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The vertex structure of QCD fixed in the maximal Abelian gauge (MAG) and Curci-Ferrari gauge is
analyzed at two loops at the fully symmetric point for the 3-point functions corresponding to the three
momentum subtraction (MOM) renormalization schemes. Consequently, the three-loop renormalization
group functions are determined for each of these three schemes in each gauge using properties of the
renormalization group equation.
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I. INTRODUCTION

Four-dimensional gauge theories are of interest due to
their description of the elementary quanta of nature. For
instance, quantum chromodynamics (QCD) underpins our
theoretical understanding of the strong nuclear force where
the basic fields are quarks and gluons. These behave as
effectively free particles but only in the high-energy limit
due to asymptotic freedom, [1,2]. At low energies quarks
and gluons are actually confined and do not exist in nature
as free particles. The reason why this is the case is one of
the major problems in quantum field theory. Various ideas
as to the specific confinement mechanism have been
proposed. One which is popular is the dual superconductor
ideas of [3–6]. There the color electric flux is restricted by
the Meissner effect of superconductivity. The role of the
Cooper pair condensation of superconductivity is played by
the condensation of color magnetic monopoles in the non-
Abelian gauge theory case. While this picture parallels
superconductivity, it is difficult to access the underlying
dynamics practically. One approach is to use an Abelian
projection [3,4,6,7] which appears to give insight into low-
energy properties of color confinement. For a non-Abelian
gauge theory the maximal Abelian sector derives from the
centralizer of the color group. Clearly, as such phenomena
lie deep within the infrared nonperturbative regime, they
can only theoretically be examined by lattice regularized
gauge theory or Schwinger-Dyson techniques. Underlying
both approaches is the need to isolate the Abelian degrees
of freedom to effect a study of this monopole model.
Linked to this in a Lagrangian analysis is the need to fix the
gauge. Ordinarily one computes in linear covariant gauges
such as the Landau gauge. However, this does not have the
feature of readily distinguishing the color group centralizer
which is related to the Abelian projection. A more
appropriate gauge is the maximal Abelian gauge (MAG)
introduced in [6,8,9]. There the gluons in the sectors
delineated by whether their associated generators totally
commute among themselves or not are gauge fixed

differently. For instance, the diagonal gluons, correspond-
ing to the subgroup of generators which totally commute,
are fixed in the Landau gauge but the remaining off-
diagonal gluons are gauge fixed by a different fixing
criterion [6,8,9]. Ultimately, a covariant but nonlinear
gauge fixing emerges but in a way which produces a
renormalizable Lagrangian. The renormalizability has been
established in [10–15]. Properties of the MAG have been
studied in various contexts. An interesting recent lattice
study, for instance, was in [16] where the effect of the
diagonal gluons on the interquark static potential was
examined. In particular within the theoretical setup it
was possible to identify the contributions made by the
diagonal gluons to the potential. Excluding these it was
demonstrated [16] that the linearly rising potential col-
lapsed indicating that the Abelian sector was effectively
responsible for quark confinement.
As such infrared lattice studies are important, from a

more theoretical point of view the Lagrangian field theory
focus is concerned with the 2- and 3-point functions of
QCD. The low-energy behavior of the former Green’s
function diverges from the canonical structure of a funda-
mental particle [17–27], while the latter are studied to assist
with building models of hadrons for instance. Therefore
Schwinger-Dyson studies have centered on the properties
of these Green’s functions and particularly in the MAG
[28–30]. Lattice studies in the MAG can be found, for
instance, in [31–36]. Related to this is the need to
ultimately overlap with conventional perturbative analyses.
Lattice measurements of vertex functions and Schwinger-
Dyson studies have to consistently match onto known
perturbation theory. This was partly the motivation to a
previous study, [37], where the structure of the 3-point
vertices of the MAG fixed QCD Lagrangian were evaluated
at one loop at the completely symmetric point. One reason
for examining these functions at this point is that this
momentum configuration is nonexceptional. So there are
no infrared issues unlike the case where the external
momentum of one external leg is nullified. Although the
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latter is a much more widely studied configuration. As a
corollary of the one-loop analysis of [37] the momentum
subtraction (MOM) scheme renormalization group func-
tions of the MAGwere derived at two loops from properties
of the renormalization group equation. In this context as
well as the need for previous matching of vertex functions
for lattice and Schwinger-Dyson techniques it is the
purpose of this article to extend the results of [37] to the
next loop order. By this we mean the full structure of
the two-loop vertex functions corresponding to the MOM
schemes, introduced by Celmaster and Gonsalves in
[38,39], and hence deduce the three-loop renormalization
group functions. A separate but parallel motivation con-
cerns the relation of the MAG to another nonlinear
covariant gauge fixing. This is the Curci-Ferrari gauge
which involves a quartic ghost interaction unlike the
canonical linear covariant gauge. This gauge fixing was
introduced in [40] in part to study massive vector bosons
without symmetry breaking. A mass term for the gluons
and ghosts could be introduced in a Becchi-Rouet-Stora-
Tyutin (BRST) invariant way. In relation to the MAG the
Curci-Ferrari gauge fixed Lagrangian emerges in a specific
limit. This is the case when the diagonal fields are formally
removed from the MAG Lagrangian. Aside from the
diagonal gluons this includes the associated diagonal
ghosts which together with the off-diagonal ghosts derive
from the Faddeev-Popov technique, [8–15]. Therefore, the
emerging MOM renormalization group functions in the
same limit must agree precisely with those of the Curci-
Ferrari gauge. These are also computed directly here as an
important independent check on the MAG results. One
interesting feature of the MAG, which may have bearing on
the infrared properties alluded to already, is that the
diagonal gluons appear to play a similar role to the
background gluons of the background field gauge of
[41–46]. This is because the anomalous dimension of
the diagonal gluon is precisely proportional to the β
function. This has been established to all orders in
perturbation theory from the Slavnov-Taylor identities
constructed during the algebraic renormalization proof of
the renormalizability of the MAG, [15].
The paper is organized as follows. In the two subsequent

