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Boundary effects produced by a Chern-Simons (CS) extension to electrodynamics are analyzed
exploiting the Green’s function (GF) method. We consider the electromagnetic field coupled to a θ term in a
way that has been proposed to provide the correct low-energy effective action for topological insulators
(TI). We take the θ term to be piecewise constant in different regions of space separated by a common
interface Σ, which will be called the θ boundary. Features arising due to the presence of the boundary, such
as magnetoelectric effects, are already known in CS extended electrodynamics, and solutions for some
experimental setups have been found, each with its specific configuration of sources. In this work we
illustrate a method to construct the GF that allows us to solve the CS modified field equations for a given θ
boundary with otherwise arbitrary configuration of sources. The method is illustrated by solving the case of
a planar θ boundary but can also be applied for cylindrical and spherical geometries for which the θ
boundary can be characterized by a surface where a given coordinate remains constant. The static fields of a
pointlike charge interacting with a planar TI, as described by a planar discontinuity in θ, are calculated and
successfully compared with previously reported results. We also compute the force between the charge and
the θ boundary by two different methods, using the energy-momentum tensor approach and the interaction
energy calculated via the GF. The infinitely straight current-carrying wire is also analyzed.
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I. INTRODUCTION

The relevance of Chern-Simons (CS) forms [1] in several
branches of theoretical physics is well accounted for. In
quantum field theory in regards to anomalies [2], they
played a key role, and in particle physics they proved
important as well [3–5]. In general relativity they also enjoy
a prominent position, as clearly reviewed in [6]. Further
studies involve its uses in topological quantum field theory
[7], topological string theory [8] and as a quantum gravity
candidate [9].
In general, CS forms are amenable for capturing topo-

logical features of the physical system they describe, which
is why in the last decade their importance has also become
apparent in the field of condensed matter physics for
describing what came to be known as topological phases.
The discovery made by von Klitzing of the astonishing
precision with which the Hall conductance of a sample is
quantized [10], despite the varying irregularities and
geometry of the sample, turned out to have a topological
origin. The reason for this lies in the band structure of the
sample, but ultimately, the Hall conductance can be
expressed as an invariant integral over the frequency in
momentum space. More precisely, it can be expressed as an
integral of the Berry curvature over the Brillouin zone [11],

inasmuch as the genus of a manifold can be expressed in
terms of an invariant integral of the local curvature over the
surface enclosing it. This quantity plays the role of a
topological order parameter uniquely determining the
nature of the quantum state, as the order parameter in
Landau-Ginzburg effective field theory determines the
usual phases of quantum matter.
In this work we are concerned with a simple case of CS

theories, to which we will refer as θ electrodynamics or
simply θ ED, and it amounts to extending Maxwell
electrodynamics by a parity-violating term of the form

ΔLθ ¼ θðα=4π2ÞE ·B ¼ −
θ

4
ðα=4π2ÞFμν

~Fμν; ð1Þ

where ~Fμν ¼ 1
2
ϵμναβFαβ and ϵμναβ is the Levi-Cività symbol.

In general, θ can be a dynamical field; however, we take it
as a constant scalar, making Eq. (1) a pseudoscalar. Note
that this extension is a total derivative, producing no
contribution to the field equations when usual boundary
conditions are met. If θ is not globally constant in the
manifold where the theory is defined, then the CS term fails
to be a topological invariant; therefore, the corresponding
modifications to the field equations must be taken into
consideration.
Here we study Maxwell theory extended by Eq. (1)
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defined by their different constant values of θ that are
separated by a common interface or boundary Σ. The
constant θ can be thought of as an effective parameter
characterizing properties of a novel electromagnetic vac-
uum possibly arising from a more fundamental theory or, as
applied to material media, as an effective macroscopic
parameter to describe novel quantum degrees of freedom of
matter apart from the usual permittivity ε and permeability
μ. The former approach has been taken in the context of
classical θ ED [12] and in the quantum vacuum framework
[13]. For related analyses, in several contexts, see Ref. [14].
The latter approach has been used to describe topological
insulators (TIs). Concretely, the low-energy limit of the
electrodynamics of TIs can be described by extending
Maxwell electrodynamics by Eq. (1), originally formulated
in 4þ 1 dimensions but appropriately adapted to lower
dimensions by dimensional reduction [15]. Thus, θ ED as a
topological field theory (TFT) serves as a model for many
theoretical [16] and experimental realizations for studying
detailed properties of topological states of quantum
matter [17,18].
The formulation of θ ED pursued in this work can be

considered as a particularly simple version of the so-called
Janus field theories [19–24]. Generally speaking, such
theories are characterized by having spacetime-dependent
coupling constants, such as θ in our model. They have been
actively explored in the context of the AdS/CFT corre-
spondence. Nevertheless, as we have already mentioned, in
the case of θ ED this idea is applied to a simpler but more
realistic system that constitutes an effective low-energy
theory that allows us to compute the response of topologi-
cal insulators to arbitrary external sources and currents in a
planar geometry, with direct extensions to cylindrical and
spherical geometries. Janus field theories were motivated,
from the gravitational sector of the AdS/CFT correspon-
dence, by an exact and nonsingular solution for the
dilatonic field in type II-B supergravity, which was found
in a simple deformation of the AdS5 × S5 geometry [25].
Even though the solution breaks all the original super-
symmetries, it proves to be stable under a large class of
perturbations [25–27]. The dilaton acquires a constant
value at the boundary, where AdS5 is recovered but adopts
different values at each half of the boundary. On the other
hand, the AdS/CFT correspondence requires the existence
of a dual gauge theory on the boundary for every non-
singular solution of type II-B supergravity in the bulk,
which in this case is a four-dimensionalN ¼ 4 super Yang-
Mills (SYM) theory living in the boundary [25]. In other
words, a running dilaton induces spacetime-dependent
coupling constants in the gauge theories in the dual sector,
which defines the Janus field theory. In our case the four-
dimensional N ¼ 4 SYM theory is replaced by the CS
modified ED, where we take the electromagnetic coupling
to be globally constant, while the topological coupling to
the Pontryagin invariant has different constant values at

