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We study the SU(2) Georgi-Glashow model and suggest a decomposition for its fields and obtain a
Lagrangian based on new variables. We use Cho’s restricted decomposition as a result of a vacuum
condition of the Georgi-Glashow model. This model with no external sources leads us to the Cho extended
decomposition. We interpret the puzzling field, n, in Cho’s decomposition as the color direction of the
scalar field in the Georgi-Glashow model. We also study another constraint, condensate phase, and
generalize Cho’s extended decomposition. Finally, we argue about a decomposition form that Faddeev and
Niemi proposed in this constrained Georgi-Glashow model.

DOI: 10.1103/PhysRevD.92.125029 PACS numbers: 14.80.Hv, 12.38.Aw, 12.38.Lg, 12.39.Pn

I. INTRODUCTION

The Georgi-Glashow model is a grand unification theory
(GUT) proposed in 1974 [1]. In this model the standard
model gauge groups SUð3Þ × SUð2Þ ×Uð1Þ are combined
into a single simple gauge group-SU(5). The unified group
SU(5) is then thought to be spontaneously broken to the
standard model subgroup at some high-energy scale called
the grand unification scale. On the other hand, the modern
era of the monopole theory started in 1974, when ’t Hooft
and Polyakov independently discovered monopole solu-
tions of the SU(2) Georgi-Glashow model [2,3]. The
essence of this breakthrough is that while a Dirac monopole
could be incorporated in an Abelian theory, some non-
Abelian models, like the Georgi-Glashowmodel, inevitably
contain monopolelike solutions.
Monopoles can explain quark confinement via the dual

Meissner effect in Yang-Mills theories like quantum
chromodynamics [4–6]. Unlike the Georgi-Glashow
model, there is no scalar matter field in Yang-Mills theories.
Moreover, it is believed that the ultraviolet and infrared
limits of a Yang-Mills theory represent different phases
[7,8]. Perturbative methods are appropriate for the ultra-
violet limit where the Yang-Mills theory is asymptotically
free, but for the infrared limits, the Yang-Mills theory
becomes strongly coupled and the perturbative technique
fails. In this regime, nonperturbative methods must be
developed.
One of the nonperturbative approaches is the decom-

position of the Yang-Mills field to some other variables
more appropriate for the low-energy limit [9–16]. This
method proposed by Cho [9] and developed by Faddeev
and Niemi [11–14], and Shanbanov [15,16]. Cho intro-
duced an additional magnetic symmetry which leads to a
decomposition for the Yang-Mills field with four dynami-
cal degrees of freedom [9]. Based on this decomposition, he

tried to construct a local Lagrangian field theory of the
monopole exhibiting a duality between the electric and the
magnetic charges. He also extended his decomposition in
order to contain all degrees of freedom of the SU(2) Yang-
Mills field [10]. Faddeev and Niemi generalized the Cho
restricted decomposition to arrive at a dual picture of the
Yang-Mills theory, with the high-energy limit described by
a massless and pointlike transverse polarization of Aμ and
the low-energy limit described by massive solitonic flux
tubes which close on themselves in a stable knotlike
configuration. For a review of the reformulations of
Yang-Mills theory, see [17].
Unlike the Cho restricted decomposition which describes

a Yang-Mills field with four degrees of freedom, the
Faddeev-Niemi decomposition enjoys all six dynamical
degrees of freedom of the SU(2) Yang-Mills. Faddeev and
Niemi also obtain the Euler-Lagrange equations of their
new action by performing the variation to new variables.
These equations were all proportional to the Yang-Mills
equation, and they asserted that their decomposition is
complete [11]. However, the Faddeev-Niemi reformulation
is inequivalent to Yang-Mills, but instead describes Yang-
Mills coupled to a particular choice of external charge
[18,19]. Furthermore, there are solutions of the Yang-Mills
equation with a covariantly constant source term that are
not solutions to the Faddeev-Niemi equations [19].
In this paper, after reviewing Cho-Faddeev-Niemi

