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In this work, motivated by Laplacian type center gauges in the lattice, designed to avoid the Gribov
problem, we introduce a new family of gauge fixings for pure Yang-Mills theories in the continuum. This
procedure separates the partition function into partial contributions associated with different sectors,
containing center vortices and correlated monopoles. We show that, on each sector, the gauge fixed path
integral displays a BRST symmetry. However, it cannot be globally extended due to sector-dependent
boundary conditions on the ghost fields. These are nice features as they would permit us to discuss the
independence of the partial contributions on gauge parameters, while opening a window for the space of
quantum states to be different from the perturbative one, which would be implied if topological
configurations were removed.
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I. INTRODUCTION

The quantum behavior of a theory is encoded in the path-
integral measure. In the case of Yang-Mills (YM) theory the
main problem is to implement the sum over physically
inequivalent configurations. At the perturbative level, this
can be done by following the Faddeev-Popov procedure
which introduces an identity based on a gauge fixing
condition for the gauge field, enforced by Lagrange
multiplier auxiliary fields. This permits us to factor out
the group volumes at different spacetime points, and get an
action that contains ghost fields. Upon gauge fixing, the
obtained action displays a BRST symmetry that plays a key
role in constructing the (perturbative) space of physical
states. On the other hand, at the nonperturbative level, usual
gauge fixing conditions such as the Landau, Coulomb and
maximally Abelian gauges lead to the Gribov problem.
That is, upon gauge fixing there are still gauge copies. To
avoid infinitesimal copies, Gribov proposed the path-
integral restriction to the region where the Faddeev-
Popov operator is positive definite [1], and the idea that
this could modify the infrared gluon propagator, leading to
gluon confinement. His procedures were implemented
through a modified action [2], and gluon confinement
has been extensively discussed through different breaking
scenarios for BRST symmetries (see [3,4], and references
therein). In this respect, a BRST symmetry that takes the
horizon function into account was recently proposed [5].
In the lattice, examples of gauges that are designed to

avoid the Gribov problem were given in Refs. [6–9] (for a
review, see Ref. [10]). In Refs. [8,9], the lowest d ¼ N2 − 1

eigenfunctions ζ1;…; ζd are computed, and an algorithm is
given that associates them with a local Lie basis
ST1S−1;…; STdS−1, S ∈ SUðNÞ. Finally, the gauge is
fixed by transforming this basis to a given reference.
This gauge, known as the direct Laplacian center gauge,

properly detects center vortices. These are topological
degrees of freedom which, together with correlated monop-
oles, seem to be essential to understand quark confinement
due to a Wilson loop area law, and obtain a confining
potential with the right properties (see [10] and references
therein). These global aspects are the essence of dual
superconductivity, which is based on topological magnetic
degrees of freedom that condense [11]. This is also the case
in the compact version of QED, which is confining [12].
From this perspective, it would be desirable to introduce a
gauge fixing in the continuum that is appropriate when
applied to genuine gauge field variables in topological
sectors.
Indeed, the Gribov problem seems to originate from the

fact that the usual gauge fixing conditions in the continuum
take values on the Lie algebra [13], the tangent space to the
Lie group. The problem is manifested when such gauge
conditions are applied to configurations whose nature
depends on the global aspects of the group. Note that
topological configurations lie on the Gribov horizon
[14,15], where the Faddeev-Popov operator vanishes.
Then, it is appropriate to turn our attention to gauge
conditions in the continuum that take values on group
elements. In this work, we shall initially look for a
procedure that uniquely associates the gauge field Aμ with
a field TðSÞ, in a covariant way. Here TðGÞ, S ∈ G, stands
for a representation of the gauge group. Then, for this gauge
field, we shall define the gauge condition requiring
TðSÞ ¼ TðS0Þ, where S0 is a prescribed map. For conven-
ience, we define the theory on the Euclidean spacetime.
For SUðNÞ Yang-Mills with a gauge fixing based on the

