
Self-consistent solitons for vacuum decay in radiatively generated potentials

Björn Garbrecht1,* and Peter Millington1,2,†
1Physik Department T70, Technische Universität München, James-Franck-Straße,

85748 Garching, Germany
2School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

(Received 7 October 2015; published 21 December 2015)

We use a Green’s function approach in order to develop a method for calculating the tunneling rate
between radiatively generated nondegenerate vacua. We apply this to a model that exhibits spontaneous
symmetry breaking via the Coleman-Weinberg mechanism, where we determine the self-consistent
tunneling configuration and illustrate the impact of gradient effects that arise from accounting for the
underlying space-time inhomogeneity.
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I. INTRODUCTION

State-of-the-art calculations [1–5] suggest that the
electroweak vacuum of the Standard Model suffers an
instability at a scale of around 1011 GeV, with the lifetime
of the electroweak vacuum lying in the so-called metastable
region and being longer than the current age of the Universe
(for a recent overview, see Ref. [6]). The origin of this
instability is the generation of a high-scale global minimum
in the Higgs potential through radiative effects due to the
renormalization-group running of the Higgs quartic self-
coupling [7–10]. Specifically, when one applies the stan-
dard renormalization procedure, this coupling is driven
negative by top-quark loops, with the dominant experi-
mental uncertainty originating from the current measure-
ment of the top mass [11,12]. The latter effect has, however,
been challenged recently [13] in the light of contradictory
observations from lattice simulations of Higgs-Yukawa
models [14–16], where the full effective potential is found
to remain stable so long as the ultraviolet cutoff is kept
finite. Moreover, the presence of new physics at high scales
has been shown to have a dramatic impact upon the
tunneling rate [17–22].
Often, the tunneling rate is determined from the effective

potential [23,24] calculated assuming a homogeneous field
configuration, which is subsequently promoted to an
inhomogeneous field configuration [25,26]. Thus, the
impact of the space-time dependence of the underlying
tunneling configuration is not fully accounted for.
In light of the aforementioned theoretical and phenom-

enological questions, it is timely to consider approaches to
the calculation of tunneling rates from false vacua that can
consistently account for radiative effects in the inhomo-
geneous solitonic background of the tunneling configura-
tion. This is all the more relevant when the global minimum
of the potential emerges entirely through radiative effects.

In this article, we apply the Green’s function method
developed in Ref. [27] to the calculation of the one-loop
tunneling rate in a model with spontaneous symmetry
breaking (SSB) that arises purely radiatively via the
Coleman-Weinberg mechanism [28]. Green’s function
methods have previously been applied to determine self-
consistent bounce solutions in the Hartree-Fock approxi-
mation of the pure λΦ4 theory [29–32]. This article
represents a first exercise in the use of the Green’s function
method in Ref. [27] for dealing with potentials that are
significantly modified by radiative effects, the aim being to
understand the parametric dependencies of the tunneling
rate and the relative importance of gradient effects. The
latter effects are anticipated to be small, contributing
corrections at an order comparable to two-loop effects
[33], and we present herein a numerical confirmation of
this observation.
In the present analysis, we will consider the importance

of accounting for the aforementioned space-time depend-
ence of the tunneling configuration in the case of sponta-
neous decay of an initially homogeneous false vacuum
state. This is in contrast to induced transitions where an
inhomogeneous initial state acts as a potential seed for
vacuum decay, as has been studied for the case of black
holes [34], for topological defects [35–39] and, in the
context of the Standard Model, for impurities in the Higgs
vacuum [40]. Such seeds may lead to an enhanced
decay rate.
The remainder of this article is organized as follows.

In Sec. II, we describe the renormalized one-loop effective
potential of the model under consideration. Additional
technical details are provided in Appendix A. In Sec. III,
we outline the calculation of the tunneling rate in this
model, making comparisons with the equivalent calcu-
lation in the case of tree-level vacuum instability. Details
of the method used to calculate the fluctuation determi-
nant are given in Appendix B. In Sec. IV, we describe
the numerical procedure employed for determining the
self-consistent tunneling configuration, the results of
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which are presented in Sec. V. Our conclusions and
potential future directions are given in Sec. VI.

II. MODEL

We consider a scalar model with the following Euclidean
Lagrangian density:

L ¼ 1

2
ð∂μΦÞ2 þ

1

2

XN
i¼1

ð∂μXiÞ2 þ U; ð1Þ

with the tree-level potential

U ¼ λ

4
Φ2

XN
i¼1

X2
i þ

κ

4

XN
i;j¼1

X2
i X

2
j þ

g
3!
Φ3 þ U0; ð2Þ

comprising a real scalar field Φx ≡ ΦðxÞ and N real scalar
fields Xi;x ≡ XiðxÞ, i ¼ 1; 2;…; N. The small cubic cou-
pling g, of mass dimension 1, has been added by hand to
break the Z2 symmetry, and U0 is a constant.
The classical scale invariance of this model (which is

present in the limit g → 0) is broken by radiative effects at
the one-loop level. Logarithmic infrared divergences require
the introduction of a dimensionful renormalization scale M
that is turned into a symmetry-breaking scale by the well-
known mechanism of dimensional transmutation [28].
The field Φ develops a vacuum expectation value

φ ¼ hΦi at χi ¼ hXii ¼ 0. In the direction χi ¼ hXii ¼ 0,
the renormalized effective potential of the homogeneous
field configuration (see Appendix A) is given by

UR
effðφÞ ¼

�
λ

16π

�
2

φ4

�
N

�
ln

3φ2

ρM2
−
3

2

�
− F

�

þ g
6
φ3 þ U0: ð3Þ

Here, ρ ¼ 6κ=λ is the ratio of the couplings,

F≡ ln 3þ 8

ð1 − ρÞ2
�
3þ ρþ 1þ 3ρ

1 − ρ
ln ρ

�
; ð4Þ

and we have neglected terms of order g2. Note that the limit
ρ → 1 (λ → 6κ) is well defined, with F → ln 3þ 4=3.
For g ≪ 32π2v=ðλ2NÞ, the minima of the effective potential
lie at