each side of a planar interface and suffers a jump across
such a boundary. In relation to θ ED, it is interesting to
recall that the authors of Ref. [19] proposed a model for the
dual theory arising from the Janus solution, where theN ¼
4 SYM coupling gðzÞ affects only the kinetic term of the
non-Abelian gauge field, together with the interaction
terms in the original Lagrangian for the standard N ¼ 4
SYM theory. The model completely breaks the 16 original
supersymmetries of the N ¼ 4 SYM theory. Moreover,
gðzÞ is taken as constant on each side of a planar interface
(z ¼ 0), with a sharp jump across it. In this way, the gauge
field part of the action is the non-Abelian generalization of
the Maxwell action in an inhomogeneous medium with
permittivity ϵ and permeability μ related by ϵðzÞ ¼
1=μðzÞ ¼ 1=g2ðzÞ. The YM fields satisfy boundary con-
ditions at the interface, which are derived by integrating the
equations of motion over the standard infinitesimal pill-
shaped regions across the boundary, in a way similar to
standard electrodynamics. The YM Green’s function (GF)
is also obtained by using image methods. Nevertheless, let
us emphasize that this model does not include a coupling to
the YM Pontryagin invariant, in such a way that its Abelian
limit does not reproduce θ ED. The inclusion of the
topological coupling θðzÞ in addition to the YM coupling
gðzÞ is developed in Refs. [22,24], where 1=2 BPS vacuum
configurations are studied, in particular. As shown in
Ref. [22] half of the original supersymmetries can be
maintained provided such couplings are constrained by
the relations 1=g2ðzÞ ¼ D sin 2ψðzÞ and θðzÞ ¼ θ0 þ
8π2D cos 2ψðzÞ. The case of a sharp interface respecting
the above constraints is also considered in Ref. [24], and it
is studied in the Abelian Coulomb phase, by setting two
different constant values ψ1 and ψ2 at each side of a planar
boundary. However, in the case of θ ED, supersymmetry
does not enter, and we are choosing the electromagnetic
coupling to be globally constant, i.e., g1 ¼ g2 ¼ e, while
only the topological coupling θðzÞ becomes discontinuous
at the sharp boundary, with constant values θ1 ≠ θ2 in each
side. As can be seen already, these two systems are not
equivalent, and later we will discuss this issue in more
detail.
The paper is organized as follows. In Sec. II we review

the basics of Chern-Simons electrodynamics defined on a
four-dimensional spacetime in which the θ value is piece-
wise constant in different regions of space separated by a
common boundary Σ. In Sec. III we restrict ourselves to the
static case, and we construct the GF matrix for the planar
geometry corresponding to a θ boundary located at z ¼ a.
Section IV is devoted to different applications, e.g., the
problems of a pointlike charge and a current-carrying wire
near a planar θ boundary. The interaction energy (and
forces) between a charge-current distribution and a θ
interface is briefly discussed. Contact between the results
obtained with our method and others in the existing
literature is made. A concluding summary of our results
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comprises Sec. V. Throughout the paper, Lorentz-
Heaviside units are assumed (ℏ ¼ c ¼ 1), the metric
signature will be taken as ðþ;−;−;−Þ, and the convention
ϵ0123 ¼ þ1 is adopted.

II. θ ELECTRODYNAMICS IN A
BOUNDED REGION

Our model is based on Maxwell electrodynamics
coupled to a gauge-invariant θ term as described by the
following action:

S ¼
Z
M

d4x

�
−

1

16π
FμνFμν −

1

4
θ

α

4π2
Fμν

~Fμν − jμAμ

�
;

ð2Þ
where α ¼ e2=ℏc is the fine-structure constant and jμ is a
conserved external current. The coupling constant for the θ
term, α=4π2, is chosen in such a way that the total electric
charge qe ¼ 1

4π

R
dS ·D has to be an integer multiple of the

electron charge e, whereas the magnetic charge qm ¼
1
4π

R
dS ·B should be an integer multiple of g ¼ e=2α by

the Dirac quantization condition [5]. Later we recall the
reasoning which shows that, quantum mechanically, the
allowed values of θ are 0 or π (mod 2π).
The (3þ 1)-dimensional spacetime is M ¼ U ×R,

where U is a three-dimensional manifold and R corre-
sponds to the temporal axis. We make a partition of space in
two regions: U1 and U2, in such a way that manifolds U1

and U2 intersect along a common two-dimensional boun-
dary Σ, called the θ boundary, so that U ¼ U1∪U2 and
Σ ¼ U1∩U2, as shown in Fig. 1. We also assume that the
field θ is piecewise constant in such a way that it takes the
constant value θ ¼ θ1 in region U1 and the constant value
θ ¼ θ2 in region U2. This situation is expressed in the
characteristic function

θðxÞ ¼
�
θ1; x ∈ U1

θ2; x ∈ U2:
ð3Þ

In this scenario the θ term in the action fails to be a global
topological invariant because it is defined over a region
with the boundary Σ. Varying the action gives rise to a set of
Maxwell equations with an effective additional current
density with support at the boundary

∂μFμν ¼ ~θδðΣÞnμ ~Fμν þ 4πjν; ð4Þ

where nμ is the outward normal to Σ, and ~θ ¼ αðθ1 −
θ2Þ=π, which enforces the invariance of the classical
dynamics under the shifts of θ by any constant,
θ → θ þ C. Current conservation can be verified directly
by taking the divergence at both sides of Eq. (4) and using
symmetry properties. The set of equations (4) for θ ED can
be written as

∇ ·E ¼ ~θδðΣÞB · nþ 4πρ; ð5Þ

∇ ×B −
∂E
∂t ¼ ~θδðΣÞE × nþ 4πJ; ð6Þ

while thehomogeneous equations are included in theBianchi
identity ∂μ

~Fμν ¼ 0. Here n is the unit normal to Σ shown in
Fig. 1. In this work we consider a simple geometry
corresponding to a surface Σ taken as the plane z ¼ a.
As we see from Eqs. (5) and (6) the behavior of θ ED in

the bulk regions U1 and U2 is the same as in standard
electrodynamics. The θ term modifies Maxwell equations
only at the surface Σ. Here Fi0 ¼ Ei, Fij ¼ −εijkBk and
~Fi0 ¼ Bi, ~Fij ¼ εijkEk. Equations (5) and (6) also suggest
that the electromagnetic response of a system in the
presence of a θ term can be described in terms of
Maxwell equations in matter,