adjoint representation, we propose that the role of the
variable S ∈ SUðNÞ be played by a non-Abelian phase in a
generalized polar decomposition of a tuple ðζ1; ζ2;…Þ,
where each scalar field carries an adjoint representation of
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the gauge group. To produce a strong correlation between
Aμ and these phases, the scalars are required to be classical
solutions in a model with SUðNÞ → ZðNÞ SSB. In this
manner, the tuples will locally tend to be as close as
possible to a point on the manifold of vacua AdðSUðNÞÞ,
that can be used to implement the gauge fixing. It is
important to underline that the SSB pattern does not mean
we will consider the dynamics of a Yang-Mills-Higgs
model. Our path integral weight does not contain the
Higgs factor, and additional Grassmann fields cI , c̄I will
also be introduced to keep the dynamics to be that of pure
Yang-Mills.
The important point is that it is not possible to use the

same reference S0 for all the variablesAμ that must be path
integrated. Although Aμ is smooth and well-defined every-
where, the associated S could contain defects and, in that
case, it cannot be used to perform gauge transformations.
Instead, the variables have to be split into infinitely many
sectors VðS0Þ. One of them is given by those fields Aμ

whose associated non-Abelian phase TðSÞ contains no
defects. In this sector, S0 can be simply chosen as the
identity map S0 ≡ I. In other sectors, S0 could contain
center vortex and monopolelike defects, as well as corre-
lated mixtures.
Here, we shall not attempt the definition of a measure

that contemplates all the different sectors at once, which is a
hard problem. We shall pursue instead a gauge fixing on
each sector VðS0Þ. Similarly to the lattice, where center
vortex and monopole removal implies a Wilson loop
perimeter law, while their inclusion leads to the area
law, we shall analyze the effect of “turning on and off”
the defects on the definition of a BRST transformation for
the full partition function. If all sectors labeled by mappings
S0 that contain defects were removed from the path integral,
we will show there is a well-defined BRST symmetry. On
the other hand, the consideration of the complete theory
will interfere with the definition of a BRST charge operator
and the ensuing analysis of physical states.

II. GAUGE FIXING PROCEDURE

The search for the mapping Aμ → TðSÞ is guided by the
property of covariance. If Aμ is associated with TðSÞ, then
the gauge transformed fieldAU

μ ¼UAμU−1þði=gÞU∂μU−1,
where U∶R4 → G is a regular non-Abelian phase, must be
associated with TðUSÞ. If this is a well-defined function
that maps a given Aμ into a unique field TðSÞ, then no
Gribov copies would be present. In this respect, consider
any regular gauge transformation AU

μ and suppose it also
satisfies the gauge condition. Covariance would give
TðUS0Þ ¼ TðUÞTðS0Þ ¼ TðS0Þ; that is, TðUÞ is the iden-
tity mapping. From now on, we will take SUðNÞ Yang-
Mills theory with a gauge fixing based on the adjoint
representation. The equation for copies implies that U is in
the center ZðNÞ. As this is a discrete group, U must be

x-independent so that AU
μ ¼ Aμ; i.e., neither infinitesimal

nor finite Gribov copies would be present.
To define the mapping, we initially relate the non-

Abelian gauge field Aμ with a set of Hermitian fields
ζI ∈ suðNÞ, where I is a flavor index. These fields
minimize an action SH, in the presence of Aμ,

δSH
δψ I

����
ζI

¼ 0; SH ¼
Z

d4x
1

2
hDμψ Ii2 þ VH; ð1Þ

Dμ ¼ ∂μ − ig½Aμ; �, which is gauge invariant under

Aμ → AU
μ ; ψ I → ψU

I ¼ Uψ IU−1;

and the potential VH ≥ 0 is constructed with an SUðNÞ →
ZðNÞ SSB pattern. Here, we used the positive definite
internal product in the Lie algebra,

hX; Yi ¼ TrðAdðXÞAdðYÞÞ; ð2Þ
with AdðXÞ given by a map of X ∈ suðNÞ into the
adjoint representation. As a shorthand notation, we use
hXi2 ¼ hX;Xi. The points in the manifold M of absolute
minima of the potential shall be denoted by the tuple
ðvϕ1; vϕ2;…Þ. The parameter v has mass dimension one,
while the Lie algebra elements ϕI are dimensionless. At
ψ I ¼ vϕI, it is verified that δVH

