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We study the entanglement between two coupled detectors, the internal degrees of freedom of which are
modeled by harmonic oscillators, interacting with a common quantum field, paying special attention to two
less studied yet important features: finite separation and direct coupling. Distance dependence is essential
in quantum teleportation and relativistic quantum information considerations. The presence of a quantum
field as the environment accords an indirect interaction between the two oscillators at finite separation of a
non-Markovian nature which competes with the direct coupling between them. The interplay between these
two factors results in a rich variety of interesting entanglement behaviors at late times. We show that the
entanglement behavior reported in prior work assuming no separation between the detectors can at best be a
transient effect at very short times and claims that such behaviors represent late-time entanglement are
misplaced. Entanglement between the detectors with direct coupling enters in the consideration of
macroscopic quantum phenomena and other frontline issues. We find that with direct coupling
entanglement between the two detectors can sustain over a finite distance, in contrast to the no direct
coupling case reported before, where entanglement cannot survive at a separation more than a few inverse
high-frequency cutoff scales. This work provides a functional platform for systematic investigations into
the entanglement behavior of continuous variable quantum systems, such as used in quantum electro- and
optomechanics.
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I. INTRODUCTION

As the uniquely distinguished feature of quantum
mechanics [1] and as the primary resource of quantum
information processing (QIP) [2], a deeper understanding
of entanglement carries both foundational [3] and practical
values, such as the application to quantum teleportation [4].
The first major task of finding mathematically sound [5]
definitions to quantify the existence of bipartite and
multipartite entanglement for discrete variable quantum
systems such as “concurrence” [6] and continuous variable
quantum systems such as “negativity” [7] was undertaken
in the 1990s [8,9]. From physical considerations, a system
where quantum information processing is carried out is
always under the influence of its environments, the effects
of which can be represented as noises of different nature
which could be detrimental to QIP. Environment-induced
quantum decoherence and disentanglement are two vital
processes which need be accounted for and understood well
to enable one to find ways to mitigate or manage them. This
second major task is most effectively undertaken with the
methods of quantum open systems [10] based on various
aspects of the quantum Brownian models. Environments

when suitably prepared or attuned to can also assist in
maintaining or even generating entanglement [11,12].
Serious studies of entanglement between two qubits
[13–16] and continuous variables [17–22] appeared in the
last decade. Our studies on how entanglement in a quantum
system is affected by its environment follow this call,
relying mainly on functional methods [23–27] and, in the
case of Gaussian systems [28–30], the covariance matrix
theory.
In this paper, we consider the entanglement between two

harmonic oscillators, called detectors [31], which make up
our system, interacting with a quantum scalar field acting
as its environment [26,32,33] with special attention paid
to two factors: distance and coupling dependence of the
entanglement dynamics.
One important factor which has been largely ignored or

glossed over is how entanglement between two qubits
(representing discrete variables) or harmonic oscillators
(representing continuous variables) depends on their spatial
separation. This is one of the two primary aims of our prior
studies [14,21]. Distance dependence is recognized as an
essential factor in relativistic quantum information [34]
such as entering in quantum teleportation considerations
[35]. Even with stationary detectors, this is a relevant factor
because the two detectors are linked by a field, and
information propagates through the field as their medium,
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whereby entanglement can be induced, even generated.
Many prior works [18–20] assume zero spatial separation
between the two detectors and report on the (common)
environment-induced entanglement dynamics—such as
generation, death, and revival. One may casually think
that the distance effect is not so important because at most it
invokes a rather weak retardation effect from the field
environment or a small contribution from the bath corre-
lations. But a moment’s thought calls into question the
following: If there is no direct coupling, as assumed, how
could two detectors get entangled via a field which acts
only at the same point where the two detectors are located?
Both detectors would read off the same local value of the
field, with no dynamics of the field involved. The envi-
ronment would affect each detector’s entanglement dynam-
ics but would not enter into influencing the combined
two-detector system over and beyond the simple sum of
each. Equivalently, this amounts to a contact potential with
instantaneous action of the field. Since this is the only
means of interaction between the two detectors, the zero
separation is clipping the wings of the field, and thus the
setup has some intrinsic deficiencies.
For an oscillator bath, one may argue that, even without

spatial correlation, there should still be time-time autocorre-
lation as influenced by the environment (via the self-induced
non-Markovian dissipation kernel). But the fact is each
detector would get the same influence from the environment,
as it interacts with the environment in the same way as the

other does. Without spatial separation or without direct
coupling, this would be like two separate detectors each
conducting its own business, albeit interacting with the same
environment. The environment certainly influences each
detector, but it does not contribute to any additional inter-
oscillator entanglement over and beyond that which it
imparts to each detector. For these reasons, conclusions
drawn from calculations making this assumption can only be
valid for a short time scale, reflecting a transient behavior
which cannot be extended to late times (see Sec. II A 3 for
details). Thus, themeaning conveyed by theword “common”
in “entanglement induced by a common bath” implying that
there is added interdetector entanglement due to the fact that
the two detectors share a common bath could be misleading.
The proper treatment even for the zero separation casewould
have to begin with a finite separation, give full dynamics to
the field, allow it to partake of the dynamics of the combined
two-detector system, and then take the small separation limit.
Indeed, in our present calculation, we can pinpoint and
expose this shadowy feature and show the cause of it
explicitly. This is one exemplary observation which calls
for a careful reconsideration of prior results based on the
zero-separation condition.
The other important factor is allowing for direct coupling

between the two detectors. This enlarges the scope from
cases with no direct coupling, such as in neutral atoms, to
include a wider range of interdetector interactions. The type
of coupling we treat here in detail is of the quadratic type

TABLE I. Comparison of five oft-cited papers.

Comparison tablea Liu–Goan [18]
Hörhammer–
Büttner [19] Paz–Roncaglia [20] Lin–Hu [21]

Zell–Queisser–
Klesse [22]

A. Spatial separation N N N Y Y
B. Direct coupling between

detectors
Y N Yb N N

C. Bath type N oscillator N oscillatorc N oscillator Scalar field Extended N
oscillatord

D. Time regime Transient Transient Transient &
late time

Transient &
late time

Transient &
late time

E. Equation of motion Perturbed master
equation

Exact master
equation

Exact master
equation

Quantum
Langevin Eq.

Quantum
Langevin Eq.

F. Initial state Two-mode squeezed
vacuum

Two-mode
squeezed state

Two-mode
squeezed state

Two-mode
squeezed state

Ground state

G. Computation approach Numerical Numerical Analytical & numerical Analytical Numerical
H. Critical parameter None None βc ¼ 1ffiffiffiffiffiffiffi

2mω
p e dc ∼ π

ωΛ1

f dc ∼ Λ−1

aSymbols: m, ω and γ denote the mass, natural frequency, and damping constant of both oscillators, respectively. The parameter l
describes the spatial separation, and σ represents the coupling strength between the two oscillators.

bA direct coupling constant is present in the formalism but was renormalized to zero in their calculation.
cThe authors assume that the dynamics of the relative variable comes about as the solution of a Born-Markovian master equation for a

damped oscillator while in actuality the relative variable really behaves like a free oscillator, a fact from symmetry considerations.
dSpatial dependence is inserted in the interaction term of the system oscillators and the bath oscillators, so in a sense the configuration

is very similar to that in [21].
eThe critical temperature is found for the coherent state with direct coupling strength renormalized to zero so it is independent of the

squeezing parameters and the direct coupling. We will treat thermal entanglement in a sequel paper [47].
fThe dimensionless parameter Λ1 is related to the resolution Δt of the detector by Λ1 ¼ − lnωΔt − γϵ. The critical separation is

independent of the coupling constant only because it is obtained in the vanishingly weak coupling limit.
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between the detector’s internal degrees of freedom (denoted
as χ here or Q in our earlier papers [21,36,37]), which is of
the same form where the Hu-Paz-Zhang (HPZ) type of
master equation [25,38] was earlier derived for two coupled
oscillators [39]. By keeping the whole system Gaussian, we
are able to produce exact analytical solutions valid even for
strong couplings. Our present work is a direct descendent
from and a generalization of our earlier work [21] on the
temporal and spatial dependence of entanglement with the
same setup, but now with nonzero interdetector coupling.
This allows us to see both a) the competition between the
direct coupling in protecting entanglement and the envi-
ronmental influence of corrupting entanglement and b) the
direct coupling effect vs the indirect or induced effect of the
field on the entanglement between the detectors; the latter
came alive from a finite separation.
We add that these considerations are not just adding

details to established prior work—they surely do—but more
significantly, they enable us to identify some largely
unnoticed blind spots in earlier treatments, to rectify
possible misleading conclusions affected by them, and to
provide a more reliable foundation for further develop-
ments. Including these two essential factors—distance
and coupling—in the consideration of the entanglement
dynamics of this workhorse model for continuous
variable quantum systems and its extension could provide
a more complete, more correct, and more accurate analysis
for many problems it can tackle, such as expounding
some quantum foundation issues (e.g., Ref. [40]),
quantum information and teleportation applications (e.g.,
Refs. [35,41]), understanding macroscopic quantum phe-
nomena (e.g., Refs. [42,43]), and exploring the interesting
new field of quantum thermodynamics (e.g., Refs. [44–48]).
Below, we first summarize relevant prior work and then

describe our approach and the main issues addressed in
this study.

A. Prior works

To provide the backdrop for this investigation, we
tabulate what has been done before in five oft-cited papers:
Columns in Table I indicate the authors corresponding to
Refs. [18–22], respectively; Rows A–H indicate whether
the distance and coupling between the detectors are
considered, properties of the bath, etc. The footnotes
beneath the Table signify some special conditions related
to a specific feature. A quick glance of Items A and B
indicates that the two papers closest to our concern are
those of Refs. [20] and [21], factoring in much overlap of
contents in Ref. [22] with Ref. [21].

B. Direct and induced interactions, symmetry
considerations, separation and coupling dependences

We assume that two detectors stay at rest at a finite
distance l apart in a common bath modeled by a massless
scalar field. The internal degree of freedom χ of each

detector is described by a harmonic oscillator, which is
directly coupled to the internal degrees of freedom of the
other oscillator and interacts with the environmental scalar
field, both bilinearly. To assess the validity of the results
reported in prior and the present work, it is necessary to
understand how different interactions in the system affect
the dynamics and how its behavior varies in the different
parameter regimes of interest, as we now describe.

1. Induced interaction and non-Markovian dynamics

The two types of interactions between the internal
degrees of freedom of the two detectors: (i) a direct
interoscillator coupling, and (ii) an indirect, nonlocal,
retardation interaction, mediated by the common environ-
ment field, determines the dynamics of the system quite
differently. We can see why the indirect interaction pro-
duces non-Markovian dynamics as such: The interaction of
one oscillator with the field produces some disturbance in
the field (or signal) which takes a finite amount of time
(follows the light cone) to propagate to the other oscillator
located at some distance and modify its motion. The second
oscillator does the same in emitting its signal while
receiving the signal from the first oscillator, but at a later
time. The history-dependent nature is what gives the
induced interaction a non-Markovian character. This is
explained and well illustrated in the results of our prior
work [21].
We may add a few words on the difference in the

role of the environment made up of a scalar field
(e.g., Refs. [32,33]) vs N-harmonic oscillators (e.g.,
Refs. [23,24]). Their relation has been explicitly shown,
as, e.g., in Ref. [26], where a scalar field is explicitly
expressed in terms of parametric oscillator modes. But
there are subtle differences; we mention just two here. First,
the spectral density of a field is fixed and takes on a
different form for different dimensions. However, one can
specify the form of the spectral density function for an N-
oscillator bath. Second, concerning how to deal with a
divergent contribution from the high-frequency end of the
spectrum, there are well-justified ways to obtain a well-
defined integral over the whole frequency domain in the
case of a quantum field bath, by way of regularization or
renormalization methods. One can even introduce the finite
size of the detector to modulate the quantum field in the
vicinity of the detector [49]. For an N-harmonic oscillator
bath, the spectral density is often crafted to take on a form
that its value tapers off to zero when the frequency is greater
than a certain high-frequency cutoff scale. As a conse-
quence, in the time domain, the dissipation kernel will
subside at a rate of the inverse cutoff scale. For a very high-
frequency cutoff, this falloff is very steep, but for not so
high a frequency cutoff, reflective of some “softer” physical
environment, the dissipation kernel would contain a feature
which resembles a self-induced time-nonlocal interaction
of each oscillator with itself. This feature is usually ignored
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under the assumption that fewer high-frequency modes in
the environment take part in the interaction with the
subsystems, from unspecified physical considerations.

2. Symmetry and dynamical considerations

One can regroup the two internal degrees of freedom of
the two detectors into a symmetric (or center-of-mass)
variable and an antisymmetric (relative or difference)
variable and use them to describe the dynamics of the
combined (two-oscillator) system. The dynamics of these
two variables (which interchangeably may be called
“modes”) are very different and dictate very different
entanglement behavior. (An explicit illustration of how
symmetry determines the entanglement behavior is given in
Ref. [15] for a system of two qubits interacting with two
cavity modes.) In an N-oscillator bath, the relative mode is
found to be freely evolving, totally decoupled from the
bath. The decoupled relative mode dynamics is the root
cause for the fact that the late-time entanglement of the
combined system oscillates in time and shows dependence
on the initial condition of the joint system, even though it is
acted upon by a bath of which the damping function one
expects to wash out the sensitive dependence of the initial
conditions. This entanglement behavior is unavoidable in
the dynamics of two oscillators at zero separation (attempts
to remove this behavior by adding some damping by hand
is unwarranted and unphysical). However, with finite
separation between the two detectors, field-induced effects
set in to provide a natural damping effect on the relative or
antisymmetric mode dynamics. From a Taylor expansion of
the retardation terms in (26), we see immediately that
including higher-order terms in the expansion shows that
the relative mode decays with a longer relaxation time, so
the results reported for the entanglement dynamics of the
two oscillators with zero separation can only be viewed as
valid within this relaxation time scale and cannot be taken
to represent the long time behavior. In the case of finite
separation, after the joint system has reached full relaxa-
tion, the entanglement approaches a constant and becomes
independent of the initial conditions.

3. Oscillator-bath coupling and instability

For non-Markvian dynamics in the current configura-
tion, strong oscillator-environment coupling will not result
in an overdamped motion as it usually does for Markovian
dynamics. Instead, it tends to induce instability. This in a
sense is similar to parametric oscillation: The disturbance
from one oscillator can have a secular amplification effect
on the motion of the other oscillator.
We see that direct coupling can play a key role in

maintaining entanglement between the subsystems over a
finite distance. The type of interoscillator coupling we used
may be idealized in the sense that its strength remains
constant over large separation. Even when the interoscilla-
tor coupling is separation dependent and, say, falls off

relatively slowly with larger separation, the arguments
above should still be valid over the region where the
interoscillator coupling is much stronger than the mutual-
influence interaction between the oscillators.
The organization of this paper is as follows. In Sec. II, we

discuss the dynamics of two coupled quantum oscillators at
finite separation as the system in a common quantum field
environment, paying particular attention to their late-time
evolutions. In Sec. III, we construct the covariance matrix
from the uncertainties or the cross-correlation of the
canonical variables of these two oscillators. This enables
us to compute the entanglement measure. Because of a
multitude of scales, in Sec. IV, we highlight some con-
straints on the choice of the parameters, which will
facilitate the discussions of the entanglement measure. In
Sec. V, we introduce negativity as a quantifiable entangle-
ment measure for the symmetric Gaussian state and over-
view its qualitative behaviors in the current configuration.
In Sec. VI, we give a quantitative analysis of late-time
entanglement of the coupled oscillators in the common
bath. Finally, in Sec. VII, we summarize our findings and
their physical implications. Details of key calculations of
the covariance matrix elements are shown in the Appendix.

