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We construct canonical transformations to reformulate SU(N) Kogut-Susskind lattice gauge theory in
terms of a set of fundamental loop and string flux operators along with their canonically conjugate loop and
string electric fields. The canonical relations between the initial SU(N) link operators and the final SU(N)
loop and string operators, consistent with SU(N) gauge transformations, are explicitly constructed over the
entire lattice. We show that as a consequence of SU(N) Gauss laws all SU(N) string degrees of freedom
become cyclic and decouple from the physical Hilbert space Hp. The Kogut-Susskind Hamiltonian
rewritten in terms of the fundamental physical loop operators has global SU(N) invariance. There are no
gauge fields. We further show that the (1=g2) magnetic field terms on plaquettes create and annihilate the
fundamental plaquette loop fluxes while the (g2) electric field terms describe all their interactions. In the
weak coupling (g2 → 0) continuum limit the SU(N) loop dynamics is described by SU(N) spin
Hamiltonian with nearest neighbor interactions. In the simplest SU(2) case, where the canonical
transformations map the SU(2) loop Hilbert space into the Hilbert spaces of hydrogen atoms, we analyze
the special role of the hydrogen atom dynamical symmetry group SOð4; 2Þ in the loop dynamics and the
spectrum. A simple tensor network ansatz in the SU(2) gauge invariant hydrogen atom loop basis is
discussed.
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I. INTRODUCTION

Loops carrying non-Abelian fluxes as the fundamental
dynamical variables provide an alternative and interesting
approach to study Yang Mills theories directly in terms of
gauge invariant variables. Their importance in understand-
ing long distance nonperturbative physics of non-Abelian
gauge theories has been amply emphasized by Wilson [1],
Mandelstam [2], Yang [3], Nambu [4] and Polyakov [5]. In
fact, after the work of Ashtekar on loop quantum gravity,
loops carrying SU(2) fluxes have also become relevant in
the quantization of gravity [6] where they describe basic
quantum excitations of geometry. The formulation of gauge
field theories on lattice by Wilson [1] and Kogut-Susskind
[7] is also a step toward the loop formulation of gauge
theories as one directly works with the gauge covariant link
operators or holonomies (instead of the gauge field) which
are joined together successively to get Wilson loops.
However, in spite of extensive work in the past, a
systematic transition from the standard SU(N) Kogut-
Susskind lattice Hamiltonian formulation (involving link
operators with spurious gauge degrees of freedom) to a
SU(N) loop formulation (involving loop operators without
local gauge and redundant loop degrees of freedom) is still
missing in the literature. This is the motivation for the
present work. We obtain a set of fundamental, mutually
independent SU(N) loop flux and their conjugate loop

electric field operators by gluing together the standard
SU(N) Kogut-Susskind link operators along certain loops
(see Fig. 2) through a series of iterative canonical trans-
formations over the entire lattice. The canonical trans-
formations also simultaneously produce a set of SU(N)
string flux and their conjugate string electric field oper-
ators. We show that as a consequence of SU(N) Gauss laws
at every lattice site, all string degrees of freedom become
cyclic or unphysical and completely decouple. As canoni-
cal transformations keep the total degrees of freedom intact
at every step, we are left only with the relevant, physical
and mutually independent SU(N) loop degrees of freedom
without any local gauge or loop redundancy. Hence, these
canonical transformations also enable us to completely
evade the serious problem of Mandelstam constraints (see
below and Sec. II) confronted by loop approaches to non-
Abelian lattice gauge theories.
In the past few decades there have been a number of

approaches proposed to reformulate SU(N) Yang Mills
theories [1–5,7–25] directly in terms of loops or gauge
invariant variables. All these approaches attempt to solve
the non-Abelian Gauss laws by first reformulating the
theory in terms of operators which transform covariantly
under gauge transformations and then exploiting this gauge
covariance to define gauge invariant operators and gauge
invariant states. In one of the earliest approaches [8], a polar
decomposition of the covariant electric fields was used to
solve the SU(2) Gauss law constraints. However, the
resulting magnetic field term in the SU(2) gauge theory
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Hamiltonian is technically involved and difficult to work
with. Also such a polar decomposition for SU(3) or higher
SU(N) gauge group is not clear. In approaches motivated by
gravity [9–11], a gauge invariant metric or dreilbein tensor
is constructed out of the covariant SU(2) electric or
magnetic field. The problem with such approaches is the
exact equivalence between the initial and final (gauge
invariant) coordinates is not simple [9]. Further, the gauge
group SU(2) plays a very special role and generalization of
these ideas to SU(N) gauge theories is not straightforward.
In Nair-Karabali [12] approach the SU(N) vector potentials
enable us to define gauge covariant matrices leading
to gauge invariant coordinates which are then quantized
to analyze the theory directly in the physical Hilbert
space Hp.
An old and obvious choice for the gauge covariant

operators [13–19] in any dimension is the set of all possible
holonomies around closed loops (see Sec. II). These loop
operators transform covariantly under gauge transforma-
tions, commute amongst themselves and their traces
(Wilson loop operators) are gauge invariant. In SU(N)
lattice gauge theories, one easily obtains a gauge invariant
(Wilson) loop basis in Hp by applying all possible SU(N)
Wilson loop operators on the gauge invariant strong
coupling vacuum [13–19]. However, this simple construc-
tion again over describes lattice gauge theories. Now the
over-description is because all possible Wilson loop oper-
ators are not mutually independent but satisfy notorious
Mandelstam constraints [13,15–19] discussed briefly in
Sec. II. These constraints are extremely difficult to solve
due to their large number and non-local nature (see Sec. II).
In fact, as also mentioned in [13], the loop approach
advantages of solving the non-Abelian Gauss law con-
straints become far less appealing due to the presence of
these nonlocal Mandelstam constraints. In general, a
common and widespread belief is that loop formulations
of gauge theories, though aesthetically appealing, are
seldom practically rewarding. As an example relevant for
this work, in the simplest SU(2) lattice gauge theory case
the Mandelstam constraints can be exactly solved in
arbitrary dimension using the (dual) description where
electric fields or equivalently the angular momentum
operators are diagonal [18–23]. The resulting gauge invari-
ant (loop) basis, also known as the spin network basis, is
orthonormal as well as complete. Thus there are no
redundant loop states or SU(2) Mandelstam constraints.
The loop basis is characterized by a set of angular
momentum or equivalently electric flux quantum numbers.
The action of the important 1=g2 magnetic field term on this
gauge invariant loop or spin network basis (labeled by
angular momentum quantum numbers) is highly geomet-
rical 3n-j Wigner coefficients (see Sec. II) (n ¼ 6, 10 for
space dimension d ¼ 2, 3, respectively [18]). However, the
corresponding loop Schrödinger equation involving these
Wigner coefficients over the entire lattice is extremely

complicated to solve. Further, there are numerous (angular
momentum) triangular constraints at each lattice site and
local Abelian constraints on each link [18–23]. All these
issues make this dual approach less viable for any practical
calculation even for the simplest SU(2) case. These dual
loop approaches, when generalized to SU(3) or higher
SU(N) lattice gauge theories, further suffer from the
problem of multiplicities involved with SU(N) representa-
tions [25] for N ≥ 3.
As mentioned earlier, the loop formulation of SU(N)

lattice gauge theory discussed in this work completely
evades the problem of redundancy of loops or equivalently
the problems of Mandelstam constraints by defining a
complete set of fundamental SU(N) loop operators. All
SU(N) loop flux operators start and end at the origin of the
lattice. There are no local or nonlocal constraints and there
are no gauge fields. The SU(N) loop dynamics is described
by a generalized SU(N) spin Hamiltonian. The 1-1 canoni-
cal relations between the initial Kogut-Susskind SU(N) link
operators and the final SU(N) loop and string operators are
explicitly worked out in a self-consistent manner. The
important ð1=g2Þ plaquette magnetic field terms, describing
SU(N) flux interactions (discussed above in terms of 3n-j
Wigner coefficients) transform or simplify into SU(1,1)
raising and lowering operators of the fundamental plaquette
loop fluxes [see (45) and (46)]. This is the simplest
and most elementary form of a plaquette magnetic field
term on lattice. Therefore, they have the simplest possible
action in the loop space which is extensively discussed in
Secs. III A 4 and IV. All local and nonlocal interactions
amongst the fundamental loops are described by ðg2Þ electric
field terms. We further show that in the weak coupling
(g2→0) continuum limit, the SU(N) loop Hamiltonian
reduces to SU(N) spin model with nearest neighbor inter-
actions. The global SU(N) invariance of spin model is the
residual SU(N) gauge transformations at the origin.
Throughout this paper we find it convenient to explain

the ideas using the simplest SU(2) lattice gauge theory
as an example. Remarkably, in this simple SU(2) case, the
canonical transformations also establish an exact and
completely unexpected equivalence between bare essential
(physical) loop degrees of freedom of SU(2) lattice gauge
theory and hydrogen atoms. This novel correspondence
was the focus of our preceding work [24] where we
emphasized a possible wider scope of loop approaches.
We further discuss this equivalence in this work in the
context of hydrogen atom dynamical symmetry group
SO(4,2) and its special role in the SU(2) loop dynamics
and the spectrum.
The plan of the paper is as follows. We start with a very

brief introduction to Kogut Susskind Hamiltonian formu-
lation of SU(N) lattice gauge theory in Sec. II. This section
is included to set up the notations, conventions required to
maintain consistency and completeness through out the
presentation. We also briefly discuss SU(2) Mandelstam
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constraints and difficulties associated with them to high-
light the importance of the canonical transformations in the
loop approach to SU(N) lattice gauge theory. In Sec. III, we
discuss these canonical transformations. We show how the
strings, associated with gauge degrees of freedom, become
cyclic and drop out as a consequence of Gauss laws. We
then describe the SU(2) loop Hilbert space in terms of
Hilbert spaces of hydrogen atoms. In Sec. III B 4, we
discuss the hydrogen atom dynamical symmetry group
SO(4,2) and show the origin of its 15 generators in the
context of SU(2) lattice gauge theories. The Sec. IV, is
devoted to SU(N) loop dynamics written directly in terms
of the fundamental loop operators. At the end we briefly
describe a variational and a tensor network ansatz within
the present loop formulation. All technical details of the
SU(N) canonical transformations are worked out in detail at
the end in the Appendices A and B. To keep the discussion
simple and transparent, we will mostly work in two space
dimension on a finite square lattice with open boundary
conditions. The lattice sites and links are denoted by
n≡ ðx; yÞ and ðn; îÞ respectively with x; y ¼ 0; 1; 2…;N;
i ¼ 1, 2. There are N ð¼ ðNþ 1Þ × ðNþ 1ÞÞ sites,
Lð¼ 2NðNþ 1ÞÞ links and Pð¼ N2Þ plaquettes satisfying:

L≡ P þ ðN − 1Þ:

We will often use p ¼ 1; 2;…;P as a plaquette index
without specifying their locations.

II. SU(N) HAMILTONIAN FORMULATION
ON LATTICE

The kinematical variables involved in Kogut and
Susskind Hamiltonian formulation [7] of lattice gauge
theories are SUðNÞ link operators Uðn; îÞ and the corre-
sponding conjugate link electric fields Eaþðn; îÞ and
Ea
−ðnþ î; îÞ. These electric fields rotate Uðn; îÞ from left

and right as shown in Fig. 1(a) and satisfy the following
canonical commutation relations

½Eaþðn; îÞ; Uαβðn; îÞ� ¼ −
�
λa

2
Uðn; îÞ

�
αβ

½Ea
−ðnþ î; îÞ; Uαβðn; îÞ� ¼

�
Uðn; îÞ λ

a

2

�
αβ

: ð1Þ

In (1), λaða ¼ 1; 2;…; ðN2 − 1ÞÞ are the representation
matrices in the SU(N) fundamental representation satisfy-
ing TrðλaλbÞ ¼ ð1=2Þδab. The above SU(N) transforma-
tions imply that

½Eaþðn; îÞ; Ebþðn; îÞ� ¼ ifabcEcþðn; îÞ;
½Ea

−ðn; îÞ; Eb
−ðn; îÞ� ¼ ifabcEc

−ðn; îÞ: ð2Þ
Above fabc are the SU(N) structure constants. We also
define the strong coupling vacuum state j0i by demanding

Ea∓ðn; îÞj0i ¼ 0 on every link. The link operators Uðn; îÞ
satisfy the following SU(N) conditions:

Uðn; îÞU†ðn; îÞ ¼ I ; U†ðn; îÞUðn; îÞ ¼ I : ð3Þ
Above I is an N × N identity operator. Further, the
determinant of the unitary matrix is also unity on every
link: jUðn; îÞj ¼ I . Acting on strong coupling vacuum, the
flux operator Uðn; îÞ creates and annihilates SU(N) fluxes
on the link ðn; îÞ. The quantization relations (1) show that
electric field operators Eaþðn; îÞ and Ea

−ðn; îÞ are the
generators of the left and right gauge transformations on
Uðn; îÞ and Uðn − î; îÞ respectively. This is also illustrated
in Fig. 1(b). The left and right electric fields of link operator
Uðn; îÞ in (1) are related by

Ea
−ðnþ î; îÞ ¼ −RabðU†ðn; îÞÞEbþðn; îÞ: ð4Þ

In (4) RabðUÞ≡ ð1=2ÞTrðλaUλbU†Þ is the rotation matrix
satisfying ~RðUÞRðUÞ ¼ RðUÞ ~RðUÞ ¼ I where ~R is the
transpose of R. The relations (4) show that Ea

−ðn; îÞ and
Ebþðm; jÞ mutually commute: ½Ea

−ðn; îÞ; Ebþðm; ĵÞ� ¼ 0 and
their magnitudes are equal

XN2−1

a¼1

Eaþðn; îÞEaþðn; îÞ ¼
XN2−1

a¼1

Ea
−ðnþ î; îÞEa

−ðnþ î; îÞ

≡ E2ðn; îÞ; ∀ ðn; îÞ ð5Þ

The SU(N) gauge transformations are

E�ðn; îÞ → ΛðnÞE�ðn; îÞΛ†ðnÞ;
Uðn; îÞ → ΛðnÞUðn; îÞΛ†ðnþ îÞ: ð6Þ

In (6) we have defined E� ≡P
aE

a
�

λa

2
. The commutation

relations (1) along with the gauge transformations (6) imply

(a) (b)

FIG. 1 (color online). The location of the left and right electric
fields Eþðn; îÞ and E−ðnþ î; îÞ of a flux operatorUðn; iÞ: (a) on a
link ðn; iÞ, (b) around a lattice site n ¼ ðx; yÞ. The SU(N) Gauss
law is also pictorially shown in (b).
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that the generators of SU(N) gauge transformations at a
lattice site n are

