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We calculate the effective vertex of the quark production in the collision of a Reggeized quark and a
Reggeized gluon in the next-to-leading order (NLO). The vertex in question is the missing component of
the multi-Regge NLO amplitudes with the quark and gluon exchanges in the ti channels. This multi-Regge
form of the amplitudes is the important hypothesis which was recently proved for the gluon exchanges only
and remains unverified within the next-to-leading-logarithmic approximation (NLA) for the general case
including the quark exchanges. Our calculation allows one to develop the bootstrap approach to the quark
Reggeization proof in NLA.
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I. INTRODUCTION

It is common knowledge that the multi-Regge form of
amplitudes at high energies is a base of various theoretical
constructions in quantum chromodynamics (QCD) and
supersymmetric Yang-Mills theories (SYM). The most
famous application of the form resulted in the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) [1–4] approach to the semi-
hard processes description in QCD. The simplicity of the
multi-Regge form was recently used as a powerful tool to
test various factorization formulas in SYM, QCD, and in
other gauge theories.
Let us now recall the state of the art for the Reggeization

hypothesis proof. In QCD, the gluon Reggeization hypoth-
esis (i.e., the multi-Regge form with only gluon exchanges
in all ti channels) was proved in the leading-logarithmic
approximation (LLA) by the authors of the BFKL approach
roughly 40 years ago. The analyticity and t-channel
unitarity were the principal tools of this proof [5]. It proved
to be a strong base for the BFKL approach in the leading
approximation.
In the next-to-leading-logarithmic approximation (NLA)

we developed the general method based on the compati-
bility of the hypothetical multi-Regge form of the ampli-
tude with s-channel unitarity [6]. The compatibility is
formulated as a series of so-called bootstrap relations,
the fulfillment of which ensures the validity of the multi-
Regge form order by order. The same method turned out to
be fruitful in the proof of the multi-Regge form with the
quark exchanges in LLA [7]. Then we used the bootstrap
approach to prove the NLA gluon Reggeization hypothesis
in QCD. The calculation of the quark and gluon one-loop
corrections to all bootstrap components gave us the
possibility to verify all bootstrap relations [8–11]. Once

again our general method was successfully applied to prove
NLA gluon Reggeization within SYM theories with arbi-
trary N and in the theories with a general form of the
Yukawa interaction [12]. Theoretically our bootstrap
approach is applicable for the quark Reggeization NLA
proof. But the only unknown component of the NLA
amplitude is the Reggeon(G)-Reggeon(Q)-quark one-loop
vertex γQG1Q2

.
The only missing link of the recurrent bootstrap pro-

cedure is the “initial condition.” For NLA it is the one-loop
amplitude with arbitrary leg number n. We supposed that
these amplitudes have the correct factorized form corre-
sponding to the multi-Regge ansatz. It has been verified for
small n but should be proved in general.
The main goal of our investigation is to complete the

quark Reggeization hypothesis formulation in NLA. For
this purpose one should know all effective Reggeon
vertices appearing in the multi-Regge form with the quark
exchanges up to next-to-leading order. The vertex γQG1Q2

in
next-to-leading order (NLO) is the final uncalculated
component of the amplitude. Another aspect of interest
is the construction of the evolution equation kernel in NLO
for the Reggeized quark. The vertex γQG1Q2

is the final
ingredient for the kernel construction. The kernel is of
concern since its conformal properties in SYM theory can
illuminate the integrability property of this theory and give
the connection between different approaches as it occurred
for the gluon NLO kernel. Finally, there are some processes
(for instance, recharging processes pþ p → nþ Δþþ, pþ
p̄ → nþ n̄ with u- and d-quark exchanges) where the
quark exchange amplitude (subleading in comparison with
the gluon one) might dominantly contribute. Our Reggeon
vertices are of some phenomenological interest for these
processes.
The article is organized as follows. The second section is

devoted to an explanation of our method of calculation and
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to the description of kinematics. The third section presents
the Reggeization hypothesis, components of the Regge
amplitude, and Lorentz and color structures of our one-loop
amplitude in the multi-Regge kinematics. In the fourth
section we present the result of our calculation, both in
fragmentation form (reproducing different components of
our Regge amplitude) and as the full expression. At the end
of the fourth section we present the resulting expression for
the required vertex γQG1Q2

. In the Appendix we introduce the
technique of the loop integration and give the explicit
expressions for the master integrals of our calculation.

II. AMPLITUDE OF THE QUARK PRODUCTION
IN MULTI-REGGE KINEMATICS

There are several steps to finding the NLO effective
vertex γQG1Q2

in the next-to-leading order. To calculate this
Reggeon vertex we can consider any simple process with
this vertex in the one-loop approximation. We choose the
amplitude SQ → S0Q0γ of the scalar, quark, and photon
production in the scalar and quark collision; see Fig. 1. It
does not matter for the vertex calculation whether we
analyze the amplitude in Yang-Mills theory withNc gluons,
the photon, nf quarks (in the fundamental color represen-
tation), and ns scalars (in the adjoint representation), or
simply the QCD amplitude.
We first consider all one-loop Feynman diagrams con-

tributing to the process SQ → S0Q0γ. There are 23 different
nontrivial one-loop Feynman diagrams; see Fig. 2. There
are some diagrams labeled according to their class: penta-
gons, boxes, triangles, and bubble diagrams. First of all we
perform the reduction of the amplitude to the master
integrals using the “LiteRed”[13] MATHEMATICA package.
As a result of the reduction one has pentagon, box, and self-
energy nontrivial master integrals. Our master integrals are
listed in the Appendix. The method of our tensor integral
calculation is presented in the Appendix as well. The
algorithm of the master integral calculation is presented in

Ref. [14]. The next stage is to take the Regge limit of the
resulting expression for the master integrals analytically
continued in the physical kinematic region. Finally, we
compare the result of our calculation with the one-loop
expression resulting from the hypothetical multi-Regge
form of the amplitude in question. In such a way we extract
the required vertex.

