK) states

To discuss the spatial distribution and the inverse cascade
of magnetic helicity, let us specify the structure of CK states
Ref. [24] that are defined as eigenfunctions of the curl
operator, see (2.5). In a free space, a CK state is nothing but
a circularly polarized plane wave. In this work however, we
are interested in an EM field in a finite closed system. Let
us thus consider CK statesW�

lmðx; kÞ in a spherical domain:

∇ ×W�
lmðx; kÞ ¼ �kW�

lmðx; kÞ; ∇ ·W�
lmðx; kÞ ¼ 0;

ð3:1Þ

where l ¼ 0; 1;…; m ¼ −l;−lþ 1;…l. The explicit
expressions for W�

lmðx; kÞ in terms of spherical harmonics
and spherical Bessel functions are given in the Appendix.
For the purposes of the present discussion, we only need to
keep in mind that they form a complete basis for any

2The editor of their paper [24] wrote: “The results in this paper
were derived independently by the two authors, and they agreed
to write it as one.”
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divergence-less vector and satisfy the orthogonality
relation:

Z
d3xWa

lmðx; kÞ ·Wb
l0m0 ðx; k0Þ

¼ π

k2
δðk − k0Þδll0δmm0δab; a; b ¼ þ;−: ð3:2Þ

Let us now expand magnetic field B in terms of CK
states W�

lmðx; kÞ:

Bðx; tÞ ¼
X
l;m

Z
∞

0

dk
π

× k2½αþlmðk; tÞWþ
lmðx; kÞ þ α−lmðk; tÞW−

lmðx; kÞ�:
ð3:3Þ

Using ∇ × A ¼ B, we also expand Aðx; tÞ as3:

Aðx; tÞ ¼
X
l;m

Z
∞

0

dk
π

× k½αþlmðk; tÞWþ
lmðx; kÞ − α−lmðk; tÞW−

lmðx; kÞ�:
ð3:4Þ

Consequently, the magnetic helicity hm

hm ≡
Z

d3xA · B; ð3:5Þ

is now given by:

hmðtÞ ¼
Z

∞

0

dk
π
kgðk; tÞ; gðk; tÞ≡ gþðk; tÞ − g−ðk; tÞ:

ð3:6Þ

Here we have defined the magnetic helicity spectrum
gðk; tÞ; the functions g�ðk; tÞ describe the relative weight
of a single CK state W�

lmðx; kÞ with a definite helicity:

g�ðk; tÞ≡
X
l;m

jα�lmðk; tÞj2: ð3:7Þ

The energy of the magnetic field can be related to g�ðkÞ:

EM ≡
Z

d3x
1

2
B2 ¼ 1

2

Z
∞

0

dk
π
k2½gþðk; tÞ þ g−ðk; tÞ�:

ð3:8Þ

Comparing (3.6) with (3.8), we find that the energy cost for
a CK state W�ðx; kÞ to carry one unit of helicity is k.

B. Qualitative picture of the anomaly-driven inverse
cascade of magnetic helicity

We are now ready to discuss the qualitative picture of
the inverse cascade driven by anomaly. Let us first define
the fermionic helicity:

hF ≡ C−1
A

Z
d3x nA; ð3:9Þ

where nA ¼ j0A is the density of axial charge. From the
anomaly equation (2.2) and the Maxwell equations, the
total helicity of the system h0 is conserved:

h0 ≡ hm þ hF ¼ const: ð3:10Þ

Therefore, the system will tend to minimize the energy cost
at fixed helicity. From the definition of “fermionic helicity”
(3.9) and linearized equation of state nA ¼ χμA where χ is
the susceptibility, we observe that the energy per fermonic
helicity is σA. On the other hand, as we discussed in
Sec. III A, the energy per magnetic helicity for a single
CK mode is k. Therefore for a hard (positive, i.e. of right
circular polarization) CK mode k > σA (where without a
loss of generality, we take σA to be positive as well),
carrying helicity by chiral fermions is energetically favor-
able and consequently the helicity will be transferred from
hard CK modes to chiral fermions. In contrast, the soft CK
modes with k < σA are energetically favorable compared to
chiral fermions, and fermionic helicity will be transferred to
the soft components of magnetic helicity. Because the total
helicity is conserved, this transfer will deplete the value of
σA, and so the transfer of fermionic helicity will occur to
softer and softer CK modes—therefore, we find an inverse
cascade of magnetic helicity.
We are now ready to extend our discussion of individual