GaðnÞ ¼
Xd
i¼1

ðEa
−ðn; îÞ þ Eaþðn; îÞÞ; ∀ n; a: ð7Þ

The SU(N) Gauss law (7) is illustrated in Fig. 1(b). The
Gauss law constraints, GaðnÞ≊0, are imposed on the states
to get physical states in Hp. As discussed in the intro-
duction, the obvious and the simplest gauge invariant basis
in Hp is obtained by acting all possible Wilson loop
operators TrWγ on the strong coupling vacuum. Here,
Wγ is the holonomy operator corresponding to a closed,
oriented loop γ. However, not all Wilson loop operators are
mutually independent and therefore the above basis is over-
complete. This over-completeness can be appreciated by
considering the simplest SU(2) example [15,18]:

TrðWγW γ̄Þj0i≡ TrWγTrW γ̄j0i − TrðWγW−1
γ̄ Þj0i ð8Þ

involving any two arbitrary closed oriented loops denoted
by γ, γ̄ with a common starting and endpoint which can be
anywhere on the lattice. This trivial example shows that the
three Wilson loop states in (8) are not mutually indepen-
dent. In the entire loop Hilbert space, involving all possible
loops, there are numerous such relations even on a small
lattice [15,18]. Therefore, the gauge theory rewritten in the
Wilson loop basis contains many redundant and spurious
loop degrees of freedom [18]. These mutual dependence of
loop states are expressed by Mandelstam constraints like
(8) in the case of SU(2) lattice gauge theory. These
Mandelstam constraints are difficult to solve in terms of
independent loop coordinates [15] because of their large
number and their nonlocal nature. As mentioned earlier, the
problem of over-completeness of Wilson loop states
becomes more and more difficult as we go to higher
dimension and larger SU(N) groups [16–18,25].
In the next section, using canonical transformations, we

construct a complete set of fundamental SU(N) loop
operators which are mutually independent. Thus the prob-
lems associated with SU(N) Mandelstam constraints,
namely too many loop degrees of freedom, are completely
bypassed for any N. At the same time, unlike the dual
approaches mentioned above, the important SU(2) mag-
netic field terms reduce to a sum of gauge invariant SU(1,1)
creation-annihilation operators [see Eqs. (46) and (69)].
These SU(1,1) operators ðk0; kþ; k−Þ count, create and
destroy the fundamental plaquette loops respectively as
discussed in the next sections.

III. SU(N) CANONICAL TRANSFORMATIONS:
FROM LINKS TO LOOPS & STRINGS

We start with a set of L standard SU(N) Kogut-Susskind
flux and their left, right conjugate electric field operators:

ðEaþðn; îÞ; Uðn; îÞ; Ea
−ðnþ î; îÞÞ satisfying (1) and shown in

Fig. 1(a). We construct an iterative series of canonical
transformations to transform them into:

(i) a set of P “physical” SU(N) plaquette loop flux
operators and their conjugate loop electric fields:

ðEa
−ðnÞ;WðnÞ; EaþðnÞÞ; a ¼ 1; 2;…; N2 − 1;

(ii) a set of independent ðN − 1Þ “unphysical” SU(N)
string flux operators and their conjugate string
electric fields:

ðEa
−ðnÞ;TðnÞ;EaþðnÞÞ; a ¼ 1; 2;…; N2 − 1:

These new loop and string flux operators [26] and the
location of their electric fields are shown in Fig. 2. As is
clear from this figure, the convention chosen for loop and
string electric fields is that Ea

−ðnÞ;Ea
−ðnÞ ðEaþðnÞ;EaþðnÞÞ

are located at the initial (final) points of the loop and string
flux lines. They satisfy canonical commutation relations
amongst themselves. The degrees of freedom exactly match
as L ¼ P þ ðN − 1Þ. We will show that the right electric
field operators of the string attached to a site n are the
Gauss law generators (7) at n:

EaþðnÞ ¼ GaðnÞ: ð9Þ

Therefore, all (N − 1) string flux operators TðnÞ create
unphysical states ∉Hp and hence can be ignored without
any loss of physics. The traces of P plaquette loop flux
operators of the form

TrððWðn1ÞÞq1ðWðn2ÞÞq2 � � � ðWðnpÞÞqP Þ

(a) (b)

FIG. 2 (color online). The plaquette loop operator Wðx; yÞ and
the string flux operator Tðx; yÞ and their electric fields Ea∓ðx; yÞ&
Ea∓ðx; yÞ respectively. Note that the electric fields Ea∓ðx; yÞ,
Ea∓ðx; yÞ are located at the initial and final points of the loops
and strings, respectively.
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create-annihilate all possible physical loop states in Hp.
Above ðq1; q2;…; qPÞ are sets of P integers. We now
discuss the canonical transformations. To keep the dis-
cussion simple, we start with a single plaquette case before
dealing with the entire lattices in d ¼ 2, 3. Some of the
issues in this section were covered briefly in [24].

A. Canonical transformations on a single plaquette

We start with a plaquette OABC with the following
Kogut-Susskind SU(N) link flux operators [7]: ðEaþð0;0;1̂Þ;
Uð0;0;1̂Þ;Ea

−ð1;0;1̂ÞÞ on link OA, ðEaþð1; 0; 2̂Þ; Uð1; 0; 2̂Þ;
Ea
−ð1; 1; 2̂ÞÞ on link AB, ðEaþð0;1;1̂Þ;Uð0;1;1̂Þ;Ea

−ð1;1;1̂ÞÞ
on link CB and finally the operators ðEaþð0;0;2̂Þ;
Uð0;0;2̂Þ;Ea

−ð0;1;2̂ÞÞ on the link OC. These link operators

and their locations are clearly illustrated on the left-hand
side of Fig. 3(a). As is clear from this figure, the SU(N)
Gauss laws at four corners O, A, B and C are

Gað0; 0Þ ¼ Eaþð0; 0; 1̂Þ þ Eaþð0; 0; 2̂Þ ¼ 0;

Gað1; 0Þ ¼ Ea
−ð1; 0; 1̂Þ þ Eaþð1; 0; 2̂Þ ¼ 0;

Gað1; 1Þ ¼ Ea
−ð1; 1; 2̂Þ þ Ea

−ð1; 1; 1̂Þ ¼ 0;

Gað0; 1Þ ¼ Eaþð0; 1; 1̂Þ þ Ea
−ð0; 1; 2̂Þ ¼ 0: ð10Þ

We now make canonical transformations to fuse L (¼ 4)
Kogut Susskind SU(N) flux operators Uð0; 0; 1̂Þ,
Uð1; 0; 2̂Þ, Uð0; 1; 1̂Þ and Uð0; 0; 2̂Þ into N − 1 (¼ 3)
unphysical string flux operators [27] ½T½xy�ð1; 0Þ;

(a)

(b)

(c)

FIG. 3 (color online). Three canonical transformations on the four link flux operators of a plaquette OABC leading to a single physical
plaquette loop flux operatorWαβð1; 1Þ in (c). The three right electric fields Ea

½xy�þð1;0Þ, Ea
½xy�þð1;1Þ, Ea

½xy�þð0; 1Þ of the three string flux
operators ending at A, B and C respectively are the Gauss law generators GaðAÞ, GaðBÞ and GaðCÞ respectively. The Gauss law at the
origin is: GaðOÞ ¼ Eaþð0; 0; 1̂Þ þ Eaþð0; 0; 2̂Þ ¼ Ea

−ð1; 1Þ þ Eaþð1; 1Þ ¼ 0.
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T½xy�ð1; 1Þ;T½xy�ð0; 1Þ� and Pð¼ 1Þ physical SU(N) pla-
quette loop flux operator Wð1; 1Þ around the plaquette
OABC as shown in Fig. 3. The corresponding right string
and loop electric fields are denoted by ½Ea

½xy�þð1; 0Þ;
Ea
½xy�þð1; 1Þ;Ea

½xy�þð1; 0Þ� and Eaþð1; 1Þ respectively. All left
electric field operators are defined using (4).
The canonical transformations are performed in 3

sequential steps as shown in Figs. 3(a), 3(b) and 3(c)
respectively. The first canonical transformation fuses
Uð0; 0; 1̂Þ with Uð1; 0; 2̂Þ into T½xy�ð1; 0Þ and T½y�ð1; 1Þ as
follows:

T½xy�ð1; 0Þ≡Uð0; 0; 1̂Þ;
T½y�ð1; 1Þ≡Uð0; 0; 1̂ÞUð1; 0; 2̂Þ;

Ea
½xy�þð1; 0Þ ¼ Ea

−ð1; 0; 1̂Þ þ Eaþð1; 0; 2̂Þ≡ Gað1; 0Þ;
Ea
½y�þð1; 1Þ ¼ Ea

−ð1; 1; 2̂Þ: ð11Þ

All steps in (11) are also illustrated in Fig. 3(a). Note that
the resulting new canonical pairs ðT½xy�ð1; 0Þ;E½xy�þð1; 0ÞÞ
and ðT½y�ð1; 1Þ;Ea½y�þð1; 1ÞÞ satisfy the standard canonical
commutation relations simply by construction in (11):

½Ea
½xy�þð1; 0Þ;T½xy�ð1; 0Þ� ¼ T½xy�ð1; 0Þ

�
λa

2

�
;

½Ea
½y�þð1; 1Þ; T ½y�ð1; 1Þ� ¼ T½y�ð1; 1Þ

�
λa

2

�
: ð12Þ

They are also mutually independent:

½Ea
½xy�þð1; 0Þ;T½y�ð1; 1Þ� ¼ 0;

½Ea
½y�ð1; 1Þ;T½xy�ð1; 0Þ� ¼ 0.

½Ea
½xy�þð1; 0Þ;E½y�ð1; 1Þ� ¼ 0;

½T½y�ð1; 1Þ;T½xy�ð1; 0Þ� ¼ 0:

Therefore the resulting new canonical pairs should be
treated exactly on the same footing as the initial Kogut-
Susskind canonical pairs on links. The left electric fields
are given by

Ea
½xy�−ð1; 0Þ≡ −RabðT½xy�ð1; 0ÞÞEb

½xy�þð1; 0Þ;
Ea
½y�−ð1; 1Þ≡ −RabðT½y�ð1; 1ÞÞEb

½y�þð1; 1Þ: ð13Þ

From the third equation in (11) and Gað1; 0Þ ¼ 0, it is clear
that the string flux operator T½xy�ð1; 0Þ is unphysical as its
action on any state takes that state out ofHp. Therefore, we
ignore it henceforth. We now iterate the above canonical
transformations with Uð0; 0; 1̂Þ, Uð1; 0; 2̂Þ in (11) replaced
by Uð0; 0; 2̂Þ, Uð0; 1; 1̂Þ respectively. We define:

T½xy�ð0; 1Þ≡Uð0; 1; 2̂Þ;
T½x�ð1; 1Þ≡Uð0; 0; 2̂ÞUð0; 1; 1̂Þ;

Ea
½xy�þð0; 1Þ ¼ Ea

−ð0; 1; 2̂Þ þ Eaþð0; 1; 1̂Þ ¼ Gað0; 1Þ;
Ea
½x�þð1; 1Þ ¼ Ea

−ð1; 1; 1̂Þ: ð14Þ

Again, the canonical transformations (14) are illustrated
in Fig. 3(b). The resulting two new canonical pairs of
string operators ðT½xy�ð0; 1Þ;Ea

½xy�þð0; 1ÞÞ and ðT½x�ð1; 1Þ;
Ea
½x�þð1; 1ÞÞ are canonical as well as mutually independent

like the previous two sets in (12). The left electric fields
Ea
½xy�−ð0; 1Þ;Ea

½x�−ð1; 1Þ are again defined through parallel

transports as in (4) or (13). As a consequence of Gauss law
at C the string operator T½xy�ð0; 1Þ (like T½xy�ð1; 0Þ) becomes
unphysical. The last sets of canonical transformations fuse
the remaining two strings T½y�ð1; 1Þ and T½x�ð1; 1Þ to define
the final physical plaquette loop conjugate operators
ðWð1; 1Þ; Eþð1; 1ÞÞ:

T½xy�ð1; 1Þ≡ T½y�ð1; 1Þ;
Wð1; 1Þ≡ T½y�ð1; 1ÞT†

½x�ð1; 1Þ;
E½xy�þð1; 1Þ ¼ Ea

½y�þð1; 1Þ þ Ea
½x�þð1; 1Þ ¼ Gað1; 1Þ ¼ 0;

Eaþð1; 1Þ ¼ Ea
½x�−ð1; 1Þ: ð15Þ

The above canonical transformations are illustrated in
Fig. 3(c). In the third equation in (15), the right electric
fields Ea

½y�þð1; 1Þ and Ea
½x�þð1; 1Þ have been substituted in

terms of the Kogut-Susskind electric fields using (11) and
(14) to get the SU(N) Gauss laws: Gað1; 1Þ ¼ 0 at lattice
site B. Now T½xy�ð1; 1Þ decouples and

Wð1; 1Þ≡Uð0; 0; 1̂ÞUð1; 0; 2̂ÞU†ð0; 1; 1̂ÞU†ð0; 0; 2̂Þ ð16Þ

emerges as the final physical plaquette loop flux operator.
Its left and right electric fields are [28]:

Ea
−ð1; 1Þ ¼ Eaþð0; 0; 1̂Þ; Eaþð1; 1Þ ¼ Eaþð0; 0; 2̂Þ: ð17Þ

Thus we have converted all link operators into string and
loop operators. Note that by construction the canonical
structures are rigidly maintained at all three steps [(11), (14)
and (15)]. The string flux operators and their conjugate
electric fields satisfy

½Ea
½xy�þðx; yÞ;Tðx0; y0Þ� ¼ δx;x0δy;y0

�
Tðx; yÞ λ

a

2

�
;

½Eaþðx; yÞ;Ebþðx0; y0Þ� ¼ iδx;x0δy;y0fabcEcþðx; yÞ: ð18Þ

Above ðx; yÞ; ðx0; y0Þ ¼ ð1; 0Þ; ð1; 1Þ; ð0; 1Þ. The string
electric fields Ea

½xy�þðx; yÞ at ðx; yÞ satisfy SU(N) algebra
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and commute if they are at different lattice sites.
Under SU(N) gauge transformations, these string operators
transform as:

T½xy�ðx; yÞ → Λð0; 0ÞT½xy�ðx; yÞΛ†ðx; yÞ;
E½xy�þðx; yÞ → Λðx; yÞE½xy�þðx; yÞΛ†ðx; yÞ: ð19Þ

Therefore, none of the three strings can form any gauge
invariant operators at their endpoints (0,1), (1,1), (0,1). The
SU(N) Gauss laws at A, B, C state this simple fact. Having
removed the three unphysical strings, we now focus on the
plaquette loop operators ðEa

−ð1; 1Þ;Wð1; 1Þ; Eaþð1; 1ÞÞ≡
ðEa

−;W; EaþÞ. Again by construction, they satisfy the
canonical quantization relations:

½Eaþ;W� ¼ −
�
λa

2
W

�
⇒ ½Eaþ; Ebþ� ¼ ifabcEcþ;

½Ea
−;W� ¼

�
W

λa

2

�
⇒ ½Ea

−; Eb
−� ¼ ifabcEc

−: ð20Þ

Above Ea
− ≡ −RabðWÞEbþ implying ð~E−Þ2 ¼ ð~EþÞ2 ≡ ð~EÞ2

and ½Ea
−; Ebþ� ¼ 0. They gauge transform at the origin as:

E∓ → ΛE∓Λ†; W → ΛWΛ†: ð21Þ

We have defined E∓ ≡P
aE

a∓λa and Λ≡ Λð0; 0Þ denotes
the gauge rotation at the origin. The corresponding Gauss
law at the origin is

Gað0; 0Þ ¼ Ea
− þ Eaþ ¼ Eaþð0; 0; 1̂Þ þ Eaþð0; 0; 2̂Þ ¼ 0.