∇ · D ¼ 4πρ; ∇ ×H ¼ 4πJ; ð7Þ

with constitutive relations

D ¼ Eþ α

π
θðzÞB; H ¼ B −

α

π
θðzÞE; ð8Þ

where θðzÞ is given in Eq. (3). If θðzÞ is globally constant in
M, there is no contribution to Maxwell equations from the θ
term in the action, even though θ is still present in the
constitutive relations. In fact, the additional contributions of a
globally constant θ to each of the modified Maxwell equa-
tions (5) and (6) cancel due to the homogeneous equations.
Nowwe return to the problem of the allowed values of θ to

describe topological insulators. Uð1Þ gauge theories with
nonzero θ (θ ED) exhibit an SLð2;ZÞ duality group which
strongly constrains the quantum physics [28,29]. This group
is obtained by repeated applications of theS andT generators
of electric-magnetic duality. The S generator is associated
with the invariance of classical Maxwell equations in matter
(7) (supplemented with magnetic charge and current den-
sities) under duality rotations. Only the special case of a
duality transformation by π=2 is consistent with the require-
ment that the electric charge and the magnetic charge are
quantized.

FIG. 1 (color online). Region over which the electromagnetic
field theory is defined.
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The aforementioned rescaling symmetry θ → θ þ C
would allow us to set θ to zero at the classical level.
Quantum mechanically, however, given that for properly
quantized electric and magnetic fluxes Sθ=ℏ is an integer
multiple of θ, only C ¼ 2πn for integer n is an allowed
symmetry; otherwise, nontrivial contributions to the path
integral would result. Furthermore, sinceE ·B is odd under
t → −t, only θ ¼ 0 and θ ¼ π give a time-reversal sym-
metric theory. Thus, time reversal takes θ into −θ, so θ ¼ 0
is time-reversal invariant per se, whereas θ ¼ π is invariant
after the shift θ → θ þ 2π. This is typically referred as the T
generator of the electric-magnetic duality. The two trans-
formations S and T generate the SLð2;ZÞ symmetry group
acting on the fields [29].
Next we study the effects of a θ interface in the

propagation of the fields. Assuming that the time deriva-
tives of the fields are finite in the vicinity of the surface Σ,
the field equations imply that the normal component of E
and the tangential components of B acquire discontinuities
additional to those produced by superficial free charges and
currents, while the normal component of B and the
tangential components of E are continuous. For vanishing
free sources on the surface, the boundary conditions read

Ezjz¼aþ
z¼a− ¼ ~θBzjz¼a; B∥jz¼aþ

z¼a− ¼ −~θE∥jz¼a; ð9Þ

Bzjz¼aþ
z¼a− ¼ 0; E∥jz¼aþ

z¼a− ¼ 0: ð10Þ

The notation is Vijz¼aþ
z¼a− ¼ ViðzÞjz¼aþ

z¼a− ¼ limε→0½Viðz ¼
aþ εÞ − Viðz ¼ a − εÞ�; ε > 0 and Vijz¼a ¼ Viðz ¼ aÞ,
for any vector V. The continuity conditions (10) imply
that the right-hand sides of Eqs. (9) are well defined and
they represent self-induced surface charge and current
densities, respectively. An immediate consequence of the
boundary conditions (9) and (10) is that the presence of a
magnetic field crossing the surface Σ is sufficient to
generate an electric field, even in the absence of free
electric charges. Many interesting magnetoelectric effects
due to a θ boundary have been highlighted using different
approaches. For example, electric charges close to the
interface Σ induce magnetic mirror monopoles (and vice
versa) [23,24,30]. Also, the propagation of electromagnetic
waves across a θ boundary have been studied, finding that a
nontrivial Faraday rotation of the polarizations appears
[12,23,24,31]. It is worth mentioning that with the modified
boundary conditions, several properties of conductors still
hold for static fields as long as the conductor does not lie in
the Σ boundary; in particular, conductors are equipotential
surfaces, and the electric field just outside the conductor is
normal to its surface.

III. GF METHOD

In this section we use the GF method to solve static
boundary-value problems in θ ED in terms of the

electromagnetic potential Aμ. Certainly, one could solve
for the electric and magnetic fields from the modified
Maxwell equations together with the boundary conditions
(9) and (10); however, just as in ordinary electrodynamics,
there might be occasions where information about the
sources is unknown, and rather we are provided with
information about the 4-potential at the given boundaries.
In these cases the GF method provides the general solution
to a given boundary-value problem (Dirichlet or Neumann)
for arbitrary sources. Nevertheless, in what follows we
restrict ourselves to contributions of free sources outside
the θ boundary and without boundary conditions imposed
on additional surfaces, except for the standard boundary
conditions at infinity.
Since the homogeneous Maxwell equations that express

the relationship between potentials and fields are not modi-
fied, the electrostatic and magnetostatic fields can be written
in terms of the 4-potential Aμ ¼ ðϕ;AÞ according to E ¼
−∇ϕ and B ¼ ∇ ×A as usual. In the Coulomb gauge
∇ ·A ¼ 0, the 4-potential satisfies the equation of motion

½−ημν∇2 − ~θδðz − aÞϵ3μαν∂α�Aν ¼ 4πjμ; ð11Þ

together with the boundary conditions

Aμjz¼aþ
z¼a− ¼ 0; ð∂zAμÞjz¼aþ

z¼a− ¼ −~θϵ3μαν∂αAνjz¼a: ð12Þ

One can further check that these boundary conditions for the
4-potential correspond to the ones obtained in Eqs. (9)
and (10).
To obtain a general solution for the potentials ϕ andA in

the presence of arbitrary external sources jμðxÞ, we
introduce the GF Gν

σðx;x0Þ solving Eq. (11) for a pointlike
source,

½−ημν∇2 − ~θδðz − aÞϵ3μαν∂α�Gν
σðx;x0Þ ¼ 4πημσδ3ðx − x0Þ;

