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We derive the most general effective low-energy potential to order O(1/m) for slow Dirac fermions with
mass m, coupled to gravitational, chameleon and torsion fields in the Einstein-Cartan gravity. The obtained
results can be applied to the experimental analysis of gravitational, chameleon and torsion interactions in
terrestrial laboratories. We discuss the use of rotating coordinate systems, caused by rotations of devices,
for measurements of the torsion vector and tensor components, caused by minimal torsion-fermion
couplings [A. N. Ivanov and M. Wellenzohn, Phys. Rev. D 92, 065006 (2015)]. Using the most general
form of a metric tensor of curved spacetimes in rotating coordinate systems, proposed by Obukhov,
Silenko, and Teryaev [Phys. Rev. D 84, 024025 (2011)], we extend this metric by the inclusion of the
chameleon field and calculate the set of vierbein fields, in terms of which Dirac fermions couple to the
torsion vector and tensor components through minimal torsion-fermion couplings. For such a set of
vierbein fields we discuss a part of the effective low-energy potential for slow Dirac fermions, coupled to

gravitational, chameleon and torsion fields to order O(1) in the large fermion mass expansion.
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I. INTRODUCTION

In terrestrial laboratories [1-7] gravitational and chame-
leon interactions are being investigated in terms of cold
and ultracold neutrons through some effective low-energy
potentials [8—11]. The low-energy torsion-fermion inter-
actions of the pseudoscalar and axial-vector components
of the torsion field have been derived and estimated by
Lammerzahl [12] and Obukhov, Silenko, and Teryaev [13].
The most general torsion-fermion interactions of constant
torsion fields have been proposed and estimated by
Kostelecky, Russell, and Tasson [14]. The results, obtained
by Liammerzahl [12], Obukhov et al. [13] and Kostelecky
et al. [14], have been discussed in Ref. [15]. An attempt of
a direct measurement of torsion-fermion interactions with
constant torsion fields, proposed by Kostelecky et al. [14],
has been undertaken by Lehnert, Snow and Yan [16].

In this paper we derive the most general effective low-
energy potential to order 1/m for slow Dirac fermions with
mass m, coupled to gravitational, chameleon and torsion
fields in the Einstein-Cartan gravity.

The chameleon part of such an effective low-energy
potential contains new chameleon-fermion interactions
with respect to those calculated in Refs. [10,15]. These
new chameleon-fermion interactions can be used for more
detailed experimental analysis of the properties of the
chameleon field [17,18]. The chameleon field, changing
its mass in dependence of the mass density of the
environment, has been invented to avoid the problem of
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the violation of the equivalence principle [19]. In addition
the chameleon field can be also identified with a quintes-
sence (canonical scalar field) [20,21], which has been
postulated for an explanation of the late-time acceleration
of the Universe’s expansion [22—24]. The laboratory probes
of the chameleon field, coupled to matter in a conformal
way [17,18], may also shed light on dark energy dynamics
[25-28].

Torsion (in addition to the metric tensor) is a natural
geometrical quantity characterizing spacetime geometry
through spin-matter interactions [29,30]. It allows one to
probe rotational degrees of freedom of spacetime in
terrestrial laboratories. Torsion is described by a third-
order tensor 7 ,,,, antisymmetric with respect to indices
and v, ie. T,,, = —T,, [29,30]. It possesses 24 inde-
pendent components, which can be decomposed into four
axial-vector B,, four vector £, and 16 tensor M,,,
components [14] [see also Egs. (6) and (7)]. The torsion
part of the effective low-energy potential, derived in our
paper, is caused by torsion-fermion minimal couplings for
all torsion components only. An importance of this part of
the effective low-energy potential is related to a possible
solution of the following problem. As has been shown in
Ref. [15], only torsion axial-vector Bﬂ components are
present in the torsion-fermion minimal couplings in the
curved spacetimes with metrics, providing vanishing time-
space (space-time) components of the vierbein fields. Since
these are usual metrics of spacetimes in terrestrial labo-
ratories, in such spacetimes torsion vector £, and tensor
M, components, coupled to Dirac fermions, can be
introduced only through nonminimal torsion-fermion
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couplings with phenomenological coupling constants [14]
(see also Ref. [15]). The presence of phenomenological
coupling constants screens real values of the torsion vector
&, and tensor M., components. Thus, a search for
possible ways of measuring torsion vector £, and tensor
M., components through torsion-fermion minimal cou-
plings is of great importance for understanding the correct
values of the torsion.

We show that these measurements can be in principle
possible in curved spacetimes, described by metric tensors
with nondiagonal components. These metric tensors define
nonvanishing time-space (space-time) components of the
vierbein fields, in terms of which slow fermions couple to
torsion vector &, and tensor M,,, components through
minimal torsion-fermion couplings.