II. TWO DETECTORS AT FINITE SEPARATION
IN A COMMON FIELD ENVIRONMENT

We consider a generic setup for the investigation of
quantum entanglement between continuous variables
directly coupled with each other while both interacting
with the same environment. Consider two detectors S1;2
located at x ¼ �l=2 which remain at rest throughout their
dynamics. The internal degrees of freedom (idf) of S1;2 are
represented by harmonic oscillators χ1;2, respectively. In a
realistic setting, the detectors may represent (harmonic)
atoms of which the electronic energy levels are their idfs.
We assume the idfs χ1;2 interact directly with each other
with a bilinear coupling. In addition, each idf interacts with
a common environmental quantum field ϕ at the locations
of the detectors. The quantum field provides an indirect
interaction between χ1;2 which is non-Markovian in nature,
in the following sense: Any activity in the idf of one
detector will generate a perturbance of the field which is
picked up by the idf of the other detector. Because the
propagation of signals in a field cannot be instantaneous,
the finite time required engenders retardation effects, and
the evolution histories of the detectors are intertwined with
memory. This is what gives rise to the non-Markovianity in
the evolution of the idf of the system of two detectors, as
can be seen more clearly in the same setup without direct
coupling as from the results of Ref. [21].
Therefore, in this configuration, three different types of

correlations need be considered in the two detectors-
quantum field system. The first type of correlations comes
from the direct interaction between the oscillators’ internal
degrees of freedom and is not directly related to the
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environment. The other two types are directly related to the
environment; one results from the preexisting correlations
of the environment field at the locations of the detectors,
and the other is due to the retarded propagation of the field
as a consequence of its interaction with the oscillators.

A. Configuration

The action that describes the present configuration is
given by

S½χ;ϕ� ¼
Z

dt

�X2
i¼1

m
2
_χ2i ðtÞ −

mω2
b

2
χ2i ðtÞ

�

−
Z

dtmσχ1ðtÞχ2ðtÞ þ
Z

d4xjðxÞϕðxÞ

þ
Z

d4x
1

2
∂μϕ∂μϕ; ð1Þ

with x ¼ ðt;xÞ the spacetime coordinate. The internal
degree of freedom χi of the ith detector (i ¼ 1, 2) is
modeled as a harmonic oscillator with equal mass m and
equal (bare) oscillating frequency ωb; σ is the coupling
strength for the direct coupling between χi, and e is the
interaction strength between χi and ϕ. Thus, the only
feature that distinguishes between the two detectors is their
spatial locations zi. Assuming a finite separation between
them enables us to see the full dynamics of environment-
induced entanglement which is absent in most prior work
on continuous variable dynamics (with the exception of
Ref. [21]). The current jðxÞ coupled to the quantum field ϕ
takes the form

jðxÞ ¼ e
X2
i¼1

χiðtÞδð3Þ½x − ziðtÞ�; ð2Þ

which says that the internal degree of freedom χi of the
detector Si is coupled with the environment field ϕ at the
location zi of Si.
The central object in the calculation of the entanglement

measures introduced later is the covariance matrix, the
elements of which consist of the expectation values of
the products of the canonical variables of the system.
In particular, we are interested in the nonequilibrium
evolution of the system comprising the internal degrees
of freedom of the two detectors, under the influence of
its environment, the quantum field. This information is
contained in the reduced density operator ϱχ after the
environmental degrees of freedom are coarse grained.
Generically, the time evolution of the expectation value
of an operator O associated with the detectors’ internal
degrees of freedom χ ¼ fχ1; χ2g is

hOðtÞi ¼ TrχfϱχðtÞOðtÞg; ð3Þ

where Trχ means taking the trace over a complete set of χ
states. The time evolution of the reduced density operator is
described by

ϱχðtÞ ¼ TrϕfUðt; t0Þϱðt0ÞU−1ðt; t0Þg: ð4Þ

Here, ϱðt0Þ is the full density operator at the initial time t0,
which describes the initial states of the combined systems χ
and ϕ, and Uðt; t0Þ is the unitary time evolution operator
for the complete system governed by the action (1). The
trace operator Trϕ acts on the degrees of freedom of the
background scalar field. In a closed-time-path description,
this connects the forward-time branch (þ) in U and the
backward-time one (−) in U† for the bath operator ϕ.
This can be more transparently seen in a representation (4)
of the form

ϱχ ½χ; χ0; t� ¼
Z

∞

−∞
dχ0

Z
∞

−∞
dχ00

Z
χ

χ0

DχðþÞ
Z

χ0

χ0
0

Dχð−Þ
Z

∞

−∞
dϕ

×
Z

ϕ

ϕ0

DϕðþÞ
Z

ϕ

ϕ0
0

Dϕð−Þ
Z

∞

−∞
dϕ0

Z
∞

−∞
dϕ0

0

× ϱ½χ0;ϕ0; χ
0
0;ϕ

0
0; t0�

× exp

�
i
X
i

ðSi½χðþÞ;ϕðþÞ�− Si½χð−Þ;ϕð−Þ�Þ
�
:

ð5Þ

Here, we use a collective notation χ and ϕ for all the system
and environment variables, respectively. ϕ0, ϕ0

0 represents
different possible initial configurations of the scalar field ϕ.
Similar notations also apply to the variable χ.
Since the action (1) is quadratic in χ and ϕ, if the initial

density matrix is Gaussian, then the reduced density matrix
ϱχ can be found exactly, and its final expression remains
Gaussian,

ϱχ ½χ;χ0; t� ¼
Z

∞

−∞
dχ0

Z
∞

−∞
dχ00

Z
χ

χ0

Dχþ

×
Z

χ0

χ0
0

Dχ− expfSCG½χþ;χ−�gϱ½χ0;χ00; t0�; ð6Þ

where SCG is the coarse-grain effective action, which
comprises all the influence from the environment (quantum
field) on the system. In the current case of two coupled
detectors in a common bath, this effective action, expressed
in the matrix form, is given by
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SCG½R;Δ� ¼
Z

dt
m
2
f½ _RTðtÞ · _ΔðtÞ þ _ΔTðtÞ · _RðtÞ�

− ½RTðtÞ ·Ω · ΔðtÞ þ ΔTðtÞ · Ω ·RðtÞ�g

þ e2
Z

dtdt0
�
ΔTðtÞ ·GRðt; t0Þ ·Rðt0Þ

þ i
2
ΔTðtÞ ·GHðt; t0Þ · Δðt0Þ

�
; ð7Þ

where the row vector χT
� ¼ ðχð�Þ

1 ; χð�Þ
2 Þ denotes the internal

degrees of freedom of the detectors in the� branches of the
closed-time path. The superscript T represents the matrix
transposition. Moreover,

χ� ¼ R� 1

2
Δ; Ω ¼

�
ω2
b σ

σ ω2
b

�
;

Gðt; t0Þ ¼
�
Gðz1; t; z1; t0Þ Gðz1; t; z2; t0Þ
Gðz2; t; z1; t0Þ Gðz2; t; z2; t0Þ

�
; ð8Þ

with two kinds of correlation functions Gðx; x0Þ of the field
defined by

GRðx; x0Þ ¼ iθðt − t0ÞTrϕfρβ½ϕðxÞ;ϕðx0Þ�g;

GHðx; x0Þ ¼
1

2
TrϕfρβfϕðxÞ;ϕðx0Þgg: ð9Þ

The former describes the dissipation effects due to the
environment in the evolution of the internal degrees of
freedom in the forms of a local self-force and a nonlocal
influence, while the latter summarizes the ramification of
quantum fluctuations of the environment upon the internal
degree of freedom. The trace is taken over the degrees of
freedom of the environment field, and the density matrix in
the trace indicates that the initial state of the field is
assumed to be in a thermal state at temperature β−1. When
the environmental state possesses translation-invariant
symmetry, the correlation functionGðx; x0Þ has the property
Gðx; x0Þ ¼ Gðx − x0Þ, or, written in explicit space
and time variables, Gðx; t;x0; t0Þ ¼ Gðx − x0; t − t0Þ. The
Hadamard function GH is symmetric in its arguments:
GHðx; x0Þ ¼ GHðx0; xÞ.
We observe that the effective action SCG, though con-

voluted, is still quadratic in χðþÞ and χð−Þ. The remaining
integrals in (6) can be carried out exactly. Note the reduced
density matrix in (6) is a quantum object which contains all
the quantum-mechanical properties of the reduced system,
including the quantum fluctuations associated with the
system and as inherited from its environment. (See
Ref. [27] for systematic and comprehensive discussions
of functional techniques in treating nonequilibrium
quantum systems.)
To obtain the equations of motion of this reduced system,

we first note that the imaginary part of SCG can be written

as a stochastic ensemble average of a Gaussian distribution
by the well-known Feynman–Vernon [23] path integral
identity,

exp

�
−
e2

2

Z
dtdt0ΔTðtÞ ·GHðt; t0Þ · Δðt0Þ

�

¼
Z

DξP½ξ� exp
�
i
Z

dtΔTðtÞ · ξðtÞ
�
; ð10Þ

where the stochastic Gaussian distribution P½ξ� takes the
form

P½ξ� ¼ N exp

�
−
Z

dtdt0ξTðtÞ ·G−1
H ðt; t0Þ · ξðt0Þ

�
ð11Þ

and N is the normalization factor. By doing so, we may
rewrite the (complex-valued) coarse-grained effective
action [50] SCG½R;Δ� as a real and causal stochastic
effective action [51] Seff ½R;Δ; ξ�, weighted by the
distribution P½ξ�,

Seff ½R;Δ� ¼
Z

dt
m
2
f½ _RTðtÞ · _ΔðtÞ þ _ΔTðtÞ · _RðtÞ�

− ½RTðtÞ ·Ω · ΔðtÞ þ ΔTðtÞ · Ω ·RðtÞ�g

þ e2
Z

dtdt0ΔTðtÞ ·GRðt; t0Þ ·Rðt0Þ

þ
Z

dtΔTðtÞ · ξðtÞ: ð12Þ

The new variable ξ satisfies the statistics

hξðtÞi ¼ 0; hξðtÞξTðt0Þi ¼ e2GHðt; t0Þ: ð13Þ

Since its distribution is Gaussian, all higher moments can
be expanded by the second moment via Wick’s theorem.
From the algebraic manipulations in (10) and (11), we see ξ
embodies the quantum fluctuations of the environment. It
can then be interpreted as the stochastic driving force on the
motion of the internal degrees of freedom of the detectors in
their equations of motion obtained by varying Seff ,

δSeff
δΔðtÞ ¼ 0;

⇒ mR̈ðtÞ þmΩ ·RðtÞ − e2
Z

t

0

dt0GRðt; t0ÞRðt0Þ ¼ ξðtÞ:

ð14Þ

Writing the equation by components may better reveal their
physics contents:
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mχ̈1ðtÞ þmω2
bχ1ðtÞ þmσχ2ðtÞ − e2

Z
t

0

dt0½GRðz1; t; z1; t0Þχ1ðt0Þ þ GRðz1; t; z2; t0Þχ2ðt0Þ� ¼ ξ1ðtÞ; ð15Þ

mχ̈2ðtÞ þmω2
bχ2ðtÞ þmσχ1ðtÞ − e2

Z
t

0

dt0½GRðz2; t; z2; t0Þχ2ðt0Þ þ GRðz2; t; z1; t0Þχ1ðt0Þ� ¼ ξ2ðtÞ: ð16Þ

This set of equations of motion (15) and (16) is of great
physical interest in that it contains (1) a local external
harmonic potential; (2) direct interaction between the
internal degrees of freedom of the detectors; (3) a self-
force on each detector; (4) a stochastic driving force; and
(5) indirect, retarded interaction between the internal
degrees of freedom via the field. The latter three effects
result from the idf’s coupling with the environment, and in
particular, the last one where the two detectors idf interact
indirectly, as mediated by the environment, which is totally
different in nature from their direct coupling. This retarded
interaction term is weaker as two oscillators are further
separated apart. Note that, if the oscillators carry a charge
and are coupled with a quantized electromagnetic field, the
corresponding retardation interaction term also accounts for
the effects of the electromagnetic field produced by the
nontrivial motions of the other charged oscillators.
Although Eqs. (15) and (16) appear like classical

equations of motion, they actually contain full quantum
characteristics of the reduced system. As mention earlier,
the stochastic noise ξ represents the quantum fluctuations
of the environment, and its influence on the systems
contributes to the so-called “induced quantum fluctua-
tions”’ of the reduced system.