δψ I
¼ 0, and VH ¼ 0. As the

field configurations Aμ that contribute to the Yang-Mills
partition function ZYM (locally) tend to a pure gauge at
infinity, the minimization of SH requires the boundary
conditions,

ζI → vnI; DμnI → 0; ð3Þ

where ðvn1; vn2;…Þ ∈ M.
Next, given a tuple ðψ1;ψ2;…Þ, we would like to define

“modulus” qI and “phase” S variables, by means of the
“polar” decomposition ψ I ¼ SqIS−1, together with a set of
conditions fAðq1; q2;…Þ ¼ 0, A ¼ 1;…; d ¼ N2 − 1. In
our case, it is natural to define S from ϕI ¼ SuIS−1, where
ðvu1; vu2;…Þ ∈ M is an x-independent reference point,
and ðvϕ1; vϕ2;…Þ ∈ M is the point closer to ðψ1;ψ2;…Þ,
obtained by minimizing

P
Ihψ I − vϕIi2. This phase

and modulus concept correspond to having tuples
ðvϕ1; vϕ2;…Þ ∈ M and ðq1; q2;…Þ that are aligned as
much as possible (in the mean) with respect to ðψ1;ψ2;…Þ
and ðu1; u2;…Þ, respectively,

X
I

½ψ I;ϕI� ¼ 0;
X
I

½qI; uI� ¼ 0: ð4Þ

Note that the first equation, obtained by minimizing the
average distance, together with ϕI ¼ SuIS−1, implies the
second. In this case, the functions fA are obtained by
projecting Eq. (4) with a Lie basis.
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Now, given a field Aμ, the solution ðζ1; ζ2;…Þ that
satisfies the boundary conditions (3) is expected to be
unique and correspond to a stable absolute minimum of the
action. In addition, because of the SUðNÞ → ZðNÞ sponta-
neous symmetry breaking (SSB) pattern, the polar angle S
corresponding to ðζ1; ζ2;…Þ is unique up to a global center
transformation (almost everywhere). In effect, if S and S0
represent the point on the manifold of vacua M closest to
ðζ1; ζ2;…Þ, we can imply SuIS−1 ¼ S0uIS0−1. In other
words, the adjoint transformation based on S−1S0 leaves
the point ðvu1; vu2;…Þ ∈ M invariant, and as the invari-
ance group of a point in M is ZðNÞ, we get S0 ¼ zS, with
z ∈ ZðNÞ. Finally, as the center is a discrete group, the
factor z must be global. Then, the sequence,

Aμ → ζI → vϕI → AdðSÞ; ð5Þ

gives a well-defined mapping fromAμ → AdðSÞ, where Ad
stands for the adjoint representation. In addition, due to
covariance of the field equations and the polar decom-
position, as well as the group invariance of the metric, the
solution for the gauge transformed field AU

μ is given by
UζIU−1, which corresponds to the polar non-Abelian
phase AdðUSÞ. Therefore, when fixing the gauge
AdðSÞ ¼ AdðS0Þ, in the VðS0Þ sector, the conditions dis-
cussed above, needed for the absence of Gribov copies, are
in principle satisfied.
The following comments are in order. To implement the

required SSB pattern for the classical scalar fields, the
minimum number of flavors isN. A natural model based on
N2 − 1 flavors, with global flavor symmetry AdðSUðNÞÞ,
was introduced in Ref. [16]. In this case, renaming
I → A ¼ 1;…; d ¼ N2 − 1, the potential is