sections we introduce and review all the relevant renorm-
alization background and computation methods required
for our study of MAG and Curci-Ferrari gauges in QCD at
the fully symmetric point of the 3-point vertices. The
results of the application of this formalism are given in
Sec. IV. Finally, conclusions are presented in Sec. V.

II. BACKGROUND

In this section we record the relevant aspects of the MAG
and its relation to the Curci-Ferrari gauge for renormaliza-
tion at the symmetric point in the various MOM renorm-
alization schemes of [38,39] including the structure of the
gauge fixed QCD Lagrangian in the MAG. The main

ingredient for the MAG is that the diagonal gluons are
treated differently from the off-diagonal ones. Therefore, in
keeping with other work, [15], we write the group valued
gluon field Aμ as

Aμ ≡ AA
μTA ¼ Aa

μTa þ Ai
μTi; ð2:1Þ

where TA are the color group generators. On notation we
will use upper case roman letters, such as A, B,C andD, for
adjoint color indices but lower case where the associated
field is either in the center or is off-diagonal. These are
distinguished by using a, b, c and so on for the off-diagonal
fields except that i, j, k and l are reserved exclusively and
unambiguously for diagonal indices. Therefore, each set of
indices run over different ranges which are 1 ≤ A ≤ NA,
1 ≤ a ≤ No

A, and 1 ≤ i ≤ Nd
A. (We use the notation of [47]

throughout.) Here NA is the dimension of the adjoint
representation of the color group, Nd

A is the dimension
of the diagonal subgroup with No

A being the dimension of
the off-diagonal sector. Clearly,

Nd
A þ No

A ¼ NA: ð2:2Þ

For reference, if the color group is SUðNcÞ then Nd
A ¼

ðNc − 1Þ and No
A ¼ NcðNc − 1Þ. With this splitting of the

gluons into separate sectors one has to reconsider the
canonical group theory required to perform the loop
computations. The necessary relations can be established
from the usual group identities such as the definition of the
group Casimirs and Jacobi identities. For instance,

TrðTaTbÞ ¼ TFδ
ab; TrðTaTiÞ ¼ 0;

TrðTiTjÞ ¼ TFδ
ij ð2:3Þ

follow from

TrðTATBÞ ¼ TFδ
AB: ð2:4Þ

Equally, by allowing the free indices in the Lie algebra,

½TA; TB� ¼ ifABCTC; ð2:5Þ
to lie in the two sectors separately, it is straightforward to
deduce

fijk ¼ 0; fijc ¼ 0; ð2:6Þ
whence

½Ta; Tj� ¼ ifajcTc: ð2:7Þ
Using these basic observations and the Casimir definitions,

fACDfBCD ¼ CAδ
AB; TATA ¼ CFI; ð2:8Þ

where the subscript in CA is not a summed index, one can
deduce [47]
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TiTi ¼ TF