It is well known [31] that in rotating coordinate systems
spacetimes are described by nondiagonal metric tensors. In
terrestrial laboratories spacetimes with nondiagonal metric
tensors can be in principle realized by means of rotating
devices (neutron interferometers) [32,33] (see also a book
by Rauch and Werner [34] for necessary information on
neutron interferometry). Thus, we propose to measure

torsion vector £ and tensor M,,, components through
minimal torsion-fermion couplings in rotating coordinate
systems, caused by rotating devices. In our analysis of
curved spacetimes in rotating coordinate systems we follow
the papers by Hehl and Ni [35] and Obukhov, Silenko, and
Teryaev [36,37].

The paper is organized as follows. In Sec. II we derive
the most general Hamilton operator for the Dirac fermions
in the Einstein-Cartan gravity with chameleon and torsion
fields. We adduce the Schrodinger-Pauli equation for slow
Dirac fermions, coupled to the effective low-energy poten-
tial, caused by gravitational, chameleon and torsion fields.
In Sec. III we 1) calculate the vierbein fields, related to the
most general metric tensors of the curved spacetimes in
rotating coordinate systems, proposed by Obukhov,
Silenko, and Teryaev [37], ii) derive the effective low-
energy torsion-fermion potential to order O(1) in the large
fermion mass expansion and iii) discuss possible measure-
ments of torsion vector and tensor components in such
curved spacetimes. In the Appendix we give a detailed
derivation of the effective low-energy potential for slow
Dirac fermions, coupled to gravitational, chameleon and
torsion fields in the Einstein-Cartan gravity.

II. SLOW DIRAC FERMIONS IN THE
EINSTEIN-CARTAN GRAVITY WITH
TORSION AND CHAMELEON

In gravitational theories with a chameleon field fermions
couple to the chameleon field ¢(x) through the metric
Guw(x) in the Jordan frame related to the metric g,,(x)
in the Einstein frame by §,,(x) = f*(x)g,,(x), where
f(x) = eP?X)/Mn is the conformal factor [17,18] (see also
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Ref. [11]), p is the chameleon-matter coupling constant
and Mp, = 1/1/82Gy = 2.435 x 10?7 eV is the reduced
Planck mass and Gy is the gravitational coupling [38].

For the derivation of the required effective low-energy
potential we start with the analysis of the Dirac equation
for fermions with mass m, coupled to the chameleon
field in the spacetime with torsion and the metric ds? =
Gy (x)dx*dx" (the Jordan-frame metric). We take the Dirac-
fermion action in the following form [39] (see also
Ref. [15]):

S, = [ /(15 0P D) - mp () ).

where é’/{ (x) and y* are the vierbein fields, mapping the

curved spacetime onto the Minkowski spacetime [39] (see
also Refs. [11,15]), and the Dirac matrices in the Minkowski
spacetime [40], respectively. The first term in the brackets

of Eq. (1) takes the form é’{(x)lp(x)ngﬂq/(x):
& (x) (@ (xX)y* Dy (x) = (F(x)D,)r'w(x)  [39],  where
D,y(x) and (p(x)D,) are the covariant derivatives
defined by [11,15]

L, (x)y(x),
7O (x)°. (2)

Dy (x) = O, (x) =
(#(x)D,) = 0, (x) =

The spin affine connection fﬂ (x) is given by [15]
Fy(x) = 3@,35()0™. (3)

where 6®? = (i/2)(y*y? — y#y*) are the Dirac matrices in
the Minkowski spacetime [40] and the spin connection
@,4(%) is related to the vierbein fields é’/{ (x) and the affine

connection I, (x) = {i:} + /~Caﬂ,,(x) as follows [15]:

&)M&ﬁ(x) = —124(0,80 (x

where {% are the Christoffel symbols [31]

0y, a9 a9

a 7} I‘ Av 4

=— - 5
("l =57 ( o " G)
and K%, (x) = =3(T%,(x) = T,° (x) = T,%,(x)) is the
contorsion tensor, expressed in terms of the torsion field
T%,,(x) = 3% (x)T . (x) [15]. The torsion field T{W( X)

can be represented in the following irreducible form [14]
(see also Ref. [15]):
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T o) = 5 G0 (D2, 3) = G (DE, (1)
1

3 oual B W)+ M), ()
where the 4-vector &, (x) and axial 4-vector B%(x) fields,

possessing four independent components each, are defined
by

; - . 1. -

gu(x) =g* (X)Ta/w(x) Ba(x) = ESGJ”U(X)TUW()C).
(7)

Here &,,,(X) = /=0(X)€pu, and &% (x) = e*/

—g(x) are covariant Levi-Civita tensors in the curved
spacetime with the Jordan metric g, (x) and the definition
€"12 = —¢y13 = +1 [31]. For the derivation of the
axial-vector field B%(x) in terms of the torsion tensor
field ’TUW( x) we have used the relation €**e,, ;=
=657 [40].