VHðψÞ ¼
μ2

2
hψA;ψAi þ

κ

3
fABChψA;ψB∧ψCi

þ λ

4
hψA∧ψB;ψA∧ψBi; ð6Þ

where ψA∧ψB ¼ −i½ψA;ψB�, and fABC are suðNÞ structure
constants. When μ2 < 2

9
κ2

λ , it induces SUðNÞ → ZðNÞ SSB.
For κ < 0, the manifold M is characterized by v ¼ − κ

2λ �
½ð κ
2λÞ2 − μ2

λ �
1
2 and ϕA ¼ SuAS−1, where the reference point uA

is an x-independent Lie basis, ½uA; uB� ¼ ifABCuC.
In this case, expanding ψA ¼ ΨjABuB, qA ¼ QjABuB, the

polar decomposition ψA ¼ SqAS−1 of the tuple
ðψ1;…;ψdÞ corresponds to Ψ ¼ QRðSÞ, where RðSÞ gives
the map of S ∈ SUðNÞ into the adjoint representation,
SuAS−1 ¼ RjABuB. In addition, projecting the second
equation in (4), the modulus concept becomes

fA ¼
X
B

huA; qB∧uBi ¼ 0; ð7Þ

that is, trðQMAÞ ¼ 0, where MA are adjoint generators,
MAjBC ¼ −ifABC. This together with the property
gψ ¼ v2QguQT , where gψ jAB ¼ hψA;ψBi, gujAB ¼
huA; uBi ¼ trðMAMBÞ, determine Q. It is worth emphasiz-
ing that the metric gu is x-independent; on the other hand,
gψ is x-dependent.
For example, when N ¼ 2, Ψ is decomposed in terms of

Q, orthogonal toMA, and RðSÞ ∈ AdðSUð2ÞÞ ¼ SOð3Þ. As
the matrices MA, A ¼ 1, 2, 3 form a basis for the 3 × 3
antisymmetric matrices, Q must be symmetric, and our
procedure gives the usual polar decomposition of a 3 × 3
real matrix Ψ.
We emphasize that in Ref. [16], a similar SSB pattern

was used to construct a dual superconductor model in the
Higgs phase, where smooth center vortices represent
confining strings between quarks, implementing N-ality.
Here, the classical scalars only provide a means to fix the
gauge. In the path integral, they will be complemented
with Grassman fields, so as to keep the pure Yang-Mills
dynamics unchanged.

III. GAUGE FIXED PATH INTEGRAL
IN A GENERAL SECTOR VðS0Þ

In principle, we are interested in the Yang-Mills partition
function ZYM ¼ R ½DAμ�e−SYMðAÞ. As discussed in the
previous sections, the sequence (5) will assign the variable
Aμ with a field AdðSÞ that could contain defects. Then, to
implement our gauge fixing, this path integral must be
separated as an infinite sum of partition functions,

ZðS0Þ
YM ¼

Z
VðS0Þ

½DAμ�e−SYMðAÞ;

SYMðAÞ ¼
Z

d4x
1

4
hF μνi2; F μν ¼

i
g
½Dμ;Dν�; ð8Þ

computed over sectors VðS0Þ where Aμ → AdðSÞ, with
S ¼ US0 and U being a regular map. Of course, different
labels S0; S00 must be such that there is no regular U
connecting them in the form S00 ¼ US0.
The solution ζI to Eq. (1), in the presence of Aμ, can be

introduced by following similar techniques to those given
in the context of stochastic field equations (see for example
Refs. [17,18]). Here, in order to keep the path integral
unchanged, we introduce the identity,

1 ¼
Z

½Dψ I�
Y
I

δðψ I − ζIÞ: ð9Þ

The delta functional can be rewritten as

Y
I

δðψ I − ζIÞ ¼ det
�

δ2SH
δψJδψ I

�Y
I

δ

�
δSH
δψ I

�
; ð10Þ

where the first and second derivatives are defined by the
expansion,
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SHðψ þ δψÞ ¼ SHðψÞ þ
�
δψ I;

