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We consider a system consisting of a quantum, massless, real scalar field, in the presence of nonlinear
mirrors: infinite parallel planes, upon which the field satisfies nonlinear boundary conditions. These may
appear, for example, in metamaterials having nonlinear response functions. The boundary conditions
are implemented by nonquadratic interaction vertices, strictly localized on the mirrors. By using the
appropriate perturbative expansions, we obtain approximate expressions for the Casimir energy
corresponding to weak coupling, regarding the strength of the interaction terms. We also comment on
an alternative expansion scheme that may be useful when the weak coupling expansion is not justified.
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I. INTRODUCTION

Quantum vacuum fluctuations may manifest themselves,
under the proper circumstances, in the form of observable,
macroscopic physical effects. For instance, the existence
of boundary conditions for a quantum field on a nontrivial
geometry can produce a Casimir force, an effect which
has been evaluated for different kinds of vacuum fields,
geometries, and boundary conditions [1]. Among the many
important developments that have emerged in those areas, a
topic which has recently received much attention has been
the use of a more accurate description of the “mirrors,” in
other words, of the geometry and nature of the boundary
conditions.
A refined description may include corrections that are

an attempt to represent, for example, a departure from the
idealized situation of exactly conducting, zero-width,
smooth-shape mirrors. Examples of those corrections are
roughness, finite temperature, and conductivity, as well as a
finite width.
Leaving aside the case of nonlocal boundary interac-

tions [2–4], for which extensive studies have been carried
out [5,6], imperfect boundary conditions are usually
represented—at least in some scalar field models—by
the introduction of a “space-dependent mass term,” such
that the (otherwise massless) scalar field becomes massive
just at the loci of the mirrors [7], therefore “penalizing” the
development of nonzero field values on the mirror. Dirichlet
boundary conditions appear, in this context, wherever that
space-dependent mass tends to infinity [8].
In this kind ofmodel, the relevant properties of themirrors

correspond to a linear response approximation. A “micro-
scopic” way to interpret this approximation, in terms of
quantum field theory, amounts to using a truncated version
of the expansion of the effective action, for the vacuum field,
due to the microscopic degrees of freedom living on the
mirrors, to the second order in the vacuum field [9,10].

On the other hand, neglecting higher-order terms in the
expansion can be expected to be a reliable approximation
whenever the magnitude of the quadratic term is large in
comparison with the subleading (usually quartic) one.
Indeed, since a large quadratic term penalizes the existence
of a nonzero field configuration around the corresponding
mirror, the contributions fromhigher-order terms (since they
involve higher powers of the field) are likely to be sup-
pressed. It is the main purpose of this paper to study the
consequences on the Casimir energy due to the presence of
that kind of nonlinearity, having in mind cases where the
conditions to discard it are not necessarily met. We note that
the inclusion of nonlinearities in the study of boundary
effects in classical electrodynamics has a long-standing
tradition [11], since it is certainly relevant to situations
where high field intensities are involved. That is not the
situation with the Casimir effect, where the motivation to
include nonlinearities, even at small intensities, can appear
when considering some nonlinear metamaterials [12]. For
calculations in systems with nonlinearities in the bulk, and
standard boundary conditions, see Refs. [13,14].
This paper is organized as follows. In Sec. II we define the

model and its relevant properties, and in Sec. III we consider
its vacuumenergywithin the context of the functional integral
formalism. Then, in Sec. IV we present a study of the weak-
coupling expansion for the nonlinearities. In Sec. V we
consider a weak-coupling expansion adapted to the case
when boundary conditions have both linear and nonlinear
parts.An alternative, complementary expansion is introduced
and considered in Sec. VI; it corresponds to a situation where
there is a small correction on top of a Dirichlet boundary
condition. Finally, in Sec. VII we present our conclusions.