modes to the evolution of the entire helicity spectrum
gðk; tÞ. For definiteness, let us assume that the total helicity
of the system h0 is positive. It is convenient to introduce a
characteristic energy scale kh associated with total helicity:

kh ≡ C2
Ah0
χV

; ð3:11Þ

with V the volume. The quantity kh can be interpreted as
the energy per helicity if the entire helicity h0 is carried by
chiral fermions. The fate of the system depends on the
values of kh and kmin, the lowest possible eigenvalue of a
CK state allowed by the boundary conditions. If kh < kmin,
eventually all magnetic helicity will be transferred to
fermonic helicity. In contrast, if kh > kmin, the helicity
will eventually be carried by magnetic fields and the
configuration of the magnetic field will approach a single
CK state Wþ

lmðkminÞ that minimizes the energy at a fixed
helicity. We will confirm this scenario by a quantitative
analysis in the next section.

3We choose the gauge ∇ · A ¼ 0; the magnetic helicity hm is
gauge invariant.
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IV. MAXWELL-CHERN-SIMONS EQUATIONS

The CME current can be described by adding the Chern-
Simons term to the Maxwell theory [25]. Assuming that the
gradients of chirality distribution are small, the resulting
sourceless Maxwell-Chern-Simons (MCS) theory acquires
the usual Maxwell form with an extra term in the current
describing the CME:

∇ × B ¼ ∂E
∂t þ jEM; ð4:1aÞ

∇ × E ¼ −
∂B
∂t : ð4:1bÞ

∇ · B ¼ 0; ∇ · E ¼ 0: ð4:1cÞ
Here, the electric current jEM includes the Ohmic and CME
components:

jEM ¼ σEþ σAB; ð4:2Þ
where σ is the usual electrical conductivity. Let us now take
the curl of the equation (4.1a) and use (4.1b) and (4.1c) to
obtain

σ∂tBðt; xÞ ¼ ∇2Bþ σAð∇ × BÞ: ð4:3aÞ
In (4.3a), we have neglected ∂2

tB term—this should be a
good approximation for time scales larger than 1=σ. Here,
as mentioned above, we also neglect the spatial dependence
of nA and relate μA to nA via the linearized equation of state
μA ¼ nA=χ; this yields

σAðtÞ ¼
CAnAðtÞ

χ
≈
CA

χV

Z
d3x nAðx; tÞ: ð4:3bÞ

In accord with our assumption of small gradients of the
axial density we will neglect the spatial component of
axial current jA. The evolution of nAðtÞ is thus related to the
evolution of Chern-Pontryagin density E · B by the
anomaly equation (2.2):

∂tnAðtÞ ¼
CA

V

Z
d3xE · B: ð4:3cÞ

Equations (4.3) give the simplified version of the MCS
equations that we about to solve.

A. General solutions

Once we apply the decomposition (3.3), (4.3a) becomes
a differential equation describing the time dependence of
αlmðk; tÞ:

∂tα
�
lmðk; tÞ ¼ σ−1½−k2 � σAðtÞk�α�lmðk; tÞ: ð4:4Þ

From the definition of chiral magnetic conductivity σA ¼
CAμA and (3.10), we have

σAðtÞ ¼ kh

�
1 −

hmðtÞ
h0

�
; ð4:5Þ

where kh is defined in (3.11). The solution to (4.4) and (4.5)
can be obtained as follows (see also Refs. [11,17]). First,
integrating (4.4), we get