The residual 16 independent components of the
torsion field 7. suw(Xx) can be attributed to the tensor field
/\~/laﬂ,,(x), which obeys the constraints §"”(x)./\~/laﬂ,,(x) =
X () M gy, (x) = 0 [14].

We have carried out the derivation of the Dirac
equation in the curved spacetime with the metric tensor
G (x) and torsion in the Appendix of Ref. [15]. The
result is

where we have denoted @,55(x) =

oy (x) =

®,50(x) and used €
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where [o““}, y’i] = ¢ty — yhoth = 2i(17/}’1y& - nzay/}) [15].
The Dirac equation (8) agrees well with that derived
by Kostelecky [see Eq. (18) of Ref. [39]]. The vierbein
fields e%(x) and &/(x) in the Jordan frame are related to
the vierbein fields e?(x) and €/ (x) in the Einstein frame

by [11]

eu(x) = f(x)ei(x),  &lx) = e (x)/f(x).  (9)
The Dirac equation (8) in its standard form reads
i%: Hy (1, 7). (10)

where y(z,7) is the Dirac wave function of the fermion
with mass m. The Hamilton operator H in its nonperturba-
tive form is given by [15]

H = By m — (02 (0)iry) o~ B0z (i
B T () (30 + 8,0 () )
(1)

where the vierbein field Eg(x) is defined by Eg(x):
&0(x)/ (1-80(x)&) (x)) =2 (x) / (1 =& (x)&)(x)) =1/ (x).
The definition for the vierbein field EJ(x) follows from
the relations & (x)&,(x) =&, and & (x)é%(x) =&.. In
addition we have used that {6%’, y*} = 6%y + y'6?F =
—26*%Py,y5 [15] and y° = iy%'y% [40]. For the deri-
vation of the effective low-energy potential it is convenient
to transcribe the Hamilton operator (11) into the form

(12)

Zik0 — _¢ik? [40]. Tt is well known [13] that the

Hamilton operator (12) is not Hermitian. This is because of the factor \/—g in the definition of the four-dimensional

covariant volume element d*x

—g in the curved spacetime. In order to deal with the Hermitian Hamilton operator we have

to make the following transformation of the fermion wave function and the Hamilton operator [13]:

~ (V) ™ ()

(13)
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We would like to note that the last term in the Hamilton operator H' acts on the fermion wave function as a multiplication
operator and does not differentiate it with respect to time. This means that we do not need to add in the definition of the
Hamilton operator H' a time derivative operator i0/0t [41-43]. The Dirac equation for the wave function y/(#, r) retains its
standard form

Oy (1. 7)
: ot

= Hy/(1,7), (14)

where the Hermitian Hamilton operator H' is given by

' = B0y m 4+ S0 (T (024(0) 5 0022 7P + 3 1) — e (/G 0)28(0)

Vo

- 70 2~j 1 9 =730
B E) s (VIR

4 BT (02 (3) + 3y (PP )ir ) = 1 (BB ()T (15)

Using the relation [see Eq. (A-9) of Ref. [15]]

317 (V) = =5 1T (0034(0) = 0y (WP =i (V) (16)

we transcribe the Hamilton operator (15) into the form

5 (B0 (0)(T 0y (0)5 () + 5 (0); ()i = 30,51 () EQ ()5 (). (17)

According to the Foldy-Wouthuysen classification [44], the ~ where W(z,7) is the large component of the Dirac wave
operators in the first two lines of Eq. (17) are even, whereas function of slow fermions with mass m and ® (7, 7, 3) 18
all other operators are odd. For a derivation of a low-energy  the effective low-energy potential for slow fermions,
effective Hamilton operator of slow fermions all odd  coupled to gravitational, chameleon and torsion fields,
operators should be removed by some unitary transforma- and 6 are the 2 x?2 Pauli matrices [40]. The exact
tions [44]. Skipping standard intermediate Foldy-Wouthuy-  expression of the potential ® (¢, 7, 5), calculated to order

sen calculations, which are given in the Appendix, we O(1/m), is given by Eq. (A15) of the Appendix.
arrive at the Schrodinger-Pauli equation

III. CONCLUSIVE DISCUSSION

iwz <_LA + Do (2,7 3)) U(r,7), (18) We have analyzed the low-energy approximation of
o1 2m the Dirac equation for fermions with mass m in the
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Einstein-Cartan gravity with torsion and chameleon fields.
Using the Foldy-Wouthuysen transformations we have
derived the most general low-energy potential to order
1/m for slow Dirac fermions, coupled to gravitational,
torsion and chameleon fields. The aim of the derivation of
such an effective low-energy potential is addressed to the

investigation of spacetimes in which torsion vector £ and
tensor M ., components, coupled minimally to slow Dirac
fermions, can be in principle observable. As has been
shown in Ref. [15] for metric tensors, yielding vanishing
nondiagonal time-space (space-time) components of the
vierbein fields, in the perturbative regime for gravitational,
torsion and chameleon fields only torsion axial-vector
components survive in the low-energy approximation of
the minimal torsion-fermion couplings.