δSH
δψ I

�

þ 1

2

�
δψ I;

δ2SH
δψJδψ I

δψJ

�
þOðδψ3Þ: ð11Þ

The boundary conditions and the SSB pattern, that are
important for discussing the absence of Gribov copies, here
reappear as follows. As they would lead to a solution ζI that
is unique and corresponds to a stable absolute minimum of
the action, Eq. (10) is expected to be a well-defined
representation of the delta functional. In particular, the

operator δ2SH
δψJδψ I

would be associated with a positive definite
quadratic form. Then, the partition function (8) is

ZðS0Þ
YM ¼

Z
VðS0Þ

½DAμ�½Dψ I�½DξI�½Dω̄I�½DωI�e−Sf ; ð12Þ

where Sf is the Yang-Mills action extended by the addition
of auxiliary and ghost fields,

Sf ¼ SYMðAÞ

þ
Z

d4x

�
hDμω̄I;DμωIi þ

�
ω̄I;

δ2V
δψJδψ I

ωJ

��

þ
Z

d4x

�
hDμξI;Dμψ Ii þ

�
ξI;

δV
δψ I

��
: ð13Þ

The fields ξI (ω̄I, ωI) are adjoint bosonic (fermionic) fields.
To obtain the gauge fixed ZðS0Þ

YM , we still need to change
variables from the tuple ψ I to a path integral over the
variables in a polar decomposition, and factor out the group
volume ½DU� over regular transformations. The path
integral over the tuples in Eq. (9) only receives a con-
tribution when ψ I is the solution ζI to the classical
equations of motion. Then, in the VðS0Þ sector, the relevant
tuples are of the form ψ I ¼ SqIS−1, with fAðqIÞ ¼ 0,
S ¼ US0, and U regular.
In order to change in the path integral to modulus and

phase variables, let us momentarily forget about spacetime.
Considering a single tuple ðψ1;ψ2;…Þ and a function
Fðψ1;ψ2;…Þ, we have [19]

Z
dψ IFðψ IÞ ¼

Z
dUdqIδðfAðqÞÞ det ½JðqÞ�FðUqU−1Þ;

JðψÞjAB ¼ ∂fAðψ þ ½ε;ψ �Þ
∂εB

����
ε¼0

: ð14Þ

The notation UqU−1 means ðUq1U−1; Uq2U−1;…Þ. In the
flavor symmetric model, fA ¼ trðQMAÞ leads to JABðqÞ ¼
trðMAQMBÞ. For N ¼ 2, JðqÞ ¼ trðQÞδAB −QAB, and

det ½JðqÞ� ¼
Y
i<j

ðλi þ λjÞ; ð15Þ

where λi are the eigenvalues of Q. In addition, in this
case Q is symmetric, so it can be diagonalized by a
matrix R ∈ SOð3Þ. The change of variables gives

R
dq ¼R

dRdλ
Q

i<jðλi − λjÞ where the new Jacobian was bor-
rowed from the orthogonal ensemble, in random matrix
theory. As expected, the product of both Jacobians gives
that corresponding to the ensemble of real 3 × 3 matrices
Ψ,

Q
i<jðλ2i − λ2jÞ [20].

Equation (14) is based on the premise that the variables
ðψ1;ψ2;…Þ can be rotated to satisfy fA ¼ 0. Then, if TðSÞ
contains no defects, we can take the reference as S0 ¼ I,
use a direct generalization of Eq. (14) to path integrals, and
replace it into Eq. (12). In a general sector characterized by
S0, we can use the following identity,

1 ¼
Z

½DU�δðfAðS−1ψ ISÞÞ detðJðqÞÞ; S ¼ US0;

to obtain

Z
½Dψ I�F½ψ I�

¼
Z

½DU�½DqI�δðfAðqÞÞ detðJðqÞÞF½SqIS−1�: ð16Þ

This generalizes Eq. (14) to spacetime-dependent tuples and
a general situation where the corresponding x-dependent
polar angle S could contain defects. Next, we can use this
change of variables in Eq. (12), followed by