A. Kinematics, color, and Lorentz structures
of the amplitude

The momentum of the initial scalar S is k1, that of the
final scalar S0 is k2, that of the final quark Q0 produced in
the central rapidity region is k3, that of the final photon γ is
k4, and that of the initial quark Q is k5. In Fig. 1 all
momenta are considered to be incoming and light-cone:
k1 þ k2 þ k3 þ k4 þ k5 ¼ 0, k2i ¼ 0. We use the physical
gauge with a light-cone vector along k1 for the final photon:
eðk4Þ · k4 ¼ 0, eðk4Þ · k1 ¼ 0.
We present Sudakov’s decomposition for our momenta

with the incoming scalar and quark momenta being along
the light-cone momenta n1, n2 (n21 ¼ 0, n22 ¼ 0,
n1 · n2 ¼ 1): k1 ¼ kþ1 n1, ki ¼ kþi n1 þ k−i n2 þ ki⊥ for
i ¼ 2, 3, 4, and k5 ¼ k−5 n2. Here n1, n2 are light-cone
momenta, where k�i ¼ ki · n2;1. Here and below the ⊥ sign
is used for components of momenta transverse to the n1, n2
plane. The scalar products of particle momenta are
expressed through Lorentz invariants,

s ¼ 2k1 · k5; t1 ¼ 2k1 · k2;

t2 ¼ 2k4 · k5; s1 ¼ 2k2 · k3; s2 ¼ 2k3 · k4;

u1 ¼ 2k1 · k3; u2 ¼ 2k3 · k5;

u ¼ 2k1 · k4; s0 ¼ 2k2 · k4; u0 ¼ 2k2 · k5: ð2:1Þ

And we express the other invariants through an indepen-
dent set: u1 ¼ t2 − t1 − s1,u2 ¼ t1 − t2 − s2, u ¼ s1 − t2−
s,s0 ¼ s − s1 − s2, u0 ¼ s2 − t1 − s. It is important that
independent invariants have the following signs in the
physical region of our process: s1 > 0, s2 > 0, s > 0,
t1 < 0, t2 < 0 (and u1 < 0, u2 < 0, u < 0, s0 > 0, u0 < 0).
The multi-Regge kinematics (MRK) means that we have

particles well separated in rapidity space in the final state,

kþ2 ≫ kþ3 ≫ kþ4 ; k−2 ≪ k−3 ≪ k−4 : ð2:2Þ

Since momenta ki are on the mass shell one has k−i ¼ − k2i⊥
2kþi

,

i ¼ 2, 3, 4. We introduce two dimensionless large (in the
Regge limit) parameters: y1 ¼ kþ2 =k

þ
3 ≫ 1 and y2 ¼

kþ3 =k
þ
4 ≫ 1. Hereinafter we will use dimensional regulari-

zation D ¼ 4þ 2ϵ and we will take the limit ϵ → 0
before the Regge limit. MRK implies also that all trans-
verse momenta are not increasing as yi → ∞. One can
express all of the transverse scalar products through

FIG. 1. Regge amplitude of the process SQ → S0Q0γ:G and Q
are th Reggeized gluon in the t1 channel and the Reggeized quark
in the t2 channel, respectively. Here blob 1 is the effective vertex
ΓG
S0S, blob 2 is the unknown vertex γQ

0
GQ, and blob 3 is the vertex

ΓQ
γ0Q.
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independent ones: (k22⊥, k23⊥, k24⊥) 2ðk2 · k3Þ⊥ ¼
k24⊥ − k22⊥ − k23⊥, 2ðk3 · k4Þ⊥ ¼ k22⊥ − k23⊥ − k22⊥, and
2ðk2 · k4Þ⊥ ¼ k23⊥ − k22⊥ − k24⊥.
Further, we consider the one-loop amplitude SQ →

S0Q0γ as a power function of y1, y2 within the accuracy
of logarithmic terms (i.e., terms lnk½yi� technically origi-
nating from the ϵ decomposition of master integrals). In the
Regge limit the leading amplitude behavior is expected to
be ∼y1

ffiffiffiffiffi
y2

p
. Here the factor y1 comes from the Reggeized

gluon in the s1 channel and
ffiffiffiffiffi
y2

p
comes from the Reggeized

quark in the s2 channel; see Fig. 1. Our basis bispinor
structures (2.4) are proportional to

ffiffiffiffiffi
y2

p
, which is why the

order of the multi-Regge limit calculation for the amplitude
is as follows: an expansion in ϵ → 0 with accuracy OðϵÞ,
followed by retaining the leading asymptotic power
expansion in yi → ∞.
There are only two independent color structures: the “tree”

structure Ta
S0St

a and the “cross-box” structure Ta
S0cT

b
cSt

bta.
Here ta are SUðNcÞ quark generators in the fundamental
representation, and Ta

S0S ¼ −ifaS0S are generators of scalars
in the adjoint representation. The “tree” structure (i.e., color
octet in the t1 channel) turns out to give the leading
contribution to the real part of our amplitude. Next, we
use the following notation for the Casimir operator:

FIG. 2. Nontrivial one-loop diagrams for the process SQ → S0Q0γ: pentagons (labeled as f5g and crossed diagrams f5cg), boxes
(f4:Xg and crossed diagrams f4:Xcg), triangles (f3:Xg and crossed diagrams f3:Xcg), and bubbles (f2:Xg and crossed diagrams
f2:Xcg). The last line is the self-energy insertion with gluons, ghosts, nf types of fermions, and ns types of scalars.
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tata ¼ CF ¼ N2
c − 1

2Nc
: ð2:3Þ

The amplitude depends not only on the invariants of s1,
s2, t1, t2, s, but on the helicity states of the external particles
as well.
We assume that external momenta ki are embedded in a

four-dimensional subspace of the momentum space with
D ¼ 4þ 2ϵ dimensions, while the photon polarization is a
D-vector. There are six independent Lorentz helicity
structures in that case:

ūðk3Þeuðk5Þ; ūðk3Þk1k4euðk5Þ;
ðe · k2Þūðk3Þk1uðk5Þ; ðe · k2Þūðk3Þk4uðk5Þ;
ðe · k3Þūðk3Þk1uðk5Þ; ðe · k3Þūðk3Þk4uðk5Þ: ð2:4Þ