decomposition of the SU(2) Yang-Mills field, we study
the Georgi-Glashow model which is a Yang-Mills-Higgs
theory with the Higgs field as the source of external charge.
In this model, there are two fields: the scalar field and the
Yang-Mills field. We reformulate this theory based on four
new fields, and we show that this reformulated theory is
equivalent to the Georgi-Glashow model at least at the
classical level. Performing variations with respect to these
four new variables, we get four Euler-Lagrange equations,
one which is trivial and one that is derivable from the other*a.mohamadnejad@ut.ac.ir
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two. Therefore, there are only two independent equations
of motion that are equivalent to the original Georgi-Glasow
equations. One can show that both the Cho restricted and
the extended Lagrangians are the limits of this reformulated
Georgi-Glashow model by considering some constraints on
the classical fields. A solution for the Georgi-Glashow
model, known as the ’t Hooft-Polyakov monopole solution,
was presented by ’t Hooft and Polyacov [2,3]. To have
finite energy, they assumed some boundary conditions
for their solutions. These conditions, called “vacuum-
conditions,” define the Higgs vacuum of the system. We
generalize these conditions for all spacetime. One of these
vacuum conditions leads to the Cho restricted theory, and
the other one leads to the condensate phase of the theory. In
the Cho restricted case, the external charge decouples from
the model, and in the condensate phase, there is also no
external charge, but the new vector field would be massive.
We also show that the constraint of no external charge leads
to either the Cho restricted or the extended decomposition.
In addition, we study a special form of the Faddeev-Niemi
reparametrization in the condensate phase and generalize
their Lagrangian so that it obviously contains external
charges.
This paper is organized as follows: in Sec. II we review

the Cho-Faddeev-Niemi decomposition. In Sec. III we
reformulate the Georgi-Glashow model based on four
new variables, and we derive the Eueler-Lagrange equa-
tions. In Sec. IV we study some constraints on the classical
fields of the reformulated model. In this section we
consider the vacuum conditions and show that one of them
makes the external charge decoupled from the theory and
leads to the Cho restricted Lagrangian. No external charge
condition leads to the Cho extended decomposition. By
considering the other vacuum condition, the condensate
phase, we construct an effective Lagrangian which is a
generalization of the Cho-Faddeev-Niemi Lagrangian
coupled to an external charge explicitly. Finally, our
conclusion comes in Sec. V.

II. CHO-FADDEEV-NIEMI DECOMPOSITION OF
THE SU(2) YANG-MILLS FIELD

The Cho decomposition was introduced a long time ago
in an attempt to demonstrate the monopole condensation in
QCD [9,10]. One can obtain the quark confinement
potential using the restricted part of the Cho decomposition
via the dual superconductor mechanism in which monopole
condensation plays an essential role [20].
In the Cho decomposition of the Yang-Mills field, an

isotriplet unit vector field n, which selects the Abelian
direction at each spacetime point, is introduced. The Yang-
Mills field is restricted to the potential Âμ which leaves n
invariant,

Âμ ¼ Aμnþ 1

g
∂μn × n; ð1Þ

where Aμ ¼ Âμ:n and n:n ¼ 1. The above decomposition
was originally obtained by the following condition,

∇̂μn ¼ ∂μnþ gÂμ × n ¼ 0; ð2Þ
which means that the restricted Yang-Mills field is the field
which leaves n invariant under the parallel transport. In the
low-energy limit, Âμ dominates and has a dual structure. In
fact, the field strength tensor F̂μν made of the restricted
potential Âμ is decomposed into the electric field strength
tensor Fμν and magnetic field strength tensor Hμν:

F̂μν ¼ ∂μÂν − ∂νÂμ þ gÂμ × Âν ¼ ðFμν þHμνÞn; ð3Þ

where

Fμν ¼ ∂μAν − ∂νAμ;

Hμν ¼ −
1

g
n:ð∂μn × ∂νnÞ: ð4Þ

Note that singularities of n define π2ðS2Þ which
describes the non-Abelian monopoles. Indeed, one can
obtain the Wu-Yang monopole by choosing Aμ ¼ 0 and
n ¼ r

r [9,21]. Besides, with the S
3 compactification of R3, n

characterizes the Hopf invariant π3ðS2Þ≃ π3ðS3Þ which
describes the topologically distinct vacua [22,23]. This
indicates that the restricted gauge theory made of Âμ could
describe the dual dynamics which should play an essential
role in SU(2) QCD, which displays the full topological
characters of the non-Abelian gauge theory.
The restricted potential Âμ has four degrees of freedom,

two for Aμ, corresponding to two polarizations, and two for
n. Although these four degrees of freedom play an essential
role in the infrared limit, one can extend the Yang-Mills
field as follows:

Aμ ¼ Âμ þXμ; ð5Þ

where Xμ:n ¼ 0.
Under the infinitesimal gauge transformation,

δn ¼ −a × n;

δAμ ¼
1

g
∇μa; ð6Þ

one has

δAμ ¼
1

g
n:∂μa;

δÂμ ¼
1

g
∇̂μa;

δXμ ¼ −a ×Xμ: ð7Þ
This shows that Âμ by itself describes an SU(2) connection
which enjoys the full SU(2) gauge degrees of freedom.
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Furthermore, Xμ transforms covariantly under the gauge
transformation. This confirms that the Cho extended
decomposition provides a gauge-independent decomposi-
tion of the non-Abelian potential into the restricted part Âμ

and the gauge covariant part Xμ.
Using Eq. (3) and Eq. (5), we have

Fμν ¼ F̂μν þ ∇̂μXν − ∇̂νXμ þ gXμ ×Xν; ð8Þ

where

n:Xμ ¼ 0 ⇒ n:∇̂μXν ¼ 0; ð9Þ

and the Yang-Mills Lagrangian is

L ¼ − 1

4
Fμν:Fμν

¼ −
1

4
F̂μν:F̂

μν − 1

4
ð∇̂μXν − ∇̂νXμÞ:ð∇̂μXν − ∇̂νXμÞ

−
g2

4
ðXμ ×XνÞ:ðXμ ×XνÞ − g

2
F̂μν:ðXμ ×XνÞ: ð10Þ

This shows that the Yang-Mills theory can be viewed as the
restricted gauge theory made of the dual potential Âμ,
which has the valence gluon Xμ as its source.
The equations of motion that one obtains from the Cho

Lagrangian by varying Aμ, Xμ, and n are given by

∂μðFμνþHμνþXμνÞ¼−gn:½Xμ× ð∇̂μXν−∇̂νXμÞ�; ð11Þ

∇̂μð∇̂μXν − ∇̂νXμÞ ¼ gðFμν þHμν þ XμνÞn ×Xμ; ð12Þ

where

Xμν ¼ gn:ðXμ ×XνÞ; ð13Þ

Eq. (11) and Eq. (12) are obtained by varing Aμ and Xμ,
respectively, and the variation with respect to n does not
create any new equation of motion. Therefore, n is not a
dynamical variable in the Cho decomposition.
Notice that Eq. (11) and Eq. (12) are not independent.

Indeed, Eq. (11) can be obtained from Eq. (12).
Furthermore, Eq. (11) and Eq. (12) are identical to the
original Yang-Mills equation:

∇μFμν ¼ 0: ð14Þ

So the Cho decomposition does not change the dynamics of
QCD at the classical level.
Faddeev and Niemi proposed a special form ofXμ in the

Cho decomposition. In this proposal, only two of four
dynamical degrees of freedom are considered forXμ. Thus,
it does not describe the full QCD. One can propose the
following form for Xμ which respects the constraint (9):

Xμ ¼
ϕ1

g2
∂μnþ ϕ2

g2
n × ∂μn; ð15Þ

where ϕ1 and ϕ2 are real scalar fields. Therefore, one gets

Aμ ¼ Aμnþ 1

g
∂μn × nþ ϕ1

g2
∂μnþ ϕ2

g2
n × ∂μn: ð16Þ

This is the Faddeev-Niemi decomposition. Note that two
field degrees of freedom, ϕ1 and ϕ2, are added to the
Cho restricted decomposition. Now the variation with
respect to n creates a new equation of motion [11].
Therefore, Faddeev and Niemi interpret n as a dynamical
field. However, unlike the Cho decomposition, the equa-
tions of motion that one obtains from the Faddeev-Niemi
Lagrangian are not equivalent to the original equations
of pure Yang-Mills theory [18,19]. Faddeev and Niemi’s
main proposal was the completeness of their decomposition
in four dimensions, which has been criticized recently
[18,19].
Using Eq. (16) in the definition of the SU(2) field

strength tensor, Fμν ¼ ∂μAν − ∂νAμ þ gAμ ×Aν, one gets
the following field strength tensor for the Faddeev-Niemi
decomposition,