φ ≈�v ¼ �
ffiffiffiffiffiffiffiffiffi
ρM2

3

r
exp

�
1

2
þ F
2N

�
; ð5Þ

depending only on the ratio ρ of the couplings. The constant
shift in the potential is fixed to be U0 ¼ −gv3=6, such that
the false vacuum has zero energy density.
We note from Eq. (5) that the value of v is of order M as

long as ρ remains of order one. Consequently, the logarithm

in Eq. (3) will be of order one as well. This is in contrast
to the well-known case of a single field with quartic self-
interactions, where the corresponding logarithm turns out to
be enhanced by an inverse power of the coupling constant,
thereby invalidating perturbation theory [28]. Of course,
the model specified in Eqs. (1) and (2) represents only one
of many possibilities of implementing radiative symmetry
breaking in a perturbatively self-consistent manner.
In Fig. 1 and in order to illustrate that the global minima

of the potential do indeed lie at χi ¼ hXii ¼ 0, we plot the
real part of the effective potential in the unitary gauge
(χi ¼ 0, i ≠ 1) for g → 0, λ ¼ 0.1, κ ¼ 0.05, M ¼ 1 and
N ¼ 4. There also exist two shallow local minima along
φ ¼ 0, within which the field χ1 develops a nonzero
vacuum expectation value. In addition, we note that, for
χ > φ and φ ≠ 0, the effective potential acquires an
imaginary part as a result of one of the mass eigenvalues
(see Appendix A) becoming tachyonic. Nevertheless, at
χ1 ¼ 0, the effective potential is real valued and takes the
form shown in Fig. 2. We will not discuss the additional
local minima or the tachyonic modes further, since they are
of little relevance to the forthcoming analysis.
Hereafter, we will fix the ratio κ=λ ¼ 1=2, in which case

ρ ¼ 3. The effective potential then takes the form

UR
effðφÞ ¼

λ2

162π2
φ4

�
N

�
ln

φ2

M2
−
3

2

�
− F

�
; ð6Þ

with the constant F simplifying to

F ¼ 3ð4–3 ln 3Þ ≈ 2: ð7Þ

The minima of the potential now lie at

FIG. 1. The real part of the renormalized effective potential in
the unitary gauge (χi ¼ 0, i ≠ 1), plotted as a function of the
vacuum expectation values φ and χ1 for the parameters g → 0,
λ ¼ 0.1, κ ¼ 0.05, M ¼ 1 and N ¼ 4.
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�v ¼ �Me
1
2
þ F

2N ≈�Me
1
2; ð8Þ

where the approximation holds for N ≫ 2. Thus, for large
N, the positions of the minima are constant with respect to
both the couplings and the number of X fields.

III. TUNNELING RATE

Before proceeding to discuss the scale-invariant model
described in the preceding section, it is helpful first to
review the most pertinent details of the calculation of the
tunneling rate in a model that exhibits nondegenerate vacua
at tree level. The archetypal example is the λΦ4 theory with
tachyonic mass term (see e.g. Refs. [41,42]), having the
Lagrangian

L ¼ 1

2
ð∂μΦÞ2 −

1

2
μ2Φ2 þ λ

4!
Φ4 þ g

3!
Φ3 þU0; ð9Þ

where μ2 > 0. For g2=μ2 ≪ 8λ=3, the potential has non-
degenerate minima at

φ ≈�v ¼ �
ffiffiffiffiffiffiffi
6μ2

λ

r
: ð10Þ

The classical equation of motion for this theory is

δS½Φ�
δΦx

����
Φ¼φ

¼ −∂2φ − μ2φþ λ

6
φ3 ¼ 0; ð11Þ

which admits a solution with boundary conditions
φjx4→�∞ ¼ þv, _φjx4¼0 ¼ 0, and φjjxj→∞ ¼ þv, known as
the “bounce.” In four-dimensional spherical coordinates,
these boundary conditions become φjr→∞ ¼ þv and
_φjr¼0 ¼ 0, and the solution is the kink

φ ¼ v tanh γðr − RÞ; ð12Þ
where γ ¼ μ=2. In the language of Langer’s theory of
first-order phase transitions [43], the bounce corresponds to

a saddle point of the free energy, which takes the system
from an initially homogeneous state of false vacuum
(φ ¼ þv) to another that is infinitesimally close to the
energetically more favorable and nominally inhomo-
geneous state in which a critical bubble of true vacuum
(φ ¼ −v) is nucleated. The radius R of the bubble is then
found by maximizing the free energy, or equivalently,
maximizing the bounce action Bð0Þ ≡ S½φ� with respect
to this radius.
The tunneling rate is calculated by performing a saddle-

point evaluation of the partition function

Z½0� ¼
Z

½dΦ�e−S½Φ�; ð13Þ

expanded around the bounce φ. This yields an integral over
quadratic fluctuations, whose eigenspectrum is that of the
fluctuation operator

G−1
xy ðφÞ ¼

δ2S½Φ�
δΦxδΦy

����
Φ¼φ

¼ δð4Þxy

�
−∂2 − μ2 þ λ

2
φ2

�
; ð14Þ

where δð4Þxy ≡ δð4Þðx − yÞ is the Dirac delta function. The
spectrum of this operator is, however, not positive definite.
Specifically, it contains one negative eigenvalue

λ0 ¼
1

Bð0Þ
δ2Bð0Þ

δR2
¼ −

3

R2
; ð15Þ

corresponding to dilatations of the bounce, and four
zero eigenvalues, resulting from translational invariance.
Consequently, the functional integral in Eq. (13) is ill
defined. In order to proceed, the integral over the zero
modes is traded for an integral over the collective coor-
dinates of the bounce, and the integral over the negative
mode is performed by the method of steepest descent,
giving rise to a nonzero imaginary part. It is this imaginary
part that is related to the tunneling rate per unit volume via

Γ=V ¼ 2jImZ½0�j=ðVTÞ; ð16Þ

where VT is the four-volume of the bounce.
Now, in order to determine the tunneling rate consis-

tently when a bounce solution arises only as a result of
radiative corrections, we consider the two-particle irreduc-
ible (2PI) Cornwall-Jackiw-Tomboulis effective action
[24], given by (ℏ ¼ 1)

Γ½ψ;Δ� ¼ − lnZ½J;K� þ JTxψx

þ ðψT
xKxyψy − KxyΔT

xyÞ: ð17Þ

Throughout this article, we employ the DeWitt notation
in which repeated continuous indices are integrated over.
The partition function is given by

FIG. 2. The effective potential in the unitary gauge, plotted as a
function of the vacuum expectation value φ at χ1 ¼ 0 and for the
parameters g → 0, λ ¼ 0.1, κ ¼ 0.05, M ¼ 1 and N ¼ 4.
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Z½J;K� ¼
Z