II. THE MODEL

The model that we consider involves a real massless
scalar vacuum field φðxÞ in 3þ 1 dimensions, coupled to
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two flat, parallel, zero-width mirrors, denoted by L and R,
which occupy the planes x3 ¼ 0 and x3 ¼ a, respectively.
Euclidean coordinates shall be denoted by x≡ðx0;x1;x2;x3Þ,
and we will also use a specific notation x∥ ≡ ðx0; x1; x2Þ
for the coordinates which are parallel to the mirrors’ planes
(onwhichwe assume the existence of translation invariance).
Alongside the last convention, we shall use letters from the
beginning of the greek alphabet (α; β;…) to denote indices
which run over the values 0, 1, and 2.
The media inside each mirror is assumed to be strictly

confined to the respective plane, so that the full Euclidean
action for the system, SðφÞ, naturally decomposes as
follows:

SðφÞ ¼ SfðφÞ þ SIðφÞ; ð1Þ

where Sf denotes the free action (i.e., in the absence of
mirrors) for the real scalar field,

SfðφÞ ¼
1

2

Z
x
ð∂φÞ2; ð2Þ

and

SIðφÞ ¼ SLðφÞ þ SRðφÞ; ð3Þ

while SL and SR account for the coupling between φ and
the respective mirror. These terms shall be assumed to have
a similar structure. We will endow them with, for the sake
of simplicity, a local form, confined to a 2þ 1-dimensional
spacetime, with the world volumes generated by the static
mirrors during the course of (trivial) time evolution:

SL ¼
Z
x∥

VL½φðx∥; 0Þ�; SR ¼
Z
x∥

VR½φðx∥; aÞ�; ð4Þ

where VL and VR are local functions of their arguments,
involving no derivatives of the fields.
From the classical equations of motion that follow from

the real-time version of the action for φ, we see that they
imply the boundary conditions

( ∂3φðx∥; 0þÞ − ∂3φðx∥; 0−Þ ¼ ∂VL∂φ ½φðx∥; 0Þ�;
∂3φðx∥; aþÞ − ∂3φðx∥; a−Þ ¼ ∂VR∂φ ½φðx∥; aÞ�;

ð5Þ

which necessarily introduce nonlinearities as soon as one of
the functions VL or VR involves more than two powers of
its argument. A consequence of this very same property is
the following: when there are more than two powers of the
field in one of the mirrors, the quantum equations of motion
for φ—namely, the equations for its mean value hφi—are
different to their classical counterparts. Indeed, from
0 ¼ R

Dφ δ
δφðxÞ e

−SðφÞ, we obtain

□hφðxÞi þ δðx3Þ
�∂VL

∂φ ½φðx∥; 0Þ�
�

þ δðx3 − aÞ
�∂VR

∂φ ½φðx∥; aÞ�
�
; ð6Þ

from which linear boundary conditions are obtained only
when the potentials VL;R are quadratic. On the contrary, for
nonquadratic interactions the equation involves a Green’s
function with more than one field, and the resulting system
of equations does not close; in other words, it becomes
infinite.

III. VACUUM ENERGY

The vacuum energy E will be obtained from the effective
action Γ (for the static configuration of two parallel planes
already defined) when evaluated for a long, yet finite, time
interval of length T,

E ¼ lim
T→∞

Γ
T
; ð7Þ

where Γ ¼ − logZ, and Z denotes the Euclidean vacuum
transition amplitude,

Z ¼
Z

Dφe−SðφÞ; ð8Þ

and the action is evaluated on the (Euclidean) time
interval ½− T

2
; T
2
�.

By factoring out the partition function corresponding to
Sf, we see that Z may be rewritten in the equivalent way

Z ¼ Zf × ZI; ð9Þ

with

Zf ¼
Z

Dφe−SfðφÞ ð10Þ

and

ZI ¼ he−SIðφÞi; ð11Þ

where we have introduced a “Gaussian average” symbol
h…i to denote the functional averaging with the weight
defined by Sf; namely, for any expression, its average is
given by

h…i≡
R
Dφ…e−SfðφÞR
Dφe−SfðφÞ : ð12Þ

Then,

Γ ¼ Γf þ ΓI; ð13Þ
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where Γf ¼ − logZf and ΓI ¼ − logZI . Note that Γf
yields the vacuum energy corresponding to the free field
system, while ΓI contains contributions due to the presence
of the boundary conditions.
Since the Casimir force is insensitive to Γf, we shall

discard that contribution in what follows. Besides, note that
Γ, Γf, and ΓI are not only proportional to T, but also to L2,
the area of the mirrors. This is just a manifestation of the
fact that the system has translation invariance along the two
parallel directions to the mirrors, as well as being time
independent. Thus rather than working with energies,
which are extensive and therefore proportional to L2, we
will use instead energies per unit area, denoted by E, Ef,
and EI , respectively. Thus, the interesting quantity shall be