Fμν ¼
�
Fμν þ

�
1 − ϕ2

1 þ ϕ2
2

g2

�
Hμν

�
n

þ 1

g2
ðDμϕ1∂νn −Dνϕ1∂μnÞ

þ 1

g2
ðDμϕ2n × ∂νn −Dνϕ2n × ∂μnÞ; ð17Þ

where

Dμϕ1 ¼ ∂μϕ1 − gCμϕ2;

Dμϕ2 ¼ ∂μϕ2 þ gCμϕ1: ð18Þ

Then the Faddeev-Niemi Lagrangian is

L¼−1

4
Fμν:Fμν

¼−
1

4
FμνFμνþ 1

2g4
ð∂μn:∂νn−ημν∂λn:∂λnÞðDμφÞ�ðDνφÞ

þ i
2g3

HμνðDμφÞ�ðDνφÞ−1

2
HμνFμν

�
1−φ�φ

g2

�

−
1

4
HμνHμν

�
1−φ�φ

g2

�
2

; ð19Þ

where

φ ¼ ϕ1 þ iϕ2;

Dμφ ¼ ð∂μ þ igAμÞφ: ð20Þ
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The Lagrangian (19) is invariant under the following local
U(1) gauge transformations:

φ → e−iαðxÞφ

Aμ → Aμ þ
1

g
∂μαðxÞ: ð21Þ

It is also invariant under rotations of n in the three-
dimensional internal space that forms the non-Abelian
group SO(3), which is a global symmetry.
Performing the variations with respect to new variables

Cμ, ϕ1, ϕ2 and n, one gets the following equations of
motion:

n:∇νFμν ¼ 0;

∂μn:∇νFμν ¼ 0;

ðn × ∂μnÞ:∇νFμν ¼ 0;

ðDμϕ1 −Dμϕ2n×Þ∇νFμν ¼ 0: ð22Þ

Faddeev and Niemi obtain the Skyrme-Faddeev
Lagrangian from their decomposition [11]. One can also
obtain the Abelian-Higgs model with the Nielsen-Olesen
vortex solutions from the Faddeev-Niemi Lagrangian [24].
This suggests that, at low energies, the physical states of the
Yang-Mills theory are topological solitons. In the next
section, we use the decomposition ideas for the Georgi-
Glashow model which is a Yang-Mills-Higgs theory with
the Higgs field as the source of external charge.

III. GEORGI-GLASHOW MODEL
IN NEW VARIABLES

The SU(2) Georgi-Glashow model which describes the
coupled gauge and Higgs field has the following classical
Lagrangian,

L ¼ 1

2
∇μϕ:∇μϕ − 1

4
Fμν:Fμν − VðϕÞ; ð23Þ

where

∇μϕ ¼ ∂μϕþ gAμ × ϕ;

Fμν ¼ ∂μAν − ∂νAμ þ gAμ ×Aν;

VðϕÞ ¼ λ

4
ðϕ:ϕ − ν2Þ2; λ; ν > 0; ð24Þ

g and λ are gauge and scalar coupling constants, respec-
tively, and the constant ν is the scalar field vacuum
expectation value.
The field equations corresponding to the Georgi-

Glashow model are

∇νFμν ¼ gϕ ×∇μϕ;

∇μ∇μϕ ¼ −λϕðϕ:ϕ − ν2Þ: ð25Þ

The following conditions, low-energy constraints on the
classical fields, minimize the energy:

∇μϕ ¼ 0; ð26Þ

ϕ:ϕ ¼ ν2; ð27Þ

Fμν ¼ 0: ð28Þ

Since, we want Fμν ≠ 0, we only consider Eq. (26) and
Eq. (27) and refer to them as vacuum conditions. Notice
that these conditions are the same as the ’t Hooft-Polyakov
monopole solution constraints in the boundary. In Sec. IV
we generalize these vacuum conditions for the bulk as well
as the boundary.
The Higgs field ϕ is a vector in color space. Therefore, it

has a magnitude and a direction and can be written as

ϕ ¼ ϕn; ðn:n ¼ 1Þ; ð29Þ

where ϕ is the magnitude (and has the unit and dimension)
of ϕ, and n is a dimensionless unit vector with a unity
magnitude having the direction of ϕ. From Eq. (29) one
gets

∇μϕ ¼ ð∂μϕÞnþ ϕ∇μn; ð30Þ

where

∇μn ¼ ∂μnþ gAμ × n;

⇒ n ×∇μn ¼ n × ∂μnþ gAμ − gðAμ:nÞn;

⇒ Aμ ¼ ðAμ:nÞnþ 1

g
∂μn × nþ 1

g
n ×∇μn: ð31Þ

Introducing two new fields, Aμ and Xμ, so that

Aμ ¼ Aμ:n;

Xμ ¼
1

g
n ×∇μn; ðXμ:n ¼ 0Þ; ð32Þ

we have

Aμ ¼ Aμnþ 1

g
∂μn × nþXμ; ð33Þ

which is nothing but the Cho extended decomposition.
There are 15 [3 (for ϕ)þ12 (forAμ)] off-shell degrees of

freedom in the SU(2) Georgi-Glashow model. According to
Eq. (29) and Eq. (33), we have proposed four new fields (ϕ,
n, Aμ, Xμ). We rewrite the Higgs field ϕ and Yang-Mills
field Aμ based on these new fields:
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ϕ ¼ ϕn;

Aμ ¼ Aμnþ 1

g
∂μn × nþXμ; ð34Þ

where there are some constraints:

n:n ¼ 1; n:Xμ ¼ 0: ð35Þ

Notice that there are still 15 [1 (for ϕ) + 2 (for n) þ4 (for
Aμ) þ8 (for Xμ)] off-shell degrees of freedom. So the off-
shell degrees of freedom are unchanged.
Substituting new variables (34) in the Georgi-Glashow

equations (25), we get

∇νFμν ¼ g2ϕ2Xμ; ð36Þ

ð∂μ∂μϕÞnþ 2gð∂μϕÞðXμ × nÞ þ gϕ∇μðXμ × nÞ
¼ −λϕðϕ2 − ν2Þn: ð37Þ

Equation (37) can be decomposed to two equations:

∂μ∂μϕ ¼ g2ϕXμ:Xμ − λϕðϕ2 − ν2Þ; ð38Þ

∇μ½ϕ2Xμ� ¼ 0: ð39Þ

Note that Eq. (39) can be obtained from Eq. (36):

∇νFμν ¼ g2ϕ2Xμ ⇒ ∇μ∇νFμν ¼ g2∇μ½ϕ2Xμ� ¼ 0: ð40Þ

So there are just two independent equations:

∇νFμν ¼ g2ϕ2Xμ;

∂μ∂μϕ ¼ g2ϕXμ:Xμ − λϕðϕ2 − ν2Þ: ð41Þ

These equations can be derived from the following
Lagrangian,

L ¼ 1

2
ð∂μϕÞð∂μϕÞ þ 1

2
g2ϕ2Xμ:Xμ;

−
1

4
Fμν:Fμν − λ

4
ðϕ2 − ν2Þ2; ð42Þ

which is reformulated as the Georgi-Glashow Lagrangian.
The Euler-Lagrange equations for new variables Aμ, Xμ,

and ϕ are

n:∇νFμν ¼ 0; ð43Þ

∇νFμν ¼ g2ϕ2Xμ; ð44Þ

∂μ∂μϕ ¼ g2ϕXμ:Xμ − λϕðϕ2 − ν2Þ; ð45Þ

and variation with respect to n does not lead to a new
equation, and it gets a trivial identity. Moreover,

considering the constraint (35), Eq. (43) can be derived
from Eq. (44).
Notice that the equations of motion of the reformulated

Georgi-Glashow model Eqs. (44) and (45) are the same as
the original ones in Eq. (41). Hence, our reformulation does
not change the dynamics of the Georgi-Glashow model, at
least at the classical level. In the next section, we study two
vacuum conditions for the reformulated Georgi-Glashow
model. We also study the constraint of no external charge,
and we see that this constraint leads to the Cho extended
Lagrangian of the SU(2) Yang-Mills theory. In addition, we
investigate the condensate phase of the reformulated
Georgi-Glashow model, and we reach a generalization of
the Cho-Faddeev-Niemi Lagrangian.