NF
Nd

AI; TaTa ¼
�
CF −

TF

NF
Nd

A

�
I

CAδ
ab ¼ facdfbcd þ 2facjfbcj; CAδ

ij ¼ ficdfjcd;

fabcfabc ¼ ½No
A − 2Nd

A�CA

fiabfiab ¼ Nd
ACA; facjfbcj ¼ Nd

A

No
A
CAδ

ab;

facdfbcd ¼ ½No
A − 2Nd

A�
No

A
CAδ

ab: ð2:9Þ

In addition, the Jacobi identity

0 ¼ fABEfCDE þ fBCEfADE þ fCAEfBDE ð2:10Þ
implies

fapqfbprfcqr ¼ ½No
A − 3Nd

A�
2No

A
CAfabc;

fapqfbpifcqi ¼ Nd
A

2No
A
CAfabc

fipqfbprfcqr ¼ ½No
A − 2Nd

A�
2No

A
CAfibc;

fipqfbpjfcqj ¼ Nd
A

No
A
CAfibc; ð2:11Þ

where we note that here we briefly use p, q and r to denote
off-diagonal indices. All these relations were required for
the evaluation of the two-loop vertex functions.
As we will be considering two gauges in this article, we

note that the general form of the QCD Lagrangian is

L ¼ −
1

4
GA

μνGAμν þ iψ̄Dψ þ Lgf ; ð2:12Þ

with ψ representing Nf flavors of massless quarks and

Lgf ¼ −
1

2α
F½Aa

μ�2 −
1

2ᾱ
F½Ai

μ�2 þ c̄A
�
δF½AUμ�

δU

�
AB
cB;

ð2:13Þ

where F½Aμ� is the functional of the gauge field whose
explicit forms define the different gauges, AUμ is the gauge
field under a general gauge transformationU and cA and c̄A

are the Faddeev-Popov ghosts. In our case we have

F½AA
μ � ¼

(
ðDμAμÞa þ 1

2
αba − 1

2
αgfabic̄bci − 1

4
αgfabcc̄bcc if A ¼ a

1
ᾱ ∂μAi

μ if A ¼ i
ð2:14Þ

for the MAG where the covariant derivative Dab
μ acting on

the off-diagonal sector is, for instance,

ðDμAνÞa ¼ ∂μAa
ν − gfabiAi

μAb
ν ;

ðDμcÞa ¼ ∂μca − gfabiAi
μcb; ð2:15Þ

and α is the gauge parameter for the off-diagonal sector. It is
not to be confused with a similar parameter used in the
canonical linear covariant gauge fixing. The other gauge
fixing parameter, ᾱ, is the parameter associated with the
diagonal sector. It is included here for completeness but
throughout it will be set to zero [10–15] so that the diagonal
gluons are in the Landau gauge. In addition ci and ca are
the Faddeev-Popov ghosts associated with the diagonal and
off-diagonal sectors and g is the coupling constant. For the
Curci-Ferrari gauge,

F½AA
μ � ¼ ∂μAA

μ þ α

2
bA −

α

4
gfABCc̄BcC; ð2:16Þ

with ᾱ ¼ α and bA is the Nakanishi-Lautrup field for the
respective gauges, [15,40]. Although we have already

eliminated bi in the MAG as the diagonal sector has a
simple Abelian structure. From these functionals it is
apparent that in the limit where the diagonal fields in
the MAG are nullified then the Curci-Ferrari gauge fixing
condition emerges if one identifies the off-diagonal indices
with those of the full color group.
The first functional leads to the Lagrangian [15],

LMAG ¼ −
1

4
Ga

μνGaμν −
1

4
Gi

μνGiμν þ iψ̄Dψ þ LMAG
gf :

ð2:17Þ

The first two terms derive from the square of the field
strength and their sum is gauge invariant. There is no cross
term due to (2.3). We have isolated the gauge fixing term
LMAG
gf . In a linear covariant gauge, the corresponding term

contains the gauge fixing condition and the consequent
ghost Lagrangian. For the MAG the situation is the
same but the actual Lagrangian is more complicated since
[10–15]
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LMAG
gf ¼ −