EI ¼ − lim
T;L→∞

�
1

TL2
loghe−SIðφÞi

�
: ð14Þ

Since we just need to keep terms that do contribute to the
Casimir force, we can also subtract from EI contributions
which—although sensitive to the existence of the boundary
conditions—are independent of the distance a between
the mirrors. That is the case of the mirrors’ self-energies
which—although they certainly may depend on the details
of each interaction term SL and SR—are independent of the
distance a between L and R.

IV. WEAK-COUPLING EXPANSION

Let us calculate here the contribution to the Casimir
energy due to purely nonlinear coupling terms, under the
assumption that those terms are small. The procedure is
entirely analogous, although applied to a nonlinear medium,
to the approach followed, for example, in Refs. [15] and [16]
to derive exact results in the weak-coupling regime of the
static Casimir effect.
The perturbative expansion, taking as zeroth order the

free action Sf, amounts to expanding ΓI in powers of SI ,

ΓI ¼ Γð1Þ
I þ Γð2Þ

I þ…; ð15Þ

where the superscript denotes the order (in SI) of each term
in the perturbative expansion.
Up to the second order, the explicit form of the terms is

as follows:

Γð1Þ
I ¼ hSIi; ð16Þ

and

Γð2Þ
I ¼ −

1

2
½hðSIÞ2i − hSIi2�: ð17Þ

Regarding the first-order term, we note that, since the
quantum averaging is defined with the free action, the result
is a sum of two self-energy terms, each one independent of

the distance a between the two mirrors. Thus, there is no
contribution from this term to the Casimir interaction
energy.
Let us now consider the second-order term for the

concrete example of mirrors described by the terms

SL ¼
Z
x∥

gL
kL!

∶½φðx∥; 0Þ�kL∶;

SR ¼
Z
x∥

gR
kR!

∶½φðx∥; aÞ�kR∶; ð18Þ

where the normal-order symbol means that contractions at
the same vertex are to be discarded.1

The second-order term can then be written as follows:

Γð2Þ
I ¼ −hSLSRi: ð19Þ

More explicitly, one can see that Γð2Þ
I vanishes unless

kL ¼ kR ≡ k, and

Γð2Þ
I ¼ −

gLgR
k!

Z
x∥;x0∥

½hφðx∥; aÞφðx0∥; 0Þi�k

¼ −
gLgR
k!

TL2

Z
x∥

½hφðx∥; aÞφð0∥; 0Þi�k; ð20Þ

where

hφðx∥; x3Þφðy∥; y3Þi ¼
1

4π2½ðx∥ − y∥Þ2 þ ðx3 − y3Þ2�
:

ð21Þ
The fact that the nonvanishing contributions to the Casimir
interaction appear only for kL ¼ kR is represented in Fig. 1,
for the particular case kL ¼ kR ¼ 4.
A rather straightforward calculation yields for the

interaction energy per unit area

Eð2Þ
I ¼ −

gLgR
k!

π1=2Γðk − 3=2Þ
2ð2πÞ2k−1ΓðkÞ

1

a2k−3
; ð22Þ

which is an expression formally valid for any k > 3=2,
which is the condition to ensure convergence of the spatial
integral in Eq. (20), for large values of jx∥j. It is interesting
to note that, for “perfect” boundary conditions (Dirichlet,
for instance), the only dimensionful quantity which appears
in the energy density is the distance a; this implies that
EI ∝ 1

a3. On the other hand, the perturbative result above
should be valid for weak coupling, and one cannot therefore
take the limit when the couplings tend to infinity. However,

1The normal-order symbol could be dropped at the expense of
adding a certain number of counterterms, which form a poly-
nomial of degree kL;R − 2 at the respective mirror, having the
parity of the integer kL;R.
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we may note that, since the mass dimension of the coupling
constants is ½M�3−K , when k ¼ 3 they become dimension-
less. Thus, in that situation the dependence with a is
entirely analogous to the case of Dirichlet or Neumann
boundary conditions, since