ð13Þ
together with the boundary conditions (12), in such a way
that the general solution for the 4-potential in the Coulomb
gauge is

AμðxÞ ¼
Z

d3x0Gμ
νðx;x0Þjνðx0Þ: ð14Þ

According to Eq. (13) the diagonal entries of the GF matrix
are related to the electric andmagnetic fields arising from the
charge and current density sources, respectively, although
they acquire θ dependence. However, the nondiagonal terms
encode the magnetoelectric effect, i.e., the charge (current)
density contributing to the magnetic (electric) field.
In the following we concentrate on constructing the

solution to Eq. (13). The GF we consider has translational
invariance in the directions parallel to Σ, that is, in the
transverse x and y directions, while this invariance is
broken in the z direction. Exploiting this symmetry we
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further introduce the Fourier transform in the direction
parallel to the plane Σ, taking the coordinate dependence to
be ðx − x0Þ∥ ¼ ðx − x0; y − y0Þ, and define

Gμ
νðx;x0Þ ¼ 4π

Z
d2p
ð2πÞ2 e

ip·ðx−x0Þ∥gμνðz; z0Þ; ð15Þ

where p ¼ ðpx; pyÞ is the momentum parallel to the plane
Σ [32]. In Eq. (15) we have suppressed the dependence of
the reduced GF gμν on p.
Due to the antisymmetry of the Levi-Cività symbol, the

partial derivative appearing in the second term of the GF
Eq. (13) does not introduce derivatives with respect to z but
only in the transverse coordinates. This allows us to write
the full reduced GF equation as

½∂2ημν þ i~θδðz − aÞϵ3μανpα�gνσðz; z0Þ ¼ ημσδðz − z0Þ; ð16Þ

where ∂2 ¼ p2 − ∂2
z , pα ¼ ð0;pÞ and p2 ¼ −pαpα.

The solution to Eq. (16) is simple but not straightfor-
ward. To solve it we employ a method similar to that used
for obtaining the GF for the one-dimensional δ-function
potential in quantum mechanics, where the free GF is used
for integrating the GF equation with δ interaction. To this
end we consider a reduced free GF having the form
Gμ

νðz; z0Þ ¼ gðz; z0Þημν, associated with the operator ∂2

previously defined, that solves

∂2Gμ
νðz; z0Þ ¼ ημνδðz − z0Þ; ð17Þ

satisfying the standard boundary conditions at infinity,
where

gðz; z0Þ ¼ 1

2p
e−pjz−z0j ð18Þ

and p ¼ jpj. Note that Eq. (17) demands the derivative of g
to be discontinuous at z ¼ z0, i.e., ∂zgðz; z0Þjz¼z0þ

z¼z0− ¼ −1,
and then the continuity of g at z ¼ z0 follows [32].
Now we observe that Eq. (16) can be directly integrated

by using the free GF Eq. (17) together with the properties of
the Dirac delta function, thus reducing the problem to a set
of coupled algebraic equations,

gμσðz; z0Þ ¼ ημσgðz; z0Þ − i~θϵ3μανpαgðz; aÞgνσða; z0Þ: ð19Þ

Note that the continuity of g at z ¼ z0 implies the continuity
of gμσ , but the discontinuity of ∂zg at the same point yields

∂zgμσðz; z0Þjz¼aþ
z¼a− ¼ −i~θϵ3μανpα∂zgðz; aÞjz¼aþ

z¼a− gνσða; z0Þ
¼ i~θϵ3μανpαgνσða; z0Þ; ð20Þ

from which the boundary conditions for the 4-potential in
Eq. (12) are recovered. In this way the solution (19)

guarantees that the boundary conditions at the θ interface
are satisfied.
Now we have to solve for the various components gμσ.

To this end we split Eq. (19) into μ ¼ 0 and μ ¼ j ¼ 1, 2, 3
components:

g0σðz; z0Þ ¼ η0σgðz; z0Þ − i~θϵ30ijpigðz; aÞgjσða; z0Þ; ð21Þ

gjσðz; z0Þ ¼ ηjσgðz; z0Þ − i~θϵ3ji 0pigðz; aÞg0σða; z0Þ: ð22Þ

Now we set z ¼ a in Eq. (22) and then substitute into
Eq. (21), yielding

g0σðz; z0Þ ¼ η0σgðz; z0Þ − i~θϵ30ijpiη
j
σgðz; aÞgða; z0Þ

− ~θ2p2gðz; aÞgða; aÞg0σða; z0Þ; ð23Þ

where we use the result ϵ30ijϵ
3jk

0pkpi ¼ p2. Solving for
g0σða; z0Þ by setting z ¼ a in Eq. (23) and inserting the
result back into that equation, we obtain

g0σðz; z0Þ ¼ η0σ½gðz; z0Þ þ ~θp2gða; aÞAðz; z0Þ�
þ iϵ30iσpiAðz; z0Þ; ð24Þ

where

Aðz; z0Þ ¼ −~θ
gðz; aÞgða; z0Þ

1þ p2 ~θ2g2ða; aÞ : ð25Þ

The remaining components can be obtained by substituting
g0σða; z0Þ in Eq. (22). The result is

gjσðz; z0Þ ¼ ηjσgðz; z0Þ þ iϵ3jk0pk½η0σ − i~θϵ30iσpigða; aÞ�
× Aðz; z0Þ: ð26Þ

Equations (24) and (26) allow us to write the general
solution as

gμνðz; z0Þ ¼ ημνgðz; z0Þ þ Aðz; z0Þf~θgða; aÞ½pμpν

þ ðημν þ nμnνÞp2� þ iϵμνα3pαg; ð27Þ

where nμ ¼ ð0; 0; 0; 1Þ is the normal to Σ.
The reciprocity between the position of the unit charge

and the position at which the GF is evaluated Gμνðx;x0Þ ¼
Gνμðx0;xÞ is one of its most remarkable properties. From
Eq. (15) this condition demands

gμνðz; z0;pÞ ¼ gνμðz0; z;−pÞ; ð28Þ

which we verify directly from Eq. (27). The symmetry
gμνðz; z0Þ ¼ g�νμðz; z0Þ ¼ g†μνðz; z0Þ is also manifest.
The various components of the static GF matrix in the

coordinate representation are obtained by computing the
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Fourier transform defined in Eq. (15), with the reduced GF
given by Eq. (18). The details are presented in Appendix.
The final results are