In the Appendix for the derivation of the effective low-
energy potential . (7,7,6) [see Eq. (A15)] we have

introduced the operators A, B, c’, D;:, F % G]-, K and

L/, which are defined in Eq. (A2). In the approximation
[15] applied to our approach these operators behave as
follows:

A=1+0(g9.4). B=0.
.1, j j
C"’:ZB"”+0(9,¢)’ D; =5 +0(g.9).

1 .
K=-,K+0(g.4). L=0

F; =0,

(19)

B = %f”(:r]k0+7k01+70,k) and K =

%ejk ‘T 73t are the torsion axial-vector and pseudoscalar

components [15], and O(g, ¢) are the linear-order contri-
butions of gravitational and chameleon fields. The non-
trivial linear-order contributions of the torsion vector and
tensor components can appear only in spacetimes with
nondiagonal metric tensors, yielding nonvanishing non-
diagonal time-space (space-time) components of the vier-
bein fields. It is well known that in the rotating coordinate
system spacetime is described by a nondiagonal metric
tensor [31] with the nonvanishing time-space (space-time)
components gy, (x) proportional to the angular velocity (see
also Refs. [35-37]).

The phase shift induced by a rotational motion of an
optical interferometer was first proposed by Sagnac [45]
and observed by Michelson, Gale, and Pearson [46]. In
spite of the fact that the inertial properties of photons and
neutrons are different, the analogous effect for the phase
shift of slow neutrons was predicted by Page [47] and
measured by Werner et al. [48], Atwood et al. [32] and
Mashhoon [33]. For the measurement of such a phase shift
Atwood et al. [32] and Mashhoon [33] used the rotating
two-crystal neutron interferometer and the neutron inter-
ferometer in the rotating reference frame, respectively.

where

PHYSICAL REVIEW D 92, 125004 (2015)

According to an equivalence between a rotating coordinate
system and a gravitational field or a curved spacetime with
a corresponding metric tensor [31], the experimental setup
of the experiments by Atwood et al. [32] and Mashhoon
[33] should determine metric tensors of curved spacetimes,
created by rotating neutron interferometers in the gravita-
tional field of the Earth.

Following such an equivalence, for the experimental
analysis of fermion-torsion interactions, described by the
effective low-energy potential P.q(z,7,6) given by
Eq. (A15), we have to determine the metric tensor of the
curved spacetime and calculate the vierbein fields, caused
by the experimental setup of possible experiments. We take
the line element in spacetimes, created by rotating devices
in an arbitrary gravitational field, in the most general form,
proposed by Obukhov, Silenko, and Teryaev [37]:

d5> = V2(x)de* + 3, W(x) W2 (x) (dx) — KI (x)d)

x (dx* — K’ (x)dt), (20)
where the functions V?(x) and V~Vj(x) are defined by an
arbitrary gravitational field. In comparison with Obukhov
et al. [37] they are modified by the chameleon field. In turn,

the functions K’(x) are caused by rotations. The compo-
nents of the metric tensor g, (x) are equal to

Goo(x) = V2(x) + 13, Wi (x) WY () K7 () K (),
Go; (x) = = s WH)WE(x0)K? ().
30 (x) = 15, W2 () W2 (). 21)

The vierbein fields &% (x) are defined by the relation [11,15]

G (%) = 022 (X)), (22)

Solving Eq. (22) for goo(x) and g;,(x) we get

&) = \/7206) + (1 = &y, W WE (0 KT (1)K (),
& (x) = —/EWI(x)KI (x),
Dx)=0,  F(x)=Wix), (23)

where ¢ is a parameter, which can be fixed from Eq. (21) for
oj(x). Indeed, using the vierbein fields (23) we obtain

\/_ijWJ ? (x)K

From the comparison of Eq. (24) with Eq. (21) we obtain
& = 1. This gives the vierbein fields, given by Eq. (23),
equal to

“(x). (24)

gO]
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& (x) = =W (x)KI (x),
& (x) = Wi(x). (25)

For the calculation of the vierbein fields &;(x) we use the
relations [11,15]
5?3 = Ez(x)ég(x), & = ei(x)ed(x). (26)

Skipping intermediate calculations we obtain

~0 _ L EO x) =
eﬁ(x) = \7<x)’ ;( ) =0,
& (x) "i’ ((xx)) A =wik. (@)

The vierbein fields in Eq. (25) and Eq. (27) have been
calculated under the assumption that the functions W; (x)
and Wj(x) obey the orthogonality relations

WiW, =5, WixWw, =5,  (28)

which are fulfilled for the Schwarzschild metric in the weak
gravitational field of the Earth approximation [15]. For the
verification of the correctness of the obtained vierbein

fields we construct the metric tensor #*(x). In terms of the
vierbein fields & (x) it is determined by

7 (x) = 1P & ()2 (x). (29)

Using the vierbein fields (27) for the components of the
metric tensor ¢*/(x) we obtain the following expressions:

Z00(+) — 1 Y (x _Iff(x)
PO PO
5 =& (‘;g)(x) + W) WE(x). (30)

One may show that the metric tensors g,,(x) and g (x),
given by Eq. (21) and Eq. (30), respectively, obey the
relation §#%*(x)g, (x) = &. Then, because of é?(x) =
e;.(x) =0 for the vierbein fields (25) and (27) we

get Ef(x) = &) (x).