Aμ ¼ AU
μ ; ξI ¼ bUI ; ω̄I ¼ c̄UI ; ωI ¼ cUI :

ð17Þ

Then, using ½DAU
μ � ¼ ½DAμ�, ½Dc̄UI � ¼ ½Dc̄I�, ½DcUI � ¼

½DcI� ½DbUI � ¼ ½DbI�, and the gauge invariance of Sf, we
can factor out the group volumes N ¼ R ½DU�. In this way
we obtain the gauge fixed partition function,

ZðS0Þ
YM ¼ N

Z
½DAμ�½DqI�½DbI�½Dc̄I�½DcI�

× δ½fAðqÞ� det½JðqÞ�e−Sf ; ð18Þ

Sf ¼ SYMðAÞ

þ
Z

d4x

�
hDμc̄I; DμcIi þ

�
c̄I;

δ2V
δψJδψ I

����
ψ I¼q

S0
I

cJ

��

þ
Z

d4x

�
hDμbI; DμðqS0I Þi þ

�
bI;

δV
δψ I

����
ψ I¼q

S0
I

��

ð19Þ

qS0I ¼ S0qIS−10 ; Dμ ¼ ∂μ − ig½Aμ; �: ð20Þ
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The presence ofS0 occurs as in general we cannot use the full
map S ¼ US0 to perform gauge transformations.

IV. BRST IN A GENERAL SECTOR VðS0Þ
The action Sf in Eq. (13), where the gauge has not been

fixed yet, possesses the following nilpotent symmetry,

sAμ ¼ 0; sψ I ¼ωI; sξI ¼ 0; sω̄I ¼−ξI; sωI ¼ 0:

ð21Þ

Proceeding in a similar way to Refs. [21,22], this can be
used to analyze the BRST symmetry after the gauge fixing.
Here, this will be done separately on each sector generated
by our procedure and then, in the conclusions, we shall
discuss the situation when the complete theory is consid-
ered. As usual, using

sAμ ¼ 0 ¼ s

�
UAμU† þ i

g
U∂μU†

�
; ð22Þ

and the Faddeev-Popov ghost definition c ¼ U†sU, the
BRST transformation of Aμ is

sAμ ¼
i
g
Dμc: ð23Þ

Similarly, using the other equations in (17), we get the
BRST transformations,

sqS0I ¼ ½qS0I ; c� þ cI; ð24Þ

sbI ¼ ½bI; c�; ð25Þ

sc̄I ¼ −fc̄I; cg − bI; ð26Þ

scI ¼ −fcI; cg; ð27Þ

which together with sS0 ¼ 0 and Eq. (23) constitute the
nilpotent BRST symmetry of Sf in Eq. (19). Indeed, we can
write

Sf ¼ SYM −
Z

d4x s

�
c̄I;

δSH
δψ I

����
ψ I¼q

S0
I

�
: ð28Þ

Now, to determine the BRST symmetry of ZðS0Þ
YM , the

gauge fixed partition function in VðS0Þ, we initially note
that all transformations are combinations of infinitesimal
rotations and translations. Then, the different measures
½DAμ�; ½DqI�;… are invariant, and we are left with the
problem of analyzing the effect on BRST of the remaining
factor in Eq. (18), which is necessary for the variable qI to
be a pure modulus.
As it arises when factoring the group volume, it is natural

to introduce the representation,

δ½fAðqÞ� det½JðqÞ� ¼
Z

½Db�½Dc̄�½Dc�

× exp−
Z

d4xðhb; ½uS0I ; qS0I �i þ hc̄; ½uS0I ; ½qS0I ; c��iÞ

ð29Þ

where the Grassmann variables have been identified with
the ghost (antighost) fields c (c̄) in (23), and then complete
the BRST transformations (23)–(27) with