½Eð2Þ
I �jk−>3 ¼ −

gLgR
1536π4a3

: ð23Þ

We note that this dependence with the distance, for the
particular case k ¼ 3, is dictated by dimensional analysis
and therefore it should be exact. In other words, it should be
valid even if a nonperturbative approach were used to
calculate the energy.
It is rather straightforward to check that, for the k ¼ 3

case, the third-order term vanishes, except for self-energy
contributions.
The weak-coupling approximation can also be applied to

situations where the interaction terms are not necessarily of
a polynomial form. Indeed, let us assume that the functions
VL;R can be represented in terms of their Fourier trans-
forms, ~VL;R, respectively:

VL½φðx∥; 0Þ� ¼
Z

dλL
2π

~VLðλLÞeiλLφðx∥;0Þ;

VR½φðx∥; aÞ� ¼
Z

dλR
2π

~VRðλRÞeiλRφðx∥;aÞ: ð24Þ

We also assume that the constant and linear parts of the
interaction terms vanish, namely, that the functions VL;R, as
well as their derivatives with respect to the field, vanish at
the origin (when the field equals zero):

VL½0� ¼ VR½0� ¼ 0; V 0
L½0� ¼ V 0

R½0� ¼ 0: ð25Þ

These conditions amount to considering only interaction
terms which introduce nontrivial fluctuations.
In Fourier space, they amount to

Z
dλL
2π

~VLðλLÞ ¼
Z

dλR
2π

~VRðλLÞ ¼ 0;Z
dλL
2π

λL ~VLðλLÞ ¼
Z

dλR
2π

λR ~VRðλLÞ ¼ 0: ð26Þ

The normal-ordered versions of the coupling terms are
given by [17]

∶VL½φðx∥; 0Þ� ≔
Z

dλL
2π

~VLðλLÞ∶eiλLφðx∥;0Þ∶;

∶VR½φðx∥; aÞ� ≔
Z

dλR
2π

~VRðλLÞ∶eiλRφðx∥;aÞ∶; ð27Þ

where

∶eiλLφðx∥;0Þ ≔ eiλLφðx∥;0Þþ1
2
λ2Lhφðx∥;0Þφðx∥;0Þi ð28Þ

and

∶eiλRφðx∥;aÞ ≔ eiλRφðx∥;aÞþ1
2
λ2Rhφðx∥;aÞφðx∥;aÞi: ð29Þ

Thus, the first nontrivial contribution to the interaction
energy comes from

Γð2Þ
I ¼ −

Z
dλL
2π

Z
dλR
2π

~VLðλLÞ ~VRðλRÞ

×
Z
x∥;x0∥

h∶eiλLφðx∥;0Þ∶∶eiλRφðx0∥;aÞ∶i

¼ −TL2

Z
dλL
2π

Z
dλR
2π

~VLðλLÞ ~VRðλRÞ

×
Z
x∥

e−λLλRhφðx∥;aÞφð0;0Þi; ð30Þ

and the surface density of (interaction) energy may be put
in the form

Eð2Þ
I ¼−4π

Z
dλL
2π

Z
dλR
2π

~VLðλLÞ ~VRðλRÞ
Z

∞

0

drr2e−
λLλR
4π2

1

r2þa2 :

ð31Þ

This contribution should be reliable at large distances,
where the field propagator can be made sufficiently small.
Expanding the previous expression for large a, we obtain

Eð2Þ
I ∼

X∞
l¼2

cl
a2l−3

; ð32Þ

with

L R

FIG. 1. The first nontrivial correction in the weak-coupling
regime, for k ¼ 4.
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cl ¼
ð−1Þlþ1π1=2Γðl − 3=2Þ

22lπ2l−1ΓðlÞl!
�Z

dλL
2π

~VLðλLÞλlL
�

×

�Z
dλR
2π

~VRðλRÞλlL
�
; ð33Þ

which depends on the momenta of the Fourier transform of
the “potentials.” Those momenta determine the strength of
the corresponding (negative) power of the distance in the
contribution. The series starts at l ¼ 2, in view of the
conditions (26).
As a concrete example, we consider the case of the