1

2α
ð∂μAa

μÞ2 −
1

2ᾱ
ð∂μAi

μÞ2 þ c̄A∂μ∂μcA þ g

�
fabCAa

μc̄C∂μcb −
1

α
fabk∂μAa

μAb
νAkν − fabk∂μAa

μcbc̄k

−
1

2
fabc∂μAa

μc̄bcc−2fabkAk
μc̄a∂μc̄b − fabk∂μAk

μc̄bcc
�
þ g2

�
facbdd Aa

μAbμc̄ccd −
1

2α
fakblo Aa

μAbμAk
νAlν

þfadcjo Aa
μAjμc̄ccd−

1

2
fajcdo Aa

μAjμc̄ccd þ fajclo Aa
μAjμc̄ccl þ falcjo Aa

μAjμc̄ccl−fcjdio Ai
μAjμc̄ccd

−
α

4
fabcdd c̄ac̄bcccd −

α

8
fabcdo c̄ac̄bcccd þ α

8
facbdo c̄ac̄bcccdþ α

4
falbcc̄ac̄bcccl

−
α

4
falbco c̄ac̄bcccl þ α

2
fakblo c̄ac̄bckcl

�
ð2:18Þ

after eliminating ba where we have introduced the short-
hand notation

fABCDd ¼ fiABfiCD; fABCDo ¼ feABfeCD ð2:19Þ

and

fABCD ¼ fABCDd þ fABCDo ð2:20Þ

for the quartic interaction terms. Hence, the Jacobi identity
is

fABCD þ fACDB þ fADBC ¼ 0: ð2:21Þ

As noted in [47] the gauge fixed part of the MAG
Lagrangian is generated automatically via a computer
algebra routine from the BRST variation of the defining
functional. This is to ensure that definitions and conven-
tions are correctly implemented without error as well as to
be confident that the resulting Feynman rules are derived
correctly using symbolic manipulation. While the form of
(2.18) is large, we have endeavored to condense the
structure to save space. However, the nature of the MAG
with the split in the color group means that LMAG cannot be
fully reduced to a form which involves only the general
indices A. For the Curci-Ferrari gauge using the second
functional, we have

LCF ¼ −
1

4
GA

μνGAμν þ iψ̄Dψ þ LCF
gf ð2:22Þ

with

LCF
gf ¼ −

1

2α
ð∂μAA

μ Þ2 − c̄Að∂μDμcÞA

−
g
2
fABC∂μAA

μ c̄BcC þ αg2

8
fABCDc̄AcBc̄CcD: ð2:23Þ

While this is a more compact Lagrangian, it is straightfor-
ward to check that it is connected with (2.18) in the
following way. Setting the diagonal gluon and ghost

formally to zero in (2.18) then both Lagrangians are
equivalent with the proviso that the adjoint group indices
A of (2.23) are equated with the off-diagonal ones of (2.18).
In other words if one takes the formal limitNd

A → 0 then the
Curci-Ferrari gauge emerges from (2.18). This property
was noted in [47] for the three-loop MS renormalization
group functions but as indicated above, this is also evident
from the nature of the gauge fixing. We will exploit this
observation later in our computations as a nontrivial check.
Unlike the linear covariant gauge both the MAG and Curci-
Ferrari gauges have quartic ghost interactions but only the
MAG has quartic gluon-ghost interactions.
Next it has been shown that both Lagrangians (2.18) and

(2.23) are renormalizable [10–15,40,48–53]. However,
from an algebraic renormalization analysis the general
structure of the renormalization in the MAG has several
subtleties. If we define the renormalization constants via
the relationship from bare quantities, denoted by o, to
renormalized ones, we have

Aa μ
o ¼

ffiffiffiffiffiffi
ZA

p
Aaμ; Ai μ

o ¼ ffiffiffiffiffiffiffi
ZAi

p
Ai μ; cao ¼

ffiffiffiffiffi
Zc

p
ca;

c̄ao ¼
ffiffiffiffiffi
Zc

p
c̄a; cio ¼

ffiffiffiffiffiffi
Zci

p
ci

c̄io ¼
c̄iffiffiffiffiffiffi
Zci

p ; ψo ¼
ffiffiffiffiffiffi
Zψ

p
ψ ; go ¼ μϵZgg;

αo ¼ Z−1
α ZAα; ᾱo ¼ Z−1

αi
ZAi ᾱ: ð2:24Þ

Notationally we include a superscript i on the diagonal
fields in the various labels on a renormalization constant
and understand that there is no summation over this index.
For the most part the relation of the bare to renormalized
quantity takes its canonical form. However, in order to
ensure that the renormalization is consistent with the
Slavnov-Taylor identities derived from the BRST sym-
metry in the MAG, the renormalization of the diagonal
ghost, ci, and its anti-ghost is different as indicated, [15].
The upshot is that one cannot deduce Zci from the
diagonal ghost 2-point function. To understand this the
renormalization constant associated with the off-diagonal
ghost 2-point function is given by the product of the
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renormalization constants deriving from the external fields.
From (2.24) this is clearly Zc. However, for the diagonal
ghost the analogous product of the wave function renorm-
alization constants for the diagonal ghost and anti-ghost is
unity, [15]. In other words the diagonal ghost 2-point
function is finite and Zci can only be deduced from another
Green’s function which has to be a 3-point function.
Moreover, it has to be a vertex which has strictly only
one diagonal ghost or anti-ghost. In [47] we used the
Aa
μc̄icb vertex for this renormalization. As the vertices are

ordinarily used to extract the coupling constant renormal-
ization this means that to determine the lth-loop anomalous
dimension for ci one has to renormalize the Aa