α�lmðk; tÞ ¼ α�lm;IðkÞ expfσ−1½−k2t� kθðtÞ�g; ð4:6Þ

where α�lm;IðkÞ≡ α�lmðt ¼ 0; kÞ is determined by the initial
value of magnetic field and

θðtÞ≡
Z

t

0

dt0σAðt0Þ: ð4:7Þ

Now, from the definition (3.7) we have

g�ðk; tÞ ¼ g�I ðkÞ expf2σ−1½−k2t� kθðtÞ�g; ð4:8Þ

where g�I ðkÞ≡ g�I ðt ¼ 0; kÞ denotes the initial magnetic
helicity spectrum. Finally, θðtÞ [and thus σAðtÞ] will be
determined from the consistency condition (4.5):

σAðtÞ ¼ kh

�
1 −

1

h0

Z
∞

0

dk
π
k½gþðk; tÞ − g−ðk; tÞ�

�
: ð4:9Þ

Before presenting numerical solutions, we now discuss
the evolution of individual CK modes α�lmðk; tÞ as described
by (4.4). Without losing generality, let us assume that
σAðtÞ > 0. Then the negative helicity mode α−lmðk; tÞ will
decay exponentially, so let us concentrate on the evolution
of the positive helicity mode αþlmðk; tÞ. For hard modes, i.e.
the modes with momenta k ≫ σA, α

þ
lmðk; tÞ decays expo-

nentially expð−σ−1k2tÞ, as usual. However, the soft helicity
mode k < σAðtÞ will grow exponentially. This unstable
mode has been noticed before in various contexts, see
Refs. [10,11,14,26] for examples. The growth of soft
CK modes could be anticipated from the discussion in
Sec. III B: the system tends to minimize the total energy
while preserving the total helicity, and the soft CK state
possesses the lowest energy at a fixed helicity.

V. THE INVERSE CASCADE
OF MAGNETIC HELICITY

A. The initial conditions and Hopfion solutions

As discussed in the previous section, the evolution of
θðtÞ, σAðtÞ and gðk; tÞ can be determined once the initial
condition for the configuration of electromagnetic field is
specified. Since we would like to investigate the evolution
of topology of magnetic flux, we assume that initially the
electromagnetic field with a nonzero magnetic helicity is
localized at a short spatial scale much shorter than k−1h
defined in (3.11). We therefore take the Hopfion solution
[22] to vacuum Maxwell equations as the initial configu-
ration. This solution carries nonzero helicity (which we
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assume to be positive) that is due to the second term in (2.1)
and a finite energy. It may be interpreted as a soliton wave
solution to the Maxwell equations. For a Hopfion solution
with a total initial magnetic helicity hm;I, the electromag-
netic field can be expressed in terms of CK states as [27]
(see also Ref. [28]):

BHopfðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
4hm;I

3π

r Z
∞

0

dkk2e−kLEM

× ½ðkL2
EMÞWþ

11ðx; tÞe−ikt þ c:c:�; ð5:1aÞ

EHopfðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
4hm;I

3π

r Z
∞

0

dkk2e−kLEM

× ½ð−ikL2
EMÞWþ

11ðx; tÞe−ikt þ c:c:�; ð5:1bÞ

where LEM characterizes the size of the Hopfion.
Consequently, only modes αþ11ðk; tÞ are nonvanishing
[see (3.3)] and the initial magnetic helicity spectrum is
given by:

gIðkÞ ¼
8π

3
hm;IL4

EMk
2e−2kLEM : ð5:2Þ

The peak of gIðkÞ at kp ≡ 1=LEM defines a characteristic
size LEM of the configuration.