In the multi-Regge kinematics we can choose the following
independent structures with only transverse (D − 2)
components involved:

ūðk3Þe⊥uðk5Þ; ūðk3Þk2⊥k4⊥e⊥uðk5Þ;
ðe · k2Þ⊥ūðk3Þk2⊥uðk5Þ; ðe · k2Þ⊥ūðk3Þk4⊥uðk5Þ;
ðe · k4Þ⊥ūðk3Þk2⊥uðk5Þ; ðe · k4Þ⊥ūðk3Þk4⊥uðk5Þ:

ð2:5Þ

In the limit D → 4 the first two structures become depen-
dent since one can express e⊥ in terms of k2⊥, k4⊥,

eμ⊥ ¼ kμ2⊥
k24⊥ðe · k2Þ⊥ − ðk2 · k4Þ⊥ðe · k4Þ⊥

k22⊥k24⊥ − ðk2 · k4Þ2⊥
þ kμ4⊥

−ðk2 · k4Þ⊥ðe · k2Þ⊥ þ k22⊥ðe · k4Þ⊥
k22⊥k24⊥ − ðk2 · k4Þ2⊥

: ð2:6Þ

This means that the part of the metric tensor gμνD−4 ∼OðϵÞ
vanishes in the dimensional limit D → 4.

III. REGGE AMPLITUDE STRUCTURE

According to the hypothesis of the quark and gluon
Reggeization in NLA the real part of the amplitude Aþ
B → A0 þ J1 þ � � � þ Jn þ B0 in the MRK has the form

ℜA2→nþ2 ¼ Γ̄R1

A0A

�
P
Yn
i¼1

eωRi
ðqiÞðzi−1−ziÞD̂Ri

γJiRiRiþ1

�

× eωRnþ1
ðqnþ1Þðzn−znþ1ÞD̂Rnþ1

ΓRnþ1

B0B ; ð3:1Þ

where P
Q

is the product ordered along the fermion line.
We use the notation

D̂Ri
¼

8<
:

1
q2i⊥

; Ri ¼ Gi;

− qi⊥
q2i⊥

; Ri ¼ Qi

ð3:2Þ

for the Reggeon Ri (gluon or quark) propagator. Then zi ¼
1
2
ln kþi

k−i
are rapidities of the final jets Ji. In NLA, jets Ji are

either one parton or the partons couple with close rapidities.
Last, ωRðqÞ in Eq, (3.1) is the Regge trajectory of the
Reggeon R (gluon or quark) with momentum q.
There are several effective vertices (Γ̄R1

A0A, Γ
Rnþ1

B0B ) for the
particle-jet transition in the “fragmentation” kinematic
region. As for the particle-particle transition (pure multi-
Regge kinematics) one has the following vertices in QCD:

ΓG
G0G; ΓG

Q0Q; ΓQ
G0Q:

There is an extra vertex ΓG
S0S for SYM. All these vertices are

calculated within the NLO [15] (for the SYM case see
Ref. [12]). The vertex of the quark-photon transition ΓQ2

γ0Q
may be found in Ref. [15] as well. For the quasi-multi-
Regge kinematics (QMRK) case of the particle-couple
transition one has

ΓG
fG1G2gG; ΓG

fQ1Q2gG; ΓG
fG1Q2gQ;

ΓQ
fG1G2gQ; ΓQ

fG1Q2gG; ΓQ
fQ1Q2gQ

in QCD. All these vertices are known; see Refs. [16,17].
For SYM there are some additional vertices (ΓG

fS1S2gG,

ΓG
fGS0gS, Γ

G
fQ1Q2gS, Γ

G
fQ0SgQ): the corresponding calculation

can be found in Ref. [12].
There are several effective vertices (γJiRiRiþ1

) for the jet
production in the Reggeon-Reggeon collision in the central
region of rapidity. For one-particle production we have the
QCD vertices

γGG1G2
; γGQ1Q2

; γQQ1G2
:

The vertices γGG1G2
, γGQ1Q2

were calculated in NLO [18–21].
The effective vertex γQQ1G2

was calculated in the leading
order only. Our purpose is to find one-loop corrections to it.
Vertices for couple production (QMRK) in the central
region of rapidity

γfG1G2g
G1G2

; γfQ1Q2g
G1G2

; γfQ1G2g
Q1G2

;

γfG1G2g
Q1Q2

; γfQ1Q2g
Q1Q2

are calculated in QCD with required NLO accuracy [16,17]

as well. In SYM one has an extra vertex, γfS1S2gR1R2
, which was

calculated some years ago [22].
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Note that QMRK is “subleading” kinematic, i.e., all
necessary vertices should be taken at the tree level. The
Reggeization hypothesis was proved in Ref. [23] for
QMRK amplitudes with quark (and gluon) exchanges.
In the following we will use the standard momentum

notations for the Regge amplitude SQ → S0Q0γ (see Fig. 1),

q1⊥ ≡ ðk2 þ k1Þ⊥ ¼ k2⊥;
q2⊥ ≡ ð−k4 − k5Þ⊥ ¼ −k4⊥;
k⊥ ≡ −k3⊥; ð3:3Þ

with k beingthe momentum of the quark produced.
According to the hypothesis of the quark and gluon
Reggeization in NLA [Eq. (3.1)], the real part of the
amplitude SQ → S0Q0γ in the multi-Regge kinematics
reads

ℜA8 ¼ ΓR1

S0S

�
s1ffiffiffiffiffiffiffiffiffiffiffiffiffi
q21⊥k2⊥

p
�

ωgðq1Þ 1

q21⊥
γQR1Q2

�
s2ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥q22⊥

p
�

ωqðq2Þ

×

�
−
q2⊥
q22⊥

�
ΓQ2

γ0Q: ð3:4Þ

A. Regge trajectories and effective vertices

Now we present an expression for the one-loop trajec-
tories of a quark and gluon,

ωqðqÞ ¼ −2CFg2ð−iaΓÞ
ð−q2⊥Þϵ

ϵ
;

ωgðqÞ ¼ −2Ncg2ð−iaΓÞ
ð−q2⊥Þϵ

ϵ
: ð3:5Þ

The constant aΓ emerges from the integrals as a common
factor [Eq. (A8)]. The combination of Ncg2ð−iaΓÞ will
arise often and it is related to the ḡ2 notation as follows:

Ncg2ð−iaΓÞ≡ Ncg2
Γð1 − ϵÞ
ð4πÞ2þϵ

Γ2ð1þ ϵÞ
Γð1þ 2ϵÞ

¼ ḡ2
�
1 −

π2

6
ϵ2 þOðϵ3Þ

�
: ð3:6Þ

Now we present the scalar-to-scalar Regge vertex in the
following way [12]:

ΓR1

S0S ¼ 2kþ1 gT
R1

S0Sð1þ δSÞ; δS ¼ δcS þ δs:e:S þ δvS þ δAS :

ð3:7Þ

Expressions for the corrections (δ’s) to the vertex of the
scalar scattering can be found in Ref. [12] (there are
corrections in the framework of supersymmetric Yang-
Mills theory, but the QCD result can be obtained easily),

δAS þ δcS ¼ ð−iaΓÞg2Ncð−q21⊥Þϵ
�
−

5

4ϵ2
þ 1

2ϵ
− 1þ π2

2

�
;

ð3:8Þ

δs:e:S ¼ ð−iaΓÞNcg2
ð−q21⊥Þϵ

ϵ

�
−
�
5

6
−
31

18
ϵ

�

þ ns

�
1

12
−
2

9
ϵ

�
þ nf
Nc

�
1

3
−
5

9
ϵ

��
; ð3:9Þ

δvS ¼ ð−iaΓÞNcg2
ð−q21⊥Þϵ

ϵ2

��
5

4
−
3

2
ϵþ 3ϵ2

�

þ ½−2þ 4ϵ − 8ϵ2�
�
: ð3:10Þ

Here the superscript c denotes the universal contribution
from the central rapidity region, the index s:e: denotes the
contribution of the mass (self-energy) operator, the index v
denotes the contribution of the vertex corrections, and the
index A represents the contribution coming from the
rapidity close to the initial particle. All corrections are
presented in the ϵ decomposition with the required
accuracy.
Corrections to the vertex of photon production are more

complicated since the structure contains helicity-violating
terms:

ΓQ2

γ0Q ¼ −e
�
e⊥ þ e⊥δ1γ þ

ðe · q2Þ⊥
q22⊥

q2⊥δ2γ
�
uðk5Þ; ð3:11Þ

δ1γ ¼ δs:e:1γ þ δv1γ þ δA1γ þ δc1γ; δ2γ ¼ δv2γ þ δA2γ: ð3:12Þ

Expression for these corrections can be found in Ref. [15]:

δA1γ þ δc1γ ¼ g2ð−iaΓÞð−q22⊥Þϵð−CFÞ
�
1

ϵ2
−
π2

2

�
; ð3:13Þ

δv1γ ¼ CFg2ð−iaΓÞð−q22⊥Þϵ
1 − 4ϵ

ϵ
; ð3:14Þ

δs:e:1γ ¼ CFg2ð−iaΓÞð−q22⊥Þϵ
1 − ϵ

2ϵ
; ð3:15Þ

δv2γ ¼ CFg2ð−iaΓÞð−q22⊥Þϵ
ð−2Þð2 − 5ϵÞ

ϵ
; ð3:16Þ

δA2γ ¼ CFg2ð−iaΓÞð−q22⊥Þϵ
4ð1 − 2ϵÞ

ϵ
: ð3:17Þ

We parametrize the unknown vertex of quark production
in the quark-Reggeon collision as

γQR1Q2
¼ −g

1

kþ3
ūðk3ÞtR1ðq1⊥ þ q1⊥δ1Q þ q2⊥δ2QÞ: ð3:18Þ
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The term δ1Q is a correction to the leading-order structure.
The correction δ2Q stands before the structure, which is
absent in the leading order (the mass operator corrections
contribute only in the δ1Q coefficient),

δ1Q ¼ δs:e:11Q þ δs:e:21Q þ δv;c1Q; δ2Q ¼ δv;c2Q: ð3:19Þ

B. Lorentz and color structures of the Regge amplitude

Now we consider the real part of the amplitude in
question.
In the first place we will be interested in the octet color

(or “tree”) structure coefficient of the Regge amplitude
obtained in our calculation after the Regge limit procedure.
Let us introduce the notation for the basic Lorentz

structures of our Regge amplitude. There is only one
Born structure,

ABorn ¼ −2y1g2eT
R1

S0S
ūðk3ÞtR1q1⊥q2⊥e⊥uðk5Þ

q21⊥q22⊥
: ð3:20Þ

The next structure Ae
8 arises from the correction to the

Regge vertex for quark production in the central region and
violates the helicity,

Ae
8 ¼ −2y1g2eT

R1

S0S
ūðk3ÞtR1e⊥uðk5Þ

q21⊥
: ð3:21Þ

The structure Aq1
8 arises from the correction to the Regge

vertex for the quark-photon transition and violates the
helicity as well,

Aq1
8 ¼ −2y1g2eT

R1

S0S
ūðk3ÞtR1q1⊥uðk5Þðe · q2Þ⊥

q21⊥q22⊥
: ð3:22Þ

The final structure that appears after the Regge limit in
our calculations is as follows:

Aq2
8 ¼ −2y1g2eT

R1

S0S
ūðk3ÞtR1q2⊥uðk5Þðe · q2Þ⊥

q21⊥q22⊥
: ð3:23Þ

The decomposition of the multi-Regge form of the
amplitude SQ → S0Q0γ [Eq. (3.4)] in the coupling constant
up to the next-to-leading order gives us

ℜA8 ¼ ABorn

�
1þ ωgðq1Þ ln y1 þ ωqðq2Þ ln y2

þ ωgðq1Þ
2

ln

�
k2⊥
q21⊥

�
þ ωqðq2Þ

2
ln

�
q22⊥
k2⊥

�

þ δS þ δ1Q þ δ1γ

�
þ Ae

8δ2Q þ Aq1
8 δ2γ þOðeg6Þ:

ð3:24Þ

If we calculate one-loop corrections for the amplitude
SQ → S0Q0γ and take from the amplitude known correc-
tions for the effective vertices ΓG

S0S, Γ
Q
γQ and the terms with

Regge trajectory contribution, then we obtain the correc-
tions for the effective vertex γQGQ.