1. Properties of the retarded Green function

We first examine the retarded Green functions GRðx; x0Þ
of the scalar quantum field ϕðxÞ, as they describe the
nonlocal retarded influence of the environment,

GRðx; x0Þ ¼ iθðt − t0Þ½ϕðxÞ;ϕðx0Þ�

¼ 1

4πr
θðτÞ½δðτ − rÞ − δðτ þ rÞ�; ð17Þ

with τ ¼ t − t0 and r ¼ jx − x0j. We first look into how
GRðx; x0Þ propagates between χi. Equation (17) implies the
nonlocal expressions in, say, Eq. (15) will have the effects

Z
t

0

dt0GRðz1; t; z2; t0Þχ2ðt0Þ ¼
1

4πl

Z
t

0

dt0δðt− t0 − lÞχ2ðt0Þ

¼ θðt− lÞ
4πl

χ2ðt− lÞ; ð18Þ

with l ¼ jz1 − z2j. The theta function ensures causality,
namely, starting the motion at t ¼ 0; then, χ1 will not
receive the retarded influence from χ2 until at least t ¼ l.
On the other hand, in the limit r → 0,

GRðx; t;x; t0Þ ¼ −
1

2π
θðτÞδ0ðτÞ; ð19Þ

and thus (19) in part will account for a purely local effect,
only at the locations of the detectors,Z

t

0

dt0GRðz1; t;z1; t0Þχ1ðt0Þ

¼ 1

2π

�
δðt− t0Þχ1ðt0Þ

			t0¼t

t0¼0
−
Z

t

0

dt0δðt− t0Þχ01ðt0Þ
�
; ð20Þ

due to the reaction of the radiation field. The first term on
the right-hand side is not well defined unless we introduce
an energy cutoff for the environment, whereby the resulting
cutoff-dependent expression can be absorbed as a fre-
quency normalization of χ1. In other words, the natural
frequency of χ undergoes a shift due to its interaction with
the environment. Now, Eq. (20) becomesZ

t

0

dt0GRðz1;t;z1;t0Þχ1ðt0Þ¼−
mδω2

e2
χ1ðtÞ−

1

4π
_χ1ðtÞ: ð21Þ

Putting them back into the equations of motion, we arrive at

χ̈1ðtÞ þ 2γ _χ1ðtÞ − 2γ
θðt − lÞ

l
χ2ðt − lÞ þ ω2χ1ðtÞ

þ σχ2ðtÞ ¼
1

m
ξ1ðtÞ; ð22Þ

χ̈2ðtÞ þ 2γ _χ2ðtÞ − 2γ
θðt − lÞ

l
χ1ðt − lÞ þ ω2χ2ðtÞ

þ σχ1ðtÞ ¼
1

m
ξ2ðtÞ; ð23Þ

where γ ¼ e2=8πm is the damping constant and ω2 ¼
ω2
b þ δω2 is the renormalized natural frequency. Formally,

this frequency shift δω2 is written as δω2 ¼ −4γδð0Þ, but
we can put it in a form containing the cutoff scale Λ of the
model in consideration,

δω2 ¼ −4γδð0Þ ¼ −
2γ

π

Z
∞

−∞
dκ ¼ −

4γ

π

Z
Λ

0

dκ ¼ −
4γΛ
π

:

ð24Þ

2. Internal degrees of freedom variables χ�:
Symmetric (sum or center of mass) and antisymmetric

(difference or relative) normal modes

We can decouple this set of equations by superpositions
χþ ¼ ðχ1 þ χ2Þ=2 and χ− ¼ χ1 − χ2,
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χ̈þðtÞ þ 2γ _χþðtÞ − 2γ
θðt − lÞ

l
χþðt − lÞ

þ ω2þχþðtÞ ¼
1

m
ξþðtÞ; ð25Þ

χ̈−ðtÞ þ 2γ _χ−ðtÞ þ 2γ
θðt − lÞ

l
χ−ðt − lÞ

þ ω2
−χ−ðtÞ ¼

1

m
ξ−ðtÞ; ð26Þ

with ξþ ¼ ðξ1 þ ξ2Þ=2, ξ− ¼ ξ1 − ξ2 and ω2
� ¼ ω2 � σ. In

the small-separation limit ω�l ≪ 1, we Taylor expand the
retarded expressions into χ�ðt−lÞ≃χ�ðtÞ−l_χ�ðtÞþ �� �
and observe that

χ̈�ðtÞ þ 2γ _χ�ðtÞ þ ω2
�χ�ðtÞ ∓ 2γ

θðt − lÞ
l

χ�ðt − lÞ
≃ χ̈�ðtÞ þ 2γ _χ�ðtÞ þ ðω2

b� þ δω2Þχ�ðtÞ

∓ 2γ

l

�
χ�ðtÞ − l_χ�ðtÞ þ

l2

2
χ̈�ðtÞ −

l3

3!
χ⃛�ðtÞ þ � � �

�
≃ ð1 ∓ γlÞχ̈�ðtÞ þ 2γð1� 1Þ_χ�ðtÞ þϖ2

�χ�ðtÞ

� γl2

3
χ⃛�ðtÞ þ � � � ; ð27Þ

with ϖ2
� ¼ ω2

b� − 4γΛ
π ∓ 2γ

l and ω2
b� ¼ ω2

b � σ.

3. Severely restricted validity range
of zero-separation results

In choosing Λl ¼ π=2, we obtain the equations of
motion found in another often used configuration for the
investigation of the thermal entanglement in a common
bath [18,20],

χ̈þðtÞ þ 4γ _χþðtÞ þ ~ω2þχþðtÞ ¼
1

m
ξþðtÞ; ð28Þ

χ̈−ðtÞ þ ~ω2
−χ−ðtÞ ¼

1

m
ξ−ðtÞ; ð29Þ

where ~ω2
− ¼ ω2

b− but ~ω2þ ¼ ω2
bþ − 8γΛ=π. In that configu-

ration, two coupled oscillators are assumed to be placed
at the same spatial location and interact with a common
thermal bath. With the retardation effects completely
ignored, the relative mode becomes a undamped driven
oscillator. This allows for the initial information of the
system to persist, and its effects are oscillatory in time. This
feature fundamentally changes the characteristics of the
late-time entanglement in a common bath, in comparison
with the finite separation case we are studying here.
We can derive the validity range of prior results of the

same-location configuration. Keeping the third-order time
derivative in the small-distance expansion (27), we find the
equation of motion for the relative mode becomes

ð1þ γlÞχ̈−ðtÞ −
γl2

3
χ⃛−ðtÞ þ

�
ω2
− þ 2γ

l

�
χ�ðtÞ þ � � �

¼ 1

m
ξ−ðtÞ: ð30Þ

The third-order time derivative term now plays the role of a
friction force. Compared with the corresponding equation
of motion for the center-of-mass (CoM) mode, the damping
of the relative mode is much weaker by an order of ðωlÞ2.
Based on (28) and (29), we can say that the results for
the configuration of two oscillators in the same location
interacting with a common bath can at best be valid in the
very short time before the dynamics of the relative mode is
fully relaxed, that is, within the time scale much shorter
than ðγω2

−l2Þ−1.

B. Solutions and dynamics

We now investigate the dynamics of the system derived
from the solutions of the equations of motion (15) and (16).

1. Iterative scheme to obtain early-time solutions

As a brief interlude, we first mention a method to obtain
early-time solutions. This gives a clear depiction of how
mutual influences are transmitted back and forth between
the internal degrees of freedom of both detectors.
The equations of motion of the normal modes are

second-order differential equations with a fixed delay.
One way to solve the equations of this type is to make
use of iteration. We divide the evolution time t into intervals
of length l, that is, t ∈ ½ðn − 1Þl; nl� with n ∈ N. When t
falls in the first interval t ∈ ½0;l�, the delayed term in (15)
and (16) has no effect, so the solutions to (15) and (16) can
be found exactly. When time evolves to the next interval
t ∈ ½l; 2l�, the delayed term has to be taken into consid-
eration, but since t − l ∈ ½0;l�, we can substitute the
previously found solution to the delay term. In so doing,
the equations of motion in the time t ∈ ½l; 2l� become
ordinary differential equations, and they are exactly solv-
able. We may proceed with the same procedures to the next
time interval t ∈ ½2l; 3l� and further on. This technique
is straightforward but becomes very cumbersome after a
few iterations, Besides, in this iteration scheme, it is not
straightforward to identify the existence of the relaxed
motion, so it is merely suitable for finding the early-time
solutions to (15) and (16). Since we are interested in the
late-time behaviors of the solutions, we will not pursue
this approach any further.

2. Systematic method for seeking the solutions

To systematically find the solutions to the equations of
motion (15) and (16), we may perform the Laplace trans-
formation on the equations of motion,
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½−_χ�ð0Þ − sχ�ð0Þ þ s2 ~χ�ðsÞ� þ 2γ½−χ�ð0Þ þ s~χ�ðsÞ�

þ ω2
� ~χ�ðsÞ ∓ 2γ

l
e−sd ~χ�ðsÞ ¼

1

m
~ξ�ðsÞ;

⇒

�
s2 þ 2γsþ ω2

� ∓ 2γ

l
e−sl

�
~χ�ðsÞ

¼ 1

m
~ξ�ðsÞ þ ½_χ�ð0Þ þ ðsþ 2γÞχ�ð0Þ�; ð31Þ

where the Laplace transformation of the function χðtÞ is
defined for t ≥ 0 by

~χðsÞ ¼
Z

∞

0

dtχðtÞe−st: ð32Þ

Solving (31) for ~χ�ðsÞ yields

~χ�ðsÞ ¼ ~dð�Þ
1 ðsÞχ�ð0Þ þ ~dð�Þ

2 ðsÞ_χ�ð0Þ

þ 1

m
~dð�Þ
2 ðsÞ~ξ�ðsÞ; ð33Þ

with

~dð�Þ
1 ðsÞ ¼ sþ 2γ

~g�ðsÞ
; ~dð�Þ

2 ðsÞ ¼ 1

~g�ðsÞ
; ð34Þ

and ~g�ðsÞ ¼ s2 þ 2γsþ ω2
� ∓ 2γ

l e
−sl. From the depend-

ence on the initial conditions, we identify that the first two
terms on the right-hand side of (33) correspond to the
homogenous solutions to the equation of motion, while the
third term corresponds to the inhomogeneous solution. We
can find the time evolution of χ�ðtÞ by performing the
inverse Laplace transformation on (33),

χ�ðtÞ ¼
1

2πi

Z
Γ
ds~χ�ðsÞest; ð35Þ

where the Bromwich contour Γ is chosen to make the
integral in (35) well defined.
We use the residue theorem to evaluate the contour

integral in (35). All we need to do is to identify the poles

associated with ~dð�Þ
1;2 ðsÞ. This is equivalent to finding the

solutions to ~g�ðsÞ ¼ 0. Compared with the corresponding
equations in the private-bath case, the function ~g�ðsÞ has an
extra term proportional to e−sl, and this renders ~g�ðsÞ a
transcendental function, the exact analytical solutions of
which are typically hard to come by. Some approximation
schemes are needed.

a. Strong damping case.—When 2γl ≫ 1 and γ > ω, the
function ~g�ðsÞ ¼ 0 reduces to

y2 þ 2γlyþ ω2
�l

2 ∓ 2γle−y ¼ 0

→ 2γlyþ ω2
�l

2 ∓ 2γle−y ¼ 0 ð36Þ

because jyj must be smaller than 2γl; otherwise, ~g�ðsÞ will
be too positive to be equal to zero. Solving 2γlyþ ω2

�l
2 ∓

2γle−y ¼ 0 gives

y ¼ −
ω2
�l
2γ

þΨ


�e

ω2�l

2γ

�
: ð37Þ

The function ΨðzÞ is the principal solution for x in
z ¼ xex. If we look for a real solution, then the relative
mode does not have any because ΨðzÞ is a complex
function of z when z < 0. On the other hand, since ΨðzÞ is
real for z ≥ 0, it is straightforward to see that y becomes
positive when 2γ > ω2

�l. A positive real solution to
~gðsÞ� ¼ 0 denotes a runaway solution when we apply
the residue theorem to the inverse Laplace transformation
like (35). The culprit for the existence of the runaway
solution can be seen explicitly to be the delayed term in
the equations of motion (15) and (16). Thus, we can
highlight a stark contrast between the Markovian and the
non-Markovian motions:

(i) Markovian dynamics: For the Markovian motion of
the oscillator, the function ~g�ðsÞ typically takes the
form

~g�ðsÞ ¼ s2 þ 2γsþ ω2
�; the Markovian case;

ð38Þ

so the strong damping γ > ω� merely causes the
overdamped motion of the oscillator since in this
case ~g�ðsÞ ¼ 0 gives

s ¼ −γ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − ω2

�
q

< 0: ð39Þ

(ii) Non-Markovian dynamics: However, in the non-
Markovian case as shown previously, strong damp-
ing can imply a real and positive s and in turn
unstable motion. In principle, a large damping
constant γ is supposed to efficiently damp out
the oscillator’s motion. On the other hand, it also
means that the oscillator interacts strongly with
the environment. Thus, when two oscillators
couple with a common environment, their mutual
influences will last, and the exchange between one
another goes on much longer in the course of time
evolution. On top of that, when 2γ > ω2

�l, each
reciprocal mutual influence is enhanced by a factor
2γ
ω2
�l

> 1 and is accumulated in such a way that it

adds up constructively, especially for the CoM
mode. This acts counter to the damping due to
the dissipative force and finally wins to become a
runaway solution. In contrast, the Markovian
motion does not have the retarded terms, so the
corresponding motion just rapidly damps away in
the strong damping case.
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b. Weak damping case.—We first locate the solutions to
~g�ðsÞ ¼ 0 for large jsjl ≫ ω�l and write ~g�ðsÞ as [52]

s2esl
�
1þ 2γ

s
þ ω2

�
s2

�
¼ � 2γ

l
;

⇒ y2ey ≃�2γl ¼ 2γleið2nþ1
2
∓1

2
Þπ; ð40Þ

with y ¼ sl and n ∈ Z. Taking the logarithm of both sides
of (40) gives

yþ 2 ln y≃ ln 2γlþ iπ

�
2nþ 1

2
∓ 1

2

�
: ð41Þ

Now, substitute y ¼ uþ iv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
eiθ with u, v,

θ ∈ R into (41), and we obtain

½uþ lnðu2 þ v2Þ − ln 2γl�

þ i

�
vþ 2tan−1

v
u
− π

�
2nþ 1

2
∓ 1

2

��
¼ 0: ð42Þ

To fulfill (42), the imaginary part of (42) implies jvj ≫ juj
such that

lnðu2 þ v2Þ≃ 2 ln jvj; tan−1
v
u
≃ sgnðvÞ π

2
; ð43Þ

and then it gives v,

v≃ π

�
2nþ 1

2
∓ 1

2
− sgnðvÞ

�
; with n ≫ 1: ð44Þ

If we put the solved v back into the real part of (42), we
obtain

u≃ ln 2γl − 2 ln jvj

¼ ln 2γl − 2 ln

��
2nþ 1

2
∓ 1

2
− sgnðvÞ

�
π

�
: ð45Þ

Unless γl ≫ 1, typically u < 0 for large n. Since the
negative values of u will contribute to the decaying
behavior of (34) once we apply the residue theorem to
(35), the factor eRefsgt behaves like

exp

�
u
l
t

�
≃ exp

�
−
2t
l
ln
½2nþ 1

2
∓ 1

2
− sgnðvÞ�πffiffiffiffiffiffiffiffi

2γl
p

�

¼ O
�

1

n2t=l

�
: ð46Þ

Therefore, at late times t ≫ l, the contributions to the
solution (35) from the large n poles are heavily suppressed.