Gaussian interaction terms:

VL½φðx∥; 0Þ� ¼ −
βLffiffiffiffiffiffiffiffiffiffi
2παL

p fe− 1
2αL

½φðx∥;0Þ�2 − 1g;

VR½φðx∥; aÞ� ¼ −
βRffiffiffiffiffiffiffiffiffiffiffi
2παR

p fe− 1
2αR

½φðx∥;aÞ�2 − 1g; ð34Þ

where βL;R and αL;R are positive constants. Note that these
functions satisfy the conditions (25). Their Fourier trans-
forms are

~VL;RðλL;RÞ¼−βL;R

2
4e−1

2
αL;RðλL;RÞ2 −

ffiffiffiffiffiffiffiffiffi
2π

αL;R

s
δðλL;RÞ

3
5: ð35Þ

Inserting the previous expressions into the result for the
leading term in the interaction energy, and after some
algebra, we obtain

Eð2Þ
I ¼ 2

βLβRffiffiffiffiffiffiffiffiffiffiffi
αLαR

p a3
Z

∞

0

dxx2

×

	
1 −

�
1 −

1

ð2πÞ4αLαRa4ðx2 þ 1Þ2
�
−1=2



: ð36Þ

The integral can be shown to be well defined if the
condition ð2πÞ4αLαRa4 > 1 is satisfied, which introduces
a minimum distance (given the values of αL;R). More
specifically, that minimum distance becomes larger when
the constants αL;R are smaller, i.e., when the interaction
terms are more concentrated around zero (in field space).
The long-distance expansion of Eq. (36) yields

Eð2Þ
I ¼−

βLβR
ðαLαRÞ3=2

1

32768π3

�
512a−1þ 3

π4
ðαLαRÞ−1a−5þ…

�
;

ð37Þ

where the general features enunciated in Eq. (32) are
verified.

V. LINEAR PLUS NONLINEAR BOUNDARY
CONDITIONS

In this case, we consider mirrors which are described by
coupling terms including both quadratic and nonquadratic

pieces. The former can and will be treated here exactly,
while the latter will be expanded in a perturbative expan-
sion. For the quadratic part, we include mass-like terms for
the fields at the mirrors, and, in order to evaluate Z (and Γ),
we shall use a perturbative expansion in the nonlinear
terms; we split the full action into its quadratic and quartic
parts,

SðφÞ ¼ S0ðφÞ þ SIðφÞ; ð38Þ

where now S0 includes both the free action Sf and
quadratic terms responsible for the linear coupling to the
mirror:

S0ðφÞ ¼
1

2

Z
x
ð∂φÞ2 þ

Z
x∥

�
μL
2
φ2ðx∥; 0Þ þ

μR
2
φ2ðx∥; aÞ

�
;

ð39Þ

where μL;R are constants, and SI is as in Eq. (3).
The known result for E0 is

E0 ¼
1

2

Z
d3k∥
ð2πÞ3 log

2
41 − e−2jk∥ja

ð1þ 2jk∥j
μL

Þð1þ 2jk∥j
μR

Þ

3
5: ð40Þ

Again, as in the previous section, we need to evaluate
functional averages of expressions involving powers of the
scalar field. Since the functional weight is again a Gaussian,
Wick’s theorem for vacuum expectation values holds true,
this time with a different elementary contraction. Therefore,
the evaluation of each term requires the knowledge of G,
the two-point correlation function for the scalar field, in the
presence of the Gaussian weight:

Gðx; yÞ≡ hφðxÞφðyÞi; ð41Þ

where we keep the same symbol for the average as in the
previous section, albeit the functional weight is determined
by S0. The crucial difference with the previous section is
that now the two-point correlation does have a dependence
on the distance a, which makes the subtraction of self-
energies different. To that end, we first note that the exact
form of G may be explicitly found, and it can be written as
follows:

Gðx; yÞ ¼ Gfðx; yÞ −Hðx; yÞ; ð42Þ

whereGf denotes the correlation function corresponding to
the free field, i.e., in the absence of mirrors,