B. Stages of the inverse cascade evolution

We are now ready to solve the evolution equations (4.4)
and (4.9). In addition to the initial condition discussed in
Sec. VA, the evolution also depends on the dimensionless
ratios LEMkh, hm;I=h0, σ=kh. We would like to model the
situation in which initially the helicity is dominated by
the contribution from the EM field, thus hm ≈ h0 and
LEM > k−1h . To be concrete, in this subsection we present
the results corresponding to the solution with
ðLEMkh; hm;I=h0; σ=khÞ ¼ ð1=2; 0.8; 0.4Þ. We have also
numerically solved (4.9) with different choices of
LEMkh; hm;I=h0; σ=kh; the results are qualitatively similar.
In Fig. 2, we plot the time dependence of the chiral

magnetic conductivity σAðtÞ, the peak of gðk; tÞ, kpeakðtÞ,
and magnetic helicity hmðtÞ. From Fig. 2, we observe that
according to the behavior of σAðtÞ, kpeakðtÞ, hmðtÞ, the
evolution of the system can be generally divided into the
following three stages listed below. For reference, we also
plot the magnetic helicity spectrum gðk; tÞ at initial time
t ¼ 0, and three representative times corresponding to the
three stages in Fig. 3(a).
(1) Stage I: in this stage, the magnetic helicity hmðtÞ

decays exponentially. Due to the conservation of
total helicity, the magnetic helicity is transferred to
fermionic helicity—thus we observe a fast growth of
σAðtÞ. Meanwhile, kpeakðtÞ starts decreasing but is
still larger than σAðtÞ. Stage I ends when magnetic
helicity hmðtÞ becomes small and σAðtÞ is close to

kh. The duration of “stage I”, which we denote as τI ,
can be estimated from the decay rate of magnetic
helicity in this stage, σ−1L2

EM, as indicated by (5.5).
We therefore have:

τI ∼ σL2
EM: ð5:3Þ

(2) Stage II: in this stage, the total helicity h0 is
dominated by fermionic helicity hF. In other words,
σAðtÞ approximately equals to kh and we observe
from Fig. 2 that σAðtÞ changes slowly, while kpeakðtÞ
continues to decrease. “Stage II” ends when κpeakðtÞ
is close to σA.

(3) Stage III: in this stage, both σAðtÞ and kpeakðtÞ
decrease. The fermionic helicity is transferred to
magnetic helicity and eventually hmðtÞ will approach
h0. At late times, σAðtÞ ≈ kpeakðtÞ. This corresponds
to the configuration in which the energy cost per
helicity for fermionic helicity is approximately equal
to that of magnetic helicity. In this case, the following
relation holds ∇ × B ≈ kpeakðtÞB ≈ σAðtÞB. It is clear
from the log-log plot Fig. 2 that σAðtÞ, kpeakðtÞ behave
as a power law in time t:

khðtÞ ≈ σAðtÞ ∝ t−β: ð5:4Þ
Meanwhile, the evolution of gðk; tÞ becomes self-
similar:

gðk; tÞ ∼ tα ~gðtβkÞ; ð5:5Þ
where ~gðtβkÞ is the scaling function and

FIG. 2 (color online). The time dependence of chiral magnetic
conductivity σAðtÞ (red), the peak of magnetic helicity spectrum
kpeakðtÞ (blue) and magnetic helicity hmðtÞ (green). The schematic
divisions of three stages (see text) for the evolution of the system
are sketched in dotted horizontal lines. Dashed black curve
illustrate t−1=2 asymptotic behavior of σAðtÞ, kpeakðtÞ. Black
dotted curve below the green curve plots hmðtÞ by solving
Maxwell’s equation in the absence of anomaly effect. The
numerical results are determined by solving (4.4) and (4.9) with
ðLEMkh; hm;I=h0; σ=khÞ ¼ ð1=2; 0.8; 0.4Þ.
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α ¼ 1; β ¼ 1=2; ð5:6Þ

are scaling exponents. It is easy to see that once
gðk; tÞ becomes self-similar as in (5.5), kpeakðtÞ is
determined by the peak of the scaling function ~gðtβkÞ.
Therefore β in (5.5) is identical to β in (5.4).
In Fig. (3b), we plot gðk; tÞ=tα vs tβk with scaling

exponents given by (5.6) for different t in Stage III.
The self-similar behavior of gðk; tÞ is evident from
Fig. 3(b). At this point, critical exponents (5.6) are
found numerically. In Sec. V C, we will determine the
scaling function ~g and derive (5.6) analytically.