sb ¼ 0; sc̄ ¼ −b; sc ¼ −
1

2
fc; cg: ð30Þ

Here, fAðqÞ has been based on the pure modulus condition
in Eq. (4). Finally, we note that the exponent in Eq. (29)
changes when the complete s-transformation is performed,
due to the action of s on qI . However, it is easy to see that,
upon integration over the ghost fields, the right-hand side of
Eq. (29) remains unchanged. In order to evidence this
symmetry, we can include in the integrand of Eq. (29) a
factor expð− R

d4xhc̄; ½uS0I ; cI�iÞ, which can be expanded as
1 −

R
d4xhc̄; ½uS0I ; cI�iÞ þ…. It is clear that, in the integral

over the ghost and antighost fields, only the first term gives
a contribution. That is, we can also write

δ½fAðqÞ� det½JðqÞ� ¼
Z

½Db�½Dc̄�½Dc�e
R

d4x shc̄;½uS0I ;q
S0
I �i;

and thus obtain

ZðS0Þ
YM ¼ N

Z
VðS0Þ

½DAμ�½DqI�½DbI�½Dc̄I�½DcI�½Db�½Dc̄�½Dc�

× e
−SYMþ

R
d4x sðh̄c;½uS0I ;q

S0
I �iþhc̄I ;δSHδψI jψI¼q

S0
I
iÞ: ð31Þ

In the sector of gauge fields VðIÞ, where we simply have
qS0I ¼ qI , this representation is all we need to show the

BRST invariance of ZðIÞ
YM. However, in the sectors VðS0Þ,

when S0 contains defects, we still have to analyze the
BRST invariance of the boundary conditions needed for the

fields in ZðS0Þ
YM to be well defined everywhere. The impor-

tance of the BRST invariance of boundary conditions has
been discussed in different contexts, such as the Casimir
effect [23].
For example, let us consider variablesAμ in a sector that

contains center vortices around a given set of closed world

sheets. That is, we take S0 ¼ eiχ~βjpTp , where ~β ¼ 2N~w, ~w is
a weight of the fundamental representation, and Tp,
p ¼ 1;…; N − 1 are Cartan generators of suðNÞ. A Lie
basis is completed with the root vectors Eα, associated with
positive and negative roots ~α. The phase χ, ∂2χ ¼ 0, is
multivalued when we go around the world sheets (see
Refs. [24,25]). In this case, S0TpS−10 ¼ Tp and
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S0EαS−10 ¼ cosð~β · ~αÞχEα þ sinð~β · ~αÞχE−α. Then, to have
well-defined fields ψ I , we must impose boundary con-
ditions, at the world sheets,

hEγ; q
S0
I ijw ¼ 0; ~β · ~γ ≠ 0: ð32Þ

This means that the off-diagonal components of qI , that are

charged with respect to the weight ~β, must vanish at the
world sheets. Applying s on hEγ; q

S0
I i, using Eq. (24), and

then evaluating at the world sheets, the BRST invariance of
the boundary conditions would be

hEγ; ½qS0I ; c�ijw þ hEγ; cIijw ¼ 0; ~β · ~γ ≠ 0: ð33Þ

We can expand c ¼ pþ r, qI ¼ pI þ rI , where p, pI

contain the Lie basis elements Tp and Eσ, with ~β · ~σ ¼ 0,

while r, rI contain Eγ , with ~β · ~γ ≠ 0. Therefore,

qS0I ¼ pI þ rS0I , qS0I jw ¼ pI . In addition, using the algebraic
properties of the Cartan decomposition, it is easy to see that
½pI; p� can only be a combination of the Eσ’s, so this term
does not contribute to the scalar product in Eq. (33). In this
regard, note that ½pI; p� contains commutators of the form
½Tq; Eσ� ∝ Eσ , and ½Eσ; Eσ0 � ∝ Eσþσ0 , which obviously sat-

isfies ~β · ð~σ þ ~σ0Þ ¼ 0. As a consequence, BRST symmetry
of the boundary conditions requires that the off-diagonal
components of c, cI , that are charged with respect to the

weight ~β, also vanish at the world sheets. In turn, it can be
verified that the induced boundary conditions are BRST
invariant. Similar regularity conditions on the scalar fields
must be imposed on those worldlines where S0 leads to
monopolelike singularities.