½dΨ� exp½−S½Ψ� þ JTxΨx þΨT
xKxyΨ�: ð18Þ

In the above, Ψ and ψ are respectively the field multiplet
and the vector of one-point functions

ΨT ¼
�
Φ XT

�
; XT ¼

�
X1 X2 � � � XN

�
;

ð19aÞ

ψT ¼
�
ϕ χ T

�
; χ T ¼

�
χ1 χ2 � � � χN

�
:

ð19bÞ

In addition, Jx is an (N þ 1)-dimensional vector of local
sources, and Kxy and Δxy are ðN þ 1Þ × ðN þ 1Þ matrices
of sources and two-point functions, respectively. In what
follows, we will indicate the elements of Jx and Kxy by
superscripts of the fields Φ and X.
We evaluate the 2PI effective action using the approach

presented in Ref. [44]. Therein, rather than eliminating the
sources Jx and Kxy for the one-point functions ψx and two-
point functionsΔxy, as in the standard approach, we instead
express the effective action entirely in terms of the physical
one-point function φx of the field Φx (since hχii ¼ 0) and
the physical two-point functions Gxy. The physical one-
point function φx is the solution to the quantum equation of
motion

δΓ½ψ;Δ�
δϕx

����
φ;G

¼ δS½ψ�
δϕx

����
ϕ¼φ
χi¼0

− JΦx −
Z
y
KΦΦ

xy φy ¼ 0: ð20Þ

Here, the subscript “φ, G” indicates that the functional
derivative of the effective action is to be evaluated at the
configurations ϕ ¼ φ and Δ ¼ G. The physical two-point
functions Gxy are the solutions to

G−1
xy ¼ G−1

xy − Kxy; ð21Þ

where

G−1
xy ¼ δ2S½ψ�

δψT
xδψy

����
ϕ¼φ
χi¼0

: ð22Þ

In this alternative evaluation of the effective action, the
physical limit is that in which the sources are necessarily
nonvanishing. This ensures that Eq. (20) is self-consistent
and that Eq. (21) corresponds to the usual 2PI Schwinger-
Dyson equation. Specifically, we require

JΦx ≡ JΦx ½ψ;Δ�

¼
�
−
δΓ1½ψ;Δ�

δϕx
þ 2

δΓ2½ψ;Δ�
δGΦΦ

xy
ϕy

�
φ;G

; ð23aÞ

KΦΦ
xy ≡ KΦΦ

xy ½ψ;Δ� ¼ −2
δΓ2½ψ;Δ�
δΔΦΦ

xy

����
φ;G

; ð23bÞ

where Γ1½φ;G� and Γ2½φ;G� are the one- and two-loop
irreducible corrections to the effective action. As a result
and in stark contrast to the standard treatment of the 2PI
effective action, the saddle-point evaluation of the path
integral in Eq. (18) is performed along the quantum
trajectory of the physical one- and two-point functions φ
and G. Most importantly, this means that we must perform
the Gaussian integral with the kernel G−1, that is, the
quantum fluctuation operator. The significance of this is
as follows. When false vacua emerge only as a result of
radiative corrections, the classical fluctuation operator G−1

has a positive-definite spectrum. On the other hand, the
quantum fluctuation operator G−1 does not have a positive-
definite spectrum, containing the expected negative and
zero eigenvalues. Thus, in this alternative approach, the
evaluation of the functional integral proceeds in complete
analogy to the case where the SSB potential arises at tree
level. The tunneling rate per unit volume is related to the
imaginary part of the effective action via

Γ=V ¼ 2jIme−Γ½φ;G�j=ðVTÞ: ð24Þ

At two loops, there are three diagrammatic contributions
to the 2PI effective action. These are shown in Fig. 3. The
one-loop diagram arising from functionally differentiating
Fig. 3(a) with respect to the Φ Green’s function appears in
the equation of motion for the bounce. It is this diagram that
is responsible for generating the global minimum of the
potential and thereby triggering SSB. The one-loop Φ self-
energies that arise from Figs. 3(a) and 3(b) appear in the
Klein-Gordon operator of the Φ field. For the positive-
definite modes, these loop corrections are higher order and
can safely be neglected. On the other hand, these diagrams
cannot be neglected for the nonpositive modes, since they
provide corrections from fluctuations along directions
where the effective action is either minimized or flat. As
a result, by well-known arguments [42], the path integral

(a)
(b)

(c)

FIG. 3. The three two-loop diagrams: (a) and (b) areOðλNÞ and
(c) is OðκN2Þ. Solid lines correspond to Φ Green’s functions and
dashed lines to X Green’s functions; insertions of the background
field φ are marked with a cross.
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cannot be evaluated as a Gaussian in a straightforward
manner. The contribution of the zero mode is then
enhanced by the (macroscopic) four-volume of the bounce
VT, and the negative mode contributes an order-one
correction to the imaginary part of the effective action.
It is these diagrams that are responsible for introducing
negative and zero eigenvalues to the spectrum of the Φ
fluctuation operator. Thus, these loop corrections must be
accounted for in the analysis of the negative semidefinite
modes. Finally, the one-loop X self-energies obtained by
functionally differentiating Figs. 3(a)–3(c) appear in the
Klein-Gordon operator of the X field. There, the X self-
energies are subleading compared to the contribution from
the tree-level potential and can also safely be neglected.
Hence, we may consistently consider the equation of
motion for the bounce, the X field Green’s function and
the positive-definite modes of the Φ fluctuation operator at
the 1PI level, employing the 2PI approach only to get the
leading behavior of the negative and zero modes. This
truncation has the advantage that the Φ Green’s function
conveniently decouples from the problem, as we will see
explicitly in what follows.
The equation of motion for the bounce takes the form

−∂2φþ ΠðφÞφ ¼ 0; ð25Þ

where

ΠxðφÞ ¼
λN
2

SxxðφÞ ð26Þ

is the one-loop tadpole diagram, which can be obtained by
functionally differentiating Fig. 3(a) with respect to the Φ
Green’s function. In four-dimensional spherical coordi-
nates, the bounce is then the solution to

−
d2φ
dr2

−
3

r
dφ
dr

þ ΠðφÞφ ¼ 0; ð27Þ

satisfying the boundary conditions φjr→∞ ¼ þv and
dφ=drjr¼0 ¼ 0. The X Green’s function is the solution
to the inhomogeneous Klein-Gordon equation