Gfðx; yÞ ¼ hxjð−∂2Þ−1jyi ¼
Z

d4k
ð2πÞ4

eik·ðx−yÞ

k2
; ð43Þ

while
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Hðx; yÞ ¼
Z

d3k∥
ð2πÞ3

dp3

2π

dq3
2π

eik∥·ðx∥−y∥Þ
1

ðk2∥ þ p2
3Þðk2∥ þ q23ÞDðk∥Þ

	�
1

μR
þ 1

2jk∥j
�
eiðp3x3−q3y3Þ

þ
�
1

μL
þ 1

2jk∥j
�
eiðp3ðx3−aÞþq3ða−y3ÞÞ −

e−jk∥ja

2jk∥j
½eiðp3x3þq3ða−y3ÞÞ þ eiðp3ðx3−aÞ−q3y3Þ�



; ð44Þ

with

Dðk∥Þ ¼
�
1

μL
þ 1

2jk∥j
��

1

μR
þ 1

2jk∥j
�
−
e−2jk∥ja

4k2∥
: ð45Þ

When calculating the first-order term Γð1Þ
I , we face the

divergences due to tadpole diagrams. Since we are working
in the functional integral formalism, the would-be normal-
ordering procedure of the operatorial formalism manifests
itself here as the addition of two counterterms to the action:
one of them is quadratic in the scalar field, while the other
is field- and a-independent (a constant). We shall not write
the latter explicitly.
For the case of quartic vertices with coefficients gL and

gR, at the first order one has to add to the action the
counterterm action Sð1Þ

ct given by

Sð1Þ
ct ¼ −

gL
4

Z
x∥

½Gðx∥; 0; x∥; 0Þ�a→∞½φðx∥; 0Þ�2

−
gR
4

Z
x∥

½Gðx∥; a; x∥; aÞ�a→∞½φðx∥; aÞ�2; ð46Þ

which subtracts the divergences in the self-energy Π of the
field (which would otherwise shift the constants μL;R). Note
that this addition to the action may be interpreted as
imposing a “renormalization condition” when the mirrors
are absent (a → ∞).
The new, two-legged vertices due to the counterterm

action above have to be taken into account in the evaluation
of the first-order correction to Γ, since they are of the same
order. Putting together all the contributions, we see that

Γð1Þ
I ¼ 3

4!
gL

Z
x∥

½Gðx∥; 0; x∥; 0Þ�2 þ
3

4!
gR

Z
x∥

½Gðx∥; a; x∥; aÞ�2


−
1

4
gL

Z
x∥

½Gðx∥; 0; x∥; 0Þ�a→∞Gðx∥; 0; x∥; 0Þ�

þ 1

4
gR

Z
x∥

½Gðx∥; a; x∥; aÞ�a→∞Gðx∥; a; x∥; aÞ�


: ð47Þ

Note that the situation is analogous to the one in finite-
temperature quantum field theory [18], where the normal
ordering of a vertex is performed at zero temperature,
and there is a remaining, temperature-dependent (here,

a-dependent) contribution, which adds up to the free
energy.
Adding constants (the constant counterterms) to

Eq. (47), we may complete squares, obtaining

½Γð1Þ
I �ren ¼

3

4!
gL

Z
x∥

f½Gðx∥; 0; x∥; 0Þ�2 − 2½Gðx∥; 0; x∥; 0Þ�a→∞Gðx∥; 0; x∥; 0Þ þ ½Gðx∥; 0; x∥; 0Þ�2a→∞g

þ 3

4!
gR

Z
x∥

f½Gðx∥; a; x∥; aÞ�2 − 2½Gðx∥; a; x∥; aÞ�a→∞Gðx∥; a; x∥; aÞ þ ½Gðx∥; a; x∥; aÞ�2a→∞g; ð48Þ

or

½Γð1Þ
I �ren ¼

3

4!
gL

Z
x∥

½G1ðx∥; 0; x∥; 0Þ�2 þ
3

4!
gR

Z
x∥

½G1ðx∥; a; x∥; aÞ�2; ð49Þ

with

G1ðx∥; 0; x∥; 0Þ ¼ Gðx∥; 0; x∥; 0Þ − ½Gðx∥; 0; x∥; 0Þ�a→∞;