For the vierbein fields (25) and (27) torsion-fermion
interactions are yielded by the operators C;, G; and K only.
Since the contributions of the torsion-fermion interactions,
caused by the operators G; and K, are suppressed by a
factor of 1/m, below we analyze the contributions of the
torsion-fermion interactions, caused by the operator ct ,
which appear to order O(1) in the large fermion mass

PHYSICAL REVIEW D 92, 125004 (2015)

expansion. We also take into account the contributions of
the operators A, B and L/ in order to derive a complete set
of gravitational, chameleon and torsion interactions with
slow fermions to order O(1) in the large fermion mass
expansion. The analysis of contributions of the operators
G; and K goes beyond the scope of this paper. We are
planning to perform such an analysis in our forthcoming
publication.

For the vierbein fields (25) and (27) the operators (A2)
are given by

A=),
B =~ el = (VGej()
Lo e 10 S
+3iEWIE) == (VIE).
C* = L3053 (IEx) + g3 ()
@30(x)2 (x))eT 7,

L = —&(x)e)(x). (31)

For the analysis of interactions of slow Dirac fermions
with gravitational, chameleon and torsion fields, caused by
nondiagonal spacetime components é'é (x) of the vierbein
fields we assume a motion of Dirac fermions with mass m
in the curved spacetime with the Schwarzschild metric,
taken in the weak gravitational field of the Earth approxi-
mation and modified by the contributions of the chameleon
field and rotation. The line element of such a spacetime is
given by

ds? = (14 2U,)d +2(1 = 2U_)K - dFdt
—(1-2U_)d, (32)

where we have neglected the contribution of the terms of
order K that is well justified in the terrestrial laboratories
and kept the contributions of the chameleon field to linear
order [35]. The potentials U are equal to [15]

125004-6
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p

U.= UEiM—Pl('b(x)’ (33)

where Ug = g - 7 is the Newtonian gravitational potential
of the Earth and g is the gravitational acceleration [15]. To
linear-order contributions of the gravitational and chame-
leon fields the vierbein fields (25) and (27) read

B =1+U.. &) =-1-U)K ()

D) =0, ) =(1-U.)5,

Ax)=1-U,,  &x)=+1-U,)K(x),
H)=0.  ex)=(01+ U_)(s}ﬁ. (34)

The diagonal components of the vierbein fields agree well
with those, calculated in Ref. [15]. In such a spacetime the

operators A, B, C? and L' are equal to

A=1+4+U,,
1 -
B:—EidivK,
Cct = 1 1}2’ IBf 1fijT lfjkT K¢
__Z(Ot ) T8 e KT ook 167 jka
1 AV g 1 ¢ lf‘k
:_Z(rOtK) +ZB +6]CK +Z€]KJ'M0()]<
1 .
+Z€fjijkaKa9
L = —K/, (35)

where in the linear order approximation /j'a/w =T s
Bf = %ijk(Tjko + TkOj + TOjk) and K= %eabcTabc.
Then, we have used Eq. (6) and v/—g=1+ U, —3U_,
calculated to linear order of the gravitational and chameleon
fields and at the neglect of the contribution of order 0(7( 2).
For the calculation of the operators in Eq. (35) we have not
distinguished indices in the Minkowski and curved space-
time. This is correct, since the operators (35) are defined in
the perturbative regime for gravitational, chameleon and
torsion fields and describe corresponding interactions of
slow Dirac fermions in the Minkowski spacetime.

For curved spacetimes with the metric (32) the contri-
bution of the operators (35) to the effective low-energy
potential @i (7, 7, 5), calculated to order O(1) in the large
fermion mass expansion, is given by

(I)eff(t’ ;7 8-)

—

1 - - -
:mU+—§idiVK—K-iV—|— 6-rotK —

¢-B

ENYI

1
4
1 - = 1 ¢k 1 Zjk a
—EICG'K—f—ZGfG Kj/\/lo()k-l-zo'ﬁ MjkaK’

(36)

PHYSICAL REVIEW D 92, 125004 (2015)

where ¢ =

€123 = +1 [40]. It is important to note that torsion vector £
components do not couple to slow Dirac fermions to order
O(1) in the large fermion mass expansion and in the linear
order approximation of the torsion field.