�
−∂2 þ λ

2
φ2

�
SxyðφÞ ¼ δð4Þxy : ð28Þ

Finally, the effective action takes the form

Γ½φ;G� ¼ Bð0Þ½φ� þ Bð1Þ½φ� þ iπ
2

−
1

2
ln

�
j4λ0j−1ðVTÞ2

�
2πN 2

�−4
ð4γ2Þ5

�
: ð29Þ

Here,

Bð0Þ½φ� ¼ S½Φ�jΦ¼0
Xi¼0

¼
Z
x

�
1

2
ð∂μφÞ2 þ

g
3!
ðφ3 − v3Þ

�
ð30Þ

is the classical bounce action, and

Bð1Þ½φ� ¼ 1

2
trð5Þ½ln detijG−1ðφÞ − ln detijG−1ðvÞ� ð31Þ

contains the one-loop corrections. The latter have been
normalized to those of the theory evaluated in the homo-
geneous false vacuum, so that the false vacuum has zero
energy density also at the one-loop level. In Eq. (31), detij
denotes the determinant in field space, and the superscript
“(5)” indicates that the trace does not include the negative
and zero eigenmodes of the Φ fluctuation operator. The
imaginary part and the final logarithm in Eq. (29) arise
from dealing with the negative-semidefinite eigenvalues.
Specifically, λ0 is the negative eigenvalue, and the factor
of ð2πN 2Þ−4 results from the normalization of the zero
modes. These prefactors will be discussed in Sec. IV B [see
Eqs. (47) and (49)]. The four-volume factors ðVTÞ2 arise
from integrating over the collective coordinates of the
bounce, and the factor of ð4γ2Þ5 is included for normali-
zation [45]. As already identified, the 2PI approach is
needed only for the negative-semidefinite modes of the Φ
fluctuation operator, in which case the one-loop correction
simplifies to

Bð1Þ½φ� ¼ N
2
tr½ln S−1ðφÞ − ln S−1ðvÞ�: ð32Þ

Thus, our goal is straightforward: calculate the self-
consistent form of the 1PI X field Green’s function in the
background of the quantum bounce φ via the coupled
system in Eqs. (25) and (28). We remark again that the Φ
Green’s function conveniently decouples from the problem.

IV. NUMERICAL PROCEDURE

In order to simplify matters, we employ the approxima-
tion scheme outlined in Ref. [27]:

(i) Thin wall—when the minima are quasidegenerate
(i.e. the cubic coupling g is chosen to be sufficiently
small) and, as a result, the radius of the bubble R is
much larger than the width of the bubble wall, we
may neglect the damping terms [ð−3=rÞd=dr] in
Eqs. (27) and (28).

(ii) Planar wall—when R is large, we may approximate
the sum over discrete angular momenta jðjþ 2Þℏ by
an integral over a continuous momentum k. In so
doing, we replace the hyperspherical coordinates
(r, θ, ϕ, ψ) by the Cartesian coordinates (z, z∥),
where z is oriented normal to the bubble wall and
the three-vector z∥ lies within the hyperplane of the
bubble wall.

SELF-CONSISTENT SOLITONS FOR VACUUM DECAY IN … PHYSICAL REVIEW D 92, 125022 (2015)

125022-5



Next, we make the change of variables

u ¼ tanh γz ð33Þ

in order to map the infinite domain of the variable z to
the finite interval ½−1;þ1�. The mass parameter γ > 0 is
defined from the second derivative of the Coleman-
Weinberg effective potential, evaluated in the homogeneous
false vacuum. Specifically,

γ2 ¼ UR00
eff ðvÞ=4 ¼ λ2N

128π2
v2; ð34Þ

cf. the equivalent definition of γ in the case of the λΦ4

theory with tachyonic mass [27].
If the profile of the bubble wall were a pure hyperbolic

tangent, u would in fact be the normalized bounce φ=v. As
we will see, for the model under consideration, the profile
of the bubble wall differs only marginally from this form.
Thus, for a fixed scale M and ratio of couplings ρ, the
gradients of the bounce in the vicinity of the bubble wall
will scale like λ

ffiffiffiffi
N

p
for N ≫ 2.

A. Iterative procedure

In order to find the self-consistent solution for the
bounce and X field Green’s function from Eqs. (25)
and (28), we employ an iterative procedure. This proceeds
as follows:
(1) We calculate a first approximation to the bounce by

promoting the homogeneous field configuration,
appearing in the Coleman-Weinberg effective po-
tential, to a space-time-dependent configuration.
Hence, in the physical coordinates (z, z∥), the
equation of motion for the bounce in this first
iteration takes the form

−∂2
zφz þUR0

effðφzÞ ¼ 0: ð35Þ

(2) We then insert the solution for the bounce into
Eq. (28) and solve for the X field Green’s function.

(3) Next, we take the coincident part of the X Green’s
function to calculate the tadpole correction in
Eq. (26), renormalizing in the homogeneous false
vacuum.

(4) The tadpole correction can now be inserted into
Eq. (25), and we solve again for the bounce, iterating
over steps 2–4 until the results have converged.

B. Bounce action

In order to determine the bounce action and the negative
eigenvalue, we need first to find the bubble radius R. This is
done by minimizing the energy difference between the
latent heat of the bubble and its surface tension. Isolating
these contributions, we may write the full bounce action in
the form

B ¼ Bð0Þ þ Bð1Þ ¼ Bsurface þ Bvacuum: ð36Þ

The surface tension scales like R3 and arises from the
kinetic term and fluctuation determinant,

Bsurface ¼ 2π2R3

�Z
Rþϵ

R−ϵ
dz

1

2

�
dφ
dz

�
2

þ B̄ð1Þ
�
; ð37Þ

where

B̄ð1Þ ¼ Bð1Þ

2π2R3
: ð38Þ

On the other hand, the latent heat scales like R4. It arises
solely from the Z2-breaking term and is given by