ð22Þ
The relations (22) are valid within Hp because we have
ignored all string electric fields because of the Gauss
laws: Ea

½xy�ðx; yÞ ¼ 0; ðx; yÞ ¼ ð1; 0Þ; ð1; 1Þ; ð0; 1Þ.

1. Inverse relations

It is instructive and useful to invert the canonical trans-
formations (11), (14) and (15) to write Kogut Susskind link
operators in terms of strings and loop variables. These
relations also enable us to write the Kogut Susskind
Hamiltonian (42) in terms of loop operators [see (43)]. It
is clear from Fig. 3(a,b,c)that

Uð0; 0; 1̂Þ ¼ Tð1; 0Þ; Uð1; 0; 2̂Þ ¼ T†ð1; 0ÞTð1; 1Þ
Uð0; 0; 2̂Þ ¼ Tð0; 1Þ; Uð0; 1; 1̂Þ ¼ T†ð0; 1ÞW†Tð1; 1Þ:

ð23Þ

Above we have ignored subscript ½xy� and used
Tðx; yÞ≡ T½xy�ðx; yÞ. Similarly, the electric field relations
in (11), (14) and (15) can also be inverted to write (see
Appendix B for details):

Eaþð0; 0; 1̂Þ ¼ Ea
½xy�−ð1; 0Þ þ Ea

½xy�−ð1; 1Þ þ Ea
−;

Eaþð1; 0; 2̂Þ ¼ RabðT†
½xy�ð1; 0ÞÞðEb

½xy�−ð1; 1Þ þ Eb
−Þ;

Eaþð0; 0; 2̂Þ ¼ Eaþ þ Ea
½xy�−ð0; 1Þ;

Eaþð0; 1; 1̂Þ ¼ RabðT†
½xy�ð0; 1ÞÞEbþ: ð24Þ

These canonical relations between links and loops have the
following interesting features:

(i) They are consistent with gauge transformations (6),
(19) and (21) as well as with SU(N) algebras of link,
string and loop electric fields given in (1) and
(18), (20).

(ii) The canonical commutation relations between
SU(N) link flux operators and their link electric
fields also remain intact under the links to loops and
stings mappings (23) and (24).

(iii) No strings (Tðx; yÞ or Eaðx; yÞ) can appear in a
gauge invariant operator in Hp. As an example, the
gauge invariant electric field terms in the Kogut
Susskind Hamiltonian are

ð~Eþð0; 0; 1̂ÞÞ2 ¼ ð~Eþð1; 0; 2̂ÞÞ2 ¼ ð~Eþð0; 1; 1̂ÞÞ2

¼ ð~Eþð0; 0; 2̂ÞÞ2 ¼ ð~E−Þ2: ð25Þ

We have used the Gauss laws Ea
½xy�þðx; yÞ ¼ 0 in

(24) within Hp. In other words, while expressing
Kogut-Susskind link electric fields in terms of loop
electric fields, the strings can appear only in the
overall parallel transport factors. This is also re-
quired for the consistency with SU(N) gauge trans-
formations in (24).

2. Loop prepotential operators

The physical loop electric fields Ea
� discussed in the

previous section can be conveniently described in terms of
the prepotential creation-annihilation operators:

Ea
− ¼ a†

�
σa

2

�
a; Eaþ ¼ b†

�
σa

2

�
b: ð26Þ

In (26) Ea
� are SU(2) electric fields and ða†α; b†βÞ and

ðaα; bβÞ are the SU(2) prepotential creation and annihila-
tion SU(2) doublets [29] with α, β ¼ 1, 2. We also define
the total number operators N̂a ¼ a† · a≡ a†1a1 þ a†2a2,
N̂b ¼ b† · b≡ b†1b1 þ b†2b2. The constraint E2þ ¼ E2

−
implies

N̂a ¼ N̂b ≡ N̂:

Under SU(2) gauge transformations (21):

aα → Λαβaβ; bα → Λαβbβ: ð27Þ
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The prepotential formulation also has an important addi-
tional U(1) invariance [18,23]:

aα → eiθaα; bα → e−iθbα: ð28Þ

The prepotential operators defining relations (26) are
invariant under (28). The gauge invariant strong coupling
vacuum j0ið≡j0ia ⊗ j0ibÞ is also the prepotential har-
monic oscillator vacuum satisfying: aαj0i ¼ 0, bαj0i ¼ 0.
The quantization rules (1) and the gauge transformations
(21), (28) imply [18,23]:

Wαβ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN̂ þ 1Þ
q ðaα ~bβ − ~a†αb

†
βÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN̂ þ 1Þ

q
≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN̂ þ 1Þ
q ðWð−Þ

αβ þWðþÞ
αβ Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN̂ þ 1Þ
q : ð29Þ

It is easy to check that (26) and (29) satisfy the canonical
commutation relations (20). Further, the above prepotential
representation also maintains the nontrivial relations:
WW† ¼ W†W ¼ I , jWj ¼ þ1 as well as the canonical
commutation relations: ½Wαβ;Wγδ� ¼ 0, ½Wαβ;W

†
γδ� ¼ 0.

We now construct a complete orthonormal loop basis in
Hp with the prepotential operators in a straightforward
manner in the next section. We further show thatHp can be
exactly identified with all possible spherically symmetric
“s-states of a hydrogen atom" [24].

3. Physical loop Hilbert space and Hydrogen atom

In the standard approach all four link flux operators in
Fig. 3(a) are fundamental with each of them gauge trans-
forming differently. Therefore, the construction of gauge
invariant states is more involved compared to working with
a single loop flux operatorW. In this section we exploit this
simple fact and show that the physical or loop Hilbert space
can be completely realized in terms of a hydrogen atom
Hilbert space. This correspondence is achieved by identi-

fying the loop electric fields ~E∓ of SU(2) lattice gauge

theory with the angular momentum ~L and Laplace Runge

Lenz vector ~A of the hydrogen atom. More precisely:

~E∓ ≡ 1

2
ð~L∓~AÞ: ð30Þ

In the above identification, the identity ~E2
− ¼ ~E2

þ ≡ ~E2 in

(5) holds naturally as ~L · ~A ¼ 0 [30]. We can also have three
separate identifications like (30) for the three string electric
fields T½xy�∓ð1; 0Þ, T½xy�∓ð1; 1Þ, T½xy�∓ð0; 1Þ. But these
identifications will be in the unphysical sector in the case
of pure gauge theories and hence we ignore them in
this work.

We first construct the eigenstates of the complete set of

commuting operators (CSCO-I) consisting of ð~E2
− ≡

~E2
; Ea¼3

− Þ and ð~E2
þ ≡ ~E2

; Ea¼3þ Þ which form SUð2Þ ⊗
SUð2Þ representations:

jj; m−; mþi ¼ Tj
m−ða†Þj0ia|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

jj;m−ia

⊗ Tj
mþðb†Þj0ib|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

jj;mþib

: ð31Þ

In (31), the tensor operator Tj
m are defined as

Tj
mða†Þ≡

ffiffiffiffiffiffiffiffiffiffi
ð2jÞ!

p � ða†1ÞðjþmÞða†2Þðj−mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþmÞ!ðj −mÞ!p �
:

The states (31) are invariant under U(1) gauge trans-
formations (27). They are eigenstates of the above
CSCO-I:

~E2jj; m−; mþi ¼ jðjþ 1Þjj; m−; mþi;
~Ea¼3
∓ jj; m−; mþi ¼ m∓jj; m−; mþi: ð32Þ

In the context of hydrogen atom, the states (31) are the
energy eigenstates with energy [30] En ∼ 1

n2 with
n≡ 2jþ 1. The two magnetic quantum numbers m∓
describe their degeneracies. On the other hand, in the
gauge theory context the states j j m− mþ i in (32)
describe loops carrying non-Abelian quantized SU(2) loop
electric fluxes [31]. Further, as Ea

− þ Eaþ ≡ La the gauge
rotations at the origin of the flux states in (31) correspond to
the spatial rotations of the hydrogen atom. Under these
gauge transformations:

jjm−mþi →
X
m0∓

jjm0
−m0þiDj

m0
−m−

ðΛÞDj
m0

þmþ
ðΛÞ: ð33Þ

In (33), D j
mm0 ðΛÞ are the Wigner matrices, Λ≡ Λð0; 0Þ

denotes the gauge parameters at the origin. We have used
the gauge transformations (27) and the definition (31) to get
(33). In order to solve Gauss law systematically, we
construct a coupled basis from (31) so that the following
coupled and complete set of commuting operators (CSCO
II) are diagonal:

f~E2
− ¼ ~E2

þ ¼ ~E2; ð~E− þ ~EþÞ2; ð~E− þ ~EþÞa¼3g
≡ f~E2; ð~LÞ2; ð~LÞa¼3g:

The eigenbasis states of CSCO-I and CSCO-II are related
by Clebsch-Gordan coefficients:
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j n l m i≡ X
m−;mþ

C l;m
jm−;jmþjjm−mþi

¼
X
m−;mþ

C l;m
jm−;jmþjj; m−iajj; mþib: ð34Þ

Above n≡ 2jþ 1 ¼ 1; 2;…; l ¼ 0; 1;…; 2jð≡n − 1Þ;
m ¼ −l;−ðl − 1Þ;…; ðl − 1Þ, l. The states in (34) are
eigenstates of CSCO II:

~E2jn l mi¼ðn2−1Þ
4

jn l mi;
~L2jn l mi¼ lðlþ1Þjn l mi;

La¼3jn l mi¼mjn l mi: ð35Þ

Note that the states j n l m i in (34) are also the standard
hydrogen atom energy eigenstates [30] characterized by the
principal, angular momentum and magnetic quantum
numbers n, l and m respectively. Under gauge trans-
formations, the coupled states (34) have much simpler
transformation property as compared to the states in (33):

jn l mi→
X
m̄

D l
mm̄ðΛÞjn l m̄i: ð36Þ

Thus the principal and angular momentum quantum num-
bers are gauge invariant. The Gauss law in this single
plaquette case (22) states that Ea

− þ Eaþ ≡ La ¼ 0.
Therefore, all possible orthonormal solutions are the
s-states jn; l ¼ 0; m ¼ 0i of hydrogen atom. This gauge
invariant hydrogen atom loop basis can be easily con-
structed in terms of the prepotential operators. There are
three possible SUð2Þ ×Uð1Þ gauge invariant operators:

k− ≡ a · ~b; kþ ≡ a† · ~b†; k0 ≡ 1

2
ðN̂a þ N̂b þ 2Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

2ðN̂þ1Þ

:

ð37Þ

In (37) a · ~b ¼ aα ~bα ¼ aαϵαβbβ ≡ ða1b2 − a2b1Þ and
N̂a ¼ N̂b ¼ N̂. They are gauge invariant loop creation-
annihilation operators k� ¼ TrWð�Þ. On the other hand,
gauge invariant k0 has the interpretation of loop flux
counting operator. They satisfy SU(1,1) algebra:

½k−; kþ� ¼ 2k0; ½k0; k�� ¼ �k�: ð38Þ
They are also invariant [34] under U(1) transformations
(28). The SU(1,1) Casimir operator is defined as:

C≡ k20 −
1

2
ðk−kþ þ kþk−Þ: ð39Þ

All possible orthonormal hydrogen atom loop states can
be easily constructed using SU(1,1) or loop creation
operators kþ:

jni≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − 1Þ!n!p ðkþÞn−1j0i; n ¼ 1; 2 � � � : ð40Þ

The single plaquette loop states in (40) form a discrete
representation of SU(1,1) with Bargmann index [35]
k ¼ 1:

Cjni ¼ 0; k0jni ¼ njni
kþjni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
jnþ 1i;

k−jni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p
jn − 1i: ð41Þ

These gauge invariant fundamental loop flux creation-
annihilation and counting operators govern the loop
dynamics which we discuss in the next section. Note that
in the hydrogen atom loop basis all topological effects of
the compactness of SU(2) gauge group are contained in the
discreteness of the principal quantum numbers n of hydro-
gen atom.

4. Loop dynamics and SUð1;1Þ ⊂ SOð4;2Þ
We consider SU(N) Kogut-Susskind Hamiltonian [7]:

H ¼ g2
X4
l¼1

~E2ðlÞ þ K
g2

½2N − TrðU1U2U
†
3U

†
4 þ H:c:Þ�

≡HE þHB: ð42Þ

In (42), K is a constant and U1 ≡Uð0; 0; 1̂Þ,
U2 ≡Uð1; 0; 2̂Þ, U3 ≡Uð0; 1; 1̂Þ, U4 ≡Uð0; 0; 2̂Þ. Using
links to loop relations (16) and (25), the SU(N) loop
Hamiltonian for the single plaquette is

H ¼ 4g2~E2 þ K
g2

½2N − TrðW þW†Þ�: ð43Þ

At this stage we specialize to SU(2) case [36]. The
Hamiltonian (42) can be completely rewritten in terms
of loop creation, annihilation and counting operators
forming SU(1,1) algebra. The electric field term is

HE ¼ g2
X4
l¼1

~E2ðlÞ ¼ 4g2~E2 ¼ g2ðk20 − 1Þ: ð44Þ

The four link magnetic field term takes its simplest possible
form:

HB ¼ 1

g2
TrðU1 U2 U†

3 U†
4Þ ¼

1

g2
TrW

¼ 1

g2
1ffiffiffiffiffi
k0

p ðk− þ kþÞ
1ffiffiffi
k

p
0

: ð45Þ
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The magnetic field term, important in the weak coupling
continuum limit, simply creates and annihilates the fluxes
on the plaquette loop:

HBjni ¼
1

g2
TrðU1 U2 U†

3 U†
4Þjni ¼

1

g2
TrWjni

¼ 1

g2
½nþ 1i þ jn − 1i�: ð46Þ

Note that the magnetic field term which was the product of
four (link) flux operators reduces to a single (loop) flux
operator. This is the simplest possible form of the important
ð1=g2Þ magnetic field term. In the Appendix C we show
that the loop Schrödinger equation easily reduces to
Mathieu equation in the magnetic basis.
In the case of finite lattice, considered in the next

sections, the states (35) of hydrogen atoms are associated
with every plaquette. Like in single plaquette case, they
describe the electric fluxes flowing around the correspond-
ing plaquettes. The Gauss law is solved byWigner coupling
all the hydrogen atom states and demanding that the three
components of the total angular momenta vanish. Further,
the role of SU(1,1) in this section gets generalized to the
dynamical symmetry group SO(4,2) of hydrogen atoms
(see Sec. III B 4).