Alternatively, we may compare juj=l with the damping
constant γ. From the argument that follows (45), we see that
we typically have juj ≫ γl, in particular for the case of
weak damping γ=ω ≪ 1. We conclude that the factor eut

will fall off much faster than e−γt for large n at late times.
When both oscillators are far away from one another, the

delayed term in the equations of motion (15) and (16) is
suppressed by the factor γ=l, so we may treat this delayed
term as a small perturbation. Note that in this case, since the
non-Markovian or the retardation effects are very feeble,
the configuration and the equations of motion are almost
identical to those in the case of the private baths of the same
temperature. However, the similarities are merely super-
ficial because there is no environment correlation in the
private-bath case.

c. Late-time behavior.—At this point, we see that the
dominant late-time contribution to (35) should come from
the pole with the smallest value of juj. We first consider the
case γ ≪ ω2

�l, which covers the limits of weak damping
and/or the large distance between oscillators. The delayed
term will be treated as a small perturbation. Let the function
~g�ðsÞ be written as

~g�ðsÞ ¼
y2

l2
þ ω2

� þ 2γ

l
½y ∓ e−y�; ð47Þ

with y ¼ sl. The zeros of ~g�ðsÞ to the lowest order in γ=l
are simply given by iω�l and the minus of them. Here, we
only demonstrate the iω�l case, and the result for the
minus sign case can be found accordingly. Next, if we take
into account the contribution of the order γ=l in (47), we
should expect the correction to the solution is also at least
of the order γ=l. Writing y ¼ iω�lþ γ

l ðαþ iβÞ þOðγlÞ2
with α, β ∈ R, and substituting this into (47), we can find
the corrections to the solutions due to the inclusion of the
terms of the order OðγlÞ,

α¼ −
l
ω�

½ω�l� sinω�l�; β ¼ ∓ l
ω�

cosω�l: ð48Þ

Thus, for the CoM mode, the zeros of ~gþðsÞ are given by

sþ ¼ �iωþ þ γ

�
−
�
1þ sinωþl

ωþl

�
∓ i

cosωþl
ωþl

�

¼ �iωþ

�
1 −

γ

ωþ

cosωþl
ωþl

�
− γ

�
1þ sinωþl

ωþl

�
; ð49Þ

up to the order OðγlÞ2. Likewise, for the slow mode, we
obtain the zeros of ~g−ðsÞ with
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s− ¼ �iω− þ γ

�
−
�
1 −

sinω−l
ω−l

�
� i

cosω−l
ω−l

�

¼ �iω−

�
1þ γ

ω−

cosω−l
ω−l

�
− γ

�
1 −

sinω−l
ω−l

�
: ð50Þ

We observe that the contribution from the retarded term is
smaller with large separation l between oscillators, which
is consistent with our physical intuition. We may group the
expressions in s� in such a way to define the effective
damping Γ� and the effective oscillating frequency W�,

Γ� ¼ γ

�
1� sinω�l

ω�l

�
;

W� ¼ ω�

�
1 ∓ γ

ω�

cosω�l
ω�l

�
: ð51Þ

The effective damping constant is always non-negative and
can only for the relative mode in the limit ω−l → 0;
however, such a small separation can induce instability in
the oscillators’ motion because W2

�,

W2
� ¼ ω2

�

�
1 ∓ 2γ

ω�

cosω�l
ω�l

�
; ð52Þ

becomes negative when 2γ > ω2
�l. Negative W

2
� implies a

runaway solution. In addition, the condition 2γ > ω2
�l also

hints at the possibility that the non-Markovian motion tends
to be unstable for strong damping. Therefore, in the
following discussion, we will restrict ourselves to the
condition 2γ < ω2

�l so that we have a well-defined
effective oscillating frequency. Similar strategies of restrict-
ing to the space of physical solutions by suitable constraints
on the parameters have been implemented in the context of
the electromagnetic self-force [53–56]. It has been shown
[55,57–60] that the Lorentz–Abraham–Dirac equation of a
classical charge with a finite extension is free from any
pathological solution as long as the radius of the charge is
larger than a critical value, the classical radius of the
electron. See also Refs. [51,61] for further field theoretical
discussions of cutoffs and runaway solutions in the
description of the forces and motion of a charge in a
quantum field.
Finally, we remark that this condition is relatively more

stringent for the relative mode because, when the inter-
oscillator coupling σ is strong, the relative mode frequency
ω− tends to be small, and it makes the condition harder to
meet. Furthermore, the perturbative descriptions in (51),
though simple in form, tend to generate spurious wiggling
with l, due to the sinusoidal expression in (52). This
wiggling will diminish with large values of l.

3. Third method

Yet another useful approach in dealing with the non-
Markovian dynamics is to directly Taylor expand 1=~g�ðsÞ
in terms of the small parameter 2γ

ω�l
and evaluate the

corresponding integrals, instead of resorting to the residue
theorem. This is possible only when we assume weak
coupling with 2γ

ω2
�l

< 1. The idea is to write 1=~g�ðsÞ as

1

~g�ðsÞ
¼ 1

s2 þ 2γsþ ω2
� ∓ 2γ

l e
−sl

¼ 1

s2 þ 2γsþ ω2
�

X∞
n¼0

� � 2γ
l e

−sl

s2 þ 2γsþ ω2
�

�
n
: ð53Þ

Owing to the fact that

1

ðs2 þ 2γsþ ω2
�Þnþ1

¼
�
−
1

2

�
n 1

n!

�
1

ω�

∂
∂ω�

�
n 1

s2 þ 2γsþ ω2
�
; ð54Þ

we find (53) will take the form

1

~g�ðsÞ
¼

X∞
n¼0

�
∓ γ

l

�
n e−nsl

n!

�
1

ω�

∂
∂ω�

�
n

×
1

s2 þ 2γsþ ω2
�
: ð55Þ

The calculations based on this expansion seem free from
the artifact wiggling. This approach in a sense is similar but
more general than the perturbative approach because the
perturbative approach can be viewed as a convenient case
that s in e−sl is replaced by −iω�.
For weak bath-oscillator interaction, the mutual non-

Markovian influence between oscillators decays quickly
after a couple of exchanges, so both approaches will work
nicely for the late-time dynamics. This is also the reason
why at late times the non-Markovian dynamics can be
equivalently summarized into a seemingly Markovian form
with the effective damping and the effective frequency given
by (51). However, we would like to stress that the bath in
the common bath case is correlated at the locations of the
oscillators, while the baths in the private-bath case are not.

This is reflected in the separation dependence of ~dð�Þ
1;2 ðsÞ in

the common bath case by the perturbative approach.

III. COVARIANCE MATRIX

From (33), the general solutions for the motions of the
CoM and the relative modes are described by
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χ�ðtÞ ¼ dð�Þ
1 ðtÞχ�ð0Þ þ dð�Þ

2 ðtÞ_χ�ð0Þ

þ 1

m

Z
t

0

dt0dð�Þ
2 ðt − t0Þξ�ðt0Þ; ð56Þ

with dð�Þ
1 ð0Þ ¼ 1, _dð�Þ

1 ð0Þ ¼ 0, dð�Þ
1 ð0Þ ¼ 0, _dð�Þ

2 ð0Þ ¼ 1,
and they are all equal to zero for t < 0. Since we only

consider the case 2γ=ω2
�l < 1, we have seen that dð�Þ

2 ðτÞ
exponentially decays with t. At late times after the motions
of the normal modes are fully relaxed, Eq. (56) asymp-
totically approaches

χ�ðtÞ ¼
1

m

Z
t

0

dt0dð�Þ
2 ðt − t0Þξ�ðt0Þ; ð57Þ

so the initial information contained in χ�ð0Þ and _χ�ð0Þ will
not survive at late times. Equation (57) enables us to
compute the late-time values of the covariance matrix
elements. Before proceeding, we first express the force-
force correlations in terms of the Hadamard functions of the
environment,

hξþðt0Þξþðt00Þi ¼
1

4
h½ξ1ðt0Þ þ ξ2ðt0Þ�½ξ1ðt00Þ þ ξ2ðt00Þ�i

¼ e2

2
½GHð0; t0 − t00Þ þGHðz1 − z2; t0 − t00Þ�;

hξ−ðt0Þξ−ðt00Þi ¼ h½ξ1ðt0Þ− ξ2ðt0Þ�½ξ1ðt00Þ− ξ2ðt00Þ�i
¼ 2e2½GHð0; t0 − t00Þ−GHðz1 − z2; t0 − t00Þ�;

hξþðt0Þξ−ðt00Þi ¼
1

2
h½ξ1ðt0Þ þ ξ2ðt0Þ�½ξ1ðt00Þ− ξ2ðt00Þ�i ¼ 0;

where we have made use of the facts that ξþ ¼ ðξ1 þ ξ2Þ=2,
ξþ ¼ ξ1 − ξ2 and

hξ1ðt0Þξ1ðt00Þi ¼ e2GHðz1; t0; z1; t00Þ
¼ e2GHð0; t0 − t00Þ; ð58Þ

hξ2ðt0Þξ2ðt00Þi ¼ e2GHðz2; t0; z2; t00Þ
¼ e2GHð0; t0 − t00Þ; ð59Þ

hξ1ðt0Þξ2ðt00Þi ¼ hξ2ðt0Þξ1ðt00Þi
¼ e2GHðz1; t0; z2; t00Þ
¼ e2GHðz1 − z2; t0 − t00Þ: ð60Þ

Thus, we are ready to set up the building blocks to
construct the elements of the covariance matrix. All we
need are hχ2�ðtÞi, 1

2
hfχþðtÞ; χ−ðtÞgi, and the counterparts

for the momentum variables. We begin with hχ2�ðtÞi and
1
2
hfχþðtÞ; χ−ðtÞgi:
(i) hχ2þðtÞi: We rewrite χþðtÞ in (57) in terms ξ1 and ξ2

and arrive at its late-time value

hχ2þðtÞi ¼
1

m2

Z
t

0

dt0dt00dðþÞ
2 ðt − t0ÞdðþÞ

2 ðt − t00Þ

× hξþðt0Þξþðt00Þi

¼ e2

2m2

Z
t

0

dt0dt00dðþÞ
2 ðt0ÞdðþÞ

2 ðt00Þ

× ½GHð0; t0 − t00Þ þ GHðz1 − z2; t0 − t00Þ�:
ð61Þ

In the limit t → ∞, we arrive at

lim
t→∞

hχ2þðtÞi ¼
e2

2m2

Z
∞

−∞

dκ
2π

jd̄ðþÞ
2 ðκÞj2

× ½ḠHð0; κÞ þ ḠHðz1 − z2; κÞ�; ð62Þ

where d̄ðþÞ
2 ðκÞ, ḠHð0; κÞ are the Fourier transforms

of dðþÞ
2 ðt0 − t00Þ, GHð0; t0 − t00Þ, for example. We

define the Fourier transformation of a function
fðτÞ by

f̄ðκÞ ¼
Z

∞

−∞
dτfðτÞeiκτ;

fðτÞ ¼
Z

∞

−∞

dκ
2π

f̄ðκÞe−iκτ: ð63Þ

(ii) hχ2−ðtÞi: In like manner, we find hχ2−ðtÞi,

hχ2−ðtÞi ¼
1

m2

Z
t

0

dt0dt00dð−Þ2 ðt − t0Þdð−Þ2 ðt − t00Þ

× hξ−ðt0Þξ−ðt00Þi

¼ 2e2

m2

Z
t

0

dt0dt00dð−Þ2 ðt0Þdð−Þ2 ðt00Þ

× ½GHð0; t0 − t00Þ −GHðz1 − z2; t0 − t00Þ�
ð64Þ

so that at late times we arrive at

lim
t→∞

hχ2−ðtÞi ¼
2e2

m2

Z
∞

−∞

dκ
2π

jd̄ð−Þ2 ðκÞj2

× ½ḠHð0; κÞ − ḠHðz1 − z2; κÞ�: ð65Þ

(iii) hχþðtÞχ−ðtÞi: Finally, we show that hχþðtÞχ−ðtÞi
vanishes,

hχþðtÞχ−ðtÞi ¼
1

m2

Z
t

0

dt0dt00dðþÞ
2 ðt − t0Þdð−Þ2 ðt − t00Þ

× hξþðt0Þξ−ðt00Þi ¼ 0; ð66Þ

due to hξþðt0Þξ−ðt00Þi ¼ 0. The same holds for
hχ−ðtÞχþðtÞi; that is, hχ−ðtÞχþðtÞi ¼ 0.
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A. 1
2 hfχ iðtÞ; χ jðtÞgi and 1

2 hfpiðtÞ; pjðtÞgi
The displacements χ1;2 of both oscillators are related to

χ� by

χ1 ¼ χþ þ 1

2
χ−; χ2 ¼ χþ −

1

2
χ−; ð67Þ

so with (62), (65), and (66), we can compute hχ21ðtÞi,
hχ22ðtÞi, and 1

2
hfχ1ðtÞ; χ2ðtÞgi in the late-time limit. At late

times, they are given by

lim
t→∞

hχ21ðtÞi ¼ lim
t→∞

�
hχ2þðtÞi þ hχþðtÞχ−ðtÞi þ

1

4
hχ2−ðtÞi

�

¼ lim
t→∞

�
hχ2þðtÞi þ

1

4
hχ2−ðtÞi

�
; ð68Þ

lim
t→∞

hχ22ðtÞi ¼ lim
t→∞

�
hχ2þðtÞi − hχþðtÞχ−ðtÞi þ

1

4
hχ2−ðtÞi

�

¼ lim
t→∞

�
hχ2þðtÞi þ

1

4
hχ2−ðtÞi

�
; ð69Þ

lim
t→∞

1

2
hfχ1ðtÞ; χ2ðtÞgi ¼ lim

t→∞
hχ1ðtÞχ2ðtÞi

¼ lim
t→∞

�
hχ2þðtÞi −

1

4
hχ2−ðtÞi

�
: ð70Þ

Since p� ¼ m_χ�, we can easily find hp2þðtÞi, hp2
−ðtÞi, and

hpþðtÞp−ðtÞi at late times from the corresponding expres-
sions for χ�,

lim
t→∞

hp2þðtÞi ¼
e2

2

Z
∞

−∞

dκ
2π

κ2jd̄ðþÞ
2 ðκÞj2

× ½ḠHð0; κÞ þ ḠHðz1 − z2; κÞ�; ð71Þ

lim
t→∞

hp2
−ðtÞi ¼ 2e2

Z
∞

−∞

dκ
2π

κ2jd̄ð−Þ2 ðκÞj2

× ½ḠHð0; κÞ − ḠHðz1 − z2; κÞ�; ð72Þ

lim
t→∞

hpþðtÞp−ðtÞi ¼ 0; ð73Þ

and then

lim
t→∞

hp2
1ðtÞi ¼ lim

t→∞

�
hp2þðtÞi þ

1

4
hp2

−ðtÞi
�
; ð74Þ

lim
t→∞

hp2
2ðtÞi ¼ lim

t→∞

�
hp2þðtÞi þ

1

4
hp2

−ðtÞi
�
; ð75Þ

lim
t→∞

1

2
hfp1ðtÞ;p2ðtÞgi¼ lim

t→∞

�
hp2þðtÞi−

1

4
hp2

−ðtÞi
�
: ð76Þ

At this point, it pays for later discussions to take a closer

look at jd̄ð�Þ
2 ðκÞj2, ḠHð0; κÞ, and ḠHðz1 − z2; κÞ.

We first note that d̄ð�Þ
2 ðκÞ is related to ~dð�Þ

2 ðsÞ in (34) by

setting s ¼ −iκ, and thus jd̄ð�Þ
2 ðκÞj2 are even functions of κ.