μc̄icb vertex at
the ðlþ 1Þth order, [15,47]. This is on the assumption that
the coupling constant renormalization constant has already
been set in a particular scheme. The other feature from the
algebraic renormalization analysis is that ZAi is in effect the
same as the coupling constant renormalization, [15]. As
was noted in [15,47] this suggests a particular similarity
with the background field gauge developed in [41–46]
where the β function is given by the background gluon

wave function renormalization. More importantly for our
MOM analysis the focus of our computations will be on
computing the renormalization constants for the off-
diagonal fields, and thence the coupling constant renorm-
alization for the vertices defining a MOM scheme, as these
are not determined from any Slavnov-Taylor identity.
As we will be concentrating on the higher-order renorm-

alization of QCD in the MAG we need to review the
relevant properties of the renormalization group equation.
First, we recall the definition of the renormalization group
functions for the fields, denoted generically by ϕ, and α are

γϕða; αÞ ¼ μ
∂
∂μ lnZϕ; γαða; αÞ ¼

μ

α

∂α
∂μ : ð2:25Þ

With

μ
∂
∂μ ¼ βða; αÞ ∂

∂aþ αγαða; αÞ
∂
∂α ; ð2:26Þ

we have

γAða; αÞ ¼ βða; αÞ ∂
∂a lnZA þ αγαða; αÞ

∂
∂α lnZA

γαða; αÞ ¼
�
βða; αÞ ∂

∂a lnZα − γAða; αÞ
��

1 − α
∂
∂α lnZα

�
−1

γAiða; αÞ ¼ βða; αÞ ∂
∂a lnZAi þ αγαða; αÞ

∂
∂α lnZAi

γcða; αÞ ¼ βða; αÞ ∂
∂a lnZc þ αγαða; αÞ

∂
∂α lnZc

γciða; αÞ ¼ βða; αÞ ∂
∂a lnZci þ αγαða; αÞ

∂
∂α lnZci

γψ ða; αÞ ¼ βða; αÞ ∂
∂a lnZψ þ αγαða; αÞ

∂
∂α lnZψ ; ð2:27Þ

where a ¼ g2=ð16π2Þ. Some clarification is perhaps in
order for the forms of γAða; αÞ and γαða; αÞ. If one was
working in a linear covariant gauge such as the Landau
gauge the gauge parameter does not get renormalized and
Zα ¼ 1 in our conventions. Therefore the second equation
of (2.27) would reflect the textbook situation if one
formally sets Zα ¼ 1. In nonlinear covariant gauges such
as the Curci-Ferrari gauge and the MAG Zα ≠ 1. Therefore
one has to be careful in deriving (2.27) from (2.26) in order
to express γAða; αÞ and γαða; αÞ purely in terms of their
respective renormalization constants ZA and Zα. In (2.27)
we have included gauge parameter dependence in the β
function, βða; αÞ, because in mass dependent renormaliza-
tion schemes, such as the MOM ones, the β function is not
independent of the gauge parameter. In mass-independent
schemes such as MS the β function is independent of α,

[54]. Also the definition of the renormalization group
function for α is more involved than in a linear covariant
gauge because by contrast in the MAG and Curci-Ferrari
gauge Zα is not equivalent to ZA.
In providing (2.27) we note that these are valid in any

renormalization scheme. However, the parameters which
the renormalization group functions depend on are defined
with respect to a scheme which here will either be a MOM
scheme or the MS scheme. As one of our aims is to
establish the three-loop MOM renormalization group
functions we must record the relation between parameters
in different schemes and then the way of deriving the three-
loop MOM results from the two-loop vertex function
renormalization. For the first part of this exercise, the
relation between the coupling constant and gauge param-
eter in two schemes is given by
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gMOMiðμÞ ¼
ZMS
g

ZMOMi
g

gMSðμÞ;

αMOMiðμÞ ¼
ZMS
A ZMOMi

α

ZMOMi
A ZMS

α

αMSðμÞ; ð2:28Þ

where MOMi indicates one of the MOM schemes. In
practical terms, one has to be careful in deriving the
relationship between the parameters since the renormaliza-
tion constants are functions of the parameters in the scheme
defined by the label. Therefore, one constructs the pertur-
bative relation order by order in the coupling constant
expansion to ensure that there are no singularities in the
regularizing parameter. Throughout, we dimensionally
regularize the theory in d ¼ 4 − 2ϵ dimensions where ϵ
is the regulator. Once these mappings of the parameters
between the schemes have been determined, we can define
the conversion functions CMOMi