For rotating coordinate systems with an angular velocity
@ the vector functions K’ are equal to K/ = —(@ x r)/

[31,35]. This gives divK = 0 and rotK = —2@. As a resul,
the effective low-energy potential (36) takes the form

(—6); and we have used that € ;.0 = €, With

- -

(I)eff(t’ T, 0)

-

- I B S I
:mU+—a)-L—a)-S—ZG-B—I—EICm(a)Xr)

—

-

~ (BB (M -F)~(6-H(M- &)

1 .
12 b
- Zajef M€ wpx,,

N

(37)

where (M)k = —Mgo- The first term mU_ in Eq. (36)
corresponds to the Newtonian gravitational potential of the
Earth g - 7, corrected by the contribution of the chameleon

field [8,9]; the second term —@® - Z where Z =—7xiVis
the orbital momentum operator of slow fermions, and the

third term —& - S, where S = 15 is the spin operator of slow
fermions, agree well with the results, obtained by Hehl and

Ni [35]. The interactions —@ - L and —@ - S were analyzed
in the experiments by Werner, Staudenmann, and Colella
[48] and by Mashhoon [33]. The fourth term, describing the
torsion-spin-matter interaction of the torsion axial-vector
components, was derived by Ladmmerzahl [12] and
Obukhov, Silenko, and Teryaev [13] (see also Ref. [15]).
The other terms in the effective low-energy potential (36)
are new. The fifth term (1/6)Ko - (@ x 7) is a new low-
energy interaction of the torsion pseudoscalar component /C
with slow Dirac fermions. In turn, the last two terms in
Eq. (36) describe new low-energy interactions of torsion
tensor Mgy, and M, components with slow Dirac
fermions, caused by minimal torsion-fermion couplings
without phenomenological coupling constants. According
to estimates by Kostelecky et al. [14], the constant torsion
tensor components Moy, and M j,, multiplied by a

phenomenological coupling constant fgs)’ are restricted

by |§g5)/\/100k| < 107?7 and \fgS)/\/ljka\ < 10726, respec-
tively. Recently the nonminimal torsion-matter couplings
have been also discussed by Puetzfeld and Obukhov [49].

As regards torsion vector components Z‘, we have found
that slow Dirac fermions do not couple to them to order
O(1) in the large fermion mass expansion and to linear
order of the torsion field approximation.

The upper bound of the linear superposition of the
constant torsion vector and axial-vector components
|¢] <9.1 x 1073 GeV, measured by Lehnert, Snow and

125004-7



A.N. IVANOV and M. WELLENZOHN

Yan [16] by means of an investigation of a spin rotation of
cold neutrons in liquid *He, is larger by a factor of 10°
compared with the estimate |¢| < 10727 GeV, obtained
in Ref. [15].

Thus, we have shown that to linear order of the torsion
field approximation in spacetimes of rotating coordinate
systems the contributions of only torsion pseudoscalar C
and tensor Mgy and M., components, caused by
minimal torsion-fermion couplings, appear to order O(1)
in the large fermion mass expansion. The certain steps in
the realization of curved spacetimes in terrestrial labora-
tories by using rotating devices (neutron interferometers)
were made by Atwood et al. [32] and Mashhoon [33].

The measurements of the transition frequencies between
quantum gravitational states of ultracold neutrons in the
gBounce experiments [1-6] as functions of an angular
velocity @ of a rotating mirror should provide a new level of
highly precise probes of the properties of the Einstein-
Cartan gravity, dark energy and the evolution of the
Universe. Of course, the measurements of new gravita-
tional, chameleon and torsion interactions in Eq. (37) as
well as other interactions in the effective low-energy
potential (A15) can be carried out by using rotating neutron
interferometers [7,34].

Now we would like to discuss briefly the Foldy—
Wouthuysen method [44], which we use in this paper
for the derivation of the effective low-energy potential for
slow Dirac fermions, coupled to gravitational, chameleon
and torsion fields. Mainly this discussion concerns the
uniqueness and accuracy of the Foldy-Wouthuysen repre-
sentation of the Dirac Hamilton operator, obtained by the
Foldy-Wouthuysen transformation. It is well known that
the Foldy-Wouthuysen method of a transformation of a
Dirac Hamilton operator to a form, containing only even
(diagonal) operators (as regards the definition of odd and
even operators the reader might consult Ref. [44] or look up
in the Appendix to this paper), is not unique and there are
some other methods of transformation of a Dirac Hamilton
operator to a diagonal form. One can find a very nice survey
of possible methods of transformation of a Dirac Hamilton
operator for fermions with mass m to a diagonal form,
containing only even operators, in the paper by de Vries
[50]. The Foldy-Wouthuysen method, removing odd oper-
ators from a Dirac Hamilton operator for fermions with
mass m by Foldy-Wouthuysen unitary transformations,
allows one to reduce a Dirac Hamilton operator to a
nonrelativistic form in the approximation of a large fermion
mass expansion by a set of unitary transformations or by
the iterative Foldy-Wouthuysen method. The obtained
nonrelativistic Hamilton operator is given by an infinite
series of even operators in powers of 1/m, which does not
seem to give hope for a closed-form operator. A problem of
a closed form of a transformed Dirac Hamilton operator,
expressed in terms of only even operators, was investigated
by Eriksen [51]. Eriksen showed that the unitary