As for ḠHðR; κÞ, we start with the expression of GHðR; τÞ,

GHðR; τÞ ¼ 1

2

Z
∞

−∞

d3k
ð2πÞ3

1

2κ
coth

βκ

2
½eþik·R−iκτ þ e−ik·Rþiκτ�

¼
Z

∞

−∞

dκ
2π

1

4π

sinκR
R

coth
βκ

2
e−iκτ; ð77Þ

from which we deduced that its Fourier transform is
given by

ḠHðR; κÞ ¼ 1

4π

sin κR
R

coth
βκ

2
; ð78Þ

with κ ¼ jkj and R ¼ jRj, and that ḠHðR; κÞ is also an
even function of κ. In fact, by the fluctuation-dissipation
theorem

ḠHðR; κÞ ¼ 1

4π

sin κR
R

coth
βκ

2

¼ coth
βκ

2
ImḠRðR; κÞ; ð79Þ

all uncertainty functions of the canonical variables for the
CoM/relative mode can be further simplified. Generically,
for example, the uncertainty of χ at late times reduces to

hχ2ð∞Þi ¼ c
e2

m2

Z
∞

−∞

dκ
2π

jd̄2ðκÞj2ḠHðκÞ

¼ c
e2

m2

Z
∞

−∞

dκ
2π

coth βκ
2
ImḠRðκÞ

j− κ2 − e2
m ḠRðκÞ þ ω2j2

¼ 2c
m

Im
Z

∞

0

dκ
2π

d̄2ðκÞ coth
βκ

2
; ð80Þ

where c ¼ 1=2 for the CoMmode and c ¼ 2 for the relative
mode, and we have used the fact that

d̄2ðκÞ ¼
1

−κ2 − e2
m ḠRðκÞ þ ω2

: ð81Þ

Here, Ḡ contains both Ḡð0; κÞ and ḠðR; κÞ. Likewise, the
late-time uncertainty of p can be written as

hp2ð∞Þi ¼ 2mc Im
Z

∞

0

dκ
2π

κ2d̄2ðκÞ coth
βκ

2
: ð82Þ

Equations (80) and (82) apply to both the CoM and the
relative modes of the oscillators.
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B. 1
2 hfχ iðtÞ; pjðtÞgi

As for the covariance matrix elements like
1
2
hfχiðtÞ; pjðtÞgi, we have

1

2
hfχ1ðtÞ; p1ðtÞgi ¼ hχþðtÞpþðtÞi þ

1

2
hχ−ðtÞpþðtÞi

þ 1

2
hχþðtÞp−ðtÞi þ

1

4
hχ−ðtÞp−ðtÞi;

ð83Þ

1

2
hfχ2ðtÞ; p2ðtÞgi ¼ hχþðtÞpþðtÞi −

1

2
hχ−ðtÞpþðtÞi

−
1

2
hχþðtÞp−ðtÞi þ

1

4
hχ−ðtÞp−ðtÞi;

ð84Þ

1

2
hfχ1ðtÞ; p2ðtÞgi ¼ hχþðtÞpþðtÞi þ

1

2
hχ−ðtÞpþðtÞi

−
1

2
hχþðtÞp−ðtÞi −

1

4
hχ−ðtÞp−ðtÞi;

ð85Þ

1

2
hfχ2ðtÞ; p1ðtÞgi ¼ hχþðtÞpþðtÞi −

1

2
hχ−ðtÞpþðtÞi

þ 1

2
hχþðtÞp−ðtÞi −

1

4
hχ−ðtÞp−ðtÞi:

ð86Þ

At late times t → ∞, we readily find

hχþðtÞpþðtÞi ¼
1

m

Z
t

0

dt0dt00dðþÞ
2 ðt − t0Þ _dðþÞ

2 ðt − t00Þ

× hξþðt0Þξþðt00Þi

¼ e2

2m

Z
t

0

dt0dt00dðþÞ
2 ðt0Þ _dðþÞ

2 ðt00Þ

× ½GHð0; t0 − t00Þ þGHðz1 − z2; t0 − t00Þ�

t → ∞ → i
e2

2m

Z
∞

−∞

dκ
2π

κjd̄ðþÞ
2 ðκÞj2

× ½ḠHð0; κÞ þ ḠHðz1 − z2; κÞ�: ð87Þ

Since jd̄ðþÞ
2 ðκÞj2, ḠHð0; κÞ, and ḠHðz1 − z2; κÞ are all even

functions of κ, we conclude that

hχþðtÞpþðtÞi ¼ 0: ð88Þ

Next, we examine hχ−ðtÞp−ðtÞi and find that

hχ−ðtÞp−ðtÞi ¼
1

m

Z
t

0

dt0dt00dð−Þ2 ðt − t0Þ _dð−Þ2 ðt − t00Þ

× hξ−ðt0Þξ−ðt00Þi

¼ 2e2

m

Z
t

0

dt0dt00dð−Þ2 ðt0Þ _dð−Þ2 ðt00Þ

× ½GHð0; t0 − t00Þ − GHðz1 − z2; t0 − t00Þ�

t → ∞ → i
2e2

m

Z
∞

−∞

dκ
2π

κjd̄ð−Þ2 ðκÞj2

× ½ḠHð0; κÞ − ḠHðz1 − z2; κÞ� ¼ 0: ð89Þ

Finally, we calculate hχþðtÞp−ðtÞi and hχ−ðtÞpþðtÞi,

hχþðtÞp−ðtÞi ¼
1

m

Z
t

0

dt0dt00dðþÞ
2 ðt − t0Þ _dð−Þ2 ðt − t00Þ

× hξþðt0Þξ−ðt00Þi ¼ 0; ð90Þ

because hξþðt0Þξ−ðt00Þi ¼ 0. Thus, all of the cross-
correlations between χi and pj vanish at late times,
and the only remaining nonvanishing elements of the
covariance matrix in the limit t → ∞ are hχ21;2ðtÞi,
1
2
hfχ1ðtÞ; χ2ðtÞgi, hp2

1;2ðtÞi, and 1
2
hfp1ðtÞ; p2ðtÞgi. These

nonvanishing elements of the covariance matrix can be
assembled from the expectation values of hχ2�ðtÞi and
hp2

�ðtÞi. Their computations are shown in the Appendix.

IV. PARAMETER CONSTRAINTS

To relate to realistic physical conditions, it is important
to ascertain the range of validity of the most relevant
parameters in this setup, such as the separation l between
the oscillators, the damping constant γ, and the interoscil-
lator coupling σ.
We have two oscillators residing in a common bath,

which is described by a quantum scalar field initially in its
thermal state, so they will experience different but corre-
lated field strengths. If we move them closer to one another,
we find in (27) that, when ω�l ≪ 1, their equations of
motion correspond to a configuration in which two oscil-
lators seem to be placed at the same spatial location. This is
a common configuration used for the investigation of
entanglement dynamics [18–20]. However, if we move
the oscillators closer to one another, instability in their
motion can occur.

A. Close proximity instability

As discussed in the paragraph below (37), the separation
l must be greater than 2γ=ω2

�; otherwise, the equations of
motion will have a runaway solution. As seen from the
criterion, this instability can also occur for the strong
damping case with a moderate separation between oscil-
lators, i.e., γ

ω�
> ω�l. In fact, if we write the stability

criterion explicitly in terms of the coupling constants,
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l >
2γ

ω2 � σ
; ð91Þ

we may easily conclude that the minimum separation to
avoid the instability increases with stronger damping and
stronger interoscillator coupling. In other words, strong
coupling, either between the oscillator and the environment
or between the oscillators, tends to induce unstable motion
of the oscillator in the current configuration. It is also
obvious that the slow mode places a stricter constraint on
the minimum separation to ensure a stable evolution of the
oscillators’ motion. This is a distinct feature of the non-
Markovian dynamics of the detectors in a shared bath
configuration, in that the strong damping in the Markovian
dynamics in the private-bath configuration only results in
the overdamped motion.
If one is interested in how thermal entanglement can be

sustained for a finite separation between the two detectors
in a common bath, the ω�l ≪ 1 case is not of special
interest because the two detectors essentially merge
together. The more relevant case would be for ω�l≪ 1.

B. Dynamics at late times

Based on the previous considerations, the perturbative
solution to ~g�ðsÞ ¼ 0will give the dominant contribution at
late times, and the approximation will be improved with a
smaller ratio of γ=ðω2

�lÞ. In this approximation, all the
non-Markovian effects between the oscillators are summa-
rized into the effective damping Γ� and the effective natural
frequency W�,

Γ� ¼ γ

�
1� sinω�l

ω�l

�
; W� ¼ ω�

�
1 ∓ γ

ω�

cosω�l
ω�l

�
;

of the oscillators, whence the oscillators superficially
undergo Markovian dynamics. All the information about
the history or the finite separation is hidden in these
effective parameters. This may not be too surprising
because the small ratio γ=ðω2

�lÞ implies a short memory
lapse. At each exchange of the mutual influence between
the oscillators, the non-Markovian effect will be suppressed
by that factor; thus, it will not last more than a few
exchanges. This also implies that the initial information
hardly survives at late times. That is why the dynamics of
the oscillators in these limits looks so Markovian.

V. ENTANGLEMENT MEASURE

We will use the negativity as the entanglement measure
because it offers unambiguous quantification of entangle-
ment for a symmetric two-mode Gaussian state. It is
defined in terms of the symplectic eigenvalue η< of the
partially transposed covariance matrix

N ðρÞ ¼ max

�
0;
1 − 2η<
2η<

�
;

EN ðρÞ ¼ maxf0;− ln 2η<g; ð92Þ

where η< is the smaller of the pair of symplectic eigen-
values ðη>; η<Þ of the partially transposed covariance
matrix Vpt. Entanglement occurs when η< < 1=2, and
the degree of entanglement is described by the negativity.

A. Negativity in terms of symplectic eigenvalue η<
The covariance matrix V of a two-mode state is defined

by

V ¼ 1

2
Tr½ρfX;XTg�; ð93Þ

where XT ¼ ðχ1; p1; χ2; p2Þ and ρ is the density matrix of
the two-mode state. Thus, the covariance matrix of a two-
mode state is a 4 × 4 matrix, which consists of the
uncertainties or the cross-correlations between the canoni-
cal variables of the state. The separability criterion or the
entanglement measure based on the covariance matrix is
particularly convenient and calculable for Gaussian
continuous variable systems because its covariance matrix
has a finite dimension, in comparison with the infinite-
dimensional density matrix, which is commonly used in
discrete systems. The partial transpose of a covariance
matrix can be simply constructed by changing the sign of
one of the momentum variables in the original covariance
matrix. The symplectic eigenvalues of the partially
transposed covariance matrix Vpt can thus be found by
taking the absolute value of the ordinary eigenvalues of the
matrix iJ⊕

2

· Vpt, where

J ¼
�

0 þ1

−1 0

�
: ð94Þ

If we write the covariance matrix in a block form,

V ¼
�

A C

CT B

�
; ð95Þ

then the symplectic eigenvalues η≷ of the partially trans-
posed covariance matrix Vpt can be expressed in terms of
these 2 × 2 matrices A, B, C as

η≷ ¼
��

detAþ detB
2

− detC

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
detAþ detB

2
− detC

�
2

− detV

s �1
2

; ð96Þ

where alternatively detV can be written as
detA detBþ ðdetCÞ2 − TrfA · J ·C · J · B · J · CT · Jg.
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In the case that A ¼ B and the matrix C is diagonal, the
symplectic eigenvalue η< of Vpt at late times takes a
particularly neat form,

η2< ¼ V11V22 − V13V24 − jV22V13 − V11V24j

¼
� ðV11 − V13ÞðV22 þ V24Þ; V22V13 > V11V24;

ðV11 þ V13ÞðV22 − V24Þ; V22V13 < V11V24;

ð97Þ

with

V11 ¼ hχ21ð∞Þi; V22 ¼ hp2
1ð∞Þi;

V13 ¼
1

2
hfχ1ð∞Þ;χ2ð∞Þgi; V24 ¼

1

2
hfp1ð∞Þ;p2ð∞Þgi:

To avoid notational clutter, we sometimes will omit the
time argument ∞ of the late-time quantities. For example,
in the following, hχ2−i simply represents hχ2−ð∞Þi and so
on. We readily see that at late times

V11 ∓ V13 ¼
1

2
hfχ1; χ1 ∓ χ2gi ¼

(
1
2
hχ2−i; −;

2hχ2þi; þ;
ð98Þ

V22 � V24 ¼
1

2
hfp1; p1 � p2gi ¼

(
2hp2þi; þ;
1
2
hp2

−i; −
ð99Þ

are associated with the dynamics of the normal modes of
the joint system. Thus, depending on the sign of
V22V13 − V11V24, the symplectic eigenvalue η< will take
different forms,

η2< ¼
� hχ2−ihp2þi; V22V13 > V11V24;

hχ2þihp2
−i; V22V13 < V11V24:

ð100Þ

Likewise, we find

η2> ¼
� hχ2þihp2

−i; V22V13 > V11V24;

hχ2−ihp2þi; V22V13 < V11V24:
ð101Þ

In fact, we observe that

V22V13 − V11V24 ¼
1

2
½hχ2þihp2

−i − hχ2−ihp2þi�; ð102Þ

so (100) can be summarized into

η2< ¼ minfhχ2þihp2
−i; hχ2−ihp2þig;

η2> ¼ maxfhχ2þihp2
−i; hχ2−ihp2þig: ð103Þ

This distinction can be seen in Fig. 1 and is handy in
interpreting entanglement. Furthermore, in either case, for
the entanglement to exist, we would like to have the

uncertainties of the corresponding canonical variables to
be as small as possible such that η2< can be smaller than 1=4.

B. Interpretation of entanglement measure
in terms of effective frequencies

Since the symplectic eigenvalue η< is constructed out of
hχ2�i and hp2

�i, let us work out their general behaviors with
respect to the parameters at hand. Recall the equations of
motion for the CoM/relative modes are given by

χ̈�ðtÞ þ 2γ _χ�ðtÞ ∓ 2γ
θðt − lÞ

l
χ�ðt − lÞ

þ ω2
�χ�ðtÞ ¼

1

m
ξ�ðtÞ: ð104Þ

From their frequency representations,

h
−κ2− i2γκþðω2� σÞ∓ 2γ

l
eiκl

i
χ̄�ðκÞ ¼

1

m
ξ̄�ðκÞ;

⇔ χ̄�ðκÞ ¼
1

m
d̄ð�Þ
2 ðκÞξ̄�ðκÞ;

ð105Þ

we may attempt to break the eiκl into its real and imaginary
parts and group them with the oscillating frequency and
the damping constant, respectively. to form the effective
oscillating frequency

W2
� ¼ ω2 � σ ∓ 2γ

l
cos κl ð106Þ

FIG. 1 (color online). Behavior of η2< as a function of separation
l between the two oscillators. The symplectic eigenvalue η< of
the partially transposed covariance matrix Vpt can be used to
quantify the entanglement of a symmetric Gaussian state,
described by V. The value of η2< is given by the minimum
between hχ2þihp2

−i and hχ2−ihp2þi. When η2< is less than 1=4, the
state is entangled; otherwise, it is separable. There may be two
different critical separation where the entanglement disappears.
The point where the curves of hχ2þihp2

−i and hχ2−ihp2þi intersect
always corresponds to a separable state.
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and the effective damping constants

Γ� ¼ γ � γ

κl
sin κl: ð107Þ

In so doing, heuristically speaking, we have two effective
uncoupled, damped, driven oscillators. For weak oscillator-

bath coupling γ, the curve of d̄ð�Þ
2 ðκÞ has a very narrow

resonance peak at about κ ¼ ω�. Thus, we may replace κ in
Γ� and W2

� with its typical value, say, ω�. However, from
hindsight, we find this choice is not adequate for W�.
Compared with the result of hχ2�ð∞Þi at zero temperature,
the better option of the effective oscillating frequency
will be

W2
� ¼ ω2 � σ ∓ 2γ

l
; ð108Þ

in order to avoid a wiggling artifact due to the cos
expression. Now, based on the viewpoint of the effective
oscillators, we expect that, when the temperature is not too
high, the uncertainty of the corresponding canonical
variables at late times should be about the order (apart
from the mass scale)

hχ2�i ∼O
�

1

W�

�
; hp2

�i ∼OðW�Þ; ð109Þ

and on the other hand, at high temperature, their values are
dominated by the temperature, leading to

hχ2�i ∼O
�

1

βW2
�

�
; hp2

�i ∼O
�
1

β

�
: ð110Þ

Let us for the moment forget about any intricacy due to the
cutoff scale because it does not really depend on any other
parameters in the setup.