ϕ ða; αÞ, where ϕ indicates
the appropriate field, andCMOMi

α ða; αÞ. These are at the core
of the three-loop MOM renormalization group construction
and are defined by

CMOMi
ϕ ða; αÞ ¼ ZMOMi

ϕ

ZMS
ϕ

ð2:29Þ

for the fields and

CMOMi
α ða; αÞ ¼ ZMOMi

α ZMS
A

ZMS
α ZMOMi

A

ð2:30Þ

for the gauge parameter. As has been our convention [37],
the variables a and α are MS parameters. In (2.29) and
(2.30) the coupling constant and gauge parameter depend-
ence has been omitted for reasons of space. In each the
dependence is given by

ZMOMi
ϕ ¼ ZMOMi

ϕ ðaMOMiða; αÞ;αMOMiða; αÞÞ
ZMOMi
α ¼ ZMOMi

α ðaMOMiða; αÞ;αMOMiða; αÞÞ ð2:31Þ

because we have chosen the MS scheme as the reference
scheme. In computing the explicit forms for the conversion
functions from the renormalization constants at a particular
order one has to use the relation between each of the
parameters which was determined at the previous order.
This iterative procedure then ensures that the conversion
functions are finite with respect to ϵ. With these the formal
relation of the renormalization group functions in different
schemes is

βMOMiðaMOMi; αMOMiÞ ¼
�
βMSðaMSÞ

∂aMOMi

∂aMS

þ αMSγ
MS
α ðaMS; αMSÞ

∂aMOMi

∂αMS

�
MS→MOMi

γMOMi
ϕ ðaMOMi; αMOMiÞ ¼ ½γMS

ϕ ðaMSÞ þ βMSðaMSÞ
∂

∂aMS

lnCMOMi
ϕ ðaMS; αMSÞ

þαMSγ
MS
α ðaMS; αMSÞ

∂
∂αMS

lnCMOMi
ϕ ðaMS; αMSÞ�

MS→MOMi

; ð2:32Þ

where the subscript mapping on the parentheses indicates
that after the object is computed in MS variables, they are
mapped to MOMi ones, [55].

III. COMPUTATIONAL SETUP

Having outlined the relevant aspects of the renormaliza-
tion group we now turn to the practical aspects of the
calculation. As in the previous computation, [37], we focus
on the three vertices at the symmetric point which will
define the three MOM schemes. They are given by

hAa
μðpÞAb

νðqÞAc
σðrÞijp2¼q2¼−μ2 ¼ fabcΣggg

μνσðp; qÞjp2¼q2¼−μ2

hcaðpÞc̄bðqÞAc
σðrÞijp2¼q2¼−μ2 ¼ fabcΣccg

σ ðp; qÞjp2¼q2¼−μ2

hψðpÞψ̄ðqÞAc
σðrÞijp2¼q2¼−μ2 ¼ TcΣqqg

σ ðp; qÞjp2¼q2¼−μ2 ;

ð3:1Þ

where p, q and r are external momenta and we choose the
third momentum to be the dependent one,

r ¼ −p − q; ð3:2Þ

with

p2 ¼ q2 ¼ r2 ¼ −μ2 ð3:3Þ

defining the symmetric point giving

pq ¼ 1

2
μ2: ð3:4Þ

The color group tensors for each vertex have been factored
off from the Lorentz structure ΣV

μ1…μnðp; qÞjp2¼q2¼−μ2 . We
note that (3.1) will be used for the calculations in both
gauges. For the Curci-Ferrari case, as there are no diagonal
indices, the global index A used in (2.16) can be
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unambiguously identified with the index a. The absence of
the totally symmetric tensor dabc at least in our two-loop
decomposition derives from Furry’s theorem and its con-
sequences in massless QCD. Here V indicates the appro-
priate vertex and n is unity for the quark and ghost vertices
but 3 for the triple off-diagonal gluon vertex. The restriction
to the symmetric point is included as the Lorentz structure
of the full vertex away from this point is different. Both

have been discussed in previous work, [37,56]. For the
MAG case the explicit forms of the tensors into which each
vertex is decomposed is given in [37] and we will use
the same basis here for consistency. More specifically, the
Lorentz amplitude for each vertex is decomposed into the
full basis of tensors, where the coefficients of each Lorentz
tensor corresponds to the scalar Feynman integrals within
the Green’s functions, as