IV. RESULT OF THE AMPLITUDE
SQ → S0Q0γ CALCULATION

Let us present the result of the calculation procedure
described at the beginning of Sec. II. Here we give the
calculation result in the Regge limit and group diagrams
into the expressions with specific elements for the Regge
amplitude. We use the notations (3.20)–(3.23) for structures
from the previous section and the notation (A8) for the
common factor aΓ.
Now we present characteristic diagram contributions

reproducing different components of the Regge amplitude:
photon and scalar vertex corrections, Regge trajectories,
and the corrections to the unknown vertex.
The sum of diagrams providing the corrections to the

photon vertex reads

ℜðA3.5 þ A3.5cÞ

¼ g2ð−iaΓÞCF

�
−Ae

8 ln y2 − ð−q22⊥Þϵ
1

ϵ
½2ð2 − 5ϵÞ

× ðAq1
8 þ Aq2

8 Þ − ð1 − 4ϵÞABorn�
�
: ð4:1Þ

It is easy to see that these diagrams (the 3.5 group) contain a
large logarithm ln y2. Diagrams describing the mass oper-
ator of the quark in the t2 channel contain ln y2 as well:

ℜðA2.2 þ A2.2cÞ

¼ g2ð−iaΓÞCF

�
ABorn 1 − ϵ

ϵ
ð−q22⊥Þϵ − A8

e ln y2

�
: ð4:2Þ

Diagrams of the vacuum polarization of the gluon in the
t1 channel result in the expression (in the ϵ → 0 decom-
position)

A2.1X ¼ Ncg2ð−iaΓÞABorn ð−q21⊥Þϵ
ϵ

�
−
�
5

3
−
31

9
ϵ

�

þ ns
2

�
1

3
−
8

9
ϵ

�
þ nf
Nc

�
2

3
−
10

9
ϵ

��
: ð4:3Þ

The following group of diagrams provides the correction
to the scalar vertex:
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A3.3 þ A3.3c þ A3.4 þ A3.4c

¼ Ncg2ð−iaΓÞABorn ð−q21⊥Þϵ
ϵ2

×

�
−ð2 − 4ϵþ 8ϵ2Þ þ 1

4
ð5 − 6ϵþ 12ϵ2Þ

�
: ð4:4Þ

Diagrams describing the Reggeization of quarks and
gluons (i.e., yielding the Regge trajectories) and delivering
the correction to the vertex of the quark production in the
central region give the following real part for the octet (tree)
color structure:

ℜðA5 þ A4.1 þ A4.2 þ A4.3 þ A4.3c þ A4.4 þ A3.1 þ A3.1c þ A3.2 þ A3.2cÞj8 ¼ −ig2aΓ

×

�
Ae
8

�
ðNc − CFÞ

�
1þ k2⊥

q21⊥ − q22⊥
−

q21⊥k2⊥
ðq21⊥ − q22⊥Þ2

ln

�
q21⊥
q22⊥

��

þ CF

�
3q21⊥

q21⊥ − q22⊥
ln

�
q21⊥
q22⊥

�
þ 2 ln y2

��
þ ABorn

�
CF

�
−
2 − ϵ

ϵ2
ð−q22⊥Þϵ −

2

ϵ
ð−q22⊥Þϵ ln y2

þ 2π2

3
− 4þ 3q21⊥

q21⊥ − q22⊥
ln

�
q21⊥
q22⊥

�
þ 2Li2

�
1 −

q21⊥
q22⊥

��
− Nc

�
1

ϵ2
ð−k2⊥Þϵ þ

2

ϵ
ð−q21⊥Þϵ ln y1

þ 1þ 2ϵ

4ϵ2
ð−q21⊥Þϵ −

2π2

3
− 2þ ln

�
q21⊥
q22⊥

�
ln

�
k2⊥
q22⊥

�
þ 2Li2

�
1 −

q21⊥
q22⊥

���

þ Aq1
8

�
4CF

1 − 2ϵ

ϵ
ð−q22⊥Þϵ

�
þ Aq2

8

�
2CF

2 − 5ϵ

ϵ
ð−q22⊥Þϵ

��
: ð4:5Þ

A. Corrections to Regge vertices

The contribution to the mass operator in the t1 channel
comes from diagrams A2.1 and A2.1c,

A2.1 þ A2.1c ¼ 2δs:e:S ABorn ¼ 2δs:e:11Q ABorn: ð4:6Þ

The nonlogarithmic part of diagrams A2.2 and A2.2c (the
large logarithm ln y2 is present in the expression for the
diagram A2.2) contributes to the mass operator in the t2
channel, resulting in

ℜðA2.2 þ A2.2cÞjðln y2Þ0 ¼ 2δs:e:21Q ABorn ¼ 2δs:e:1γ ABorn: ð4:7Þ

The sum of the diagrams 3.3X and 3.4X contributes to the
correction δvS

A3.3 þ A3.3c þ A3.4 þ A3.4c ¼ ABornδvS: ð4:8Þ

The sum of the box-type diagrams in the t1 channel with
large logarithms only has the tree color structure (octet in
the t1 channel) and yields the gluon trajectory

ðA4.1 þ A4.2 þ A4.1c þ A4.2cÞjln y1 ¼ ABornωgðq1Þ ln y1:
ð4:9Þ

In the cross-box color structure the large logarithm ln y1
vanishes completely (according to the gluon Reggeization).
For the t2 channel expression, the large logarithm ln y2 is

reduced to the quark trajectory by a more complex way
than in the t1 channel,

ðA4.3 þ A4.3c þ A4.4 þ A3.1 þ A3.2 þ A3.5 þ A2.2Þjln y2
¼ ABornωqðq2Þ ln y2: ð4:10Þ
The squares of the large logarithms ln y2 vanish in the

following sums:

ðA4.3 þ A4.3cÞjðln y2Þ2 ¼ 0; ðA4.4 þ A3.1Þjðln y2Þ2 ¼ 0:

ð4:11Þ
The following real part of the octet (tree) color structure
gives an almost full contribution to the correction to the
Regge vertex γQR1Q2

:

ℜðA4.3 þ A4.3c þ A4.4 þ A3.1 þ A3.1c

þ A3.2 þ A3.2c þ A5 þ A4.1 þ A4.2Þj8
¼ ABorn

�
ωgðq1Þ

�
ln y1 þ

1

2
ln

k2⊥
q21⊥

�

þ ωqðq2Þ
�
ln y2 þ

1

2
ln
q22⊥
k2⊥

�
þ δv;c1Q þ δA1γ

þ δc1γ þ δcS þ δAS

�
þ Ae

8δ2Q þ Aq1
8 δc2γ − Aq2

8 δ3γ:

ð4:12Þ
Together with the mass operator contribution (4.6) and
(4.7), one obtains the full result for the vertex in question.
In the sum (4.12) there are some contributions to the Regge
vertices in the fragmentation region, i.e., ΓR1

S0S [see Eq. (3.7)]
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and ΓQ2

γ0Q [see Eq. (3.11)], and the contributions to the
Regge trajectories.
The vertex correction to the photon production vertex

comes from the following diagram group and reads

ℜðA3.5 þ A3.5cÞjðln y2Þ0 ¼ ABornδv1γ þ Aq1
8 δv2γ þ Aq2

8 δ3γ:

ð4:13Þ

It is obvious from expressions (4.12) and (4.13) that the
structure of Aq2

8 cancels in the final expression for the
Regge amplitude.

B. The cross-box color structure and the imaginary
part of the amplitude

The cross-box color structure appears only in the
diagrams 5X, 4.1X, and 4.2X. We introduce the notation
for the basic structure, which is contained in the cross-box
color structure,

Ac−b ¼ −2y1g2eTa
S0cT

b
cS
ūðk3Þtbtaq1⊥q2⊥e⊥uðk5Þ

q21⊥q22⊥
:

ð4:14Þ

The cross-box color structure is derived from the ampli-
tude, resulting in

Ajcrossbox ¼ g2ð−iaΓÞAc−bð−iπÞ
4

ϵ
ð−q21⊥Þϵ: ð4:15Þ

The imaginary part of the amplitude contains tree and
cross-box color structures,

ℑA ¼ π
ð−iaΓÞg2

ϵ
½Ncðð−q21⊥Þϵ þ ð−k2⊥ÞϵÞABorn

− 4ð−q21⊥ÞϵAc−b�: ð4:16Þ

It is easy to see that the imaginary part does not contain
large logarithms (ln y1 and ln y2) at all, as it must be
according to the Reggeization hypothesis.

C. The final result for the amplitude
and the vertex γQR1Q2

Now we present the resulting expression for one-loop
corrections to the SQ → S0Q0γ amplitude in the MRK with
OðϵÞ accuracy:

iA ¼ aΓg2ABorn

�
CFð−q22⊥Þϵ

�
−

2

ϵ2
þ 3

ϵ
− 9 −

2

ϵ
ln y2 þ

2π2

3
þ 3q21⊥
q21⊥ − q22⊥

ln

�
q21⊥
q22⊥

�

þ 2Li2

�
1 −

q21⊥
q22⊥

��
þ Ncð−q21⊥Þϵ

�
−

2

ϵ2
þ 1

ϵ

�
1

3
þ 4

9
ϵþ ns

�
1

6
−
4

9
ϵ

�
þ nf
Nc

�
2

3
−
10

9
ϵ

�

þ ln

�
q21⊥
k2⊥

�
− 2 ln y1

�
−
1

2
ln2

�
q21⊥
k2⊥

�
þ 2π2

3
− ln

�
q21⊥
q22⊥

�
ln

�
k2⊥
q22⊥

�
− 2Li2

�
1 −

q21⊥
q22⊥

���

þ 2CFaΓg2A
q1
8 þ aΓg2Ae

8

�
ðNc − CFÞ

�
1þ k2⊥

q21⊥ − q22⊥
−

q21⊥k2⊥
ðq21⊥ − q22⊥Þ2

ln

�
q21⊥
q22⊥

��

þ CF
3q21⊥

q21⊥ − q22⊥
ln

�
q21⊥
q22⊥

��
þ iπ

aΓg2

ϵ
fNcABornðð−q21⊥Þϵ þ ð−k2⊥ÞϵÞ − Ac−b4ð−q21⊥Þϵg: ð4:17Þ

It is easy to see that the coefficients before the structures
Aq1
8 and Ae

8 are finite in the limit D → 4.
Comparing the result (4.17) of the amplitude calculation

with the expression (3.24) for the real part coming from the
Reggeization hypothesis, we can present the effective
Regge vertex of the quark production in the central rapidity
region in the NLO,

γQR1Q2
¼ −g

1

kþ3
ūðk3ÞtR1ðq1⊥ þ q1⊥δ1Q þ q2⊥δ2QÞ;

where

δ1Q ¼ δs:e:11Q þ δs:e:21Q þ δv;c1Q:

The contribution from the mass operator has the form

δs:e:11Q þ δs:e:21Q ¼ Ncg2ð−iaΓÞ
2

�
ð−q21⊥Þϵ

�
ns
2

�
1

3ϵ
−
8

9

�

−
�
5

3ϵ
−
31

9

�
þ nf
Nc

�
4

3ϵ
−
20

9

��

þ ð−q22⊥Þϵ
CF

Nc

�
1

ϵ
− 1

��
: ð4:18Þ

The vertex correction withOðϵÞ accuracy acquires the form
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δv;c1Q ¼ g2ð−iaΓÞ
�
CF

�
−
ð−k2⊥Þϵ

ϵ2
þ ð−q22⊥Þϵ

ϵ

þ π2

6
− 4þ 3q21⊥

q21⊥ − q22⊥
ln

�
q21⊥
q22⊥

��

þ Nc

�ð−q21⊥Þϵ
2ϵ

þ π2

6
þ 3 −

1

2
ln2

�
q21⊥
q22⊥

��

þ ðCF − NcÞ
�
1

2
ln2

�
q22⊥
k2⊥

�
þ 2Li2

�
1 −

q21⊥
q22⊥

���
:

ð4:19Þ

The correction to the term violating helicity has the form
(which is finite in the limit ϵ → 0)

δ2Q ¼ g2ð−iaΓÞ
�
ðNc − CFÞ

�
1þ k2⊥

q21⊥ − q22⊥

−
q21⊥k2⊥

ðq21⊥ − q22⊥Þ2
ln

�
q21⊥
q22⊥

��

þ CF
3q21⊥

q21⊥ − q22⊥
ln

�
q21⊥
q22⊥

��
þOðϵÞ: ð4:20Þ

For the N ¼ 4 SYM case (all particles are in the adjoint
color representation) one can obtain a very simple result for
the vertex,

γQðSYMÞ
R1Q2

¼ −
g
kþ3

ūðk3ÞTR1

QQ2

�
q1⊥ þ g2Ncð−iaΓÞ

×

�
q1⊥

�
3

2ϵ

�
ð−q21⊥Þϵ þ ð−q22⊥Þϵ

�

−
ð−k2⊥Þϵ

ϵ2
−
7

2
þ π2

3
−
1

2
ln2

q21⊥
q22⊥

�

þ ðq1⊥ þ q2⊥Þ
3q21⊥

q21⊥ − q22⊥
ln
q21⊥
q22⊥

��
: ð4:21Þ

Here we have used the following substitutions: CF → Nc,
nf
Nc

→ 4, ns → 6 − 2ϵ (in the dimensional reduction
scheme).

V. CONCLUSION

Our paper is devoted to the effective vertex γQR1Q2

calculation in the next-to-leading order. The vertex of

the massless quark Q production in the Reggeon (quark
Q2 and gluon R1) collision in the t channels was the last
unknown NLO vertex in the central rapidity region to
formulate the quark Reggeization hypothesis within the
next-to-leading-logarithmic approximation. Now all of the
components are ready to perform the hypothesis proof
using the bootstrap approach [6], which was used in the
gluon Reggeization proof in both QCD [9–11] and SYM
[12]. The simplicity of the SYM vertex (4.21) gives us an
additional tool for the SYM property investigations by use
of the multi-Regge amplitude form, as was the case for the
gluon Reggeization and Bern-Dixon-Smirnov ansatz [24]
in SYM.
In principle, there are some different methods for the

effective vertex calculation, with the t-channel unitarity
method being the most popular among them. However, in
our work we used the straightforward method of the one-
loop amplitude calculation equipped with the computer
algebra automatization methods based for it on the
MATHEMATICA system and LiteRed package [13]. This
package was used to reduce integrals emerging in the
one-loop amplitude to the basis of master integrals. The
master integrals in our problem are of known (massless)
pentagon and box types [14]. Our method allows us to
perform the cross-check by obtaining other elements of the
Regge amplitude (quark and gluon trajectories and known
effective vertices) as a byproduct.
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APPENDIX

1. Integral calculations and notation

We reduce all expressions in Fig. 2 to scalar products and
basic helicity structures. There are two vectors that are not
included in the denominators of the pentagon diagram type
in the amplitude. It means that there will be tensor integrals
with up to two indices. There is only one topology of the
integral in our problem:

J12345ðn1; n2; n3; n4; n5Þ ¼ J12345ð~nÞ ¼
Z

dDl
ð2πÞD

1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

;

D1 ¼ l2; D2 ¼ ðlþ k1Þ2; D3 ¼ ðlþ k1 þ k2Þ2;
D4 ¼ ðlþ k1 þ k2 þ k3Þ2; D5 ¼ ðlþ k1 þ k2 þ k3 þ k4Þ2: ðA1Þ

There are only ten master integrals in this topology that have the form J12345ð~niÞ, i ¼ 1;…; 10, where ~ni are of the form
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~n1 ¼ ð1; 1; 1; 1; 1Þ; ~n2 ¼ ð1; 1; 1; 1; 0Þ; ~n3 ¼ ð1; 1; 1; 0; 1Þ; ~n4 ¼ ð1; 1; 0; 1; 1Þ; ~n5 ¼ ð1; 0; 1; 1; 1Þ;
~n6 ¼ ð1; 0; 1; 0; 0Þ; ~n7 ¼ ð1; 0; 0; 1; 0Þ; ~n8 ¼ ð0; 1; 0; 1; 0Þ; ~n9 ¼ ð0; 1; 0; 0; 1Þ; ~n10 ¼ ð0; 0; 1; 0; 1Þ;

and one has four integral types with the same topology which have different permutations of the external momenta:

D1 D2 D3 D4 D5

J12345 l2 ðlþ k1Þ2 ðlþ k1 þ k2Þ2 ðlþ k1 þ k2 þ k3Þ2 ðlþ k1 þ k2 þ k3 þ k4Þ2
J21345 l2 ðlþ k2Þ2 ðlþ k1 þ k2Þ2 ðlþ k1 þ k2 þ k3Þ2 ðlþ k1 þ k2 þ k3 þ k4Þ2
J12435 l2 ðlþ k1Þ2 ðlþ k1 þ k2Þ2 ðlþ k1 þ k2 þ k4Þ2 ðlþ k1 þ k2 þ k3 þ k4Þ2
J41235 l2 ðlþ k4Þ2 ðlþ k1 þ k4Þ2 ðlþ k1 þ k2 þ k4Þ2 ðlþ k1 þ k2 þ k3 þ k4Þ2

There are only three different types of master integrals. The
first one is a pentagon with massless external lines [for
example, J12345ð~n1Þ]. The second one is a box with one
external line with mass [for example, J12345ð~n2Þ]. And the
third type is a bubble [for example, J12345ð~n6Þ].

The following table shows the integrals used in the
diagrams in Fig. 2.