B. Canonical transformations on a finite lattice

On a finite d ¼ 2 lattice we canonically transform
the 3L Kogut-Susskind conjugate operators ½Uðx; y; îÞ;
Ea∓ðx; y; îÞ� satisfying (1) on every link into
(1) 3ðN − 1Þ unphysical string conjugate operators [37]

½Tðx; yÞ;Ea∓ðx; yÞ� satisfying (18) at every site.
These operators are shown in Fig. 2(a). The string
Tðx; yÞ start at (0,0) and end at ðx; yÞ following the
path ð0; 0Þ → ðx; 0Þ → ðx; yÞ.

(2) 3P physical loop conjugate operators ½Wðx; yÞ;
Ea∓ðx; yÞ� satisfying (20) on every plaquette or equi-
valently at every dual site. These operators are
shown in Fig. 2(b). The plaquette loop flux operator
Wðx; yÞ is along the path: ð0;0Þ→ðx−1;0Þ→ðx−1;
y−1Þ→ ðx;y−1Þ→ ðx;yÞ→ðx−1;yÞ→ðx−1;0Þ→
ð0;0Þ.

The above two sets are mutually independent. As
mentioned earlier, the total degrees of freedom match
because L ¼ P þ ðN − 1Þ.

1. Canonical relations

The ðN − 1Þ string in Fig. 2(a) and ðPÞ plaquette loop
flux operators in Fig. 2(b) are related to the initial ðLÞ
Kogut-Susskind link operators as (see Appendix A for
details):

Tðx; yÞ ¼
Yx
x0¼0

Uðx0; 0; 1̂Þ
Yy
y0¼0

Uðx; y0; 2̂Þ;

Wðxþ 1; yþ 1Þ ¼ Tðx; yÞUpðx; yÞT†ðx; yÞ: ð47Þ

In (47), the strings Tðx; yÞ are defined at all lattice sites
away from the origin and the loop operators Wðx; yÞ are
located at x; y ¼ 1; 2;…;N. The Kogut-Susskind plaquette
operators are defined as: Upðx; yÞ ¼ Uðx; y; 1̂ÞUðxþ 1;
y; 2̂ÞU†ðxþ 1; yþ 1; 1̂ÞU†ðx; yþ 1; 2̂Þ. The conjugate
string and plaquette loop electric fields in terms of the
initial Kogut-Susskind link electric fields are (see
Appendix A for details):

Eaþðx; yÞ ¼
X2
i¼1

½Ea
−ðx; y; îÞ þ Eaþðx; y; îÞ� ¼ Gaðx; yÞ|fflfflfflffl{zfflfflfflffl}

¼0

;

Eaþðx; yÞ ¼ −
XN
y0¼y

RabðSðx; y; y0ÞÞEb
−ðx; y0; 1̂Þ: ð48Þ

In (48), we have defined: Sðx; y; y0Þ≡ Tðx − 1; yÞUðx − 1;

y; 1̂ÞQy0
y00¼y Uðx; y00; 2̂Þ and x ≠ 0; y ≠ 0. The relations (48)

between the new string and loop electric fields
and old Kogut-Susskind electric fields are derived in
Appendix A [see (A9) and (A13)]. They are illustrated

(a) (b)

FIG. 4 (color online). Graphical representation of the canonical
relations (48). The Kogut Susskind electric fields are denoted by
filled diamond and the plaquette loop electric fields are denoted
by filled circle. We show (a) string electric field in terms of
Kogut-Susskind electric fields and (b) plaquette loop electric
fields Eaþðx; yÞ in terms of the original Kogut-Susskind link
electric fields. In (a) the 4 filled diamond at ðx; yÞ denotes the
Gauss law operator at Gaðx; yÞ. In (b) Kogut Susskind link
electric fields Ea

−ðx; y0; 1̂Þ; y0 ¼ y; yþ 1 � � �N are parallel trans-
ported by Sðx; y; y0Þ (denoted by thick line) to give the loop
electric field Eaþðx; yÞ.
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in Figs. 4(a) and 4(b) respectively. Because of the SU(N)
Gauss laws all string operators, containing gauge degrees
of freedom away from the origin, naturally decouple from
the theory. The remaining physical plaquette loop operators
can be thought of as a set of collective coordinates which
describe the theorywithout any redundant loop or local gauge
degrees of freedom. These P SU(N) loop flux operators are
allmutually independent [no SU(N)Mandelstamconstraints]
and obey the canonical quantization conditions with their
loop electric fields exactly like the original Kogut-Susskind
link operators in (1). Note that in the special single plaquette
case the relations (48) reduce to the relations already derived
in Sec. III A. As an example the second relation in (48) states
Eaþð1; 1Þ ¼ −RabðT½x�ð1; 1ÞÞEb

−ð1; 1; 1̂Þ which is included
in (17).

2. Inverse relations

The Kogut Susskind link flux operators in terms of the
string and loop flux operators are

Uðx; y; 1̂Þ ¼ T†ðx; yÞWðxþ 1; yÞWðxþ 1; y − 1Þ
� � � � � �Wðxþ 1; 1ÞTðxþ 1; yÞ

Uðx; y; 2̂Þ ¼ Tðx; yþ 1ÞT†ðx; yÞ: ð49Þ

The relations (49) are clear from Figs. 2(a,b). The Kogut-
Susskind link electric fields in terms of the loop electric
fields are (see Appendix B for details):

Eaþðx; y; 1̂Þ ¼ RabðT†ðx; yÞÞ
�
Eb
−ðxþ 1; yþ 1Þ

þ Ebþðxþ 1; yÞ þ δy;0
XN
x̄¼xþ2

XN
ȳ¼1

Lbðx̄; ȳÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Δb
Xðx;yÞ

�
;

Eaþðx; y; 2̂Þ ¼ RabðT†ðx; yÞÞ
�
Ebþðxþ 1; yþ 1Þ

þ RbcðWxyÞEc
−ðx; yþ 1Þ

þ
XN
ȳ¼yþ2

Lbðxþ 1; ȳÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Δb
Y ðx;yÞ

�
: ð50Þ

In (50) we have defined the parallel transport:

RbcðWxyÞ≡ RbcðWðx; 1ÞWðx; 2Þ � � �Wðx; yÞÞ ð51Þ

and used: Ea
�ðx; y ¼ 0Þ≡ 0, Laðx; yÞ≡ ½Ea

−ðx; yÞþ
Eaþðx; yÞ�. The inverse relations (50) and (51) for
Eaðx; y ¼ 0; 1̂Þ, Eaðx; y ≠ 0; 1̂Þ and Eaðx; y; 2̂Þ are illus-
trated in Figs. 5(a,b) and 6 respectively. On a single
plaquette lattice (50) reduces to (24) as expected.

3. Physical loop Hilbert space Hp and Hydrogen atoms

Like in the single plaquette case, the SU(N) Gauss law
does not permit any string excitation and the ðN − 1Þ string
operators become irrelevant. Therefore, all possible SU(N)
gauge invariant operators are made up of theP fundamental
plaquette loop operators and their conjugate electric fields.
In other words, the nontrivial problem of SU(N) gauge
invariance over the entire lattice reduces to the problem of
residual SU(N) global invariance of 3P loop operators, all
starting and ending at the origin. Further, all 3P loop

(a) (b)

FIG. 5 (color online). Graphical representation of the inverse
canonical relations (50): a) link electric field Eaþðx; y ¼ 0; 1̂Þ,
(b) Eaþðx; y ≠ 0; 1̂Þ in terms of plaquette loop operators and loop
electric field. The filled circle represents plaquette loop electric
fields and filled diamond represents Kogut-Susskind link electric
fields. All loop electric fields filled circle are parallel transported
along thick lines to give Kogut Susskind link operator Eaþðx; y; îÞ
or filled diamond in (50). In (a)

P
pL

bðpÞ gives Δb
Xðx; y ¼ 0Þ in

(50), the summations is over the plaquettes in the dotted region.

FIG. 6 (color online). Graphical representation of the inverse
canonical relations (50): Eþðx; y; 2̂Þ in terms of plaquette loop
operators and loop electric field. We show ΔYðx; yÞ where the
summation is over the plaquettes in the dotted region. The shaded
region represents Wxyðx; yÞ in the second equation in (50).
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operators gauge transform as adjoint matter fields at the
origin:

WðpÞ → ΛWðpÞΛ†; E�ðpÞ → ΛE�ðpÞΛ†: ð52Þ

In (52), Λ ¼ Λð0; 0Þ are the gauge transformations at the
origin. This global invariance at the origin is fixed by the
residual ðN2 − 1Þ SU(N) Gauss laws:

Gað0; 0Þ ¼
XP
p¼1

½Ea
−ðpÞ þ EaþðpÞ�≡

XP
p¼1

LaðpÞ ¼ 0: ð53Þ

We now solve the Gauss law (53). A basis in the full
Hilbert space of SU(2) lattice gauge theory on aP plaquette
lattice is given by jj; m−; mþi1 ⊗ jj; m−; mþi2 ⊗ � � � ⊗
jj; m−; mþiP . We are interested in constructing the physical
Hilbert space Hp which is the SUð2Þ invariant subspace of
the above direct product Hilbert space. As seen in the single
plaquette case, it is convenient to define prepotentials for
this purpose. We generalize (26) and write:

Ea
−ðpÞ ¼ a†ðpÞ

�
σa

2

�
aðpÞ; EaþðpÞ ¼ b†ðpÞ

�
σa

2

�
bðpÞ:

ð54Þ

We define the number operators on every plaquette:
N̂aðpÞ≡ a†ðpÞ · aðpÞ and N̂bðpÞ≡ b†ðpÞ · bðpÞ. As the
magnitudes of left and right electric field operators are
equal we have the following constraint:

N̂aðpÞ ¼ N̂bðpÞ≡ N̂ðpÞ ð55Þ

on every plaquette p. The loop flux operators (29) also
generalize:

WαβðpÞ ¼ F̂p½aαðpÞ ~bβðpÞ − ~a†αðpÞb†βðpÞ�F̂p

≡ F̂p½Wð−Þ
αβ ðpÞ þWðþÞ

αβ ðpÞ�F̂p: ð56Þ

In (56), F̂p ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN̂ðpÞþ1Þ

p are the normalization constants so

that W is unitary. Under SU(2) (global) gauge trans-
formations (52):

aαðpÞ → ΛαβaβðpÞ; bαðpÞ → ΛαβbβðpÞ: ð57Þ

In the prepotential representation, we have new U(1) local
gauge invariance on each plaquette loop:

aαðpÞ → eiθðpÞaαðpÞ; bαðpÞ → e−iθðpÞbαðpÞ: ð58Þ

The transformation (58) is generalization of (28). The
Abelian gauge angle now depends on the location of the
plaquette loop. The electric fields (54) and the loop flux
operators (56) are invariant under (58). This Abelian gauge

invariance will play a role later in constructing
SO(4,2) loop operators in Sec. III B 4. The hydrogen
atom states j np lp mp i for each individual plaquette
p ð¼ 1; 2;…;PÞ can be constructed exactly like in (31) and
(34). Under gauge transformation Λ at the origin, all states
transform together as:

jnp lp mp i→
Xlp

m̄p¼−lp

D
lp
mpm̄p

ðΛÞjnp lp m̄p i: ð59Þ

Therefore, all principal and angular momentum quantum
numbers np, lp are already gauge invariant. To proceed
further, we separate the gauge variant part of the hydrogen
atom state jn l m i in (34) from its gauge invariant part
on each plaquette. We write it as:

jn l mi¼KŜ Â j0i: ð60Þ

In (60), K is a normalization constant, Ŝ and Â define the
symmetric and antisymmetric parts as follows:

Ŝ ≡ X
fm1���m2lgm

fa†m1
� � � a†mlb

†
mlþ1

� � � b†m2lg

and

Â≡ ðkþÞn−l−1 ¼ ða†1b†2 − a†2b
†
1Þn−l−1:

All magnetic quantum numbers in S m1;…; m2l ¼ � 1
2
are

summed over such that the condition, m ¼ m1þ
m2 þ � � � þm2l, is satisfied. In (60), the antisymmetric
operator A≡ ðkþÞn−l−1 represents the gauge invariant
flux loops in (59) within a plaquette. On the other
hand, the symmetric operator S ≡P

fm1���m2lgm ½a†m1
a†m2

� � �
a†mlb

†
mlþ1

b†mlþ2
� � � b†m2l � represents the uncoupled open flux

lines coming out of the plaquette and forming the vector
part of the state j n l m i. If l has its minimum value
l ¼ 0 on a plaquette then S is an identity operator. All
2jð¼ ðn − 1ÞÞ plaquette flux lines are mutually contracted
like in the single plaquette case and (60) reduces to (40).
This is j-j coupling in (34) within a plaquette. At the other
limit, if l has its maximum value l ¼ ðn − 1Þ ¼ 2j then all
4j plaquette loop prepotential operators in (60) are sym-
metrized and there is no antisymmetrization or self-
contraction by the kþ operator. In other words all 4j flux
lines flow out of the plaquette and need to be contracted
with similar symmetrized flux lines from other plaquettes
to get all possible gauge invariant loop states over the entire
lattice. This is l-l coupling (see [36]). A hydrogen atom
state has 0 ≤ l ≤ ðn − 1Þ. Therefore, it is convenient to
represent the hydrogen atom states j n l m i by tadpoles
on every plaquette as shown in Fig. 7(a). The tadpole loop
at the top represents the flux flowing in a loop within the
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plaquette. This is the antisymmetrized part A in (60). The
vertical stem of the tadpole is the symmetrized part S, it
represents the flux leakage ðl; mÞ through the plaquette. We
now consider the direct product states of all P hydrogen
atoms in Fig. 7(a):

������
n1 n2 � � � nP
l1 l2 � � � lP
m1 m2 � � � mP

+

≡ j n1 l1 m1 i ⊗ j n2 l2 m2 i � � �
� � � � � � ⊗ j np lp mp i: ð61Þ

In order to solve the Gauss law (53) we describe the states
(61) in a coupled basis shown in Fig. 7(b). We couple
La1; L

a
2;…; LaP and go to a basis where in addition to the

diagonal ðJ21; J22;…; J2PÞ and ðL21; L22;…; L2PÞ, the following
ðP − 3Þ angular momentum operators, commuting with the
above two sets, are diagonal:�

ðL1 þ L2Þ2; ðL1 þ L2 þ L3Þ2; � � � � � � ;

× ðL1 þ L2 þ � � � LpÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 ðGauss LawÞ

2;

× ðL1 þ L2 þ � � � LpÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 ðGauss LawÞ

a¼3

�
:

Note that the total angular momentum is zero implying
ðL1 þ L2 þ � � � þ LP−1Þ2 ¼ L2P [see Fig. 7(b)]. Thus we

have traded off P gauge variant magnetic quantum num-
bers ðm1; m2;…; mPÞ in (61) in terms of ðP − 3Þ gauge
invariant eigenvalues of the coupled L operators shown
above. Therefore, in total there are 3ðP − 1Þ members of
the complete set of commuting operators. The resulting
SU(2) gauge invariant loop basis on a lattice with P
plaquettes is given by [38]:

������
n1 n2 � � � nP
l1 l2 � � � lP
l12 l123 � � � ltotal¼0

	

¼ fjn1 l1 m1 i ⊗ j n2 l2 m2 i
� � � ⊗ j np lp mp igltotal¼0

mtotal¼0: ð62Þ

Note that, like in the single plaquette case, all topological
effects of the compactness of the gauge group are now
contained in the principal and angular momentum quantum
numbers of hydrogen atom j n l m i. The above loop
basis will be briefly denoted by j fng flg fllg i. The
symbols fng, flg and fllg stand for the sets
ðn1; n2;…; nPÞ∶P principal quantum numbers;
ðl1; l2;…; lPÞ∶P angular momentum quantum numbers
and ðl12; l123;…; l123���ðP−1Þ ¼ lP; l123���P ¼ 0Þ∶P − 3

coupled angular momentum quantum numbers, respec-
tively. These 3ðP − 1Þ principal, angular momentum quan-
tum numbers characterizing the loop basis are gauge
invariant as is clear from the gauge transformations (59).
As expected, this is also the number of physical degrees of
freedom in the original Kogut-Susskind formulation. In
fact, in SU(N) Kogut-Susskind lattice gauge theory in terms
of link operators, the total number of physical degrees of
freedom is given by the dimension of the quotient space:

Nd
SUðNÞ ¼

�
⊗links SUðNÞ
⊗sites SUðNÞ

�
¼ ðN2 − 1ÞðL −N Þ: ð63Þ

Above,L andN are the numbers of links and sites of space
lattice in d dimension. In d ¼ 2 we have L −N ¼ P − 1
and if we further choose N ¼ 2 then, as mentioned above,
NSUð2Þ in (63) is also the number of gauge invariant
principal and angular momentum quantum numbers
appearing in the orthonormal hydrogen atom loop basis
(62) in Hp.
We now discuss pure SUðNÞ, N ≥ 3 lattice gauge theory

in two and three space dimension. A SUðNÞ tadpole state
over a plaquette, analogous to the SUð2Þ ⊗ SUð2Þ state
j j m i ⊗ j j m0 i ∼ j n l m i in (31) and illustrated in
Fig. 7, is characterized by the representations of the
SUðNÞ ⊗ SUðNÞ group. These representations or equiva-
lently orthonormal SU(N) tadpole states on each plaquette
are labeled by ðN2 − 1Þ loop quantum numbers [39].
Therefore, in d ¼ 2 where all P plaquette loops are funda-
mental and mutually independent, there are ðN2−1ÞP loop

(a)

(b)

FIG. 7. (a) Uncoupled and (b) Coupled hydrogen atom loop
basis. The global Gauss law is solved by putting the total angular
momentum Ltotal ¼ 0. The tensors involved in the matrix product
states in Sec. IVA 2 are also shown at the bottom. In (a) and (b)
filled circle represents the j-j coupling or contraction of j flux
lines within a plaquette in (34) and in (b) circle with a cross
represents l-l couplings or contraction of l flux lines between
neighbouring plaquettes (see Eq. (62) and [36]).
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quantum numbers. Subtracting out global ðN2 − 1Þ degrees
of freedom (or gauge transformations at the origin), we again
see that there are total ðN2 − 1ÞðP − 1Þ gauge invariant
SU(N) loop quantum numbers. This exactly matches with
Nd¼2
SUðNÞ in (63) as ðP − 1Þ ¼ ðL −N Þ in d ¼ 2. In 3

dimensions we repeat d ¼ 2 canonical transformations on
the z ¼ 0 plane and then extend the string operators
Tðx; y; z ¼ 0Þ in the z directions to construct plaquette loops
in xz and yz planes as shown in Fig. 8. Thus the canonical
transformations already convert all horizontal links on ðxyÞ
planes at z ≠ 0 in forming plaquette loops in the
perpendicular ðxzÞ and ðyzÞ planes. Therefore, there are
no fundamental xy plaquette loops on z ¼ 1; 2; � � �N surfa-
ces. These surfaces are shown as shaded planes in Fig. 8. In
fact, the ðxyÞ plaquette loops at z ≠ 0 can bewritten in terms
of the fundamental plaquette loops in ðxzÞ and ðyzÞ planes as
shown in Fig. 8(b,c,d,e,f,g). This way the canonical trans-
formations also bypass the problem of SU(N) Bianchi
identity constraints confronted in the loop formulation of

SU(N) lattice gauge theories [40] in any dimension d ≥ 3. In
d ¼ 3, we have N ¼ ðNþ 1Þ3, L ¼ 3NðNþ 1Þ2 and
P ¼ 3N2ðNþ 1Þ. The total number of ðxyÞ plaquettes is
Pxy ≡ P

3
¼ N2ðNþ 1Þ. The number of ðxyÞ plaquette at z ¼

0 plane is Pxyðz ¼ 0Þ ¼ Pxy

Nþ1
¼ N2. Therefore, the number

of dependent ðxyÞ plaquettes Pxyðz ≠ 0Þ ¼ Pxy −
PðxyÞðz ¼ 0Þ ¼ N3≡ the number of Bianchi identities.
Hence the number of independent SU(N) loop quantum
numbers after subtracting ðN2 − 1Þ gauge degrees of free-
dom at the origin ¼ ðN2 − 1ÞðP − Pxyðz ≠ 0Þ − 1Þ ¼
ðN2 − 1ÞðL −N Þ ¼ Nd¼3

SUðNÞ. This is again an expected

result because the canonical transformations used for con-
verting links into (physical) loops and (unphysical) strings
cannot introduce any spurious degrees of freedom in any
dimension. Therefore, the SU(N) plaquette loop operators
are mutually independent and contain complete physical
information. The corresponding SU(N) coupled tadpole
basis is orthonormal as well as complete in Hp bypassing
[41] all nontrivial and notorious SU(N) Mandelstam or
Bianchi identity constraints which have been extensively
discussed in the past [14–18].

4. Dynamical symmetry group SO(4,2) of hydrogen atom

Having constructed the gauge invariant loop basis in
terms of the new plaquette loop operators or in terms of
hydrogen atom states in the previous sections, we now
discuss the structure of a general gauge invariant operator
in Hp. We again illustrate these structures using the SU(2)
gauge group. In the simplest single plaquette case, we have
already seen that the basic SUð2Þ gauge invariant operators
are ½k0; k��. They (i) are invariant under U(1) gauge
transformations (58), (ii) form SUð1; 1Þ algebra and
(iii) generate transitions jni → jn̄i within the hydrogen
atom basis (40) in Hp. We now generalize these three
results to the entire lattice in this section. We note that all
4P loop prepotential operators ða†αðpÞ; aβðpÞÞ and
ðb†αðpÞ; bβðpÞÞ of the theory transform as matter doublets
under SU(2) gauge transformations (57). Therefore, the
basic SU(2) tensor operators which are also invariant under
U(1) gauge transformations (58) can be classified into the
following four classes:

½a†αðpÞb†βðpÞ; aαðpÞbβðpÞ; a†αðpÞaβðpÞ; b†αðpÞbβðpÞ�: ð64Þ

These are 16 SU(2) gauge covariant and U(1) gauge
invariant operators on every plaquette of the lattice. The
magnitude of the left and the right electric fields on every
plaquette being equal (55), the number operators on each
plaquette satisfy a†ðpÞ · aðpÞ ¼ b†ðpÞ · bðpÞ ¼ N̂ðpÞ.
Thus their number reduces to 15. These 15 operators on
every plaquette, arranged as in Table I, form SO(4,2) algebra:

(a)

(b)

(e) (f) (g)

(c) (d)

FIG. 8 (color online). (a) Graphical representation of the
fundamental plaquette operators obtained by canonical trans-
formations in d ¼ 3. The shaded horizontal plaquettes are not
obtained by canonical transformations as explained in the text.
They are also not independent: the shaded plaquette operator in
(g) is the product of the fundamental plaquette loop operators in
(b),(c),(d),(e),(f) in that order. This is just the SU(N) Bianchi
identity on lattice.
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½LAB; LCD� ¼ −iðgAC LBD þ gAD LCB

þ gBC LDA þ gBD LACÞ: ð65Þ

Above, A;B ¼ 1;…; 6 and gAB is the metric
ð− − − −þþÞ. The algebra (65) can be explicitly checked
using the prepotential representations of Ea∓ andW∓ in (26)
and (29) respectively. Note that the fundamental loop
quantization relations (20) are also contained in (65).
In fact, the emergence of SO(4,2) group in SU(2) loop

dynamics in the present loop formulation is again an
expected result. This can be seen as follows. Let jψi be
a physical state and Ô be any gauge invariant operator.
Then the state jψ 0i≡ Ôjψi is also a physical state. As jψi,
jψ 0i ∈ Hp, both can be expanded in the “hydrogen atom
loop basis.” We, therefore, conclude that any gauge
invariant operator Ô will generate a transition:

j n l m iÔ
→

X
n̄;l̄;m̄

O
n̄ l̄ m̄
n l m j n̄ l̄ m̄ i:

Above,O n̄ l̄ m̄
n l m

are some coefficients depending on the

operator Ô. On the other hand, any transition
j n l m i → j n̄ l̄ m̄ i can be generated by SO(4,2)
generators. This is a very old and well-known result in the
hydrogen atom literature [30]. Therefore, all gauge invari-
ant operators (including the Hamiltonian in the next
section) are SU(2) invariant combinations of these SU(2)
covariant and U(1) invariant SO(4,2) generators on differ-
ent plaquettes of the lattice. These results can also be
appropriately generalized to higher SU(N) group by
replacing SU(2) prepotential operators by SU(N) irreduc-
ible prepotential operators discussed in [25].

IV. SU(N) LOOP DYNAMICS

In this section we discuss dynamical issues associated
with the SU(N) Kogut-Susskind Hamiltonian after rewrit-
ing it in terms of the new fundamental plaquette loop
operators. We show that in terms of these plaquette loop
operators the initial SU(N) local gauge invariance reduces
to global SU(N) invariance and the loop Hamiltonian has a
simple weak coupling g2 → 0 continuum limit. The Kogut
Susskind Hamiltonian [7] is

H ¼ g2
X
l

~E2
l þ

K
g2

X
p

ð2N − TrðUp þU†
pÞÞ: ð66Þ

In (66) K is a constant, l≡ ðx; y; îÞ denotes a link in î
direction, p denotes a plaquette. The plaquette operator:
Upðx; yÞ ¼ Uðx; y; 1̂ÞUðx þ 1; y; 2̂ÞU†ðx þ 1; y þ 1; 1̂Þ ×
U†ðx; y þ 1; 2̂Þ defines the magnetic field term on a
plaquette p. As mentioned earlier, we choose space
dimension d ¼ 2. Substituting the Kogut Susskind electric
fields in terms of the loop electric fields given in (50), we
get:

H ¼
X
x;y∈Λ



g2½~E−ðx; yÞ þ ~Eþðx; y − 1Þ þ ΔXðx; yÞ�2

þ g2½~Eþðx; yÞ þ RðWxyÞ~E−ðx − 1; yÞ þ ΔYðx; yÞ�2

þ K
g2

½2N − TrðWðx; yÞ þ H:c:Þ�
�
: ð67Þ

In (67) all operators vanish when x,y are negative or zero as
plaquette loop operators are labeled by top right corner [see
Fig. 2(a)]. The operators ΔX;Y are defined as:

Δa
Xðx; yÞ≡ δy;0

XN
x̄¼xþ1

XN
ȳ¼1

Lðx̄; ȳÞ;

Δa
Yðx; yÞ≡

XN
ȳ¼yþ1

Laðx; ȳÞ: ð68Þ

We have also used the relations: TrUpðx; yÞ ¼
TrðT†ðx; yÞWðxþ 1; yþ 1ÞTðx; yÞÞ ¼ TrWðxþ 1; yþ 1Þ.
The Hamiltonian (67) describes gauge invariant dynam-
ics directly in terms of the bare essential, fundamental
plaquette loop creation and annihilation operators with-
out any gauge fields. As expected, the unphysical
strings do not appear in the loop dynamics. There are
many interesting and novel features of the Kogut-
Susskind Hamiltonian (66) rewritten in terms of loop
operators (43):

(i) There are no local SU(N) gauge degrees of freedom
and at the same time there are no redundant loop
operators. The ðN2 − 1Þ residual SU(N) gauge
degrees of freedom in (52) can be removed by
working in the coupled hydrogen atom basis (62).

(ii) In going from links to loops ((66) to (67)), all
interactions have shifted from the magnetic field part

TABLE I. All possible (15) SU(2) covariant operators on a plaquette which are also U(1) gauge invariant. They

form SO(4,2) algebra. We have defined (56) WðþÞ
αβ ≡ − ~a†αb

†
β and Wð−Þ

αβ ≡ aα ~bβ.

Lab ¼ ϵabcðEc
− þ EcþÞ L45 ¼ − i

2
ðkþ − k−Þ La5 ¼ 1

2
TrσaðWðþÞ −Wð−ÞÞ

L56 ¼ k0La4 ¼ ðEa
− − EaþÞ L46 ¼ 1

2
ðkþ þ k−Þ La6 ¼ i

2
TrσaðWðþÞ þWð−ÞÞ
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to the electric field part. Therefore, the interaction
strength now is g2 and not 1

g2. Therefore, the loop

Hamiltonian (67) can be used to develop a weak
coupling gauge invariant loop perturbation theory
near the continuum limit.

(iii) The magnetic field term, dominating in the weak
coupling continuum (g2 → 0) limit, acquires its
simplest possible form. It creates and annihilates
single electric plaquette flux loops exactly like
in the single plaquette case (45): TrW∼ðkþþk−Þ
with k� ∈ SUð1; 1Þ ⊂ SOð4; 2Þ.