Σggg
μνσðp; qÞjp2¼q2¼−μ2 ¼

X14
k¼1

Pggg
ðkÞμνσðp; qÞðΣggg

ðkÞ ðp; qÞjp2¼q2¼−μ2
Þ

Σccg
σ ðp; qÞjp2¼q2¼−μ2 ¼

X2
k¼1

Pccg
ðkÞσðp; qÞðΣccg

ðkÞ ðp; qÞjp2¼q2¼−μ2
Þ

Σqqg
σ ðp; qÞjp2¼q2¼−μ2 ¼

X6
k¼1

Pqqg
ðkÞσðp; qÞðΣqqg

ðkÞ ðp; qÞjp2¼q2¼−μ2
Þ; ð3:5Þ

where k labels a particular tensor. To extract the perturbative expansion for the scalar amplitudes we use the projection
method which was discussed in [37]. Briefly, to determine a particular amplitude, one multiplies each vertex function by a
specific linear combination of tensors from the basis,

fabcΣggg
ðkÞ ðp; qÞ ¼ Mggg

kl ðPgggμνσ
ðlÞ ðp; qÞhAa

μðpÞAb
νðqÞAc

σðrÞiÞjp2¼q2¼−μ2

fbacΣccg
ðkÞ ðp; qÞ ¼ Mccg

kl ðPccgσ
ðlÞ ðp; qÞhcaðpÞc̄bðqÞAc

σðrÞiÞjp2¼q2¼−μ2

TcΣqqg
ðkÞ ðp; qÞ ¼ Mqqg

kl ðPqqgσ
ðlÞ ðp; qÞhψðpÞψ̄ðqÞAc

σðrÞiÞjp2¼q2¼−μ2
; ð3:6Þ

where MV
kl is a matrix whose elements are rational

polynomials in d and whose kth row is the linear combi-
nation required for the kth amplitude. This matrix is given
in [37] for each vertex. The color group dependence has
been included here to balance the color indices on the right-
hand side. As noted earlier to two loops the left-hand side
reflects the actual structure. If it were not the case then we
would have to introduce a color projection. In performing
the Lorentz projection the Lorentz integrals within each
vertex function become scalar integrals and the resulting
numerator scalar products are rewritten as far as possible in
terms of the propagators. The reason for this is that we will
use the Laporta algorithm, [57], to perform the computa-
tions. This is a method which derives integration by parts
relations between scalar Feynman integrals and then solves
them in terms of a relatively small set of master integrals.
The values of these masters are determined by direct
methods. In rewriting the scalar products as indicated this
may produce an irreducible numerator. One feature of the
Laporta algorithm, [57], is that it can handle such irreduc-
ible cases systematically. For our specific 3-point sym-
metric vertex computation there is one topology in the
one-loop integral family which is the triangle graph. At two
loops there are two topologies in that integral family. One is

the two-loop nonplanar vertex and the other is the ladder
graph. These are illustrated in Fig. 1. If one was away from
the symmetric point then there would be at most two
additional ladder topologies, [56], which correspond to two
rotations of the final graph.
In terms of practicalities, such a computation can only be

managed within a reasonable amount of time with the use
of computer algebra packages. The main tool for handling
the large amounts of tedious algebra is FORM, [58], and its
threaded version TFORM, [59]. The Feynman graphs are
generated using the QGRAF package [60] and then con-
verted into FORM notation where all the color and Lorentz
indices are added. The number of graphs computed for each
vertex is given in Table I for the MAG and Table II for the
Curci-Ferrari gauge. For the implementation of the Laporta
algorithm we have chosen to use the REDUZE package, [61],
which is written in GINAC, [62]. One useful feature of
REDUZE is that the reduction to master integrals can be
extracted from the database of relations REDUZE creates in
FORM syntax. This has allowed us to set up an automatic
computation whereby the relevant integrals from the data-
base are included within a FORM module. The remaining
general tasks are the evaluation and inclusion of the master
integrals and the renormalization. For the former all the
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one- and two-loop masters are already known to the order
in ϵ required for the two-loop vertex functions to the finite
part [63–68]. A complete set for easy reference has been
provided in [67] and we use the same notation throughout
this article. For several masters the expansion in ϵ is needed
to Oðϵ2Þ. Ordinarily, for a two-loop renormalization this
would not be necessary. However, in the construction of the
integration by parts relations spurious poles in ϵ appear
which multiply several masters. This requires the extra
terms in the master integral ϵ expansion. While we will be
discussing general features of the full analytic results later
with the explicit expressions being included in attached
data files [69], we need to comment on the structure. This is
dictated by the expressions for the masters and involve the
polylogarithm function LinðzÞ via the function

snðzÞ ¼
1ffiffiffi
3

p ℑ

�
Lin

�
eizffiffiffi
3

p
��

: ð3:7Þ

In previous work in other gauges, [70], the final expressions
involved the quantity Σ which was defined as the following
combination of harmonic polylogarithms