Bvacuum ¼ 2π2
Z

R−ϵ

0

dr r3Uð−vÞ: ð39Þ

Since Uð−vÞ ¼ −gv3=3, we obtain the analytic result

Bvacuum ¼ −
π2R4gv3

6
: ð40Þ

Extremizing the action with respect to R, we find

R ¼ 9

gv3

�Z
Rþϵ

R−ϵ
dz

1

2

�
dφ
dz

�
2

þ B̄ð1Þ
�
: ð41Þ

Note that we have neglected contributions arising from
the variation of φ and B̄ð1Þ with respect to R, which are, in
the thin-wall approximation, subleading compared to the
variations of the area and volume factors.
The integral over the kinetic term can be evaluated

numerically by writing

Z
Rþϵ

R−ϵ
dz

1

2

�
dφ
dz

�
2

¼ 1

2

Z þv

−v
dφ

dφ
dz

¼ γ

2

Z þ1

−1
duð1 − u2Þ

�
dφ
du

�
2

: ð42Þ

In order to obtain B̄ð1Þ, we employ Baacke and Junker’s
method [46–48] (see also Refs. [49,50]) for calculating
the fluctuation determinant from direct integration of the
Green’s function (see Appendix B). By this means, we may
express

B̄ð1Þ½φ� ¼ −
N
2

Z þ1

−1

du
γð1 − u2Þ

×
Z

Λ

0

dk
Z

Λ2

0

ds
k2

2π2
~Sðu; k2 þ s;φÞ; ð43Þ

where s ∈ R is an auxiliary parameter and we have defined
the normalized Green’s function
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~Sðu; k2 þ s;φÞ ¼ Sðu; k2 þ s;φÞ − Sð1; k2 þ s;φÞ: ð44Þ

The dependence on the UV cutoff Λ is removed by the
addition of the normalized counterterm

δBð1Þ ¼
Z

d4x
�
1

2!
δm2

φðφ2 − v2Þ þ 1

4!
δαðφ4 − v4Þ

�
; ð45Þ

where the mass and coupling counterterms δm2
φ and δα are

given in Appendix A.
Substituting Eq. (41) back into the expression for the

bounce action, we may show that

B ¼ π2gv3

18
R4: ð46Þ

In addition, the negative eigenvalue is given by

λ0 ¼ −
3

R2
; ð47Þ

in complete analogy to the tree-level case. The latter fact
can readily be verified by differentiating the equation of
motion for the bounce with respect to r, yielding

�
−

d2

dr2
−
3

r
d
dr

þ Πr

�
dφ
dr

þ
Z

d4x0φr
δΠr

δφr0

dφr0

dr0
¼ −

3

r2
dφr

dr
:

ð48Þ

Note that the term arising from varying the tadpole diagram
is nonlocal, resulting in an additional convolution integral.
In the thin-wall approximation, we may set r ¼ R in those
terms originating from the damping term, giving the
eigenequation for the negative mode ϕ0 ¼ N ∂rφ with
the eigenvalue given in Eq. (47).
Finally, the normalization N of the zero modes

ϕμ ¼ N ∂μφ is given by

N −2 ¼ 1

4

Z
x

�
dφ
dz

�
2

¼ 1

2
π2R3γ

Z þ1

−1
duð1 − u2Þ

�
dφ
du

�
2

;

ð49Þ

which follows from the orthonormality condition

N 2

Z
x
ϕ�
μϕν ¼ δμν: ð50Þ

V. NUMERICAL RESULTS

In this section, we present the numerical results of the
iterative procedure outlined in Sec. IV for the model
described in Sec. II.
In order to provide independent cross-checks of the

numerical results, the iterative procedure was performed

using two distinct approaches: the first employed the built-
in differential solvers of Mathematica and the second was
based upon Chebyshev pseudospectral collocation methods
(see e.g. Ref. [51]). In the latter, the equation for the bounce
was linearized using the Newton-Kantarovich method
(see e.g. Ref. [51]).
The renormalization of the tadpole correction and the

one-loop correction Bð1Þ was performed by constructing
momentum-dependent pseudocounterterms from the ana-
lytic expressions in Appendix A. These were subtracted at
the level of the integrands, thereby avoiding residual cutoff-
dependent terms resulting from errors in the numerical
integration.
The numerical analysis was repeated for a range of λ and

N consistent with 0.04 ≤ λ2N ≤ 0.4. The upper limit was
imposed so as to remain within the perturbative regime
of the large N expansion [52]. This limit was identified
numerically by comparing the relative contributions of the
X and Φ fluctuation determinants. Parameter points con-
sistent with these limits were chosen from the sets λ¼
f0.03;0.04;0.05;0.06;0.07;0.08;0.09;0.10g and N¼f4;8;
12;16;20;24;28;32;36;40g, giving a total of 55 sample
points. A fixed ratio ρ ¼ 3 and mass scaleM ¼ 1were used
throughout. The numerical results converged sufficiently
after two iterations, amounting to including the first back-
reaction of the gradient effects on the bounce configuration
itself.
In Fig. 4, we plot the profile of the bounce as a function

of the transformed coordinate u for the largest of the
parameter choices (λ ¼ 0.1 and N ¼ 40). Therein, we see
the marginal departure of the bounce from a pure hyper-
bolic tangent.
In order to illustrate the relative importance of the

gradients in the vicinity of the bubble wall, it is convenient
to consider the quantities

1

γ2
1

φ

dUR
eff

dφ
≈

1

γ2
ΠR ð51Þ

FIG. 4. Plot of the normalized bounce φ=v as a function of u for
λ ¼ 0.1 and N ¼ 40. The straight line corresponds to a pure
hyperbolic tangent profile.
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and

1

γ2v
dUR

eff

dφ
≈

1

γ2v
φΠR ≡ 1

γ2v

dUpseudo

dφ
; ð52Þ

where the approximation results from the fact the right-
hand sides include gradient effects. Equation (52) defines
the pseudopotential, which appears in the equation of
motion for the bounce [Eq. (25)]. By comparing the left-
hand sides of Eqs. (51) and (52) with the definition of γ in
Eq. (34) and the renormalized effective potential in Eq. (3),
we may verify that the left-hand sides are, for N ≫ 2,
independent of λ and N. Hence, any variation seen in the
plots of the right-hand sides of Eqs. (51) and (52) across the
analyzed parameter range will result solely from the impact
of the gradients in the vicinity of the wall. This can be seen
clearly in Figs. 5 and 6. Therein, the shaded regions
indicate the variation in the vicinity of the bubble wall
over the range of λ2N compared to the homogeneous
Coleman-Weinberg result, indicated by the solid lines. As
is clear from Fig. 6, in spite of the order-10% effect on the
renormalized tadpole in Fig. 5, the impact of the back-
reaction of the gradients on the equation of motion for the
bounce is negligible. This may be understood as follows:
in the thin-wall regime, the gradients are relevant only in
the vicinity of the bubble wall. In this region, however,
the bounce configuration itself is going to zero, and the
additional occurrence of the bounce φ in Eq. (52) compared
to Eq. (51) leads to the suppression of the gradient effects
between Figs. 5 and 6. As a result, over the range of
parameters, negligible variation was seen in the bounce
between each iteration. This is illustrated further in Fig. 7,
where we plot the difference in the gradient of the bounce
between the first and second iterations divided by that of