1. Case Wþ > W−

With these understandings, when Wþ > W− and the
temperature of the bath is not high, we have

hχ2þi < hχ2−i; and hp2
−i < hp2þi;

⇒ hχ2þihp2
−i < hχ2−ihp2þi: ð111Þ

From (103), the smaller symplectic eigenvalue η< of the
covariance matrix in this case will be given by

η2< ¼ hχ2þihp2
−i ∼O

�
W−

Wþ

�
; when Wþ > W−: ð112Þ

With the help of the definition of the effective frequencies
(108), we see that for a fixed ω the effective frequencies
tend to take the opposite trends; that is, when Wþ gets
bigger,W− becomes smaller and vice versa. It then implies

that η2< tends to decrease with larger values of Wþ; thus, it
is more likely that entanglement can exist for larger Wþ.
More precisely speaking, as seen from (108) with a fixed ω,
the effective oscillating frequency of the CoM mode Wþ
tends to increase with either larger interoscillator coupling
σ or larger separation l between oscillators. However, in
this case, the effect of the oscillator separation is usually
relatively small, overshadowed by the effect due to the
interoscillator coupling, becauseWþ > W− already implies
that σ > 2γ=l. The interoscillator coupling will play the
dominant role in sustaining entanglement, if it exists.
Therefore, stronger interoscillator coupling will benefit
entanglement when both oscillators are far apart.

2. Case W− > Wþ
For the opposite case W− > Wþ, in the low-temperature

regime, we have

hχ2−i < hχ2þi; and hp2þi < hp2
−i;

⇒ hχ2−ihp2þi < hχ2þihp2
−i: ð113Þ

The symplectic eigenvalue η< is then given by

η2< ¼ hχ2−ihp2þi; when W− > Wþ: ð114Þ

Following the same arguments, larger values of W− will
allow entanglement to better survive at late times. This
implies lowering the interoscillator coupling strength or
shortening the separation between the oscillators can raise
the value of W−, thus increasing the chance that entangle-
ment can exist. In this case, W− > Wþ leads to σ < 2γ=l,
so the effect of the interoscillator coupling becomes
subdominant. The separation between the oscillators plays
a more important role. The entanglement is more likely to
survive for shorter oscillator separation in the case of
vanishing interoscillator coupling.

3. Sign switch in Wþ −W−

Following the previous arguments and the definition of
the effective frequencies, we see that, when σ is roughly
equal to 2γ=l, the difference Wþ −W− can switch sign.
There, the curves of hχ2þihp2

−i and hχ2−ihp2þi will cross
over, so the symplectic eigenvalue η< will change from one
form to the other. In addition, the symplectic eigenvalues of
the covariance matrix can be degenerate in this regime.
Since the separability criterion Vpt þ iΩ=2 ≥ 0 requires�

η2> −
1

4

��
η2< −

1

4

�
≥ 0; ð115Þ

the degeneracy of the symplectic eigenvalues implies�
η2> −

1

4

��
η2< −

1

4

�
¼

�
η2 −

1

4

�
2

ð116Þ
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with the degenerate value η> ¼ η< ¼ η. Equation (116) is
always greater than or equal to zero, so when σ ∼ 2γ=l, the
system always remains in a separable state.

4. High-temperature regime

Finally, in the high-temperature regime, in general, hχ2�i
and hp2

�i are very large because they are all proportional to
the temperature, as seen from (110). Hence, it is very
difficult to maintain either hχ2þihp2

−i or hχ2−ihp2þi smaller
than 1=4. This explains why in the configuration studied
here, namely, two detectors in a common bath, entangle-
ment disappears at high temperature. Equation (110) also
tells that, since the product hχ2þihp2

−i or hχ2−ihp2þi is about
the order

η2< ∼ hχ2�ihp2∓i ∼O
�

1

β2W2
�

�
; ð117Þ

the critical temperature of the entanglement will be at most
of the order

βcW� ∼Oð1Þ: ð118Þ

Higher temperature will tend to render the quantity βW�
too small to make η2< greater than 1=4. Thus, entanglement
may not exist anymore at higher temperature. Moreover, it
implies that, when Wþ > W−, the critical temperature β−1c
is at most about the orderWþ, while in the caseW− > Wþ,
the critical temperature is of the order W−.
These are the general characteristics of quantum entan-

glement in a common bath. We now proceed to a more
detailed quantitative analysis.

VI. LATE-TIME ENTANGLEMENT ANALYSIS

The above qualitative description shows the richness
of the entanglement behavior at late times (much greater
than the relaxation time γ−1) arising from the interplay
between various physical scales. Here, we shall examine
the zero-temperature case and identify more precisely
the aforementioned features. The results for the low- and
high-temperature cases will be reported in a separate
paper [47].
Owing to the multitude of length scales in question, we

first address the choices of the ranges of length scales
involved in Sec. VI A. We then analyze the critical
separation for the regime the direct coupling dominates
in Sec. VI B and for the regime the non-Markovian effects
govern in Sec. VI D.

A. Identification of relevant scales

We suppose that, within the relaxation time of the
system, mutual influence between the two oscillators, in
terms of retardation radiation, has occurred sufficiently
many times. It does not take long for weak bath-oscillator

couplings. This implies γ−1 > l. Depending on σ ≷ ω2=2,
we find

σ >
ω2

2
; ⇒ ω2

− <
ω2

2
< σ; ⇒

2γ

ω2
−l

>
4γ

ω2l
>

2γ

σl
;

ð119Þ

σ <
ω2

2
; ⇒ ω2

− >
ω2

2
> σ; ⇒

2γ

ω2
−l

<
4γ

ω2l
<

2γ

σl
;

ð120Þ

which highlight the parameter ς≡ σl
2γ. When ς > 1, the

stability criterion is automatically satisfied if σ < ω2=2,
but it has to be enforced if σ > ω2=2. On the other hand,
when ς < 1, the stability criterion can be violated when
σ > ω2=2, but it still needs to be enforced if σ < ω2=2.
Following our previous discussions, we know that ς≃
Oð1Þ is the region where the crossover of η2< occurs and the
dominance between the direct and indirect interactions
between the oscillators swaps. When the interoscillator
coupling σ is greater than ω2=2, our previous result implies
that it is hardly possible to sustain late-time entanglement

FIG. 2 (color online). For sufficiently strong interoscillator
coupling strength σ, the oscillators may remain entangled even
when they are far apart. This late-time entanglement deteriorates
with shorter separation when l > Oð2γ=σÞ. Disentanglement
will occur when the distance between oscillators is less than
the critical separation. We observe a sudden transition of η2< at
l ∼Oð2γ=σÞ. In the regime l < Oð2γ=σÞ, if separation is
shorter than another critical value, the late-time entanglement
can survive and ameliorate with even smaller separation. This
is a consequence of the interplay between the direct coupling
and the indirect mutual influence between the oscillators. When
l > Oð2γ=σÞ, direct coupling σ dominates, so entanglement
in general improves with larger σ. On the other hand, when
l < Oð2γ=σÞ, the indirect, non-Markovian effect takes over the
control of the overall behavior. Finally, we note that the curves
of η2< sink down steeply while moving to smaller values of l
with larger σ.
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for separations shorter than 2γ=σ because the instability
may spoil everything.
Even though we require 2γ

ω2
−l

< 1 for the sake of stability

and the convergence of perturbative calculation, the choice
of ω−l can be ambiguous because there is no restriction on
it. For weak oscillator-bath coupling γ=ω− < 1, we still
have the freedom to choose ω−l ≷ 1. We will return to this
discussion later. In addition, because γ=ω− < 1, we may
not bother to distinguish the resonance frequencies of the
normal modes Ω� from ω� unless confusion exists.

B. ς > 1: Direct coupling dominates

We first discuss the case ς > 1. This is the regime where
the direct coupling dominates over the indirect mutual
influence. The interoscillator coupling effectively corre-
lates the motions of both oscillators, so entanglement tends
to survive over a finite separation between them. Since
there is no restriction aboutω−l, we will discuss the critical
parameters for two cases: ω−l > 1 and ω−l < 1.

1. ω−l > 1

When the interoscillator coupling is sufficiently strong,
that is ς > 1, the symplectic eigenvalue η2<, determined by
hχ2þð∞Þihp2

−ð∞Þi, is given by

η2< ¼ gðω; γ; σ;ΛÞ
π2Ω−

�
1

Ωþ
cot−1

γ

Ωþ
þ 2γ

ðΩ2þ þ γ2Þ2
1

l2

−
8γ2

ðΩ2þ þ γ2Þ3
1

l3
þO

�
1

l4

��
; ð121Þ

in the case ω�l > 1, where gðω; γ; σ;ΛÞ is positive and
takes the form

gðω; γ; σ;ΛÞ ¼ ðΩ2
− − γ2Þcot−1 γ

Ω−
þ γΩ− ln

Λ2

Ω2
− þ γ2

;

ð122Þ

with the resonance frequency Ω2
� ¼ ω2

� − γ2. The sym-
plectic eigenvalue η< approaches an l-indepedent constant
when the two oscillators are very far apart. If we write this
asymptotic constant explicitly in terms of the coupling
constants, we find

lim
l→∞

η2<≃1

4

�
ω2−σ

ω2þσ

�1
2þ γ

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−σ

p

2πðω2þσÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2þσ

p

2πðω2þσÞ
�
ln

Λ2

ω2−σ
−1

��
þOðγ2Þ: ð123Þ

This constant is smaller with larger σ but grows with
increasing γ because the coefficient of γ is always positive.
It implies that, when the interaction between the oscillators
and the bath is not negligibly small, we need sufficiently

strong interoscillator coupling to overcome the vacuum
fluctuations of the bath and to maintain entanglement
between the oscillators.
For a given strength of the interoscillator coupling σ, the

damping constant γ cannot be greater than

γ <
1
4



1 −

ffiffiffiffiffiffiffiffiffi
ω2−σ
ω2þσ

q �
ffiffiffiffiffiffiffiffiffi
ω2þσ

p
2πðω2þσÞ ðln Λ2

ω2−σ − 1Þ −
ffiffiffiffiffiffiffiffi
ω2−σ

p
2πðω2þσÞ

; ð124Þ

otherwise, the late-time entanglement cannot exist. For
weaker interoscillator coupling σ=ω2 < 1, Eq. (124) is
approximately given by

γ

ω
<

π

4ðlnΛ=ω − 1Þ
σ

ω2
þO

�
σ2

ω4

�
: ð125Þ

This upper bound depends on the cutoff scale Λ, which
originates from the momentum uncertainty. Thus, the
interoscillator and the oscillator-bath couplings play com-
peting roles. Intuitively, because the damping constant
γ ¼ e2=8πm is a measure of how much the quantum
(vacuum or thermal) fluctuations of the bath can possibly
disrupt the correlations between the oscillators, the larger γ
tends to make the influence of the bath more destructive on
the correlations between the oscillators. On the other hand,
interoscillator coupling is expected to increase the bond
between the two oscillators. Nonetheless, the mechanism
of how entanglement is affected by this direct coupling is
not as intuitive as one would have superficially assumed
because, when we look into the motion of the normal
modes of the joint system, we note that it causes the
opposite effects. More specifically, the stronger interoscil-
lator coupling will make the CoM mode oscillate faster,
which in turn decreases (increases) its position (momen-
tum) uncertainty, and meanwhile it reduces (amplifies) the
position (momentum) uncertainty of the relative mode.
However, from our qualitative discussions based on the
effective frequencies, it is not difficult to see how these
come into play regarding the existence of entanglement.
In short, strong interoscillator and weaker bath-oscillator
interactions benefit entanglement only for the case ς > 1.
Since the leading term that depends on the separation l

in (121) is positive, we see that, as the separation l
decreases, the value of η2< increases as fast as l−2 until
η2< reaches the value 1=4, where entanglement is about to
disappear. For weaker but sufficiently strong interoscillator
coupling, the disentanglement may already happen at
comparatively large separations. Let l> denote this critical
separation; we find

l> ¼
�

4β

1 − 4α

�1
2

; ð126Þ

where α, β are functions of ω, γ, and σ,
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α ¼ ω−

4ωþ
þ
−ω− þ ωþðln Λ2

ω2
−
− 1Þ

2πω2þ
γ

−
π2ð3ω2þ − ω2

−Þ þ 8ωþω−ðln Λ2

ω2
−
− 1Þ

8π2ω3þω−
γ2

þOðγ3Þ; ð127Þ

β ¼ ω−

πω4þ
γ þ

2ðln Λ2

ω2
−
− 1Þ

πω4þ
γ2 þOðγ3Þ; ð128Þ

with ω2
� ¼ ω2 � σ. We will briefly highlight the derivation.

In principle, the solution of (121) can be found exactly
because it can be made into a third-order polynomial;
however, the solutions are too intricate to be of any
practical use. On observing that the coefficient of the
l−3 term in (121) is relatively small due to the higher power
in γ

ω2
þl
, we can drop the l−3 term for the case ωþl > 1 and

write (121) into the form

η2< ≃ αþ β

l2
≃ 1

4
; ð129Þ

after we Taylor expand (121) in orders of the small
parameter γ=ω�. Equation (129) is equivalent to a sec-
ond-order polynomial in l, one of the solutions of which is
then (126). At this step, we see the parameters α, β in (126)
are still quite complicated and may attempt to further
expand (126) in terms of the small ratio γ=ω�. It turns out
that we can not make such an expansion, especially for the
case when l is sufficiently large, the saturated value of the
curve η2< happens to lie right below the horizontal line 1=4

(please refer to Fig. 3). To meet this situation, the coupling
constants γ and σ must be chosen to make the value of η2<
for far-apart oscillators close to but smaller than the critical
value 1=4, that is,

lim
Ωþl>1

η2< ≾
1

4
: ð130Þ

Since both β and (1 − 4α) are already small, any minute
variation may induce a large error in the approximation. On
top of that, the Oð1Þ and OðγÞ terms in (1 − 4α) are
comparable in magnitude but take on opposite signs. This
makes (1 − 4α) at least roughly of the order Oðγ2Þ. It may
appear odd how theOð1Þ andOðγÞ terms in (1 − 4α) can be
comparable even for small γ. But recall that in order to
(almost) satisfy (130) the coupling constants γ and σ must
take on particular values. The consequence of that is the
(almost) cancellation of the Oð1Þ and OðγÞ terms in
(1 − 4α). This is not straightforwardly revealed via the
Taylor expansion of small γ and will yield erroneous results
for the case described by (130). Thus, Eq. (126) can give a
satisfactory estimation of l> even Ω�l> is large, but it still
does not work for the case Ω�l> ≫ 1, where the con-
tributions of the order higher thanOðγ2Þmust be taken into
consideration.