(iv) In the hydrogen atom or tadpole basis (62):

hn0 l0 m0 jHBjn l mi

≡K
g2
hn0 l0 m0 jTrWjn l mi

¼K
g2
δl;l0δm;m0 ½δn0;nþ1þδn0;n−1�: ð69Þ

In (69) n ¼ 2jþ 1 and n0 ¼ 2j0 þ 1. We have
ignored the constant and taken HB ≡ TrW. If we
put l ¼ 0 in (69), we recover the single plaquette
result (46). In fact, the matrix elements (69) in the
hydrogen atom loop basis are valid in arbitrary d
dimensions. This is in a sharp contrast to the
magnetic field term in the standard SU(2) spin
network basis [42] leading to (18-j) Wigner coef-
ficients in d ¼ 2 and (30-j) Wigner coefficient in
d ¼ 3 [18].

(v) The nonlocal terms in the Hamiltonian, Δa
Xðx; yÞ,

Δa
Yðx; yÞ andRðWxyÞ get tamed in theweak coupling

limit. In this g2 → 0 limit, the relations (4) imply:

Laðx; yÞ ¼ Ea
−ðx; yÞ þ Eaþðx; yÞ ∼ 0:

Therefore, Δa
Xðx; yÞ ∼ 0, Δa

Yðx; yÞ ∼ 0. Further,
RabðWxyÞ ∼ δab. The Hamiltonian, in this weak
coupling limit, takes a simple form:

H ¼
XP
p¼1



4g2~E2ðpÞ þ 1

g2
TrðWðpÞ þ h:c:Þ

�

þ g2
X
hpp0i

f~E−ðpÞ · ~Eþðp0Þ þ ~EþðpÞ · ~E−ðp0Þg

þ g3δH: ð70Þ

Above
P

hpp0i denotes summation over nearest
neighbor plaquette loop electric fields. The non-
localities occur in the higher order terms in the
coupling. Therefore, these terms, collectively de-
noted by g3δH in (70), can be ignored in the weak
coupling limit as a first approximation. The SU(N)
gauge theory Hamiltonian in the loop picture now
reduces to SU(N) spin model Hamiltonian with

nearest neighbor interactions. This simple spin Ham-
iltonian has the same global SU(N) symmetry,
dynamical variables as the Hamiltonian in (67) or
(70). In fact, this is an interesting model in its own
right to explore confinement and the spectrum in the
weak coupling continuum limit. Note that the
elementary but dominant 1=g2 magnetic field terms
[see (69)] are left untouched by this approximation.
They need to be treated exactly in the g2 → 0 limit
and should be part of unperturbed Hamiltonian along
with contributions from the electric field terms. As an
example, in the simplest case of single plaquette
SU(2) lattice gauge theory, the dominant magnetic
field term can be easily diagonalized using SU(2)
characters [20–22] (also see Appendix C). However,
it has continuous spectrum (C2). Therefore the
magnetic field term alone cannot be used as unper-
turbed Hamiltonian even in the weak coupling
ðg2 → 0Þ limit. One has to include contributions
from ðg2Þ electric field terms in the unperturbed
Hamiltonian. These issues are currently under inves-
tigation and will be addressed elsewhere.

A. The Schrödinger equation in hydrogen
atom loop basis

In this section we explore the ground state jΨ0i and the
first excited state jΨ1i of SU(2) lattice gauge theory in
terms of the SO(4,2) fundamental plaquette loop operators
discussed in Sec. III B 4 and given in Table I.

1. A variational ansatz

An easy, intuitive and old approach is the variational or
coupled cluster method [43]. The simple ansatzes are

jΨ0i ¼ eΓj0i; hΨ0jΨ0i ¼ 1;

jΨ1i ¼ ΣþjΨ0i; hΨ0jΨ1i ¼ 0: ð71Þ

In (71) Γ and Σ are the SUð2Þ ⊗ Uð1Þ gauge invariant
operators constructed out of SO(4,2) generators in the
Table 1. It is convenient to write Γ ¼ Γþ − Γ− where Γ− ≡
ðΓþÞ† and Γþ, Σþ have the structures:

Γþ ≡G1

XP
p¼1

kþðpÞ þ
XP

p1;p2¼1

G2ðjp1 −p2jÞ~kþðp1Þ · ~kþðp2Þ

þ � � � � � � ;

Σþ ≡F1

XP
p¼1

kþðpÞ þ
XP

p1;p2¼1

F2ðjp1 −p2jÞ~kþðp1Þ · ~kþðp2Þ

þ � � � � � � : ð72Þ

In the first term above kþðpÞ is the gauge invariant
SUð1; 1Þ ∈ SOð4; 2Þ plaquette loop creation operator. In
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the second term, we have defined SU(2) adjoint loop flux

creation operator ~kþðpÞ on every plaquette p using SO(4,2)
generators in Table 1:

kaþðpÞ≡ La5ðpÞ − iLa6ðpÞ ¼ TrðσaWðþÞðpÞÞ;
a ¼ 1; 2; 3:

Note that the expansion (72) is in terms of number of
fundamental loops and not in terms of coupling constant. In
fact, g2 dependence of the structure functions G1; G2; � � �
and F1; F2; � � � have been completely suppressed. The
physical interpretations of (71) and (72) are extremely
simple. The operator eΓ acting on the strong coupling
vacuum in (71) creates loops of all shapes and sizes in
terms of the fundamental loop operators to produce the
ground state jΨ0i. The first term kþðpÞ in (72) creates
hydrogen atom s-states on plaquette p or simple one
plaquette loops. These are shown as small circles (tadpoles
without legs) in Fig. 9. The second term describes doublets
of hydrogen atoms with vanishing total angular momen-
tum. These are shown as two tadpoles joined together in
Fig. 9. The three hydrogen atom or three tadpole states over
three plaquettes (p1, p2, p3) can be created by including a

term of the form ð~kþðp1Þ × ~kþðp2ÞÞ · ~kþðp3Þ in Γþ and so
on and so forth. As shown in Fig. 9, the ground state is a
soup of all such coupled tadpoles or coupled hydrogen
atom clusters, each with vanishing angular momentum. The
first excited state in (72) is obtained by exciting loops in
this ground state by a creation operator Σþ. The sizes of the
“hydrogen atom clusters" and their importance depend on
the structure functions G and F which in turn are fixed by
the loop Schrödinger equation with Hamiltonian (70).
These qualitative features can be made more precise by
putting the ansatz (71) in (70). The resulting Schrödinger
equation can be analyzed for the structure constants [44]
ðG1; G2; � � �Þ and ðF1; F2; � � �Þ in the complete, orthonor-
mal hydrogen atom loop basis (62) using its dynamical
symmetry group SO(4,2) algebra in (65). We postpone
quantitative analysis in this direction to a later publication.

2. A tensor networks ansatz

The present loop formulation is tailor-made for tensor
network [45] and matrix product states [46] (MPS) ansatzes
to explore the interesting and physically relevant part ofHp

for low energy states. This is due to the following two
reasons:

(i) The absence of non-Abelian Gauss law constraints at
every lattice site.

(ii) The presence of (spin type) local hydrogen atom
orthonormal basis on every plaquette.

We first briefly discuss matrix product state approach in a
simple example of spin chain with spin s ¼ 1 before
directly generalizing it to pure SU(2) lattice gauge theory
on a one dimensional chain of plaquettes. In the case
of spin chain with sx ¼ −1; 0;þ1 at every lattice site
x ¼ 0; 1;…; N, any state can be written as:

jΨi ¼
X

s1;s2���sN¼0;�1

Ψðs1; s2; � � � sNÞjs1; s2; � � � sNi: ð73Þ

The matrix product state method consists of replacing the
wave functional by

Ψðs1; s2; � � � sNÞ ¼ TrðTðs1Þ
1 Tðs2Þ

2 � � �TðsNÞ
N Þ: ð74Þ

In (74) Ts are D ×D matrices where D is the bond length.
The matrix elements of Ts are fixed by minimizing the spin
Hamiltonian. In the hydrogen atoms loop basis we have a
similar structure where the three dimensional spin states are
replaced by infinite dimensional quantum states of hydro-
gen atoms: jsi → j n l m i. The most general state in the
hydrogen atom loop basis can be written as:

jΨi ¼
X

fngflgfmg
Ψ

2
64 n1 n2 � � � np

l1 l2 � � � lp
m1 m2 � � � mP

3
75

×

������
n1 n2 � � � np
l1 l2 � � � lp
m1 m2 � � � mP

+
: ð75Þ

We now consider SU(2) lattice gauge theory on a chain of
P plaquettes as shown in Fig. 7. A simple tensor network
ansatz, like (74) for spins, for the ground state wave
function in (75) is

Ψ0

2
64 n1 n2 � � � np

l1 l2 � � � lp
m1 m2 � � � mP

3
75

≡ Tr½Tðn1l1m1Þ
1 Tðn2l2m2Þ

2 � � �TðnP lPmPÞ
P �: ð76Þ

In (76) TðnxlxmxÞ
x ; x ¼ 1; 2 � � �, P are P matrices of dimen-

sion D ×D where D is the bond length describing
FIG. 9. The SU(2) ground state picture in the hydrogen atom
basis (62).
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correlations between hydrogen atoms. Assuming a bound
on the principal quantum number (e.g., n ¼ 1, 2) and
minimizing the energy of the spin model Hamiltonian
within spherically symmetric s-sector should give a good
idea of ground state at least in the strong coupling region.
The method can then be extrapolated systematically toward
weak coupling by extending the range of hydrogen atom
principal quantum number on each plaquette. The global
SU(2) Gauss law can also be explicitly implemented
through the following ansatz:

jΨi ¼
X

fngflgfllg
Ψ

2
64 n1 n2 � � � nP
l1 l2 � � � lP
l12 l123 � � � l12…P−2

3
75

×

������
n1 n2 � � � nP
l1 l2 � � � lP
l1 l12 � � � l12…P−2

+
: ð77Þ

We can now make an explicitly gauge invariant MPS ansatz
for the ground state:

Ψ0

2
64 n1 n2 � � � nP
l1 l2 � � � lP
l12 l123 � � � l12…P−2

3
75

≡ Tr½T n1
0;l1;l1

ð1ÞT n2
l1l2l12

ð2ÞT n3
l12l3l123

ð3Þ � � � � � �T nP
lP lP0

ðPÞ�:
ð78Þ

This ansatz is illustrated in Fig. 7(b). Much more work is
required to implement these ideas on a computer. We will
discuss these computational issues in a future publication.

V. SUMMARY AND DISCUSSION

In this work we have constructed a series of iterative
canonical transformations in pure SU(N) lattice gauge
theories to get to a most economical loop formulation
without any local spurious degrees of freedom. The
canonical transformations ensure that the total degrees of
freedom remain intact at every stage. At the end, as a
consequence of SU(N) Gauss laws, all local SU(N) gauge
degrees of freedom carried by string operators drop out.
The loop operators obtained this way are fundamental and
the loop formulation is free of difficult SU(N) Mandelstam
as well as Bianchi identity (d ≥ 3) constraints. The result-
ing SU(N) loop Hamiltonian in two dimension reduces to
SU(N) spin Hamiltonian. In the special SU(2) case, the
canonical transformations map the physical loop Hilbert
space to the space of Wigner coupled hydrogen atoms and
the loop dynamics can be completely described in terms of
the generators of the dynamical symmetry groups SO(4,2)
of hydrogen atoms. Within this loop approach all non-
Abelian topological effects are contained in the discrete
nature of the hydrogen atom energy eigenstates.

We now briefly discuss some new future directions. The
absence of SU(N) Gauss laws should help us in defining the
entanglement entropy in lattice gauge theories. The entan-
glement entropy of two complimentary regions in a gauge
invariant state suffers from the serious obstacles [47]
created by SU(N) Gauss laws at the boundary. In the
present formulation the two regions can have mutually
independent hydrogen atom/tadpole basis which are
coupled together across the boundary through a single
flux line at the end. The present loop approach may also be
interesting in the context of cold atom experiments [48].
The hydrogen atom interpretation of HP and absence of
local gauge invariance should bypass the challenging task
of imposing nontrivial and exotic non-Abelian Gauss law
constraints at every lattice site in the laboratory.
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APPENDIX A: FROM LINKS TO LOOPS
AND STRINGS

In this appendix we generalize the three canonical trans-
formations (11), (14) and (15) in the single plaquette case to
the entire lattice in two dimension.We define a comb shaped
maximal treewith its base along theX axis andmake a series
of canonical transformations along the maximal tree to
construct the string operators T½xxyy�ðx; yÞ attached to each
lattice site ðx; yÞ away from the origin. This is similar to the
construction of string operators T½xy�ðx; yÞ attached to the
points A≡ ð1; 0Þ, B≡ ð1; 1Þ and C≡ ð0; 1Þ in the simple
single plaquette example illustrated in Fig. 3(a,b,c). The
gauge covariant loop operators Wðx; yÞ are constructed by
fusing the string operators with the horizontal link operators
Uðx; y; 1̂Þ again through canonical transformations. As
expected, all string operators T½xxyy�ðx; yÞ decouple as a
consequence of SU(N) Gauss laws Gaðx; yÞ ¼ 0. Thus only
the fundamental physical loop operators are left at the end.
The iterative canonical transformations are performed in 6
steps. These 6 steps are also illustrated graphically in
Figs. 10–15 for the sake of clarity.

1. Strings along x axis

We start by defining iterative canonical transformation
along the x axis. They transform the N link operators
Uðx; 0; 1̂Þ into N string operators T½xx�ðx; 0Þ. These string
operators start at the origin and end at x ¼ 1; 2; � � �N along
the x axis as shown in the Fig. 10. The canonical trans-
formations are defined iteratively as:
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T½x�ðxþ 1; y ¼ 0Þ≡ T½x�ðx; 0ÞUðx; 0; 1̂Þ;
T½xx�ðx; 0Þ≡ T½x�ðx; 0Þ;

Ea
½x�þðxþ 1; 0Þ ¼ Ea

−ðxþ 1; 0; 1̂Þ;
Ea
½xx�þðx; 0Þ ¼ Ea

−ðx; 0; 1̂Þ þ Eaþðx; 0; 1̂Þ: ðA1Þ

Above x ¼ 1;…;N and the starting input for the first
equation in (A1) is T ½x�ð1; 0Þ≡Uð1; 0; 1̂Þ. The canonical
transformations (A1) iteratively transform the flux oper-
ators ½T½x�ðx; 0Þ; Uðx; 0; 1̂Þ� and their electric fields into
½T½xx�ðx; 0Þ;T½x�ðxþ 1; 0Þ� and their electric fields as shown
in Fig. 10. At the boundary x ¼ N, we define T½xx�ðN; 0Þ≡
T½x�ðN; 0Þ for later convenience. As is also clear from
Fig. 10, the subscript ½xx� on the string flux operator
T½xx�ðx; 0Þ encodes the structure of its right electric field
Ea
½xx�þðx; 0Þ in (A1). More explicitly, the last equation in

(A1) states that E½xx�þðx; 0Þ is the sum of two adjacent
Kogut Susskind electric fields in x direction. Note that if we
were in one dimension with open boundary conditions, the
Gauss law (7) would imply GaðxÞ≡ Ta

½xx�þðx; 0Þ ¼ 0; ∀ x

making all string operators T½xx�ðx; 0Þ unphysical and
irrelevant as expected.