IV. CONSTRAINTS ON THE CLASSICAL FIELDS
OF THE GEORGI-GLASHOW MODEL

This section is devoted to some constraints on the
classical fields of the reformulated Georgi-Glashow model.
First, we consider the vacuum condition (26), and we show
that it leads to the Cho restricted theory. Then we study the
constraint of no external charge. This constraint leads to
either the Cho extended Lagrangian of the SU(2) Yang-
Mills theory or a Yang-Mills-Higgs theory in which the
Higgs field and the Yang-Mills field are decoupled and the
Yang-Mills part is the same as in the Cho restricted theory.
Finally, the other vacuum condition (27) will be considered.
In this condensate phase, we derive a Lagrangian that is a
generalization of the Cho-Faddeev-Niemi Lagrangian.

A. The vacuum condition which leads to the Cho
restricted decomposition

Consider the vacuum condition (26):

∇μϕ ¼ ð∂μϕÞnþ ϕ∇μn ¼ 0;

⇒ n:½ð∂μϕÞnþ ϕ∇μn� ¼ 0;

⇒ ∂μϕ ¼ 0 ⇒ ϕ ¼ constant: ð46Þ

On the other hand, from Eq. (32), we get

Xμ ¼
1

g
n ×∇μn ⇒ ∇μn ¼ gXμ × n: ð47Þ

Eqs. (46) and (47) implicate Xμ ¼ 0. Therefore, for this
vacuum condition we have

ϕ ¼ constant; Aμ ¼ Âμ ¼ Aμnþ 1

g
∂μn × n; ð48Þ

which is the Cho restricted decomposition. Our reformu-
lated Georgi-Glashow Lagrangian in this case is

L ¼ − 1

4
F̂μν:F̂

μν þ constant; ð49Þ
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and the equation of motion is

∇̂μF̂
μν ¼ 0: ð50Þ

B. No external source condition which leads to the
Cho extended decomposition

Suppose that there is no external charge in the reformu-
lated Georgi-Glashow model:

∇νFμν ¼ g2ϕ2Xμ ¼ 0: ð51Þ

There are two options for satisfying the above equation:
one is ϕ ¼ 0 and the other Xμ ¼ 0. The first one, ϕ ¼ 0,
leads to the Cho extended SU(2) Yang-Mills Lagrangian. In
this case, we have

ϕ ¼ ϕn ¼ 0;

Aμ ¼ Aμnþ 1

g
∂μn × nþXμ; ð52Þ

and the Lagrangian is

L ¼ − 1

4
F̂μν:F̂

μν − 1

4
ð∇̂μXν − ∇̂νXμÞ:ð∇̂μXν − ∇̂νXμÞ

−
g2

4
ðXμ ×XνÞ:ðXμ ×XνÞ − g

2
F̂μν:ðXμ ×XνÞ

þ constant: ð53Þ

The second case, Xμ ¼ 0, leads to a Yang-Mills-Higgs
theory in which the Higgs field and the Yang-Mills field are
decoupled, and the Yang-Mills part is the same as in the
Cho restricted theory:

L ¼ 1

2
ð∂μϕÞð∂μϕÞ − λ

4
ðϕ2 − ν2Þ2 − 1

4
F̂μν:F̂

μν: ð54Þ

The Euler-Lagrange equations for this case are

∇νF̂
μν ¼ 0;

∂μ∂μϕ ¼ −λϕðϕ2 − ν2Þ; ð55Þ

which are two second-order decoupled differential equa-
tions. Therefore, the condition Xμ ≠ 0 is essential for
interaction between the Higgs field and the Yang-
Mills field.