2. ω−l < 1

As seen in Fig. 2, when the interoscillator coupling is
stronger, disentanglement could happen at relatively small
separation. Thus, we use the short-distance approximation
(ω�l < 1) of η2<,

η2< ¼
�
ω3
−

4ω3þ
−
ðωþ þ ω−Þω2

−

πω3þ

γ

ωþ
þO

�
γ2

ω2þ

��
γ2

ω4
−l2

þ
�ðω2þ þ ω2

−Þω−

4ω3þ
−
ðωþ þ ω−Þðω2þ þ ω2

−Þ − ωþω2
−ðγϵ þ lnΛlÞ

πω3þ

γ

ωþ
þO

�
γ2

ω2þ

��
γ

ω2
−l

þ
�
ω−

4ωþ
−
ðωþ þ ω−Þ − ωþðγϵ þ lnΛlÞ

πωþ

γ

ωþ
þO

�
γ2

ω2þ

��
þO

�
l

γω2
−

�
;

¼
�
a0 þ a1

γ

ωþ
þ � � �

�
γ2

ω4
−l2

þ
�
b0 þ b1

γ

ωþ
þ � � �

�
γ

ω2
−l

þ
�
c0 þ c1

γ

ωþ
þ � � �

�
þO

�
l

γω2
−

�
; ð131Þ

to find the critical separation l>. In (131), the shorthand notations are

a0 ¼
ω3
−

4ω3þ
; b0 ¼

ðω2þ þ ω2
−Þω−

4ω3þ
; b1 ¼ −

ðωþ þ ω−Þðω2þ þ ω2
−Þ − ωþω2

−ðγϵ þ lnΛlÞ
πω3þ

;

a1 ¼ −
ðωþ þ ω−Þω2

−

πω3þ
; c0 ¼

ω−

4ωþ
; c1 ¼ −

ðωþ þ ω−Þ − ωþðγϵ þ lnΛlÞ
πωþ

:
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By means of the criterion η2< ¼ 1=4, the critical separation
l> is determined approximately by

l> ¼ lð0Þ
> þ

a1


ω2
−l

ð0Þ
>

γ

�
þ b1



ω2
−l

ð0Þ
>

γ

�
2 þ c1



ω2
−l

ð0Þ
>

γ

�
3

2a0 þ b0


ω2
−l

ð0Þ
>

γ

� γ

ωþ

þO
�
γ2

ω2þ

�
; ð132Þ

where lð0Þ
> is the leading contribution in the critical

separation

lð0Þ
> ¼ 2γ

−ðω2þ þω2
−Þ þ ½ðω2þ −ω2

−Þ2 þ 4ω3þω−�1=2
: ð133Þ

To arrive at (132), we have made the assumption γ ≪ ω� to
simplify the result and recall that ω2

� ¼ ω2 � σ.

3. Comments

In this regime, the choice of σ is limited by two
constraints: ς > 1 and 2γ < ω2

−l. They imply that

2γ

l
< σ < ω2 −

2γ

l
: ð134Þ

For small values of σ, the critical length tends to be large, and
(126) gives a better approximation, while large σ implies a
small critical separation, so (132) is more suitable.Within the
range (134), the critical separation lc decreases with the
growing interoscillator coupling strength. The physical
interpretation regarding the separation of the oscillators is
much less straightforward due to the fact that nonzero

separation picks up the correlations existent in the bath
between two spatial locations and is the cause of non-
Markovianity in the propagation of mutual influences.
Since the non-Markovian influence of one oscillator will
propagate bymeans of the intermediate bath in the formof the
retarded radiation to the other oscillator, it inevitably intro-
duces a disparate phase and further degrades the coherence
between them. However, this non-Markovian effect is greatly
reduced by the separation. That may offer a physical under-
standing why in this regime entanglement can possibly
improve with the increasing separation between oscillators.

C. ς ∼Oð1Þ
When we further decrease the separation between oscil-

lators, the joint system eventually evolves into a separable
state. Direct coupling is now not strong enough to sustain the
late-time entanglement. We will gradually come to another
critical separation l× ∼ 2γ=σ, where the crossover between
the values of hχ2þð∞Þihp2

−ð∞Þi and hχ2−ð∞Þihp2þð∞Þi
happens. Once the separation is smaller than this critical
value, the symplectic eigenvalue will be represented by
hχ2−ð∞Þihp2þð∞Þi instead of hχ2þð∞Þihp2

−ð∞Þi because
now the former is the smaller among the two.

D. ς < 1: Non-Markovian interaction dominates

In this regime, the non-Markovian effects are more
important, and the effects of direct coupling become
subdominant, so we expect that the results should be
similar to the earlier works [21,22], where direct coupling
is absent. The stability criterion implies that

2γ

ω2
−
< l <

2γ

σ
; and σ <

ω2

2
: ð135Þ

Thus, when the interoscillator coupling is very weak, i.e.,
σ=ω ≪ 1, we find ωl can be greater than 1. On the other
hand, if σ=ω2 ≤ 1=2, then the value of ωl is very small, at
most about the order Oðγ=ω2Þ.

1. ω−l ≫ 1

First, considering the case σ=ω2 ≪ 1, we use the large
separation approximation, that is, ω−l ≫ 1, to express η2<,

η2< ¼
�
ωþ
4ω−

þ
�
−

ωþ
2πω−

þ 1

2π

�
ln
Λ2

ω2þ
−1

��
γ

ω−

−
�
1

π2

�
ln
Λ2

ω2þ
−1

�
þ3ω2

− −ω2þ
8ωþω−

�
γ2

ω2
−
þ�� �

�

þ
�
−

ωþ
πω−

γ

ω−
þ 2

π2

�
ln
Λ2

ω2þ
−1

�
γ2

ω2
−
þ�� �

�
1

ω2
−l2

þ�� � :

ð136Þ

Again, it shows that, for ς < 1 but ω−l ≫ 1, the oscillators
remain separable until the distance between them is

FIG. 3 (color online). The curves of η2< move upward and to the
right with larger γ, so at a fixed separation, this implies smaller
values of γ are in favor of entanglement. In the regime ς > Oð1Þ,
the critical separation increases with larger γ, implying that the
late-time entanglement is harder to sustain. On the other hand, for
ς < Oð1Þ, larger values of γ in fact improve entanglement.
Comparing this with Fig. 2, we see that the effects of σ and γ
on η2<, that is, on entanglement, are totally opposite in the two
regimes ς < Oð1Þ and ς > Oð1Þ.
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shortened to l ¼ Oðω−1
− Þ, where η2< starts decreasing

rapidly. Apparently, it is not suitable for identifying the
critical separation. Hence, we need an approximation of η2<
that works better in the regime ω−l < 1.

2. ω−l ≪ 1

We find the small-separation approximation of η2< is
roughly given by

η2< ≃
�
ω−

4ωþ
−
ωþ þω−

πωþ

γ

ωþ
þ � � �

�
γ2

ω4
−l2

þ
�
−
ω2þ þω2

−

4ωþω−
þ ðω3þ þω3

−Þ þω2þω−ðγϵ þ lnω2
þl
Λ Þ

πωþω2
−

γ

ωþ

þ � � �
�

γ

ω2
−l

þ
�
ωþ
4ω−

−
ωþðγϵ þ lnω2

þl
Λ Þ

πω−

γ

ωþ
þ � � �

�
þOðlÞ: ð137Þ

The leading term of the order γ
ω2
−l

is negative. In addition, in

this regime, σ < 2γ=l, the stability criterion implies

2γ

ω2l
<

2γ

ω2
−l

< 1; ð138Þ

if we recall ω2
− ¼ ω2 − γ2. Therefore, as far as the leading

terms in each pair of brackets in (137) are concerned,we find

1

4ωþω3
−

γ2

l2
−
ω2þ þ ω2

−

4ωþω3
−

γ

l
þ � � �

≃ ω2þ þ ω2
−

4ωþω3
−

γ

l

�
γ

2ω2l
− 1

�
þ � � � < 0; ð139Þ

soη2<decreaseswithsmallerseparationluntilagainitcrosses
the value 1=4. Thismeans that entanglement is likely to exist
and furthermore is improved for shorter separation.
Compared with (131) where the cutoff-dependent term

takes the form lnΛl, the counterpart in (137) has quite a

distinct form, ln ω2
þ
Λ l. Thus, the logarithmic cutoff-

dependent terms in (137) weigh much more than those
in (131) unless γ is vanishingly tiny, and this makes the
application of the iteration scheme in (137) much trickier.
On account of this difficulty, we observe in (137) that the
contribution in the first pair of brackets on the right-hand
side can be negligible compared with the rest. If we ignore
it, the remaining expressions of (137) can be used to
formally solve η2< ¼ 1=4, leading to

l< ¼

"
ω2þ þ ω2−
4ωþω−

−
ðω3þ þ ω3−Þ þ ω2þω−ðγϵ þ ln

ω2þl<
Λ

Þ
πωþω2−

γ

ωþ
i γ

ω2−

ωþ − ω−
4ω−

−
ωþ



γϵ þ ln

ω2þl<
Λ

�
πω−

γ

ωþ

: ð140Þ

Repeated iterations in l< on the right-hand side of (140)
rapidly produce better improvement on the critical sepa-
ration l<, although the result can become very complicated
in a couple of iterations.
This approximation works best for smaller values of σ

because the ratio 2γ
ω2
−l<

will remain small. From the involved

expression of (140), we can still identify the fact that
the critical separation grows with increasing γ and decreas-
ing σ. In Fig. 4, the results, generated numerically,
support this trend. On the contrary, stronger interoscil-
lator coupling will render this critical separation even
shorter, but in the end, we will come to a situation in
which either the approximation breaks down or the insta-
bility occurs.
In the limit σ=ω2 ≪ γ=ω, that is, with negligible direct

coupling between the oscillators, the critical separation l<
approaches a value with very mild dependence on γ. If the
ratio γ=ω is much smaller than 1, then this value essentially
becomes a constant,

l< ¼ π

2ωðln Λ
ω2l<

− γϵÞ
; for

σ

ω2
≪

γ

ω
≪ 1; ð141Þ

as shown in Fig. 5. Since this is the iterative expression, if
we truncate it to the first order, we can substitute l< in the
logarithm on the right-hand side by π

2ω.
So far, we note that, when we look for the critical

separation, we repeatedly come across solving a transcen-
dental function of the form

c2
l
þ c1 lnlþ c0 ¼ 0: ð142Þ

Some of its solutions, as shown previously, can be found by
iterative substitutions, but in fact, it can be expressed in
terms of a special function, the product logarithm or
Lambert W function WðzÞ, which is the principal solution
for w in z ¼ wew. Hence, for example, Eq. (141) can be
written as
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lc ¼ −
π

2ω

�
W

�
−1;−

πω

2Λ
eγϵ

��
−1
; ð143Þ

whereWðk; zÞ is the kth solution to z ¼ wew other than the
principal one. In addition, the trails of the cutoff scale are
dotted everywhere, and they cannot always be argued away.
As in the case of (141), the effect of the cutoff scale persists
and is independent of the damping constant γ even though γ
is already tiny.
Thus, we see, for sufficiently weak interoscillator cou-

pling, when the separation between the oscillators is less
than this critical value, the entanglement between them can
survive at late times. If we further reduce the separation, we
will at last come to the situation that the dynamics of the
joint system becomes unstable.

VII. SUMMARY OF RESULTS

A. Qualitative behavior from three relevant scales

To highlight themain features of this problem, it is helpful
to use the three scales, γ, the damping constant; l, the spatial
separation, and σ, the coupling constant, to characterize our
system. For simplicity, here we assume the two oscillators
have the same natural frequency ω and damping constant γ.
The parameter l describes the spatial separation, and σ
represents the coupling strength between the two oscillators.

(i) Short/long time: The dividing time scale is the
relaxation time γ−1. We are mostly interested in
the entanglement behavior of the two coupled
oscillator system at late times, after it has fully
relaxed or reached equilibrium with the environ-
ment. We assume that the oscillators have exchanged
their (non-Markovian) mutual influence via the field
many times, which implies that γ−1 > l. For a small
γ=ω2l factor, the non-Markovian effects decay
rapidly after a few exchanges.

(ii) Short/large separation: When the distance between
the two oscillators is shorter than γ=ω2, either the
perturbation calculation is unreliable or the motion
of the joint system becomes unstable. The instability
is a feature of non-Markovianity different from
the simplifying (but often lack of justification)
assumption of a Markovian process leading to
the overdamped motion of the system. Another
interesting scale is γ=σ, where a change in the
entanglement measure occurs. It is the value where
the direct interaction (interoscillator coupling) is
comparable in strength with the indirect (field-
induced) non-Markovian effect. When the separa-
tion between the oscillators is larger than this
scale, the direct coupling between the oscillators
dominates the dynamics. On the other hand, when

FIG. 5 (color online). When the interoscillator coupling is
vanishingly small, the critical separations are almost independent
of the damping constant γ. Note that, since the interoscillator
coupling is too weak, there is only one critical separation for each
curve. It is impossible to sustain entanglement at large separation
in this case.

FIG. 4 (color online). By numerically solving for η2< ¼ 1=4, we generate the relation between the critical separation l< with respect to
γ and σ for the case described by (140) in the regime ς < 1. Late-time entanglement indeed improves with larger γ and smaller σ. In this
regime, the indirect non-Markovian mutual influence dominates over the effects of direct coupling σ between the oscillators. Such
history-dependent effects make the physical interpretation less straightforward. In the plot, we choose the oscillating frequency ω ¼ 5
and the cutoff scale 10,000.
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the separation is shorter than that scale, the non-
Markovian (field-induced) effect is the determining
factor in the motion of the joint system. Other than
these two length scales, we refer to ωl ≫ 1 as large
separation and ωl ≪ 1 as small separation.

(iii) Weak/strong coupling: For the coupling between the
bath and the oscillators, we only consider the case
γ=ω < 1, that is, weak coupling. When γ is compa-
rable to or greater thanω, the instability of the motion
tends to occur unless ωl ≫ γ=ω. This range is less
interesting because it corresponds to the very large
separation cases. For direct couplings between the
oscillators, we only require that the resonance
frequencies of the normalmodes be real. This implies
σ < ω2 − γ2,which is not a stringent constraint.Thus,
σ canbe comparablewithω2 and is considered strong.
Thus, we may refer to σ < 2γ=l as weak coupling
because the direct coupling plays a minor role com-
pared with the non-Markovian indirect interaction.
In certain cases, we may encounter σ < γω < 2γ=l.
It corresponds to vanishing interoscillator coupling.
This is equivalent to the cases, in the table, where the
interoscillator coupling is not present.

B. Late-time entanglement: Qualitative behavior

Using the three scales above, we can understand the late-
time entanglement behavior between the two oscillators
qualitatively from one parameter ς≡ σl

2γ, as follows: For
finite separation between the two detectors, due to the field-
mediated (non-Markovian) mutual-influence interaction,
the effective damping constant and the effective oscillating
frequency are separation dependent and do not take on the
same values between the two (symmetric vs antisymmetric)
normal modes. Being at late times, the motion of either
normal mode is fully relaxed or has reached equilibrium.
Since the strength of mutual influence depends on the
separation between the two oscillators, there is competition
between the direct interoscillator coupling and the indirect,
environment-mediated interaction, namely,
(a) When ς > 1: This is the regime where the direct

coupling wins over the indirect interaction between the
oscillators. We find that the late-time entanglement
can improve with

(1) stronger interoscillator coupling,
(2) larger oscillator separation,
(3) weaker oscillator-bath interaction.