PHYSICAL REVIEW D 92, 125004 (2015)

transformation e = \/y°H/vH?, where y° and H are

the Dirac matrix and a Dirac Hamilton operator, allows
one to transform a Dirac Hamilton operator H to a square
root of an even operator. However, Eriksen’s unitary

operator e’ = 1/y’H/vH?, leading to a closed form of
a transformed Dirac Hamilton operators, suffers from an

ambiguous definition. In order to define the operator 'S =

y°"H/VH? unambiguously one has to assume that the

square root of a unit operator is a unit operator. For a recent
discussion of a square root operator definition and analyses
of the Dirac Hamilton operators by means of the Eriksen
method we direct the reader to the papers by Silenko [52],
Neznamov and Silenko [41] and Silenko [42,43,53].

According to Eriksen [51], the unitary operator e =

y"H/VH?, providing an exact diagonalization of the
Dirac Hamilton operator H, can be defined by e’ =

V72 = (1 +7°2)//2 + y°2 + 20, where A =H/VH2.
Another problem of the Foldy-Wouthuysen method con-
cerns the accuracy of the Foldy-Wouthuysen representation
of a Dirac Hamilton operator in comparison with a large
fermion mass expansion of an exact form of a transformed
Dirac Hamilton operator. For the first time such a problem
was discussed by Eriksen and Kolsrud [54]. Recently this
problem has been investigated by Neznamov and Silenko
[41] and Silenko [42,43,53]. According to Ref. [54] and
Refs. [41-43,53], the Foldy-Wouthuysen representation of
a Dirac Hamilton operator, obtained by a set of unitary
transformations, cannot coincide with a large fermion mass
expansion of an exact transformed Dirac Hamilton oper-
ator, diagonalized by means of only one unitary trans-
formation (e.g. the Eriksen transformation). As has been
pointed out by Neznamov and Silenko [41] and Silenko
[42,43,53], such a disagreement can be explained by the
noncommutativity of Foldy-Wouthuysen unitary transfor-
mations in the iterative Foldy-Wouthuysen method. For
example, in our case we have diagonalized the Dirac
Hamilton operator (17) by three unitary transformations
of the Dirac wave functions €51, 52 and ¢S (see the
Appendix), respectively. A resulting unitary transformation
is equal to e’ = e’53¢/52¢751, According to Refs. [41-43,53],
a coincidence of our result for the effective low-energy
potential (A15) with a large fermion mass expansion of an
exact diagonalized Hamilton operator, obtained by means of
only one unitary transformation (e.g. by the Eriksen trans-
formation), can be expected only for the validity of the
relation e’S3¢i$2 151 = £i(53+5:+51) which demands the com-
mutativity of the operators [S;,S;] =0 for i #j=1,2,3
[41-43,53]. Since the unitary operators do not commute
[Si,S;]#0 for i #j=1, 2, 3 (see the Appendix), the
relation /53 eiS2¢51 = ¢/(53+5:451) ig not valid and one may
expect some deviations of the effective low-energy potential
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(A15) from that derived by a large fermion mass expansion
of an exact diagonalized Dirac Hamilton operator. However,
one may show that any deviations can appear only to order
O(1/m?) [53]. The latter can be justified by the observation
that [S,, S;] = O(1/m?) and [S3, ;] = O(1/m?) for j = 1,
2. Hence, to order O(1/m), which we have kept for the
derivation of the effective low-energy potential ®; in
Eq. (AlS5), these two fermion mass expansions should
coincide. A method of the calculation of the corrections
to the Foldy-Wouthuysen representation of a Dirac Hamilton
operator has been discussed in detail by Silenko [53]. For
example, suppose that two Foldy-Wouthuysen unitary trans-
formations with operators ¢! and e’52, performed one after
another, diagonalize a Dirac Hamilton operator, i.e.
H — Hgy, where Hpy is a Dirac Hamilton operator in
the Foldy-Wouthuysen representation. According to Silenko
[53], an additional Foldy-Wouthuysen unitary transforma-
tion Ugor = exp(—73[S1, S5]) should allow one to cancel an
error of the iterative Foldy-Wouthuysen method in the
leading order. Such a correction is valid if the commutators
[S1,[S1.S,]] and [S,,[Sy,S,]] and commutators of higher
orders can be neglected with respect to the commutator
[S1,S,]. Since in our case this constraint is fulfilled, the
|

PHYSICAL REVIEW D 92, 125004 (2015)

correction to the effective low-energy potential (A15) can
be calculated by means of the unitary transformation
Ucorr = exp(—%[S1. S]). However, in our case [S,S,] =
O(1/m?) and the effective low-energy potential (A15) is
calculated to order O(1/m). This might imply that the
effective low-energy potential (A15) should in principle
coincide with a large fermion mass expansion to order
O(1/m) of an exact diagonalized Dirac Hamilton operator
by, for example, the Eriksen method [41-43,51,53].
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APPENDIX: DERIVATION OF THE EFFECTIVE
LOW-ENERGY POTENTIAL & (t,r,6) IN EQ. (18)

For the derivation of the effective low-energy potential
® (1, 7,06) for slow Dirac fermions with mass m in the
Schrodinger—Pauli equation (18) we define the Hamilton
operator (17) as follows:

H = Ay'm + B + C’S; + Dgiyﬁyf% + F;iyéyfa +Giiy%y + Ky® + Lz (A1)
where we have denoted

A= Ef(x).