G0
0ðx;x0Þ ¼ 1

jx − x0j −
~θ2

4þ ~θ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ Z2
p ; ð29Þ

G0
iðx;x0Þ ¼ −

2~θ

4þ ~θ2
ϵ0ij3Rj

R2

�
1 −

Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Z2

p
�
; ð30Þ

Gi
jðx;x0Þ ¼ ηijG

0
0ðx;x0Þ − i

2

~θ2

4þ ~θ2
∂iKjðx;x0Þ; ð31Þ

where Z ¼ jz − aj þ jz0 − aj, Rj ¼ ðx − x0Þj∥ ¼ ðx − x0;
y − y0Þ, R ¼ jðx − x0Þ∥j and

Kjðx;x0Þ ¼ 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Z2

p
− Z

R2
Rj: ð32Þ

Finally, we observe that Eqs. (29)–(31) contain all the
required elements of the GF matrix, according to the
choices of z and z0 in the function Z.

IV. APPLICATIONS

A. Pointlike charge near a planar θ boundary

Let us consider a pointlike electric charge q located at a
distance b > 0 from the z ¼ 0 plane, where we have chosen
a ¼ 0. Also, the region z < 0 is filled with a topologically
nontrivial insulator, whereas the region z > 0 is the vacuum
(θ2 ¼ 0). For simplicity we choose the coordinates such
that x0 ¼ y0 ¼ 0. Therefore, the current density is
jμðx0Þ ¼ qημ0δðx0Þδðy0Þδðz0 − bÞ. According to Eq. (14),
the solution for this problem is

AμðxÞ ¼ qGμ
0ðx; rÞ; ð33Þ

where r ¼ bêz. We first study the electrostatic potential.
From Eq. (29),

z > 0∶ G0
0ðx; rÞ ¼

1

jx − rj −
~θ2

4þ ~θ2
1

jxþ rj ; ð34Þ

z < 0∶ G0
0ðx; rÞ ¼

4

4þ ~θ2
1

jx − rj : ð35Þ

For z > 0 the GF yields the electric potential A0ðxÞ ¼
qG0

0ðx; rÞ which can be interpreted as due to two pointlike
electric charges, one of strength q at r, and the other, the
image charge, of strength −q~θ2=ð4þ ~θ2Þ, at the point −r.
For z < 0 only one pointlike electric charge appears, of
strength 4q=ð4þ ~θ2Þ located at r.
From Eq. (33) we see that two components of the

magnetic vector potential are nonzero, A1ðxÞ¼qG1
0ðx;rÞ

and A2ðxÞ ¼ qG2
0ðx; rÞ. The corresponding GF compo-

nents for each region are given by

G1
0ðx; rÞ ¼ −

2~θ

4þ ~θ2
y
R2

(
1 − zþb

jxþrj ; z > 0

1þ z−b
jxþrj ; z < 0;

ð36Þ

G2
0ðx; rÞ ¼ þ 2~θ

4þ ~θ2
x
R2

(
1 − zþb

jxþrj ; z > 0

1þ z−b
jxþrj ; z < 0;

ð37Þ

according to Eq. (30). It is difficult to interpret the
components of the vector potential directly; however, the
magnetic field B ¼ ∇ ×A is illuminating. In fact

z > 0∶ BðxÞ ¼ 2q~θ

4þ ~θ2
xþ r
jxþ rj3 ; ð38Þ

z < 0∶ BðxÞ ¼ −2q~θ
4þ ~θ2

x − r
jx − rj3 : ð39Þ

Thus, we observe that the magnetic field for z > 0 is that
due to a magnetic monopole of strength 2q~θ=ð4þ ~θ2Þ
located at −r. For z < 0 we have a magnetic monopole of
strength −2q~θ=ð4þ ~θ2Þ located at r.
The solution shows that, for an electric charge near

the planar surface of a topological insulator, both an
image magnetic charge and an image electric charge
will be induced. The appearance of magnetic monopoles
in this solution seems to violate the Maxwell law
∇ ·B ¼ 0, which remained unaltered in the case of θ
ED. Nevertheless, recalling that ðx� rÞ=jx� rj3 ∼
∇xð1=jx� rjÞ, we have ∇ ·B ∼∇2

xð1=jx� rjÞ ∼ δðx�
rÞ in a region where x ≠ �r. Physically, the magnetic
field is induced by a surface current density

J ¼ ~θδðzÞE × n ¼ 4q~θ

4þ ~θ2
R

ðR2 þ b2Þ3=2 δðzÞφ̂; ð40Þ

which is circulating around the origin. However, such an
induced field has the correct magnetic field dependence
expected from a magnetic monopole. This current is
nothing but the Hall current [30].
It is worth mentioning that these results were also

obtained using different approaches. On the one hand,
the authors in Ref. [30] used the image method to show that
an electric charge near a topological surface state induces
an image magnetic monopole due to the magnetoelectric
effect and emphasized the possible experimental verifica-
tion via a gas of quantum particles carrying fractional
statistics, consisting of the bound states of the electric
charge and the image monopole charge.
At this stage we clarify the differences between the θ-ED

approach we are following and the 1=2 BPS construction in
the sharp interface discussed in Ref. [24]. As we mentioned
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in the Introduction the eight remaining supersymmetries in
the latter case are enforced by demanding the couplings to
be related in the following way:

1

e2
¼ D sin 2ψðzÞ; θ ¼ θ0 þ 8π2D cos 2ψ ; ð41Þ

where one chooses the constant values ψ1 and ψ2 for z > 0
and z < 0, respectively. The constraint (41) does not allow
us to simultaneously set e1 ¼ e2 and θ1 ≠ θ2, which
corresponds to the case of θ ED, where supersymmetry
is irrelevant. In other words, the limits g ¼ 0 in the electric
field and in the magnetic field of the single dyon at z ¼ a
(Eqs. (5.10) of Ref. [24]), which were calculated using the
method of images, do not reproduce the corresponding
fields obtained from our Eqs. (34), (36) and (37). Also, the
transmitted and reflected fields of massless waves propa-
gating across the interface reported in Ref. [24] do not
correspond to those calculated for θ ED in Refs. [12,31]. It
is worth recalling that these couplings enter through the
complexified parameter τ ¼ θ=2π þ 4πi=g2, which is
familiar in the study of the action of the group SLð2;ZÞ
on a topological insulator with nontrivial permittivity,
permeability and θ angle [29].