C. Condensate phase

Vacuum condition (27) in which the Higgs field takes the
vacuum expectation value, ϕ ¼ ν, leads to the following
effective Lagrangian for the condensate phase:

L ¼ 1

2
g2ν2Xμ:Xμ − 1

4
Fμν:Fμν

¼ 1

2
g2ν2Xμ:Xμ − 1

4
F̂μν:F̂

μν

−
1

4
ð∇̂μXν − ∇̂νXμÞ:ð∇̂μXν − ∇̂νXμÞ

−
g2

4
ðXμ ×XνÞ:ðXμ ×XνÞ − g

2
F̂μν:ðXμ ×XνÞ: ð56Þ

In this phase, Xμ is massive and its mass is

mX ¼ gν: ð57Þ

Considering Eq. (39), in this case we have

∇μXμ ¼ 0 ⇒ ∇̂μXμ ¼ 0: ð58Þ

This condition was imposed on the Cho extended
decomposition in order to compensate for the two extra
degrees introduced by n. In the Cho decomposition, there
are 14 [2 (for n) þ4 (for Aμ) þ8 (forXμ)] off-shell degrees
of freedom, while there are 12 off-shell degrees of freedom
for an SU(2) Yang-Mills field. The field n is responsible for
these two extra degrees, and it has led people to search for
two extra constraints that can demolish these two extra
degrees created by n [11–16,25]. These ideas have been
criticized and discussed in [26]. In our reformulation, this
problem does not occur and, as we mentioned before, both
the Georgi-Glashow model and our reformulation of this
model have 15 degrees.
Finally, we generalize the Faddeev-Niemi Lagrangian for

the condensate phase. Substituting Eqs. (15) and (19) in
Lagrangian (56), we get

L¼ 1

2

ν2

g2
φ�φ∂μn:∂μn

−
1

4
FμνFμνþ 1

2g4
ð∂μn:∂νn−ημν∂λn:∂λnÞðDμφÞ�ðDνφÞ

þ i
2g3

HμνðDμφÞ�ðDνφÞ−1

2
HμνFμν

�
1−φ�φ

g2

�

−
1

4
HμνHμν

�
1−φ�φ

g2

�
2

; ð59Þ

where the first term is added to the Faddeev-Niemi
Lagrangian and it leads to new results. In an upcoming
paper, we show how the Skyrme-Faddeev Lagrangian
can be derived from the above Lagrangian by considering
some more constraints on the classical Faddeev-Niemi
variables. Therefore, the Skyrme-Faddeev Lagrangian
which describes knotlike solitons can be interpreted as
an effective Lagrangian of the condensate phase of our
reformulation of the Georgi-Glashow model.
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V. CONCLUSION

The Lagrangian based on the new variables is a method
that is used by many authors for different purposes. The
strong motivation for this method is that by using these
variables one can reach a theory more appropriate for the
low-energy limits of the original Lagrangian. We take a
new look at Cho-Faddeev-Niemi decomposition and their
proposed variables for the SU(2) Yang-Mills field. Their
new variables and their decomposition will be more
comprehensible if we consider a reformulation of the
Georgi-Glashow model that is proposed in this paper.
For example, according to our reformulation both the
Cho restricted and the extended SU(2) Yang-Mills
Lagrangian are special cases of the reformulated
Georgi-Glashow model with some constraints on the
classical fields that we refer to as vacuum conditions.
Furthermore, we get two new limits in this model. In one
of them, the constraint of no external charge leads to a
Yang-Mills-Higgs theory in which the Higgs field is

decoupled from the Yang-Mills field. In this limit, the
Yang-Mills field decomposition is the same as the Cho
restricted decomposition. In the other limit, the condensate
phase, the valence part of Yang-Mills field, Xμ, becomes
massive. This limit leads to a generalization of the Cho-
Faddeev-Niemi Lagrangian in which a new mass term for
the field Xμ is included. In upcoming work, we show that
one can reach the Skyrme-Faddeev Lagrangian by consid-
ering one more decomposition. So we will show that the
Skyrme-Faddeev theory of the nonlinear sigma model and
our reformulation of the Georgi-Glashow model with some
extra constraints on the fields have identical topological
structures.
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