B= 3B g (VT0) + 3 (0 P20 50 (/T30
C = L E(0) (i3 (0P4(x) + 55 ()84T
D] = —Ej(x)&l(x),

Fy = ~E} (),
Gy = 5 BT ()24(0) + 55 )10 ) = 3 (ER())222(0) (7, (0)24(3) + 0 ()2 ()P
3 (B2 (V/98100) =5 (B0 P800 = 515 (/9749
K =~ E ()i 54 (02407
LI = —Ej(x)&l(x). (A2)

For the elimination of the odd operators we perform the Foldy-Wouthuysen unitary transformation of the wave function

w'(x) = e 1y (x) and the Hamilton operator [44]

0S5,
ot

H, = etiSiH e — jeiS: Qe—is, -y
1

2 Ot (A3)

10s,] 2 108
[SI,H’ a‘}ﬁz{sl,[sl,H/——@Hw..

3 Ot
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The time derivative appears because of a time dependence of the chameleon and torsion fields. Then, following Ref. [44] we

take the operator S; in the form

i o, 0
Slz—ﬂy <D ir’y aJJrFW y’a—+Gn/ 7/’+K}')

The time derivative of S; and the commutators in Eq. (A3) are equal to

D; }i+]8 }g+]a
A ) 0 T 2mon ot 2mor

ot 2mot
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For the calculation of the Hamilton operator H; = H; cyen + H; 0qq We have neglected the contributions of order O(1/m?).
In order to remove the odd operators we perform the second unitary transformation of the wave function y(x) =
ey, (x) and the Hamilton operator H;:
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where the operator S, is equal to S, = —(i/2mA)y 0H, 4. Neglecting the contributions of order O(1/m?) we arrive at the
Hamilton operator Hy = H, .yen + Hyoqq, Where
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We remove the contribution of the Hamilton operator H,  qq by the third unitary transformation of the wave function
w>(x) = e”™3y3(x) and the Hamilton operator H,:

_ . 5 0 0S5 198;] i 108
Hy = e S Hye ™ — e — e = H, - -2 H 3 Hy—~—2|| +.... (AL2
3=e 2€ ie™ o e 275, +l[5% 273 (%} [53, [S% 273 T (A12)

where the operator S5 is given by S3 = —(i/2mA)y’H, oqqa = O(1/m?). Neglecting the contributions of order O(1/m?) the
low-energy approximation of the Dirac Hamilton operator for slow fermions is equal to H; = Hj¢yen, Which we denote
H; = H,.yen = Hpw- Thus, the Dirac equation in the low-energy approximation takes the form

; Oy3(x)

ot = HFWW3(X)’ (A13)

where y3(x) = e™53e™52¢151y/(x). Following the standard procedure [44] and multiplying both sides of Eq. (A13) by the
matrix (1 4 7°)/2 we arrive at the Schrodinger-Pauli equation
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where U(1,7) = 12}' w3(x) is the large component of the slow Dirac fermion wave function and @ (¢, 7, 6) is the effective
low-energy potential
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where 6, = (—6), and 6, = —c®. The effective potential
(A15) is the most general effective low-energy potential
for slow Dirac fermions in the Einstein-Cartan gravity
with torsion and chameleon fields, calculated to order
O(1/m).

We would like to note that the effective low-energy
potential (A15) is derived by using the Foldy-Wouthuysen
method or the Foldy-Wouthuysen unitary transformations
of wave functions of Dirac fermions with mass m, leading
to a nonrelativistic Hamilton operator, expressed in terms of
even operators only in the form of the large fermion mass
expansion in powers of 1/m. It is known that such a method
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|
of the reduction of the Dirac Hamilton operator to a form,
containing only even operators, is not unique and there are
some other methods of unitary transformations such as the
Eriksen method [51] and others, which were well discussed
by de Vries [50]. In Sec. III we give a short comparison
of the Foldy-Wouthuysen with the Eriksen one only, since
other methods of unitary transformations of a Dirac
Hamilton operator to a form, containing only even oper-
ators, seem to be cumbersome when compared to the
Eriksen method [50]. We discuss also the accuracy of the
Foldy-Wouthuysen representation of a Dirac Hamilton
operator.
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