G1ðx∥; a; x∥; aÞ ¼ Gðx∥; a; x∥; aÞ − ½Gðx∥; a; x∥; aÞ�a→∞: ð50Þ
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We see that

G1ðx∥; 0; x∥; 0Þ ¼ −Hðx∥; 0; x∥; 0Þ þ ½Hðx∥; 0; x∥; 0Þ�a→∞;

G1ðx∥; a; x∥; aÞ ¼ −Hðx∥; a; x∥; aÞ þ ½Hðx∥; a; x∥; aÞ�a→∞

ð51Þ
since the free, a-dependent part of G is canceled out.
Using the explicit formulas for H, we get

G1ðx∥;0;x∥;0Þ

¼−
Z

d3k∥
ð2πÞ3

1

μLð1þ μL
2jk∥jÞ½ð1þ

2jk∥j
μL

Þð1þ 2jk∥j
μR

Þe2jk∥ja−1�
;

G1ðx∥;a;x∥;aÞ

¼−
Z

d3k∥
ð2πÞ3

1

μRð1þ μR
2jk∥jÞ½ð1þ

2jk∥j
μL

Þð1þ 2jk∥j
μR

Þe2jk∥ja−1�
:

ð52Þ

It is worth noting that most of what we have said before
could also have been obtained for the case of momentum-
dependent coefficients μL;R, (with an action which is a
straightforward generalization of the one for constant
coefficients). This allows us to consider a rather “economi-
cal”model, consisting of one where the mass dimensions of
the coefficients for the quadratic terms are given by the
momentum itself, so that we are just left with dimensionless
coefficients. Namely,

μL;Rðk∥Þ ¼ 2ζL;Rjk∥j; ð53Þ

where ζL;R are dimensionless constants.
In this case, the first-order contribution to the vacuum

energy is

Eð1Þ ¼ 3

4!a4

�
gL

ζ2Lð1þ ζLÞ2
þ gR
ζ2Rð1 − ζRÞ2

�
½IðζL; ζRÞ�2;

ð54Þ

where

IðζL; ζRÞ ¼
1

4π2

Z
dρρ

1

ð1þ 1
ζL
Þð1þ 1

ζR
Þe2ρ − 1

: ð55Þ

The absence of other dimensionful objects in this model
beyond a and the coupling constants means that the a
dependence of each term can be obtained rather straight-
forwardly. Indeed, if the term is of order gnLg

m
R , the

dependence with a is ∝ 1
anþmþ3.

VI. ALTERNATIVE EXPANSION

Finally, we will consider here an alternative expansion,
still under the same general structure of the ones considered

before, but such that the interaction terms can (by
assumption) be represented in terms of the generalized
Fourier transformations:

e−SLðφÞ ¼ 1

N L

Z
DξLe

−WLðξLÞþi
R
x∥

ξLðx∥Þφðx∥;0Þ
;

e−SRðφÞ ¼ 1

N R

Z
DξRe

−WRðξRÞþi
R
x∥

ξRðx∥Þφðx∥;aÞ
; ð56Þ

where ξL and ξR are auxiliary fields, and N L;R are
normalization constants.
It may be thought of as a particular case of the previous

section, namely, when the constants μL and μR tend to
infinity, while the microscopic interactions are such that
there still are nonvanishing small nonquadratic func-
tions WL;R.
We then insert the representations (56) into the definition

(8) of Z, and integrate out the scalar field φ, to obtain

Z ¼ Zf

N LN R

Z
DξLDξRe−WqðξL;ξRÞ−WLðξLÞ−WRðξRÞ; ð57Þ

where WqðξL; ξRÞ denotes the quadratic form in the
auxiliary fields,

WqðξL; ξRÞ ¼
1

2

Z
x∥;x0∥

ξAðx∥ÞKABðx∥; x0∥ÞξBðx0∥Þ;

A ¼ L; R; ð58Þ

where

KABðx∥; x0∥Þ ¼
Z

d3k∥
ð2πÞ3 e

ik∥·ðx∥−x0∥Þ ~KABðk∥Þ ð59Þ

with

½ ~KABðk∥Þ� ¼
1

2jk∥j
�

1 e−jk∥ja

e−jk∥ja 1

�
: ð60Þ

Proceeding in an analogous manner to the one followed for
the weak-coupling expansion, but with Wq playing a role
similar to Sf, we see that