(b) When ς < 1: The effects of direct coupling are
subdominant, compared with the field-induced inter-
action. We find that the late-time entanglement is
favored with

(1) weaker interoscillator coupling,
(2) shorter oscillator separation,
(3) stronger oscillator-bath interaction.

Alternatively, heuristically speaking, for sufficiently strong
interoscillator coupling, their late-time entanglement can

survive even when two oscillators are very far apart. The
late-time entanglement worsens if the two oscillators are
originally placed closer. When their separation is less than a
critical value l>, as shown in (126) or (132), the oscillators
will instead become separable at late times. It means that
direct coupling is not enough to overcome the effect of both
the field-induced non-Markovian interaction effect and the
local vacuum fluctuations of the field. When we place the
oscillators at a separation even shorter than another critical
value l< as in (140), the entanglement between the
oscillators can again be sustained at late times. Now that
the non-Markovian processes have dominated over those
from direct coupling, the results can be less intuitive and
harder to interpret. If we set up oscillators at shorter and
shorter separation, we find that their motion eventually
becomes unstable.

C. Late-time entanglement: Quantitative results

Here, we summarize our analytical results and numerical
support as shown in the figures. We first note that different
normalmodes havedifferent effective relaxation time scales,
and these time scales also depend on the separation between
oscillators. When the mutual separation is small ω�l ≪ 1,
the motion of the relative mode relaxes much more slowly
than that of the CoM mode. Thus, the late-time results will
not be valid unless the motion of all normal modes are
relaxed. Within the relaxation time, we assume the mutual
influence between the oscillators has been exchanged for
sufficiently many times. Then, we find that, except for some
extreme cases, typically speaking, in the regime ς > 1, the
late-time entanglement improves with (1) stronger intero-
scillator coupling, (2) weaker bath-oscillator coupling, or
(3) longer oscillator separation. The critical separation at
which disentanglement occurs thus reduceswith larger value
of σ but smaller value of γ, as can be seen in Figs. 2 and 3. In
addition, within this regime, the direct coupling between
oscillators dominates over the indirect, non-Markovian
interaction. The latter effect depends on oscillators’ histories
and is manifested as the retarded radiation mediated by the
environment. Thus, themagnitude and the phase of this non-
Markovian effect will depend on the separation. Roughly
speaking, at large separation, we see from the Fourier or
Laplace transforms of the normal-mode equations ofmotion
(105) that the retarded term tends to introduce the phase
difference from the local terms for the contribution of each
environment mode due to the delay by l. This out-of-phase
effect is factored out by larger oscillator separation, so it
more or less explains the improvement of the entanglement
with an increased separation in this regime.
In the neighborhood ς ∼Oð1Þ, comparison of the

behavior of η2< between various values of γ or σ is difficult
to make because that is the region where the transition of η2<
happens. For example, in Fig. 2, when l≃ 0.03, the curve
of η2< for σ=ω2 ¼ 0.2 is described by hχ2−ð∞Þihp2þð∞Þi, but
the curve that corresponds to σ=ω2 ¼ 0.4 is still given by
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hχ2þð∞Þihp2
−ð∞Þi. Thus, we do not see the comparison

between them as particularly meaningful.
When ς < 1, we find the entanglement tends to improve

with (1) weaker interoscillator coupling, (2) stronger bath-
oscillator interaction, or (3) shorter separation. In other
words, stronger bath-oscillator interaction or weak inter-
oscillator coupling is preferable for the late-time entangle-
ment so that it can still be sustained at a larger mutual
separation. This conclusion can be confirmed in Fig. 4,
where the critical separation is numerically found by
solving η2< ¼ 1=4 for different values of γ and σ. These
results seem less intuitive because in this regime the non-
Markovian effect is much more prominent than the direct
coupling effect. Except for the case that σ is vanishingly
small, the typical values of l satisfy ω�l < 1. This implies
the delay introduces only a nominal phase difference
between the retarded term and local terms for the con-
tribution from each environment mode. This subtle differ-
ence can be very sensitive to the values of σ and γ and then
is readily amplified by the tiny value of the mutual
separation, as can be seen in (105). This points out the
elusive aspect of the non-Markovian phenomena.
However, the effective oscillating frequency W�, intro-

duced earlier, can be a very attractive tool in deciphering
the non-Markovian effects. Recall that the corresponding
effective frequency W� is defined by (108)

W2
� ¼ ω2 � σ ∓ 2γ

l
;

where the non-Markovian effect is already encapsulated in
the expression 2γ=l. We see that this non-Markovian effect
tends to lower (raise) the oscillating frequency of the CoM
(relative) mode. The reduction (enhancement) increases
with larger bath-oscillator coupling γ and shorter separation
l. This can be understood from the equations of motion of
the normal modes,

χ̈�ðtÞ þ 2γ _χ�ðtÞ þ ω2
�χ�ðtÞ

¼ �2γ
θðt − lÞ

l
χ�ðt − lÞ þ 1

m
ξ�ðtÞ:

We see on the right-hand side the delayed term in fact is the
retarded Coulomb-like force. For the CoMmode, it exerts a
repulsive force, which counteracts with the restoring force
from the harmonic potential of the CoM mode, effectively
leading to slowdown of the CoM-mode oscillation. Like-
wise, this retarded Coulomb force is attractive for the
relative mode and thus works hand in hand with its
restoring force, causing a more rapid oscillation. The effect
of the direct coupling can also be easily understood by
means of this effective interpretation in the same fashion.
Earlier on, we argued that, when ς > Oð1Þ, we have
Wþ > W−, and the value of η2< is roughly given by

η2< ∼O
�
W−

Wþ

�
¼ O

��
ω2 − σ þ 2γ

l

ω2 þ σ − 2γ
l

�1
2

�
ð144Þ

ifweexplicitly spell out thedependenceofW� on γ,σ,ω, and
l. This clearly explains that the entanglement will improve
with larger interoscillator coupling, weak bath-oscillator
interaction, and longer separation between oscillators. On
the other hand, when ς < Oð1Þ, we instead haveW− > Wþ.
In this case, the value of η2< takes a different form,

η2< ∼O
�
Wþ
W−

�
¼ O

��
ω2 þ σ − 2γ

l

ω2 − σ þ 2γ
l

�1
2

�
: ð145Þ

It also nicely explicates why the interaction and the mutual
separation play totally opposite roles in this case, in
comparison with their effects for the situation ς > Oð1Þ.
In this paper, we have shown that spatial dependence and

direct coupling of two oscillators in a common zero-
temperature quantum field environment engender very rich
features in their entanglement dynamics arising from the
interplay between the different scales involved. In a sequel
paper [47], we will consider the entanglement between two
coupled oscillators in a common finite-temperature bath
and address the question whether and under what con-
ditions entanglement can be sustained at high temperatures,
as some authors alluded to recently [62].
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APPENDIX: EVALUATION OF hχ 2�ðtÞi
AND hp2�ðtÞi AT ZERO TEMPERATURE

Here, we first evaluate hχ2�ðtÞi. In general, at late
times, the expectation values of limt→∞hχ2�ðtÞi and
limt→∞hp2

�ðtÞi have been shown, respectively, to be

hχ2�ð∞Þi ¼ 2c�
m

Im
Z

∞

0

dκ
2π

d̄ð�Þ
2 ðκÞ coth βκ

2
; ðA1Þ

hp2
�ð∞Þi ¼ 2mc�Im

Z
∞

0

dκ
2π

κ2d̄ð�Þ
2 ðκÞ coth βκ

2
; ðA2Þ

for the CoM and the relative modes. However, due to the
presence of the hypercotangent function and non-

Markovianity inherent in d̄ð�Þ
2 ðκÞ, there is no closed form

of the integral for arbitrary values of the parameters at hand.
Hence, we will evaluate hχ2�ð∞Þi and hp2

�ð∞Þi in the
zero-, low-, and high-temperature limits, where the factor
coth βκ

2
is approximately given by
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coth
βκ

2
¼

�
1þ 2e−βκ; βκ ≫ 1;
2
βκ þ βκ

6
þ � � � ; βκ ≪ 1:

ðA3Þ

In addition, we will assume the coupling between the
oscillator and the environment satisfies the condition
2γ < ω2l such that we can treat the non-Markovian term
as a small perturbation.
For the current article, we only discuss the zero-temper-

ature case, where coth βκ
2
takes the value of unity, and we

Taylor expand d̄ð�Þ
2 ðκÞ in terms of the small parameter 2γ

ω2
�l
,

d̄ð�Þ
2 ðκÞ ¼ 1

−κ2 − i2γκ þ ω2
�
−

1

ω�

∂
∂ω�

� � γ
l e

iκl

−κ2 − i2γκ þ ω2
�

�
þ � � � ; ðA4Þ

where d̄ð�Þ
2 ðκÞ is obtained if we substitute s ¼ −iκ into

~dð�Þ
2 ðsÞ in (34), that is, d̄ð�Þ

2 ðκÞ ¼ ~dð�Þ
2 ð−iκÞ. We observe

that, since in general ω� are different, we will restrict
ourselves to the tighter constraint among the condition 2γ

ω2
�l
.

The expectation value hχ2�ð∞Þi in the zero-temperature
limit is given by

hχ2�ð∞Þi ¼ 2c�
m

Im
Z

∞

0

dκ
2π

�
1

−κ2 − i2γκ þ ω2
�

−
1

ω�

∂
∂ω�

� � γ
l e

iκl

−κ2 − i2γκ þ ω2
�

��
; ðA5Þ

with cþ ¼ 1=2 for the CoM mode and c− ¼ 2 for the
relative mode. We begin with the calculation of the integral

Ið�Þ
1 ¼

Z
∞

0

dκ
1

−κ2 − i2γκ þ ω2
�
¼ i

Ω�
cot−1

γ

Ω�
; ðA6Þ

where Ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
� − γ2

p
is the resonance frequency for the

CoM/relative mode. Next, the integral Ið�Þ
2 that accounts

for the non-Markovian contribution can be expressed as a
differentiation of a simpler integral,

Ið�Þ
2 ¼ −

1

ω�

∂
∂ω�

Z
∞

0

dκ
� γ

l e
iκl

−κ2 − i2γκ þ ω2
�
; ðA7Þ

so we evaluate that integral first:

Z
∞

0

dκ
γ
l e

iκl

−κ2 − i2γκ þ ω2
�

¼ i
γ

2Ω�l
½eþiðΩ�−iγÞlðπ − iEi½−iðΩ� − iγÞl�Þ

þ e−iðΩ�þiγÞlðπ þ iEi½þiðΩ� þ iγÞl�Þ�: ðA8Þ

Thus, we have Ið�Þ
2 given by

Ið�Þ
2 ¼ −i

γ2

Ω2
�ðΩ2

� þ γ2Þl
þ ið1 − iΩ�lÞ

γ

2Ω3
�l

× eþiðΩ�−iγÞlðπ − iEi½−iðΩ� − iγÞl�Þ
þ ið1þ iΩ�lÞ

γ

2Ω3
�l

× e−iðΩ�þiγÞlðπ þ iEi½þiðΩ� þ iγÞl�Þ: ðA9Þ

We see that both Ið�Þ
1 and Jð�Þ

2 are pure imaginary. The
exponential integral function EiðzÞ is defined according to

EiðzÞ ¼ −
Z

∞

−z
ds

e−s

s
: ðA10Þ

The late-time value of hχ2�ðtÞi in the zero-temperature limit
is then given by

hχ2�ð∞Þi ¼ c�
πm

Im½Ið�Þ
1 �Ið�Þ

2 �: ðA11Þ

Similarly, the late-time value of the expectation value
hp2

�ðtÞi in the zero-temperature limit takes the form

hp2
�ð∞Þi ¼ 2mc�Im

Z
∞

0

dκ
2π

�
κ2

−κ2 − i2γκ þ ω2
�

−
1

ω�

∂
∂ω�

� � γ
l κ

2eiκl

−κ2 − i2γκ þ ω2
�

��
: ðA12Þ

We start with the integral

Jð�Þ
1 ¼

Z
∞

0

dκ
κ2

−κ2 − i2γκ þ ω2
�
; ðA13Þ

which apparently will diverge. Thus, we replace the upper
limit of the integral by a cutoff frequencyΛ to regularize the
integral. We find, after regularization, Jð�Þ

1 is given by

Jð�Þ
1 ¼ −Λ −

i
2Ω�

�
−πðΩ� − iγÞ2 þ 2ðΩ2

� − γ2Þtan−1 γ

Ω�

þ 2Ω�γ ln
Ω2

� þ γ2

Λ2

�
þO

�
1

Λ

�
: ðA14Þ

This type of cutoff-dependent expression is often seen in a
system interacting with a quantum-field environment, as
the consequence of an infinite number of degrees of
freedom associated with the field. The introduction of
the cutoff scale is based on the understanding that any
effective physical system or model has its range of validity.
The cutoff frequency thus represents the highest energy
scale permissible with the model. The leading term in
(A14), which is linear in Λ, is of no relevance to us because

it belongs to the real part of Jð�Þ
1 . What is of our concern

will be the term that is proportional to lnΛ, which has a
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mild dependence on the cutoff scale, so it does not pose a

serious issue. On the other hand, Jð�Þ
2 , defined by

Jð�Þ
2 ¼ −

1

ω�

∂
∂ω�

Z
∞

0

dκ
� γ

l κ
2eiκl

−κ2 − i2γκ þ ω2
�
; ðA15Þ

is independent of the cutoff scale. The integral in J2 is
evaluated to be

Z
∞

0

dκ
� γ

l κ
2eiκl

−κ2 − i2γκ þ ω2
�

¼ −
1 − eiΛl

l2
þ i

γ

2Ω�l
ðΩ� − iγÞ2

× eþiðΩ�−iγÞlðπ − iEi½−iðΩ� − iγÞl�Þ
þ i

γ

2Ω�l
ðΩ� þ iγÞ2

× e−iðΩ�þiγÞlðπ þ iEi½þiðΩ� þ iγÞl�Þ;

so Jð�Þ
2 is given by

Jð�Þ
2 ¼ i

γ2

Ω2
�l

−
γ

2Ω3
�l

½þiðΩ2
� þ γ2Þ − ðΩ� − iγÞ2Ω�l�

× eþiðΩ�−iγÞlðπ − iEi½−iðΩ� − iγÞl�Þ
þ γ

2Ω3
�l

½−iðΩ2
� þ γ2Þ − ðΩ� þ iγÞ2Ω�l�

× e−iðΩ�þiγÞlðπ þ iEi½þiðΩ� þ iγÞl�Þ: ðA16Þ

Again, we see Jð�Þ
2 is imaginary. Therefore, we have

hp2
�ð∞Þi in the zero-temperature limit given by

hp2
�ð∞Þi ¼ c�m

π
Im½Jð�Þ

1 �Jð�Þ
2 �: ðA17Þ
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