To close this section, we emphasize that chiral anomaly
plays a crucial role during the evolution of chiral magnetic
conductivity σAðtÞ and of the magnetic helicity spectrum
gðk; tÞ. Indeed, without the CME current term in Maxwell
equation (4.1a) and with no transfer of helicity between
magnetic field and chiral fermions, gðk; tÞ would simple
decay as expð−2σ−1k2tÞ (see also black dotted curve in
Fig. 2) and self-similar behavior would be absent.

C. Self-similar evolution and scaling
behavior of gðk; tÞ

In this section, we would like to understand the origin of
the scaling exponents (5.6) found numerically, and to
determine the scaling function ~gðtβkÞ.
First of all, we note that α, β are not independent. As

hm ≈ h0 at late time (cf. Fig. 2), we have:

hmðtÞ ¼
Z

dk
π
kgðkÞ ¼

Z
dk
π
ktα ~gðtβkÞ

¼ tα−2β
Z

dx
π

~gðx Þ ≈ h0; ð5:7Þ

where we have introduced a new variable: x ≡ tβk.
We therefore have:

α ¼ 2β: ð5:8Þ
Moreover, if (4.8) can be matched to the scaling

form (5.5), we must have:

β ¼ 1

2
; θðtÞ ∼ tβ ¼ t1=2: ð5:9Þ

Consequently, for self-similar evolution, we have
from (4.7):

θðtÞ ¼ 2σAðtÞt: ð5:10Þ

Substituting (5.10) into (4.8), we obtain:

gðk; tÞ ¼ gIðkÞ expf2σ−1½−k2 þ 2σAðtÞ�tg

¼ gIðkÞ exp
�
−
2σ2AðtÞt

σ

�
expf−2σ−1½k − σAðtÞ�2tg:

ð5:11Þ

If the width of the Gaussian in (5.11) is sufficiently narrow,
we further have kpeakðtÞ ≈ σAðtÞ and

gðk; tÞ ∝ gIðkpeakðtÞÞ expf−2σ−1½k − kpeakðtÞ�2tg: ð5:12Þ

To summarize, the system will spend a long time at the
stage of self-similar evolution. In this stage, kpeakðtÞ
decreases as t−1=2. This implies that a large-scale helical
magnetic field will develop. With the growth of t, the width
of the Gaussian becomes more and more narrow, and gðk; tÞ
will become proportional to delta-function:

gðk; tÞ → δ½k − kpeakðtÞ�: ð5:13Þ

In this limit, the system is described by a single CK state
Wþ

11ðkpeakðtÞ; tÞ. Eventually, the evolution will end when
kpeakðtÞ ∼ 1=L where L is the size of the system. Here we

FIG. 3 (color online). The evolution of magnetic helicity spectrum gðk; tÞ. (a) gðk; tÞ at initial time t ¼ 0 (red) and three representative
time (corresponding to stage I, II, III) respectively. (b) t−αgðk; tÞ vs tβk in the self-similar stage (stage III) of the evolution.
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have found self-similar evolution by solving the MCS
equation with the Hopfion initial condition (5.1). However,
as our analysis does not rely on any particular feature of the
Hopfion solution, we expect that self-similar evolution is a
general feature that at late times does not depend on the
choice of initial conditions.