the first iteration for the largest parameter values λ ¼ 0.1
and N ¼ 40. We see that the backreaction of the gradient
effects leads to a correction of order 0.1%–0.2% in the
region of interest (u ∼�0.5, cf. Fig. 7). One may conclude
that, in this case, the bounce as determined in the Coleman-
Weinberg effective potential gives a good approximation to
the self-consistent solution.
In Figs. 8 and 9, we plot the full bounce action B and the

contribution from the one-loop corrections Bð1Þ, multiplied
by g3, as a function of λ2N. In order to illustrate the relative
importance of accounting for the gradients, Fig. 10 shows
the difference between the self-consistent one-loop con-
tribution Bð1Þ and the equivalent result calculated assuming
a homogeneous background field configuration, denoted

Bð1Þ
CW, as a fraction of the homogeneous result. It is in the

FIG. 5. Plot of the renormalized tadpole ΠR, normalized to the
value of γ2, as a function of u. The dashed and dotted lines
correspond respectively to the largest (λ ¼ 0.1, N ¼ 40) and
smallest (λ ¼ 0.1, N ¼ 4) values of λ2N in the analyzed param-
eter range. The solid line is obtained from the Coleman-Weinberg
effective potential and corresponds to dUeff=dφ=φ=γ2 evaluated
for the bounce of the first iteration. The shaded area indicates the
variation of ΠR over the analyzed parameter range that results
from including the corrections from the gradients of the bounce.

(a)

(b)

FIG. 6. The first derivative of the pseudopotential dUpseudo=
dφ ¼ φΠR, normalized to γ2v, as a function of u over (a) the full
domain and (b) in the vicinity of the bubble wall. The dashed
and dotted lines correspond respectively to the largest (λ ¼ 0.1,
N ¼ 40) and smallest (λ ¼ 0.1, N ¼ 4) values of λ2N in the
analyzed parameter range. The solid line is obtained from
the Coleman-Weinberg effective potential and corresponds to
dUeff=dφ=γ2=v. The shaded area indicates the variation of φΠR

over the analyzed parameter range that results from including
the corrections from the gradients of the bounce.
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one-loop corrections that the inclusion of the gradients had
the dominant absolute impact. Even so, the relative impor-
tance of the gradients is at the percent level. Hence, we see
again that the one-loop Coleman-Weinberg homogeneous
result provides a good approximation for the bounce action.
However, in Fig. 10, we observe that the difference between
the inhomogeneous self-consistent and homogeneous
Coleman-Weinberg fluctuation determinants does not scale
as a polynomial in the expansion parameter λ2N. In
particular, there is a residual dependence on both λ and
N, the latter of which is approximately linear over the
analyzed parameter range. This is anticipated to be in part a
consequence of the eF=ð2NÞ dependence of the vacuum
expectation value v [cf. Eq. (5)]. Fig. 10 suggests that
gradient effects contribute a term to the fluctuation deter-
minant that scales approximately like λ2N2. Since the two-
loop self-energies scale as either λκN2 or λ2N, there is

therefore the possibility that gradient effects may compete
with two-loop effects.
In Figs. 11 and 12, we plot the bubble radius R

multiplied by g and the negative eigenvalue λ0 normalized
to g2. The latter is, of course, not independent and is
included for completeness. In addition, in Fig. 13, we
plot the squared inverse normalization of the zero modes
N −2 multiplied by g3. By comparing these plots with the
definition of the normalization in Eq. (49), we infer that
the gradient with respect to u scales like λ

ffiffiffiffi
N

p
, as

anticipated below Eq. (34), and that the bubble radius R
scales linearly with this gradient.
Finally, in Fig. 14, we plot the tunneling rate as a

function of λ4N2 for g ¼ 0.001, illustrating the severity of
the dependence on the parameters in the thin-wall regime,

FIG. 7. Plot of the difference between the gradient of the
bounce from the second (φ2) and first (φ1) iterations divided by
the gradient of the first iteration for the largest of the parameter
values λ ¼ 0.1 and N ¼ 40.

FIG. 8. Plot of the bounce action B as a function of λ2N. The fit
corresponds to a third-order polynomial in λ2N. The residual
deviation from a polynomial in λ2N is anticipated to be in part a
consequence of the eF=ð2NÞ dependence of the vacuum expect-
ation value v [cf. Eq. (5) and Fig. 10].

FIG. 10 (color online). Plot of the ratio of the difference

Bð1Þ − Bð1Þ
CW to Bð1Þ

CW as a function of λ2N. The labels indicate
the values of λ. The residual deviation from a polynomial in λ2N
is anticipated to be in part a consequence of the eF=ð2NÞ
dependence of the vacuum expectation value v [cf. Eq. (5)].

FIG. 9. Plot of the one-loop correction to the bounce action
Bð1Þ as a function of λ2N. The fit corresponds to a third-order
polynomial in λ2N. The residual deviation from a polynomial in
λ2N is anticipated to be in part a consequence of the eF=ð2NÞ
dependence of the vacuum expectation value v [cf. Eq. (5) and
Fig. 10].
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with a variation of 60000 orders of magnitude across the
factor of 10 in the expansion parameter λ2N.
Before concluding, we should compare the present

approach with the one outlined in Ref. [33]. Were we to

follow the latter work, we would integrate out the fields Xi
within a background of homogeneous Φ configurations.
At one loop, this would lead to the renormalized effective
potential UR

eff appearing in Eq. (51). It is therefore clear
that the method of Ref. [33] ignores the small gradient
corrections that we have isolated in this section. Besides
accounting for gradients in situations where these are more
sizable, our present approach will also prove useful in cases
where the tree-level potential is nonconvex and the effective
potential is ill defined, as is indicated by the occurrence of
imaginary parts in the loop integrals.