Integrals Diagrams

J12345 d5, d4.1, d4.2, d4.4, d3:X, d2:X
J21345 d5c, d4.1c, d4.2c
J12435 d4.3
J41235 d4.3c

2. Tensor momentum integrals

We introduce the following notation I½:� for various
integrands containing the argument of the square bracket in
the numerator with l being the loop momentum. For
instance,

I½lμ�≡
Z

dDl
ð2πÞD

lμ

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

: ðA2Þ

An integral with an external index μ is expressed as a linear
combination of the incoming momenta:

I½lμ� ¼
X
i

kμi I½ai�; ðA3Þ

where ai are scalar polynomial functions of lμ. It is easy to
express the integral with an external index as a linear
combination of integrals without external indices. Since we
have four independent vectors ki (that are in the four-
dimensional subspace), the matrix mij is invertible. It is
easy to find that eventually

I½lμ� ¼
X
ij

kμi m
−1
ij I½kj · l�; ki · kj ¼ mij; ðA4Þ

where I½kj · l� can be expressed in terms of integrals with
other powers of denominators.

The tensor integral with two indices can be expressed
through the metric tensor subspace D − 4 and through
momenta entering the integral:

I½lμlν� ¼ gμνD−4I½A� þ
X
i;j;r;n

m−1
ij m

−1
rn k

μ
i k

ν
rI½ðkj · lÞðkn · lÞ�;

gμνD−4kiμ ¼ 0; gμνD−4gμν ¼ D − 4: ðA5Þ

The coefficient before the metric tensor can be easily
calculated:

I½A� ¼ 1

D − 4

�
I½l2� −

X
ij

m−1
ij I½ðl · kiÞðl · kjÞ�

�
; ðA6Þ

I½lμlν� ¼ gμν −m−1
ij k

μ
i k

ν
j

D − 4
ðI½l2� −m−1

rn I½ðl · krÞðl · knÞ�Þ
þm−1

ij m
−1
rn k

μ
i k

ν
rI½ðkj · lÞðkn · lÞ�: ðA7Þ

The integrals with three external Lorentz indices will not
arise in our problem. A loop momentum convoluted with
the momentum included in the denominator is easily
expressed in terms of a linear combination of the denom-
inators. In our calculation integrals with two indices appear
only in the expression of I½ðe · lÞl �.

3. Master integrals

We work in the dimensional regularization with
D ¼ 4þ 2ϵ. Hereafter we use the notation for the common
multiplier emerging in integral calculations,

aΓ ¼ i
Γð3 − D

2
ÞΓ2ðD

2
− 1Þ

ð4πÞD2ΓðD − 3Þ : ðA8Þ

In the master integral expressions [14] we assume all the
invariants to be negative. To analytically continue these
expressions to the physical region of our process (see
Fig. 1) it is necessary to make a prescription ðki þ kjÞ2 ¼
sij → sij þ i0 for the invariants involved.
There are three principal master integrals in our

calculation [14]:
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J12345ð1; 0; 1; 0; 0Þ ¼
Z

dDl
ð2πÞD

1

l2ðlþ k1 þ k2Þ2
¼ −aΓ

ð−t1Þϵ
ϵð1þ 2ϵÞ ; t1 < 0;

J12345ð1; 1; 1; 1; 0Þ ¼
Z

dDl
ð2πÞD

1

l2ðlþ k1Þ2ðlþ k1 þ k2Þ2ðlþ k1 þ k2 þ k3Þ2

¼ 2aΓ
ð−t2Þ−ϵ

ð−t1Þ1−ϵð−s1Þ1−ϵ
�
1

ϵ2
þ Li2

�
1 −

t1
t2

�
þ Li2

�
1 −

s1
t2

�
−
π2

6

�
þOðϵÞ;

s1 < 0; t1 < 0; t2 < 0;

J12345ð1; 1; 1; 1; 1Þ ¼
Z

dDl
ð2πÞD

1

l2ðlþ k1Þ2ðlþ k1 þ k2Þ2ðlþ k1 þ k2 þ k3Þ2ðlþ k1 þ k2 þ k3 þ k4Þ2
¼

− aΓ

� ð−sÞ−ϵð−t1Þ−ϵ
ð−s1Þ1−ϵð−s2Þ1−ϵð−t2Þ1−ϵ

�
1

ϵ2
þ 2Li2

�
1 −

s1
s

�
þ 2Li2

�
1 −

t2
t1

�
−
π2

6

�

þ ð−t1Þ−ϵð−s1Þ−ϵ
ð−s2Þ1−ϵð−t2Þ1−ϵð−sÞ1−ϵ

�
1

ϵ2
þ 2Li2

�
1 −

s2
t1

�
þ 2Li2

�
1 −

s
s1

�
−
π2

6

�

þ ð−s1Þ−ϵð−s2Þ−ϵ
ð−t2Þ1−ϵð−sÞ1−ϵð−t1Þ1−ϵ

�
1

ϵ2
þ 2Li2

�
1 −

t2
s1

�
þ 2Li2

�
1 −

t1
s2

�
−
π2

6

�

þ ð−s2Þ−ϵð−t2Þ−ϵ
ð−sÞ1−ϵð−t1Þ1−ϵð−s1Þ1−ϵ

�
1

ϵ2
þ 2Li2

�
1 −

s
s2

�
þ 2Li2

�
1 −

s1
t2

�
−
π2

6

�

þ ð−t2Þ−ϵð−sÞ−ϵ
ð−t1Þ1−ϵð−s1Þ1−ϵð−s2Þ1−ϵ

�
1

ϵ2
þ 2Li2

�
1 −

t1
t2

�
þ 2Li2

�
1 −

s2
s

�
−
π2

6

��
þOðϵÞ;

s < 0; s1 < 0; s2 < 0; t1 < 0; t2 < 0;

Here we use the notations (2.1) for kinematic invariants.
In the analytical continuation to the physical domain in polylogarithmic functions, one needs to choose the correct branch

using the following properties:

Li2ðx� i0Þ ¼ π2

3
−
1

2
ln2x − Li2ðx−1Þ � iπ ln x; x > 1:

Given that σ1, σ2 are the signs of s1, s2, for the case σ1σ2 ¼ −1 one has

Li2

�
1 −

s1 þ i0
s2 þ i0

�
¼ π2

3
−
1

2
ln2

�
1 −

s1
s2

�
− Li2

�
1

1 − s1
s2

�
þ iσ1π ln

�
1 −

s1
s2

�
:
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