VI. IMPLICATIONS FOR HEAVY-ION
COLLISIONS

Let us now establish whether a self-similar evolution of
magnetic helicity can be realized in experiment; here we
will focus on QCD matter created in heavy-ion collisions.
As we discussed in Sec. III B, to realize the inverse cascade
of magnetic helicity, the energy cost per helicity if total
helicity is carried by chiral fermions kh [see (3.11)], should
be larger than kmin, the minimum eigenvalue of a CK
state. As kmin is of the order 1=L, where L is the size of
the system, we need to check whether kh > 1=L with
L ∼ 10 fm can be realized in a heavy-ion collision. As both
magnetic helicity and fermionic helicity would contribute
to the total helicity, we will estimate their contributions
separately. In heavy-ion collisions, the initial axial charge
density can be generated by sphaleron transitions and/or by
the color flux tubes during the early moments of the heavy-
ion collision [29]. To make a rough estimate, we will follow
Ref. [12] and consider an (optimistically large) value of the
chiral chemical potential μA, of the order of 1 GeV. The
resulting σA is then of the order 0.01 GeV. If the total
helicity h0 originates mostly from this initial axial charge,
1=kh would be at least of order 20 fm, which is much larger
than the typical size of the fireball L ∼ 10 fm created in a
heavy-ion collision. This estimate is also in agreement with
Ref. [30] in which the relevance of CK state to heavy-ion
collisions was discussed. To summarize, in order to satisfy
kh > 1=L, initially the dominant contribution to the total
helicity should be from magnetic helcity hm.
We now estimate magnetic helicity in a heavy-ion

experiment. We first note that from the EM field pattern
created by spectators in heavy-ion collisions (c.f. Fig 4),
E · B is positive in the upper half region, and negative in the
lower half region. The EM field would thus be helical, with
opposite helicities in the upper and lower half region. To
estimate the magnitude of this magnetic helicity, we assume
jBj ≈ jEj and in RHIC A ∼ EτB;RHIC where τB;RHIC is the
typical lifetime of magnetic field at RHIC. The typical
(peak) strength of magnetic field at RHIC is

eBRHIC ¼ cBm2
π; ð6:1Þ

where cB varies in the range of 1 to 10 depending on the
impact parameter after event averaging, but in a given event
can be significantly larger than this average value due to
fluctuations. We therefore have:

kh;RHIC ≈
C2
A

R
d3xARHIC · BRHIC

χAV
≈
e−2C2

AðeBRHICÞ2τB;RHIC
Nfχf

¼ αEMðCEMÞ2
�
N2

c

4π3

� ðeBRHICÞ2τB;RHIC
Nfχf

¼ 1.0 × 10−5c2BτB;RHIC fm−2: ð6:2Þ

Here we have assumed that the axial susceptibility is χA ¼
Nfχf where χf is the quark number susceptibility known
from the lattice measurements [31,32] to be χf ≈ 1.0T2 for
temperatures higher than Tc. We consider the case of u; d
flavors contributing to the CME current and thus put
Nf ¼ 2, CEM ¼ 5=9. We also assume that at the initial
stage of heavy-ion collisions T ≈ 0.4 GeV. To compute kh
at LHC, we further take:

eBLHC

eBRHIC
;≈

γLHC
γRHIC

≈ 13.8
τB;LHC
τB;RHIC

≈
�
γLHC
γRHIC

�
−1
: ð6:3Þ

We then get:

kh;LHC ≈
�
γLHC
γRHIC

�
kh;RHIC ¼ 1.4 × 10−4c2BτB;RHIC fm−2:

ð6:4Þ

For the purpose of estimate, we will take τB;RHIC ¼ 1 fm.
Therefore in order to satisfy kh > 1=L ≈ 0.1 fm−1, we need
to select events with cB ∼ 100 at RHIC and cB ∼ 26
at LHC.
We conclude that observing the self-similar cascade of

magnetic helicity in heavy ion collisions will be challeng-
ing. However the estimated magnetic helicity is quite large,