B. Force between a charge and a
planar θ boundary

In this section we formulate the interaction energy and
the forces arising between external sources and a TI as
represented by the θ boundary with a planar symmetry. We
use both the GF matrix and the stress-energy tensor.
The interaction energy between a charge-current distri-

bution and a topological insulator is

Eint ¼
1

2

Z
dx

Z
dx0jμðxÞ½Gμνðx;x0Þ − ημνGðx;x0Þ�jνðx0Þ;

ð42Þ

where Gðx;x0Þ ¼ 1=jx − x0j is the GF in vacuum. The first
contribution represents the total energy of a charge-current
distribution in the presence of the θ boundary, including
mutual interactions. We evaluate this energy for the case
considered in the previous subsection of a pointlike electric
charge at position r ¼ bêz. Making use of Eq. (34), the
interaction energy is

Eint ¼
q2

2
½G00ðr; rÞ − Gðr; rÞ� ¼ −

q2

2

~θ2

4þ ~θ2
1

2b
: ð43Þ

Our result implies that the force on the charge exerted by
the θ boundary is

F ¼ −
∂Eint

∂b êz ¼ −
q2

ð2bÞ2
~θ2

4þ ~θ2
êz; ð44Þ

noting that it is always attractive. This can be interpreted as
the force between the charge q and the image charge
−q~θ2=ð4þ ~θ2Þ according to Coulomb law.
The field point of view provides an alternative derivation

of this result. To compute the force on the charge we
calculate the normal component of the flow of momentum
into the θ boundary. In terms of the stress-energy tensor this
force is

F ¼ −êz
Z
Σþ

dSTzzðΣþÞ; ð45Þ

where the integration is over the surface Σþ, just outside the
θ interface, at z ¼ 0þ.
The identification of the stress tensor in the case of θ

electrodynamics proceeds along the standard lines of
electrodynamics in a medium (see, for example,
Ref. [32]), where we read the rate at which the electric
field does work on the free charges,

J ·E¼−∇ ·

�
1

4π
E×H

�
−

1

4π

�
E ·

∂D
∂t þH ·

∂B
∂t

�
; ð46Þ

and the rate at which momentum is transferred to the
charges,

ðρEþ J ×BÞk ¼ −
∂
∂t

�
1

4π
D ×B

�
k

−
1

4π
½Di∂kEi − ∂iðDiEkÞ�

−
1

4π
½Bi∂kHi − ∂iðBiHkÞ�: ð47Þ

Using the constitutive relations in Eq. (8), we recognize
from Eq. (46) the energy flux S and the energy densityU as

S ¼ 1

4π
E ×B; U¼ 1

8π
ðE2 þB2Þ; ð48Þ

while from Eq. (47) we obtain the momentum density G
and we identify the stress tensor Tij as

G ¼ 1

4π
E × B;

Tij ¼
1

8π
ðE2 þ B2Þδij −

1

4π
ðEiEj þ BiBjÞ: ð49Þ

Outside the free sources, the conservation equations read

∇ · Sþ ∂U
∂t ¼ 0;

∂Gk

∂t þ ∂iTik ¼
α

π
ðEiBiÞ∂kθðzÞ:

ð50Þ

In other words, the stress tensor has the same form as in
vacuum, but, as expected, it is not conserved on the θ
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boundary because of the self-induced charge and current
densities arising there.
Thus, the required expression for TzzðΣþÞ in Eq. (45) is

the standard one,

Tzz ¼
1

8π
½E2

∥ − E2
z þ B2

∥ − B2
z �; ð51Þ

where Ez (Bz) denotes the electric (magnetic) field com-
ponent normal to the surface and E∥ (B∥) is the component
of the electric (magnetic) field parallel to the surface.
According to our results in the previous section, the electric
and magnetic fields for z > 0 are

EðxÞ ¼ q
x − r
jx − rj3 − q

~θ2

4þ ~θ2
xþ r
jxþ rj3 ; ð52Þ

BðxÞ ¼ 2q~θ

4þ ~θ2
xþ r
jxþ rj3 : ð53Þ

Thus, we find

F ¼ 1

4

q2

ð4þ ~θ2Þ2 êz
Z

∞

0

dR
R

ðR2 þ b2Þ3
× ½16R2 − ð4þ 2~θ2Þ2b2 þ 4~θ2ðR2 − b2Þ�

¼ −
q2

ð2bÞ2
~θ2

4þ ~θ2
êz;

in agreement with Eq. (44).

C. Infinitely straight current-carrying wire
near a planar θ boundary

Let us now consider an infinitely straight wire parallel
to the x axis and carrying a current I in the þx direction.
The wire is located in vacuum (θ2 ¼ 0) at a distance b
from an infinite topological medium with θ1 ≠ 0 in the
region z < 0. For simplicity we choose the coordinates
such that y0 ¼ 0. Therefore, the current density is
jμðx0Þ ¼ Iημ1δðy0Þδðz0 − bÞ.
The solution for this problem is given by

AμðxÞ ¼ I
Z þ∞

−∞
Gμ

1ðx; rÞdx0; ð54Þ

where x − r ¼ ðx − x0Þêx þ yêy þ ðjzj þ bÞêz. Clearly the
nonzero component A0ðxÞ arising from the GF implies that
an electric field is induced. The required component of the
GF, G0