Γ ¼ Γq þ Γs ð61Þ

with

e−Γq ¼
Z

DξLDξRe−WqðξL;ξRÞ ð62Þ

and
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e−Γs ¼ he−WLðξLÞ−WRðξRÞiq

h…iq ≡
R
DξLDξR…e−WqðξL;ξRÞR
DξLDξRe−WqðξL;ξRÞ : ð63Þ

It is worth noting that, as well as for the weak-coupling
case, there will be self-energies coming from the sublead-
ing terms in the series. A convenient way to get rid of them
is to apply a normal ordering, in such a way that a-
independent contributions coming from contractions
between points on the same vertex are discarded. In the
weak-coupling case, that amounts to the usual normal
ordering, since the free propagator is independent of a.
Here, on the contrary, the propagator for the auxiliary fields
does depend on a. Thus, the normal ordering subtracts from
it a contribution which is independent of a. More explicitly,
when including tadpoles, they contribute

hξLðx∥ÞξLðx∥Þiq ¼
Z

d3k∥
ð2πÞ3

2jk∥j
e2jk∥ja − 1

¼ hξRðx∥ÞξRðx∥Þiq:

ð64Þ

The leading term is then Γq which is identical to the
Dirichlet result, and therefore the corresponding energy per
unit area is given by

Eq ¼ −
π2

1440a3
: ð65Þ

Let us now consider the expansion of Γs, which contains
the subleading terms. Note that, since now the Gaussian
average depends on a, even the first-order terms in WL;R
may produce nontrivial contributions to the interaction
energy. Indeed, we see that

Γð1Þ
s ¼ hWLðξLÞiq þ hWRðξRÞiq: ð66Þ

As an example, let us consider

WRðξRÞ ¼
Z
x∥

gR
4!

½ξRðx∥Þ�4; WLðξLÞ ¼ 0; ð67Þ

namely, a nonlinear mirror at x3 ¼ a and a Dirichlet one at
x3 ¼ 0. In this case, we obtain

Γð1Þ
s ¼ gR

8

�Z
d3k∥
ð2πÞ3

2jk∥j
e2jk∥ja − 1

�
2

¼ π6gR
460800a8

: ð68Þ

The following orders in an expansion of Γs will involve
terms which may be interpreted as involving more than one
loop. For example, one sees that at the second order the
contribution may be written as

Γð2Þ
s ¼ −

1

2
h½WLðξLÞ þWRðξRÞ − hWLðξLÞiq

− hWRðξRÞiq�2iq; ð69Þ
which is negative definite.

VII. CONCLUSIONS

We have presented a perturbative treatment for the
calculation of the Casimir energy in a system where the
boundary conditions, imposed on a real scalar field, are
nonlinear. The expression for the Casimir interaction
energy is expressed in terms of the constants that determine
the boundary conditions, as well as the distance. In the
nonlinear case, the mirrors’ properties cannot be com-
pletely specified by just reflection and transmission coef-
ficients, as it happens in the usual Lifshitz formula [19].
Our study has been concentrated on the case of a single real
scalar field, as a first step towards understanding the more
realistic, gauge field case. In many cases, the study of the
Casimir effect for the electromagnetic field may be related
to two real scalar fields, one of them with Dirichlet and the
other with Neumann conditions (for perfectly conducting
mirrors). We believe our study may be a first step towards
the inclusion of nonlinear effects for the would-be scalar
field which satisfies nonlinear Dirichlet-like conditions.
The study of Neumann-like conditions could require the
inclusion of derivatives of the field in the interaction terms.
We have considered different situations: first the case of

semitransparent nonlinear mirrors, then mirrors including
both linear and nonlinear contributions in their boundary
conditions, and finally situations where the mirrors can be
described as having a small nonlinear contribution on top of
an otherwise perfect (Dirichlet) plane.
The nonlinearities manifest themselves, at this level, in

the presence of terms in the interaction energy which have a
nonstandard dependence on the distance a, even when they
are semitransparent.
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