2. Strings along y axis

We now iterate the above canonical transformations to
extend T½xx�ðx; 0Þ in the y direction to get T½y�ðx; y ¼ 1Þ and
the final unphysical and ignorable string operators
T½xxy�ðx; 0Þ along the x axis as illustrated in Fig. 11:

T½y�ðx; 1Þ≡ T½xx�ðx; 0ÞUðx; 0; 2̂Þ;
T½xxy�ðx; 0Þ≡ T½xx�ðx; 0Þ
Ea
½y�þðx; 1Þ ¼ Ea

−ðx; 1; 2̂Þ;
Ea
½xxy�þðx; 0Þ ¼ Ea

½xx�þðx; 0Þ þ Eaþðx; 0; 2̂Þ: ðA2Þ

In (A2) we have defined T½xx�ð0; 0Þ≡ 1 and T½xx�ðN; 0Þ≡
T½x�ðN; 0Þ as mentioned above. Substituting Ea

½xx�þðx; 0Þ
from (A1), we get:

Ea
½xxy�þðx; 0Þ ¼ ðEa

−ðx; 0; 1̂Þ þ Eaþðx; 0; 1̂Þ þ Eaþðx; 0; 2̂ÞÞ
≡Gaðx; 0Þ ¼ 0: ðA3Þ

Again the subscript ½xxy� on the string operator Ta
½xxy�ðx; 0Þ

denotes that its electric field at ðx; 0Þ is the sum of three
Kogut-Susskind electric fields, two in x direction and one
in y direction as in (A3) and represented by three squares in
Fig. 11. We ignore T½xxy�ðx; 0Þ from now onwards and
repeat the canonical transformations (A1) to fuse the links
in y direction along the maximal tree at fixed
xð¼ 0; 1; � � �NÞ. For this purpose, we replace T½x�ðx; 0Þ
and Uðx; 0; 1̂Þ in (A1) by T½y�ðx; yÞ and Uðx; y; 2̂Þ respec-
tively with y ¼ 1; 2;…; ðN − 1Þ and define:

T½y�ðx; yþ 1Þ≡ T½y�ðx; yÞUðx; y; 2̂Þ;
T½yy�ðx; yÞ≡ T½y�ðx; yÞ;

Ea
½y�þðx; yþ 1Þ ¼ Ea

−ðx; yþ 1; 2̂Þ;
Ea
½yy�þðx; yÞ ¼ Ea

½y�þðx; yÞ þ Eaþðx; y; 2̂Þ: ðA4Þ

In (A4), the initial string operator T½y�ðx; y ¼ 1Þ is given in
(A2). The transformations (A4) are illustrated in Fig. 12.
Again the subscript ½yy� on T½yy�ðx; yÞ is to emphasize that
its electric field is sum of two adjacent Kogut Susskind
electric fields in the y direction:

FIG. 10 (color online). Graphical representation of the iterative
canonical transformations (A1). The initial T½x�ðx; 0Þ and the final
T½xx�ðx; 0Þ string operators at ðx; 0Þ are shown. The string operator
T½x�ðxþ 1; 0Þ in the third row replaces T½x�ðx; 0Þ in the first row in
the next iterative step. All electric fields involved in (A1) are also
shown at their locations.

FIG. 11 (color online). Graphical representation of the canoni-
cal transformations (A2): vertical string constructions at y ¼ 0 in
(A2) and the Gauss law (A3) at y ¼ 0.

FIG. 12 (color online). Graphical representation of the canoni-
cal transformations (A4): iterative vertical string constructions in
(A4) and the string electric field in (A5).
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Ea
½yy�þðx; yÞ ¼ Ea

½y�þðx; yÞ þ Eaþðx; y; 2̂Þ
¼ Ea

−ðx; y; 2̂Þ þ Eaþðx; y; 2̂Þ: ðA5Þ

In (A5) we have used (A4) to replace Ea
½y�þðx; yÞ in terms of

Kogut Susskind electric fields Ea
−ðx; y; 2̂Þ. We again define

T½yy�ðx;NÞ ¼ T½y�ðx;NÞ at the boundary for notational
convenience.

3. Plaquette loop operators

In order to remove all local SU(N) gauge or string
degrees of freedom and simultaneously obtain SU(N)
covariant loop flux operators, we now fuse the horizontal
link operatorUðx; y ≠ 0; 1̂Þwith T½yy�ðx; y ≠ 0Þ through the
canonical transformations:

T½x�ðxþ 1; yÞ≡ T½yy�ðx; yÞUðx; y; 1̂Þ;
T½yyx�ðx; yÞ ¼ T½yy�ðx; yÞ

Ea
½x�þðxþ 1; yÞ ¼ Ea

−ðxþ 1; y; 1̂Þ;
Ea
½yyx�þðx; yÞ ¼ Ea

½yy�þðx; yÞ þ Eaþðx; y; 1̂Þ ðA6Þ

at x ¼ 0; 1; 2;…; ðN − 1Þ and y ¼ 1; 2;…;N. The above
transformations are illustrated in Fig. 13. Using (A4), the
right electric field of the string flux operator T½yyx�ðx; yÞ is

Ea
½yyx�þ ¼ Ea

½yy�þðx; yÞ þ Eaþðx; y; 1̂Þ
¼ Ea

−ðx; y; 2̂Þ þ Eaþðx; y; 2̂Þ þ Eaþðx; y; 1̂Þ: ðA7Þ

The initial loop operators ðWðx; yÞ;Eaðx; yÞÞ shown in
Fig. 14 are defined as:

Wðx; yÞ≡ T½x�ðx; y ≠ 0ÞT†
½yyx�ðx; yÞ;

T½yyxx�ðx; yÞ≡ T½yyx�ðx; yÞ;
Ea
−ðx; yÞ ¼ Ea

½x�−ðx; y ≠ 0Þ;
Ea
½yyxx�þðx; yÞ ¼ Ea

½x�þðx; y ≠ 0Þ þ Ea
½yyx�þðx; yÞ: ðA8Þ

Above ðWðx; yÞ;Ea∓ðx; yÞÞ are canonically conjugate pairs.
We note that the conjugate electric fields of the string
operators T½yyxx� vanishes in Hp as:

Ea
½yyxx�þðx; yÞ ¼ Ea

½yyx�þðx; yÞ þ Ea
½x�þðx; y ≠ 0Þ

¼ ðEa
−ðx; y; 2̂Þ þ Eaþðx; y; 2̂Þ þ Eaþðx; y; 1̂Þ

þ Ea
−ðx; y; 1̂ÞÞ

¼ Gaðx; yÞ ¼ 0: ðA9Þ

In (A9), we have used (A6) and (A7) to replace Ea
½x�þðx; y ≠

0Þ and Ea
½yyx�þðx; yÞ respectively in terms of Kogut-

Susskind electric fields. The relationship (A9) solving
the SU(N) Gauss law at ðx; yÞ is graphically illustrated
in Fig. 14 and also earlier in Fig. 4(a).
At this stage all the local gauge degrees of freedom,

contained in the string operators T ½yyxx�ðx; yÞ, have been
removed. We now relabel T½yyxx�ðx; yÞ as Tðx; yÞ and
Ea
½yyxx��ðx; yÞ as Ea

�ðx; yÞ for notational simplicity. To

simplify the magnetic field terms in the Kogut Susskind
Hamiltonian (42), we further make the last set of canonical
transformations (A10) which transform the loop operators
ðWðx; yÞ;Ea

�ðx; yÞÞ in (A8) into the final plaquette loop
operators ðWðx; yÞ; Ea∓ðx; yÞÞ as shown in Figure 15. We
define:

Wðx; yÞ≡Wðx; y − 1ÞW̄†ðx; yÞ;
W̄ðx; y − 1Þ≡Wðx; y − 1Þ;

Eaþðx; yÞ ¼ Ēa
−ðx; yÞ;

Ēaþðx; y − 1Þ ¼ Eaþðx; y − 1Þ þ Ēaþðx; yÞ: ðA10Þ

FIG. 13 (color online). Graphical representation of the canoni-
cal transformation in (A6).

FIG. 14 (color online). Graphical representation of the canoni-
cal transformation in (A8).

FIG. 15 (color online). Graphical representation of the canoni-
cal transformation in (A10).
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Above ½Wðx; yÞ; Eaþðx; yÞ�, ½W̄†ðx; yÞ; Ēaþðx; yÞ� are canoni-
cally conjugate loop operators and y ¼ N; ðN − 1Þ;…; 1.
The canonical transformation is initiated with the boundary
operator W̄ðx; y ¼ NÞ≡Wðx; y ¼ NÞ and at the lower
boundary Wðx; 1Þ≡ W̄†ðx; 1Þ.
Having constructed plaquette loop operators and

conjugate electric fields using the canonical transfor-
mations (A6)–(A10), we now use these relations to
write the plaquette loop electric fields directly in
terms of the Kogut-Susskind link electric fields.
Using (A10),

Eaþðx; yÞ ¼ Ēa
−ðx; yÞ ¼ −RabðW̄ðx; yÞÞĒaþðx; yÞ

¼ −RabðW̄ðx; yÞÞfEbþðx; yÞ þ Ēbþðx; yþ 1Þg:
ðA11Þ

Iterating this relation and using the relation Ebþðx; y0Þ ¼
−RbcðW†ðx; y0ÞÞEc

−ðx; y0Þ, we get

Eaþðx; yÞ ¼ −RabðW̄ðx; yÞÞ
XN
y0¼y

Ebþðx; y0Þ

¼ RabðWðx; yÞÞ
XN
y0¼y

RbcðW†ðx; y0ÞÞEc
−ðx; y0Þ:

ðA12Þ

From Eq. (A8) we have Ec
−ðx; y0Þ ¼ Ec

½x�−ðx; y0Þ ¼
−RcdðT½x�ðx; y0ÞÞEd

½x�þðx; y0Þ and from (A6), Ed
½x�þðx; y0Þ ¼

Ed
−ðx; y0Þ. Therefore,

Eaþðx; yÞ

¼ −
XN
y0¼y

RabðWðx; yÞW†ðx; y0ÞT½x�ðx; y0ÞÞEb
−ðx; y0; 1̂Þ

¼ −
XN
y0¼y

Rab

�
Tðx− 1; yÞUðx− 1; y; 1̂Þ

Yy0
y00¼y

Uðx; y00; 2̂Þ
�

Eb
−ðx; y0; 1̂Þ

≡−
XN
y0¼y

RabðSðx; y; y0ÞÞEb
−ðx; y0; 1̂Þ: ðA13Þ

This is the relation (48) in the text which was further
graphically illustrated in Fig. 4(b).

APPENDIX B: FROM LOOPS AND STRINGS
TO LINKS

In this part, we systematically write down all Kogut-
Susskind link electric fields in terms of loop flux operators
and loop electric fields. We calculate the link electric fields

in three separate cases: (i) Eaðx; y ¼ 0; 1̂Þ shown in
Fig. 5(a), (ii) Eaðx; y ≠ 0; 1̂Þ shown in Fig. 5(b) and
(iii) Eaðx; y; 2̂Þ shown in Fig. 6.

1. Case (i): Eaþðx;0; 1̂Þ
Consider the left electric field Eþðx; 0; 1̂Þ of a Kogut

Susskind link flux operator Uðx; 0; 1̂Þ. From canonical
transformation (A1) illustrated in Fig. 10, we have
Eb
½xx�þðx; 0Þ ¼ Eb

−ðx; 0; 1̂Þ þ Ebþðx; 0; 1̂Þ. Therefore,

Eaþðx; 0; 1̂Þ ¼ −RabðUðx; 0; 1̂ÞÞEb
−ðxþ 1; 0; 1̂Þ

¼ −RabðUðx; 0; 1̂ÞÞ
× fEb

½xx�þðxþ 1; 0Þ − Ebþðxþ 1; 0; 1̂Þg
ðB1Þ

Iterating this expression, we obtain

Eaþðx; 0; 1̂Þ

¼ RabðT†ðx; 0ÞÞ
XN
x̄¼xþ1

−RbcðTðx̄; 0ÞÞEc
½xx�þðx̄; 0Þ ðB2Þ

Above, we have made use of the fact that T†ðx; 0ÞTðx̄; 0Þ ¼
Uðx; 0; 1̂ÞUðxþ 1; 0; 1̂Þ � � �Uðx̄ − 1; 0; 1̂Þ if x̄ > x. From

this expression it is clear that all the ~E½xx�þðx̄; 0Þ; x̄ > x are
parallel transported back to the point ðx; 0Þ to give
~Eþðx; 0; 1̂Þ so that the gauge transformations of link
and string operators are consistent with (B2). This is a
general trend which will be seen at each step of canonical
transformations. In fact, the parallel transport is required
by the SU(N) gauge transformations of the link and string
electric fields in (B2). We now convert the string electric
fields Ea

½xx�ðx; 0Þ into loop electric fields Eaðx0; y0Þ in

three steps.

a. Converting ~E½xx�þ → ~E½y�þ → ~E½yy�þ

Writing down ~E½xx�þðx̄; 0Þ in terms of ~E½xxy�þðx̄; 0Þ and
~E½y�þðx̄; 1Þ using canonical transformation (A2) shown in
Fig. 11:

Ea
½xx�þðx̄; 0Þ ¼ Ea

½xxy�þðx̄; 0Þ − Eaþðx̄; 0; 2̂Þ
¼ RabðUðx̄; 0; 2̂ÞÞEb

−ðx̄; 1; 2̂Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Eb
½y�þðx̄;1Þ

ðB3Þ

We have used the fact that E½xxy�þðx̄; 0Þ ¼ 0 by Gauss law
(A3) at ðx̄; 0Þ. But from (A4) and Fig. 12:
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Ea
½y�þðx̄; 1Þ ¼ Ea

½yy�þðx̄; 1Þ − Eaþðx̄; 1; 2̂Þ
¼ Ea

½yy�þðx̄; 1Þ þ RabðUðx̄; 1; 2̂ÞÞEb
−ðx̄; 2; 2̂Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Eb
½y�þðx̄;2Þ

¼ RabðT†ðx̄; 1ÞÞ
XN
ȳ¼1

RbcðTðx̄; ȳÞÞEc
½yy�þðx̄; ȳÞ:

ðB4Þ

Substituting it back into Eq. (B3) for Ea
½xx�þðx̄; 0Þ and using

Uðx̄; 0; 2̂ÞT†ðx̄; 1Þ ¼ T†ðx̄; 0Þ, we get

Ea
½xx�þðx̄; 0Þ ¼ RabðT†ðx̄; 0ÞÞ

XN
ȳ¼1

RbcðTðx̄; ȳÞÞEc
½yy�þðx̄; ȳÞ:

ðB5Þ
Putting this into Eq. (B2) we get

Eaþðx; 0; 1̂Þ

¼ −RabðT†ðx; 0ÞÞ
XN
x̄¼xþ1

XN
ȳ¼1

RbcðTðx̄; ȳÞÞEc
½yy�þðx̄; ȳÞ:

ðB6Þ

b. Converting ~E½yy�þ → ~E½x�þ → ~E�
From canonical transformation (A6) (Fig. 13) we have

Ec
½yyx�þðx̄;ȳÞ¼Ec

½yy�þðx̄;ȳÞþEcþðx̄;ȳ;1̂Þ and Ed
½x�þðx̄þ1;ȳÞ¼

Ed
−ðx̄þ1;ȳ;1̂Þ. Therefore,

Ec
½yy�þðx̄; ȳÞ ¼ Ec

½yyx�þðx̄; ȳÞ − Ecþðx̄; ȳ; 1̂Þ
¼ Ec

½yyx�þðx̄; ȳÞ
þ RcdðUðx̄; ȳ; 1̂ÞÞEd

−ðx̄þ 1; ȳ; 1̂Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Ed
½x�þðx̄þ1;ȳÞ

ðB7Þ

Further, the canonical transformations (A8) (Fig. 14)
imply:

Ec
½yyx�þðx̄; ȳÞ ¼ Ec

½yyxx�þðx̄; ȳÞ − Ec
½x�þðx̄; ȳÞ ¼ −Ec

½x�þðx̄; ȳÞ:

Here, we have used the fact that Ec
½xxyy�þðx̄; ȳÞ ¼ 0 by

Gauss law at ðx̄; ȳÞ [Eq. (A9)]. Also, from Eq. (A8),
Ed
½x�−ðx̄; ȳÞ ¼ Ed

−ðx̄; ȳÞ. Therefore,

Ec
½x�þðx̄; ȳÞ ¼ −RcdðT†

½x�ðx̄; ȳÞÞEd
½x�−ðx̄; ȳÞ

¼ −RcdðT†
½x�ðx̄; ȳÞÞEd

−ðx̄; ȳÞ: ðB8Þ

Substituting for ~E½yyx�þ, ~E½x�þ in Eq. (B7) and using the

relation Uðx̄; ȳ; 1̂ÞT†
½x�ðx̄þ 1; ȳÞ ¼ T†ðx̄; ȳÞ,

Ec
½yy�þðx̄; ȳÞ ¼ RcdðT†

½x�ðx̄; ȳÞÞEd
−ðx̄; ȳÞ

− RcdðT†ðx̄; ȳÞÞEd
−ðx̄þ 1; ȳÞ: ðB9Þ

Putting (B9) in (B6) and using the defining relations

Tðx̄; ȳÞT†
½x�ðx̄; ȳÞ≡W†ðx̄; ȳÞ;
Ebþðx̄; ȳÞ≡ −RbdðW†ðx̄; ȳÞÞEd

−ðx̄; ȳÞ

we get a simple relation:

Eaþðx; 0; 1̂Þ ¼ RabðT†ðx; 0ÞÞ

×
XN
x̄¼xþ1

XN
ȳ¼1

½Ebþðx̄; ȳÞ þ Eb
−ðx̄þ 1; ȳÞ�:

ðB10Þ

c. Converting ~E� → ~E�
To write Eaþðx; 0; 1̂Þ in terms of the final plaquette loop

electric fields Eb
�, we first use the canonical transformation

in Eq. (A10) and shown in Fig. 15: Ebþðx̄; ȳÞ ¼
Ēbþðx̄; ȳÞ − Ēbþðx̄; ȳþ 1Þ. This enables us to write down

the first term in Eq. (B10) in terms of ~E− as follows:

XN
ȳ¼1

Ebþðx̄; ȳÞ ¼
XN
ȳ¼1

½Ēbþðx̄; ȳÞ − Ēbþðx̄; ȳþ 1Þ� ¼ Ēbþðx̄; 1Þ

¼ −RbcðW̄†ðx̄; 1ÞÞĒc
−ðx̄; 1Þ

¼ −RbcðWðx̄; 1ÞÞEcþðx̄; 1Þ ¼ Eb
−ðx̄; 1Þ:

ðB11Þ

Here, we have used the fact that at the lower boundary,
W̄†ðx̄; 1Þ ¼ Wðx̄; 1Þ. We now write down the second term

in Eq. (B10) in terms of ~E�. Again using canonical
transformation Eq. (A10) (Fig. 15) as follows:

Eb
−ðx̄þ1; ȳÞ
¼−RbcðW̄ðx̄þ1; ȳÞÞEcþðx̄þ1; ȳÞ
¼−RbcðW̄ðx̄þ1; ȳÞÞ½Ēcþðx̄þ1; ȳÞ− Ēcþðx̄þ1; ȳþ1Þ�
¼ Ēb

−ðx̄þ1; ȳÞ−RbcðW̄ðx̄þ1; ȳÞW̄†

×ðx̄þ1; ȳþ1ÞÞĒc
−ðx̄þ1; ȳþ1Þ

¼ Ēb
−ðx̄þ1; ȳÞ−RbcðWðx̄þ1; ȳþ1ÞÞĒc

−ðx̄þ1; ȳþ1Þ
¼Ebþðx̄þ1; ȳÞþEb

−ðx̄þ1; ȳþ1Þ: ðB12Þ

Putting both the terms back into Eq. (B10) for Eaþðx; 0; 1̂Þ,
we get
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Eaþðx; 0; 1̂Þ
¼ RabðT†ðx; 0ÞÞ

×
XN
x̄¼xþ1



Eb
−ðx̄; 1Þ þ

XN
ȳ¼1

½Ebþðx̄þ 1; ȳÞ

þ Eb
−ðx̄þ 1; ȳþ 1Þ�

�

¼ RabðT†ðx; 0ÞÞ


Eb
−ðxþ 1; 1Þ þ

XN
x̄¼xþ2

XN
ȳ¼1

Lbðx̄; ȳÞ
�
:

ðB13Þ

Above, Laðx̄; ȳÞ≡ Ea
−ðx̄; ȳÞ þ Eaþðx̄; ȳÞ.

2. Case (ii): Eaþðx;y ≠ 0; 1̂Þ
The canonical transformation (A6) and Fig. 13 state that

Eb
½x�þðx; yÞ ¼ Eb

−ðx; y; 1̂Þ. Therefore,

Eaþðx; y; 1̂Þ ¼ −RabðUðx; y; 1̂ÞÞEb
−ðxþ 1; y; 1̂Þ

¼ −RabðUðx; y; 1̂ÞÞEb
½x�þðxþ 1; yÞ ðB14Þ

Using the relations (B8) and (B12)

Eb
½x�þðxþ 1; yÞ ¼ −RbcðT†

½x�ðxþ 1; yÞEc
−ðxþ 1; yÞ;

Ec
−ðxþ 1; yÞ ¼ Ecþðxþ 1; yÞ þ Ec

−ðxþ 1; yþ 1Þ ðB15Þ

and relation T†ðx; yÞ ¼ Uðx; y; 1̂ÞT†
½x�ðxþ 1; yÞ, we get

Eaþðx; y; 1̂Þ
¼ ½RabðUðx; y; 1̂ÞÞRbcðT†

½x�ðxþ 1; yÞÞ�Ec
−ðxþ 1; yÞ

¼ RacðT†ðx; yÞÞEc
−ðxþ 1; yÞ

¼ RacðT†ðx; yÞÞfEcþðxþ 1; yÞ þ Ec
−ðxþ 1; yþ 1Þg

ðB16Þ

Clubbing case (i) and case (ii) together,

Eaþðx; y; 1̂Þ ¼ RabðT†ðx; yÞÞ
�
Eb
−ðxþ 1; yþ 1Þ

þ Ebþðxþ 1; yÞ þ δy;0
XN
x̄¼xþ2

XN
ȳ¼1

Lbðx̄; ȳÞ
�
:

ðB17Þ

We have defined E�ðx; 0Þ≡ 0; E�ð0; yÞ≡ 0 for notational
convenience. The relations (B13) were used in (50) and
(67), (68) to write down the Kogut Susskind Hamiltonian in
terms of loop operators.

3. Case (iii): Eþðx;y; 2̂Þ
The canonical transformations (A4) (Fig. 12) state

Ec
½y�þðx; yÞ ¼ Ec

−ðx; y; 2̂Þ. Therefore,

Eaþðx; y; 2̂Þ ¼ −RacðUðx; y; 2̂ÞÞEc
−ðx; yþ 1; 2̂Þ

¼ −RacðUðx; y; 2̂ÞÞEc
½y�þðx; yþ 1Þ: ðB18Þ

Using the relation Ec
½y�þðx; yÞ ¼ Ec

½yy�þðx; yÞ − Ecþðx; y; 2̂Þ
from the canonical transformation Eq. (A4) (Fig. 12),

Eaþðx; y; 2̂Þ ¼ −RacðUðx; y; 2̂ÞÞfEc
½yy�þðx; yþ 1Þ

− Ecþðx; yþ 1; 2̂Þg
¼ −RacðUðx; y; 2̂ÞÞEc

½yy�þðx; yþ 1Þ
− RacðUðx; y; 2̂ÞUðx; yþ 1; 2̂ÞÞ
× Ec

½yy�þðx; yþ 2Þ − � � �

¼ −RabðT†ðx; yÞÞ
XN
ȳ¼yþ1

RbcðTðx; ȳÞÞ

× Ec
½yy�þðx; ȳÞ: ðB19Þ

Using Eq. (B9), Ec
½yy�þðx; ȳÞ ¼ RcdðT†

½x�ðx; ȳÞÞEd
−ðx; ȳÞ −

RcdðT†ðx; ȳÞÞEd
−ðxþ 1; ȳÞ and the expression W†ðx; ȳÞ ¼

Tðx; ȳÞT†
½x�ðx; ȳÞ from Eq. (A8),

Eaþðx; y; 2̂Þ ¼ RabðT†ðx; yÞÞ
XN
ȳ¼yþ1

½−RbcðW†ðx; ȳÞÞEc
−ðx; ȳÞ

þ Eb
−ðxþ 1; ȳÞ�: ðB20Þ

From Eq. (B12), we have Ec
−ðx; ȳÞ ¼ Ecþðx; ȳÞþ

Ec
−ðx; ȳþ 1Þ. Therefore, Eb

−ðxþ 1; ȳÞ ¼ Ebþðxþ 1; ȳÞ þ
Eb
−ðxþ 1; ȳþ 1Þ and

XN
ȳ¼yþ1

−RbcðW†ðx; ȳÞÞEc
−ðx; ȳÞ

¼
XN
ȳ¼yþ1

−RbcðW†ðx; ȳÞÞ½Ecþðx; ȳÞ þ Ec
−ðx; ȳþ 1Þ�

¼
XN
ȳ¼yþ1

fRbcðW†ðx; ȳ − 1ÞÞEc
−ðx; ȳÞ

− RbcðW†ðx; ȳÞÞEc
−ðx; ȳþ 1Þg

¼ RbcðW†ðx; yÞÞEc
−ðx; yþ 1Þ: ðB21Þ

Above, we have used the relations: W†ðx; ȳÞ ¼ W†ðx;
ȳ − 1ÞWðx; ȳÞ and RcdðWðx; ȳÞÞEdþðx; ȳÞ ¼ Ec

−ðx; ȳÞ.
Putting these two terms back into Eq. (B20),
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Eaþðx; y; 2̂Þ ¼ RabðT†ðx; yÞÞ


RbcðW†ðx; yÞÞEc

−ðx; yþ 1Þ

þ
XN
ȳ¼yþ1

½Ebþðxþ 1; ȳÞ þ Eb
−ðxþ 1; ȳþ 1Þ�

�
:

ðB22Þ

Therefore,

Eaþðx; y; 2̂Þ ¼ RabðT†ðx; yÞÞ
�
Ebþðxþ 1; yþ 1Þ

þ RbcðWxyðx; yÞÞEc
−ðx; yþ 1Þ

þ
XN
ȳ¼yþ2

Lbðxþ 1; ȳÞ
�
: ðB23Þ

Above, Wxyðx; yÞÞ≡Wðx; 1ÞWðx; 2Þ � � �Wðx; yÞ as
defined in (51). The relation (B23) was stated in (50)
and used later in (67) to get the SU(N) loop Hamiltonian.
Once the string operators decouple from the theory (as

shown in the previous section), the only remaining or
residual Gauss law is at the origin. This Gauss law at the
origin states:

Eaþð0; 0; 1̂Þ þ Eaþð0; 0; 2̂Þ ¼ 0:

When rewritten in terms of the plaquette electric fields
using the above relations (B17) and (B23) it takes the form:

XN
x;y¼1

Laðx; yÞ ¼ 0:

This is the residual SU(N) Gauss law at the origin.

APPENDIX C: MATHIEU EQUATION

We now exploit the simple action of the magnetic field
term on the hydrogen atom basis (46) to construct the dual

magnetic basis where this magnetic term is diagonal. We
define jji≡ jnin≡2jþ1 and

jωi ¼
X
j

χjðωÞjji: ðC1Þ

In (C1), χjðωÞ ¼ sin ð2jþ1Þω
2

sinðω
2
Þ are the SU(2) characters. Using

the recurrence relations [49]:

χjþ1
2
ðωÞ þ χj−1

2
ðωÞ ¼ 2 cos

�
ω

2

�
χðωÞ;

we get

HBjωi ¼
1

g2
ðTrWÞjωi ¼ 2

g2
cos

�
ω

2

�
jωi: ðC2Þ

Note that ω is a gauge invariant angle. We now use the
differential equation of the SU(2) character [49]:

d2χj
dω2

þ cot

�
ω

2

�
dχjðωÞ
dω

þ jðjþ 1ÞχjðωÞ ¼ 0

to convert HE in (40) into differential operator in ω. Finally
the Schrödinger equation Hjψiϵ ¼ ϵjψiϵ in this gauge
invariant loop basis is the Mathieu equation:

�
d2

dω2
þ 1

4

�
ϕϵðωÞ þ

κ

4

�
ϵ − 2κ

�
1 − cos

�
ω

2

���
ϕϵðωÞ ¼ 0:

ðC3Þ

In (C3) we have defined κ ≡ 1
g2 and ϕϵðωÞ≡ sin ω

2
ψϵðωÞ

where ψϵðωÞ≡ hωjψiϵ. The Mathieu equation (C3) and its
discrete solutions has been extensively discussed in the past
in the context of single plaquette lattice gauge theory
[17,20,21,50].
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