1, defined in Eq. (30) is given by

G0
1ðx; rÞ ¼ −

2~θ

4þ ~θ2
y
R2

�
1 −

jzj þ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðjzj þ bÞ2

p �
: ð55Þ

Substituting Eq. (55) into Eq. (54) yields the electric
potential, which lacks an immediate interpretation. We

can directly compute the electric field asEðxÞ ¼ −∇A0ðxÞ,
with the result

EðxÞ ¼ 4~θI

4þ ~θ2

� jzj þ b
y2 þ ðjzj þ bÞ2 êy −

ysignðzÞ
y2 þ ðjzj þ bÞ2 êz

�
:

ð56Þ

We observe that the electric field for z > 0 is that due to a
magnetic current located at z0 ¼ −b, jm;> ¼ −4~θI=ð4þ
~θ2Þêx. For z < 0 we have a magnetic current located at
z0 ¼ b of the same strength jm;< ¼ −jm;>. Note that jm;> is
antiparallel to the current of the wire, while jm;< is parallel.
Similarly, we compute the magnetic field. This is

BðxÞ ¼ ∇ ×

�
Iêi

Z þ∞

−∞
Gi

1ðx; rÞdx0
�
; ð57Þ

with i ¼ 1, 2, where the corresponding GF are given by
Eqs. (31). The result is

BðxÞ ¼ 2IsignðzÞ
�
−

jb − zj
y2 þ ðb − zÞ2

þ
~θ2

4þ ~θ2
ðjzj þ bÞ

y2 þ ðjzj þ bÞ2
�
êy

þ 2Iy

�
1

y2 þ ðb − zÞ2 −
~θ2

4þ ~θ2
1

y2 þ ðjzj þ bÞ2
�
êz:

ð58Þ

For z > 0 the magnetic field corresponds to the one
produced by an image electric current located at
z0 ¼ −b, flowing in the opposite direction to the current
of the wire, je;> ¼ −2~θI=ð4þ ~θ2Þêx. For z < 0 we have
an electric current located at z0 ¼ b of the same
strength and flowing in the same direction of the current
in the wire.

V. SUMMARY AND OUTLOOK

Classical electrodynamics is a fascinating field theory on
which a plethora of technological devices rely. Advances in
our theoretical understanding ignite new technological
developments, and sometimes new discoveries demand
extending the limits of theories that lead to them. Chern-
Simons forms and topologically ordered materials are a
good example of the above. In this work we study a
particular kind of Chern-Simons extension to electrody-
namics that consists of Maxwell Lagrangian supplemented
by a parity-violating Pontryagin invariant coupled to a
scalar field θ, restricted to the case where θ is piecewise
constant in different regions of space separated by a
common interface Σ.
It is well known that in this scenario the field equations

in the bulk remain the standard Maxwell equations, but the
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discontinuity of θ alters the behavior of the fields at the
interface Σ, giving rise to effects such as: (i) Induced
effective charge and currents at Σ that are determined by the
fields at the interface, (ii) Electric charges near a planar θ
boundary induce magnetic mirror monopoles (and vice
versa) and (iii) Nontrivial additional Faraday- and Kerr-like
rotation of the plane of polarization of electromagnetic
waves traversing the interface Σ.
Here we focus on the GF method applied for the static

case in θ electrodynamics. The method is illustrated by
the case of a planar θ interface, where the corresponding
GF is calculated. The integral equation which defines the
GF becomes an algebraic equation due to the delta
interaction arising in the θ boundary plus the symmetries
present in the parallel directions. We show how to
compute the electromagnetic fields, on either side of
the interface from the GF. Next we compute the force
between a pointlike charge and a topological insulator. To
this end we use the GF to compute the interaction energy
between a charge-current distribution and a θ boundary
that mimics the topological insulator, with vacuum
energy removed. It can be shown that the above leads
to the same interaction force as that computed by
momentum flux perpendicular to the interface, for which
the energy-momentum tensor and ensuing conservation
laws of θ electrodynamics were analyzed. Finally, we use
the GF to obtain the electromagnetic fields for an
infinitely straight current-carrying wire parallel to the
interface.
For the case of the pointlike charge in front of the θ

interface, our results allow us to interpret the fields as
those produced by the charge, its image, an induced
magnetic monopole, and a circulating current density at
the interface, in agreement with previously existing
results. Similarly, the fields produced by the infinitely
straight current-carrying wire and the θ boundary can be
interpreted in terms of electric and magnetic current
densities.
Let us emphasize that for a given θ boundary, the fields

produced by arbitrary external sources can be calculated
once the GF is known. Our method can be applied to a
broader kind of geometries determined by the θ boundary.
In fact, we can provide the GF for the spherical and the
cylindrical cases [33]. Given that our results depend
on ~θ ¼ αðθ1 − θ2Þ=π, it is worth mentioning that they
satisfy the quantum-mechanical periodicity condition
θ → θ þ 2πn, with θ ¼ 0; π.
The GF method should also be useful for the extension to

the dynamic case. In this respect, to our knowledge, little
effort has been made in the context of topological insula-
tors. Furthermore, GFs are also relevant for the computa-
tion of other effects, such as the Casimir effect. Therefore,
we expect our method and results will be of considerable
relevance and that they may constitute the basis for
numerous other studies.
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APPENDIX: GF FOR PLANAR CONFIGURATION
IN COORDINATE REPRESENTATION

Here we derive Eqs. (29)–(31) by computing explicitly
the Fourier transform of the reduced GF, whose formula we
take from (27). In the standard case (~θ ¼ 0), the reduced
vacuum GF is [32]

gðz; z0Þ ¼ 1

2p
e−pjz−z0j: ðA1Þ

In the coordinate representation, the corresponding GF is
obtained by Fourier transforming (A1) as defined in
Eq. (15),

Gðx;x0Þ ¼ 4π

Z
d2p
ð2πÞ2 e

ip·ðx−x0Þ∥ 1

2p
e−pjz−z0j: ðA2Þ

This double integral becomes easier to perform if we express
the area element in polar coordinates, d2p ¼ pdpdφ
(instead of the Cartesian ones), and choose the px axis in
the direction of the vectorR ¼ ðx − x0Þ∥, as shown in Fig. 2.
Noting that p ·R ¼ pR cosφ, we can write