V. DISCUSSION AND CONCLUSIONS

In this work, we analyzed the BRST symmetry in
different topological sectors of pure Yang-Mills theory.
For this objective, motivated by lattice gauge fixing
procedures designed to avoid the Gribov problem, we
introduced in the continuum a gauge fixing based on the
classical solutions for a tuple of adjoint fields, with a flavor
index, in the presence of the gauge field Aμ.
The action for this tuple possesses an SUðNÞ → ZðNÞ

SSB pattern that strongly correlates Aμ with a mapping
S ∈ SUðNÞ, obtained from a generalized polar decompo-
sition of the tuple. Next, the gauge fixing transforms S to a
given reference S0, producing a partition of gauge field
configurations into physically inequivalent sectors VðS0Þ,
associated with different distributions of topological mag-
netic configurations. Then, we showed how to implement

the gauge fixing of ZðS0Þ
YM , the partial contributions to the

partition function when path-integrating over the sector
VðS0Þ. In particular, keeping the pure Yang-Mills dynamics
requires not only the presence of ghost and antighost fields

c, c̄, but also flavored versions cI , c̄I , with their own
transformation properties.
The lesson to be learned is that while there is a BRST

symmetry that has the same functional form on each sector
VðS0Þ, the class of ghost fields depends on the particular
sector considered. This is a consequence of requiring the
BRST invariance of the boundary conditions needed for the
tuples of adjoint fields be well-defined everywhere. This
induces different boundary conditions on ghost fields that
depend on the particular distribution of magnetic configu-
rations such as closed center vortex world sheets and their
magnetic weights. A similar result would apply to sectors
formed by center vortices with different weights attached to
interpolating monopoles. The expected consequences are
twofold. On the one hand, the BRST symmetry on a given
sector would be useful to analyze important questions such
as renormalization and the independence of the partial
contributions to the partition function on the gauge fixing
parameters. On the other hand, the lack of a globally
defined BRST symmetry is a nonstandard feature with
consequences on the discussion of the physical states of the
theory. The point is that the usual relation between BRST
symmetry and quantum physical states relies on having a
space of fields with a unique set of boundary conditions,
defined from the beginning. Canonical quantization is
usually implemented by expanding the field operators in
field modes, which are used to construct the conserved
BRST charge operator and analyze the asymptotic physical
spectrum. For instance, this can be done in the case of
noncompact QED with boundary conditions on a given
distribution of conductors. In our case, if we were to ignore
all sectors VðS0Þwith S0 ∈ SUðNÞ containing defects, only
considering the sector VðIÞ formed by gauge fields asso-
ciated with regular mappings S, there would be no special
boundary conditions, and the fields could be expanded in
plane waves (or perturbed plane waves). In this perturbative
sector, due to the quartet mechanism, the space of physical
states would correspond to asymptotic transverse gluons,
that is, no gluon confinement.
In the complete theory, a classical conserved BRST

charge could be obtained and evaluated for a given field
configuration. However, at the quantum level, there is an
ensemble of infinitely many sectors, with their own
boundary conditions and expansion modes. How to relate
the sector-dependent BRST symmetry with the physical
states of the theory is not at all clear. An important step
towards this quest would be to gain information about the
partial contributions and the definition of the ensemble
integration. In this respect, the integration over monopoles
with adjoint charges, and phenomenological dimensionful
parameters, was done in Ref. [26]. This reproduces some
terms of a natural effective model with SUðNÞ → ZðNÞ
SSB where gluons are seen as confined dual monopole
configurations [16].
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