FIG. 4 (color online). A typical configuration of EM field in the
transverse plane in noncentral collisions. The two circles indicate
the edge of the colliding nuclei. The solid line (red) shows the
magnetic field B and the dashed lines (blue) show the electric
field E. The inner product between electric and magnetic fields
E · B becomes positive (negative) on the upper (lower) side of
reaction plane (RP).
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and is likely to affect the evolution of the quark-gluon
plasma. It can lead to interesting observable effects. For
example, since the sign of magnetic helicity is different in
the upper and lower hemispheres (above and below the
reaction plane), the decay of the magnetic field at freeze-out
will yield the photons with opposite circular polarizations.
Since the direction of the magnetic field, and thus the signs
of magnetic helicity, can be determined experimentally by
measuring the spectators, one can measure the polarizations
of photons by summing over many events (the sign of
polarization will not fluctuate event-by-event). The photon
polarization can be measured through photon conversion
into eþe− pairs by extracting the angular distribution of the
electrons and positrons. We believe that the observation of
these opposite circular polarizations of the produced
photons will be a unique signature of magnetic helicity
in heavy ion collisions.

VII. SUMMARY

To summarize, the chiral anomaly couples the evolution
of axial charge density and electric-magnetic (EM) field in
the plasmas possessing chiral fermions. By solving the
Maxwell-Chern-Simons equation in the presence of CME
current, we analyzed the real time evolution of the magnetic
helicity spectrum. We initialized the system by assuming
that it contains a seed of a helical magnetic field at short
distances, with helicity carried by the linked magnetic field
configuration, i.e. by the second term in (2.1). As sum-
marized in Fig. 2, we found that the magnetic helicity first
gets transferred to fermionic helicity and then fermionic
helicity is transformed back into magnetic helicity, but this
time to self-linked Chandrasekhar-Kendall (CK) configu-
rations characterized by the second term in (2.1). We have
argued that the CK states that minimize magnetic energy at
a fixed helicity represent the final stage of the magnetic
helicity evolution. We found that at late stage, this
evolution becomes self-similar, and describes the growth
of the self-linked CK state.
The role of fermions is to mediate the magnetic recon-

nections that are necessary to transfer the magnetic helicity
from the linked to self-linked configurations of magnetic
flux, see (2.1). We expect that our findings apply to all
systems that possess the CME current. In addition to the
quark-gluon plasma discussed above, the growth of mag-
netic helicity can be expected in Dirac semimetals that
exhibit the CME in parallel electric and magnetic fields
[33]. Experimentally, this generation of magnetic helicity
can manifest itself through the emission of circularly
polarized photons in the THz frequency range characteristic
for Dirac semimetals [34].

As a natural extension of this work, it will be interesting
to study the inverse cascade in the framework of anomalous
magnetohydrodynamics (MHD). In this case, the anomaly
can couple the kinetic helicity carried by the fluid, magnetic
helicity and fermionic helicity. While the inverse cascade of
magnetic helicity is a traditional topic of magnetohydro-
dynamics, the role played by the chiral anomaly has not yet
been fully explored. As another extension of this work, it
would be interesting to include the spatial dependence of
axial charge density in the MCS equations. This would
allow us to study the evolution of domains with nonzero
axial charge throughout the inverse cascade of magnetic
helicity.
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APPENDIX: A USEFUL REPRESENTATION
OF CHARDRASEKHAR-KENDALL STATES

A single CK state W�ðx; kÞ can be represented as the
linear combination of toroidal field Tðx; kÞ and poloidal
field Pðx; kÞ

W�
lmðx; kÞ ¼ Tlmðx; kÞ ∓ iPlmðx; kÞ; ðA1Þ

where

Tlmðx; kÞ ¼ jlðkrÞXlmðθ;ϕÞ;

Plmðx; kÞ ¼
i
k
∇ × Tlmðx; kÞ; ðA2Þ

where jlðkrÞ denotes spherical Bessel functions. Here,
we have defined:

Xlmðθ;ϕÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp L½Ylmðθ;ϕÞ�; L≡ −iðr × ∇Þ:

ðA3Þ
In the above equations, Ylmðθ;ϕÞ is the usual spherical

harmonic functions.
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