Gðx;x0Þ ¼
Z

∞

0

dpe−pjz−z0j
�

1

2π

Z
2π

0

eipR cosφdφ

�
; ðA3Þ

FIG. 2. The p plane.
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where R ¼ jðx − x0Þ∥j. The braces in this equation enclose
an integral representation of the Bessel function J0ðpRÞ.
The resulting integral,

Gðx;x0Þ ¼
Z

∞

0

J0ðpRÞe−pjz−z0jdp; ðA4Þ

is well known; see, for example, Ref. [34]. The final result is

Gðx;x0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ jz − z0j2

p ¼ 1

jx − x0j ; ðA5Þ

which is the vacuum GF in the coordinate representation
[32]. In the followingwe use a similar procedure to compute
the required integrals for establishing Eqs. (29) and (30).We
first consider the component G0

0. From Eq. (27) we find

g00ðz; z0Þ ¼ gðz; z0Þ þ Aðz; z0Þp2 ~θgða; aÞ; ðA6Þ

where the function Aðz; z0Þ is

Aðz; z0Þ ¼ −
~θ

4þ ~θ2
p−2e−pZ; ðA7Þ

with the notation Z ¼ jz − aj þ jz0 − aj. In this way, the
component G0

0 is given by

G0
0ðx;x0Þ ¼ Gðx;x0Þ −

~θ2

4þ ~θ2

Z
∞

0

J0ðpRÞe−pZdp; ðA8Þ

in the coordinate representation. As before, we use the
integral representation of the Bessel function J0ðpRÞ to
perform the angular integration. The resulting integral is the
same as in (A4); thus, we obtain

G0
0ðx;x0Þ ¼ 1

jx − x0j −
~θ2

4þ ~θ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ Z2
p : ðA9Þ

Now we evaluate the components G0
1 and G0

2. The
corresponding reduced GF are

g0iðz; z0Þ ¼ −iϵ0ij3pjAðz; z0Þ; ðA10Þ

with Aðz; z0Þ given by (A7). For convenience we define the
vector

Iðx;x0Þ ¼ ðI1; I2Þ ¼ 4π

Z
d2p
ð2πÞ2 e

ip·ðx−x0Þ∥pp−2e−pZ;

ðA11Þ

with p ¼ ðpx; pyÞ, in terms of which we have

G0
iðx;x0Þ ¼ i

~θ

4þ ~θ2
ϵ0ij3Ijðx;x0Þ: ðA12Þ

We calculate the integral (A11) in the same coordinate
system as before (see Fig. 2), and then we rewrite the result
in a vector form. The integral can be written as

Ipðx;x0Þ ¼ 2

Z
∞

0

dpe−pZ
�

1

2π

Z
2π

0

�
cosφ

sinφ

�
eipR cosφdφ

�
;

ðA13Þ
where the subscript p indicates that the vector p is written
in the particular coordinate system of Fig. 2. Both the
required angular and radial integrals are well known, and
the result is

Ipðx;x0Þ ¼ 2iR̂
Z

∞

0

J1ðpRÞe−pZdp

¼ 2i
R

�
1 −

Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Z2

p
�
R̂: ðA14Þ

As a consequence of the chosen coordinate system, we find
that I2 ¼ 0, in such a way that the vector Ip becomes
parallel to R̂. However, this can be generalized in a direct
way to an arbitrary coordinate system as

Iðx;x0Þ ¼ 2i
R
R2

�
1 −

Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Z2

p
�
: ðA15Þ

Thus, we find

G0
iðx;x0Þ ¼ −

2~θ

4þ ~θ2
ϵ0ij3Rj

R2

�
1 −

Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Z2

p
�
: ðA16Þ

In order to evaluate the components Gi
j, we first observe

that the corresponding reduced GF can be written as

gijðz; z0Þ ¼ ηijg
0
0ðz; z0Þ þ ~θgða; aÞAðz; z0Þpipj; ðA17Þ

where g00 is given by Eq. (A6). Now we need to compute
the Fourier transformation of Eq. (A17) as defined in
Eq. (15). However, the first term was studied before, and
the result is given by Eq. (A9), thus leading us to study only
the last term. To this end we introduce the vector

Kðx;x0Þ ¼ ðK1; K2Þ ¼ 4π

Z
d2p
ð2πÞ2 e

ip·ðx−x0Þ∥ p
p
p−2e−pZ;

ðA18Þ

from which the required integral will be calculated by
taking the spatial derivative. The integral (A18) can be
computed again in the particular coordinate system of
Fig. 2. In the polar coordinates defined in the p plane, the
integral reads
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Kpðx;x0Þ ¼ 2

Z
∞

0

dp
p

e−pZ
�

1

2π

Z
2π

0

�
cosφ

sinφ

�
eipR cosφdφ

�
:

ðA19Þ

Note that the braces in this equation enclose an integral
representation of the Bessel function J1ðpRÞ. The resulting
integral is well known, and the final result is

Kpðx;x0Þ ¼ 2i
Z

∞

0

dp
p

J1ðpRÞe−pZR̂

¼ 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Z2

p
− Z

R
R̂; ðA20Þ

where R̂ is the unit vector shown in Fig. 2. The generali-
zation to an arbitrary coordinate system is then

Kðx;x0Þ ¼ 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Z2

p
− Z

R2
R: ðA21Þ

Note that the required integral involves the term pipj,
which can be generated from (A18) as follows:

i∂jKiðx;x0Þ ¼ 4π

Z
d2p
ð2πÞ2 e

ip·ðx−x0Þ∥ p
ipj

p
p−2e−pZ:

ðA22Þ

By using the final form of Kðx;x0Þ, given by Eq. (A21),
one can further check the consistency condition
∂1K2ðx;x0Þ ¼ ∂2K1ðx;x0Þ required by the cross terms
involving p1p2 ¼ p2p1 ¼ −pxpy. From the previous
results, the Gi

j components of the GF matrix in the
coordinate representation can be written as

Gi
jðx;x0Þ ¼ ηijG

0
0ðx;x0Þ − i

2

~θ2

4þ ~θ2
∂jKiðx;x0Þ: ðA23Þ

These results establish Eq. (31).
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