VI. CONCLUSIONS

We have developed a method for calculating the self-
consistent tunneling configuration and one-loop tunneling
action for cases in which the global minimum of the potential
is generated radiatively. By basing this method upon the 2PI
effective action, we are able to deal with the radiatively
induced negative-semidefinite eigenmodes of the one-loop
fluctuation operator. Within the context of an N field model
with SSB via the Coleman-Weinberg mechanism, we have
shown that the incorporation of gradient effects leads only
to minor corrections compared to approximate calculations
based on the Coleman-Weinberg effective potential of the
homogeneous field configuration. However, through an
explicit calculation, we have confirmed that the impact of
these gradients on the one-loop fluctuation determinant may
nevertheless compete with two-loop effects, as has been
anticipated previously [33].
For the present model, the gradient effects are suppressed

as a result of being in the thin-wall regime, wherein the
profile of the bubble wall is symmetric about the midpoint
of the bounce. The latter means that the bounce itself is
going to zero in the region where the gradients are of most
relevance [cf. Eqs. (51) and (52)]. It is anticipated that such
suppression will be lessened for models where the thin-wall
approximation does not hold and the bounce profile is no
longer symmetric.

FIG. 11. Plot of the bubble radius R times g as a function of
λ

ffiffiffiffi
N

p
.

FIG. 12. Plot of the negative eigenvalue λ0 ¼ −3=R2, normal-
ized to g2, as a function of λ2N. The fit is of the form a=λ2=N,
where a is a real constant.

FIG. 13. Plot of the squared inverse normalization of the zero
modes, normalized to g−3, as a function of λ2N. Comparing with
Eq. (49), we see that the gradients of the bounce scale like λ

ffiffiffiffi
N

p
,

as anticipated from Eq. (34).

FIG. 14. Plot of the tunneling rate per unit volume as a function
of λ4N2 for g ¼ 0.001.
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A pertinent example where gradients may be of decisive
importance is the Fubini-Lipatov instanton [53,54], occur-
ring in the abyssal and conformally invariant λφ4 potential
with λ < 0 and of relevance to studies of the stability of the
electroweak vacuum of the Standard Model. In the case that
the loop corrections to the scalar potential are dominated by
fermions, one easily finds that there are no bounce solutions
within the effective potential for homogeneous field back-
grounds provided one insists that jφjr¼0 < ∞. It is an
interesting question whether this situation changes once
gradients are accounted for in determining the self-
consistent soliton at one-loop level. In order to decide this
matter, we anticipate that it is straightforward to extend the
method presented here beyond the thin- and planar-wall
approximations, thereby correctly capturing all leading
gradient effects that may occur for tunneling processes
between strongly nondegenerate vacua.
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APPENDIX A: COLEMAN-WEINBERG
EFFECTIVE POTENTIAL

Assuming a homogeneous background, the renormalized
one-loop Coleman-Weinberg effective potential takes the
form

UR
eff ¼ U þ δU þ 1

2

Z
d4k
ð2πÞ4 ln detijG

−1ðkÞ; ðA1Þ

where

δU ¼ 1

2
δm2

φφ
2 þ 1

2
δm2

χ

XN
i¼1

χ2i þ
1

4
δλφ2

XN
i¼1

χ2i

þ 1

4

XN
i;j¼1

δκχ2i χ
2
j þ

1

4!
δαφ4: ðA2Þ

In order to calculate the determinant in field space, we
require the eigenvalues fm2g of the mass matrix

m2 ¼
�
m2

φλ φχT

λφχ m2
χ

�
; ðA3Þ

where

m2
χ ¼

2
666664

m2
χ þ 2κχ21 2κχ1χ2 … 2κχ1χN

2κχ2χ1 m2
χ þ 2κχ22 … 2κχ2χN

..

. . .
. ..

.

2κχNχ1 2κχNχ2 … m2
χ þ 2κχ2N

3
777775
;

ðA4Þ
and we have defined

m2
φ ¼ λ

2

XN
i¼1

χ2i ; m2
χ ¼ κ

XN
i¼1

χ2i þ
λ

2
φ2: ðA5Þ

In block form, the characteristic equation may be written
as follows:

jjm2 − 1Nþ1m2jj ¼ jjm2
χ − 1Nm2jj

×ðm2
φ −m2 − λ2φ2χT½m2

χ − 1Nm2�−1χ Þ:
ðA6Þ

Decomposing the matrix

m2
χ ¼ Dþ 2κχ χT; ½D�ij ¼ ðm2

χ −m2Þδij; ðA7Þ

it follows from the matrix determinant lemma that

jjDþ 2κχ χTjj ¼ jjDjjð1þ 2κχTD−1χ Þ; ðA8Þ
in which jjDjj ¼ ðm2

χ −m2ÞN . Thus, we have

jjm2
χ − 1m2jj ¼

�
1þ 2

XN
k¼1

κχ2k
m2

χ −m2

�
ðm2

χ −m2ÞN: ðA9Þ

In order to calculate the inverse of Dþ 2κχ χT, we can
use the Sherman-Morrison formula, giving

½Dþ 2κχ χT�−1 ¼ D−1 − 2
D−1κχ χTD−1

1þ 2κχTD−1χ

¼ δij
m2

χ −m2
− 2

�
1þ 2

XN
k¼1

κχ2k
m2

χ −m2

�
−1

×
κχiχj

ðm2
χ −m2Þ2 : ðA10Þ

Finally, we obtain

ðm2
χ −m2ÞN−1

�
ðm2

φ −m2Þðm2
χ −m2Þ

þ 2

�
m2

φ −m2 −
λ2

2κ
φ2

�XN
i¼1

κχ2i

�
¼ 0; ðA11Þ

giving N − 1 degenerate eigenvalues m2
χ and two non-

degenerate eigenvalues
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m2
� ¼ m2

φ þm2
χ þ 2κ

P
N
i¼1 χ

2
i

2

�
��

m2
φ −m2

χ − 2κ
P

N
i¼1 χ

2
i

2

�
2

þ λ2φ2
XN
i¼1

χ2i

�
1=2

:

ðA12Þ

We choose the following renormalization conditions:

∂2Ueff

∂φ2

����
φ¼χi¼0

¼ 0;
∂2Ueff

∂χ2i
����
φ¼χi¼0

¼ 0; ðA13aÞ

∂4Ueff

∂φ4

����
φ¼0;χ1¼M

¼ 0; ðA13bÞ

∂4Ueff

∂φ2∂χ2i
����
φ¼0;χ1¼M

¼ λ; ðA13cÞ

∂4Ueff

∂χ4i
����
φ¼0;χi¼M

¼ 6κ; ðA13dÞ

where the finite scale M is necessary due to the IR
singularity of the effective four-point vertices.
The one-loop contributions to the effective potential take

the form

Ueff ⊃
1

16π2

�
Λ2

�
Nm2

χ þm2
φ þ 2κ

XN
i¼1

χ2i

�

þ 1

4

�
ðN − 1Þm4

χ

�
ln

m2
χ

4Λ2
þ 1

2

�

þm4þ

�
ln

m2þ
4Λ2

þ 1

2

�
þm4

−

�
ln

m2
−

4Λ2
þ 1

2

��	
;

ðA14Þ

giving the counterterms

δm2
φ ¼ −

λN
16π2

Λ2; ðA15aÞ

δm2
χ ¼ −

1

16π2
½λþ 2ðN þ 2Þκ�Λ2; ðA15bÞ

δλ ¼ −
λ

16π2

�
ð3κ þ 2λÞ ln 3þ 2λ2

6κ − λ
ln
6κ

λ

þ ½2λþ ðN þ 2Þκ�
�
ln
κM2

4Λ2
þ 4

��
; ðA15cÞ

δκ ¼ −
1

16π2

�
9κ2 ln 3þ λ2

4

�
ln
λM2

8Λ2
þ 14

3

�

þ ðN þ 8Þκ2
�
ln
κM2

4Λ2
þ 14

3

��
; ðA15dÞ

δα ¼ −
3λ2

32π2

�
ln 3þ N

�
ln
κM2

4Λ2
þ 2

�

þ 8λ

ð6κ − λÞ2
�
6κ þ 3λ − λ

18κ þ λ

6κ − λ
ln
6κ

λ

��
: ðA15eÞ

APPENDIX B: FLUCTUATION DETERMINANT

In this appendix, we outline Baacke and Junker’s method
[46–48] (see also Refs. [49,50]) for calculating the fluc-
tuation determinant in terms of direct integration of the
Green’s function.
The normalized fluctuation determinant is

Bð1Þ½φ� ¼ N
2
ðln det S−1ðφÞ − ln det S−1ðvÞÞ; ðB1Þ

where the fluctuation operator S−1ðφÞ corresponds to the
Klein-Gordon operator, having the form

S−1ðφÞ ¼ −Δð4Þ þm2ðφÞ; ðB2Þ

where Δð4Þ is the four-dimensional Laplace-Beltrami oper-
ator and, in our case, m2ðφÞ ¼ λφ2=2.
In the case of spherically symmetric potentials, it is

convenient to work in four-dimensional hyperspherical
coordinates, writing x ¼ rer. The eigenfunctions of the
fluctuation operator fnjflg;x may then be expressed via the
partial-wave decomposition

fnjflg;x ¼ ϕnj;rYjflg;er ; ðB3Þ

where Yjflg;er are the hyperspherical harmonics (see e.g.
Ref. [55]), and n and j, flg ¼ fl1;l2g are the radial and
angular-momentum quantum numbers. The radial func-
tions ϕnj;r satisfy the eigenvalue equation

�
−

d2

dr2
−
3

r
d
dr

þ jðjþ 2Þ
r2

þm2ðφÞ
�
ϕnj;r ¼ λnjϕnj;r: ðB4Þ

In terms of the eigenvalues λnj, the normalized fluc-
tuation determinant may be written as

Bð1Þ ¼ N
2

X
n;j;flg

ln
λnj

λðvÞnj

; ðB5Þ

where the λðvÞnj are the eigenvalues of the fluctuation
operator in the false vacuum. Note that the fluctuation
determinant is formally UV divergent, and it is necessary
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to regularize the sum over the eigenvalues. The quantum
numbers flg label the irreducible representations of
SOð4Þ, of which there are ðjþ 1Þ2. The eigenvalues of
these representations are degenerate, and we therefore find

Bð1Þ ¼ N
2

X
n;j

ðjþ 1Þ2 ln λnj

λðvÞnj

: ðB6Þ

In order to obtain an expression for the fluctuation
determinant in terms of the inverse of the fluctuation
operator, viz. the Green’s function, we consider the
operator

S−1ðφ; sÞ≡ S−1ðφÞ þ s; ðB7Þ
where s ∈ R is an auxiliary parameter. The Green’s
function can be written as

Sxx0 ðφ; sÞ ¼
X

n;j;flg

f�nj;flg;x0fnj;flg;x
λnj þ s

: ðB8Þ

Making use of the sum rule

X
flg

Y�
j;flg;er 0Yj;flg;er ¼

1

2π2
ðjþ 1ÞUjðcos θÞ; ðB9Þ

where UjðzÞ are the Chebyshev polynomials of the second
kind and cos θ ¼ er · er0 , we find

Sxx0 ðφ; sÞ ¼
1

2π2
X
n;j

ðjþ 1ÞUjðcos θÞ
ϕ�
nj;r0ϕnj;r

λnj þ s
: ðB10Þ

Thus, at coincidence (x ¼ x0), we obtain

Sxxðφ; sÞ ¼
1

2π2
X
n;j

ðjþ 1Þ2 ϕ
�
nj;rϕnj;r

λnj þ s
; ðB11Þ

where we have used the fact that Ujð1Þ ¼ jþ 1.
Integrating Sxxðφ; sÞ over x, we obtain

Z
d4xSxxðφ; sÞ ¼

X
n;j

ðjþ 1Þ2
λnj þ s

ðB12Þ

by virtue of the orthonormality of the radial eigenfunctions,

Z
∞

0

drr3ϕ�
nj;rϕnj;r ¼ 1: ðB13Þ

Subsequently, we integrate over s up to some UV cutoff Λ2,
giving

Z
Λ2

0

ds
Z

d4xSxxðφ; sÞ ¼ −
X
n;j

ðjþ 1Þ2 ln λnj
λnj þ Λ2

:

ðB14Þ

Comparing this with Eq. (B6), we see by inspection that

Bð1Þ½φ� ¼ −
N
2

Z
Λ2

0

ds
Z

d4xðSxxðφ; sÞ − Sxxðv; sÞÞ

ðB15Þ

up to UV-divergent terms in the cutoff Λ. The latter are
removed by the addition of the normalized counterterm
in Eq. (45).
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