Σ ¼ Hð2Þ
31 þHð2Þ

43 ð3:8Þ

in the notation of [67]. Such quantities are not unrelated to
harmonic polylogarithms based on cyclotomic polyno-
mials, [71]. However, it transpires that this object was
not independent of another combination of quantities which
appear since [68],

Σ ¼ 1

36
ψ 000

�
1

3

�
−
2π4

27
ð3:9Þ

where ψðzÞ is the derivative of the logarithm of the Euler Γ
function. Therefore, in the expressions in our data files, the
object Σ does not formally appear unlike [70]. Of course in
numerical results both quantities have the same value. To
assist numerical evaluation we note that

ζ3 ¼ 1.20205690; ψ 0
�
1

3

�
¼ 10.09559713;

ψ 000
�
1

3

�
¼ 488.1838167 s2

�
π

2

�
¼ 0.32225882;

s2

�
π

6

�
¼ 0.22459602; s3

�
π

2

�
¼ 0.32948320

s3

�
π

6

�
¼ 0.19259341; ð3:10Þ

where ζz is the Riemann zeta function. Finally, as we are
performing an automatic symbolic manipulation program,
we use the renormalization procedure developed in [72] to
extract the renormalization constants for each vertex.
Briefly all vertex functions are computed in terms of bare
parameters which means the coupling constant and gauge
parameter. Their associated counterterms are introduced
symbolically after all graphs have been computed and
summed by rescaling with the appropriate renormalization
constant defined in (2.24).
To extract the MOM renormalization constant from each

vertex function additionally requires the wave function
renormalization constant of the external fields in the MOM

FIG. 1. Integral families at one and two loops for the symmetric point.

TABLE II. Number of Feynman diagrams for each 2- and
3-point function in the Curci-Ferrari gauge.

Green’s function One loop Two loop Total

AA
μAB

ν 3 19 22
cAc̄B 1 9 10
ψψ̄ 1 6 7
AA
μAB

νAC
σ 8 112 120

cAc̄BAC
σ 3 49 52

ψψ̄AC
σ 2 33 35

Total 18 228 246

TABLE I. Number of Feynman diagrams for each 2- and
3-point function in the MAG.

Green’s function One loop Two loop Total

Aa
μAb

ν 6 131 137
cac̄b 3 54 57
ψψ̄ 3 81 84
Aa
μAb

νAc
σ 23 1291 1314

cac̄bAc
σ 16 867 883

ψψ̄Ac
σ 5 217 222

Total 56 2641 2697
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scheme. This is achieved by performing the 2-point
function two-loop renormalization of the off-diagonal
gluon, ghost and quark fields in each of the MOM schemes.
For these we use the MINCER algorithm, [73], which is
implemented in FORM, [74]. The number of graphs for each
of the 2-point functions is given in Table I for the MAG and
those for the Curci-Ferrari gauge are given in Table II. In
extracting the wave function and gauge parameter renorm-
alization constants, using the same automatic procedure as
[72], we note that the one-loop 2-point functions are
renormalized first in the MOM scheme of [38,39] and
then the one-loop vertex functions. The latter define the
three schemes which are then used to determine the wave
function and gauge parameter renormalizations at two
loops before these are used to deduce the coupling constant
renormalization constants for each of the three MOM
schemes. We note that the method to define each MOM
scheme is based on the original program of [38,39] and was
followed in [37]. For each of the 2-point and vertex
function renormalizations at the subtraction point the
MOM scheme is defined so that after the renormalization
constant has been defined there are no OðaÞ corrections.
For the vertex functions this is qualified by noting that it is
the Lorentz channels of the tree level which has no OðaÞ
corrections after renormalization. The non-tree-level vertex
structures will have OðaÞ corrections at the symmetric
point. As one check on our computer algebraic programs,
we have verified that the two-loop MS coupling constant

renormalization constant of [75,76] correctly emerges from
each 3-point vertex function. This completes the descrip-
tion of the technology to compute the 3-point functions at
the symmetric point. It now remains to discuss the results.

IV. RESULTS

Before discussing the renormalization group functions
and vertex functions, we detail the additional checks on our
computations. As the first stage in considering the renorm-
alization of the MAG and Curci-Ferrari gauges beyond that
of [37] in MOM schemes, we have determined each vertex
function in the MS scheme at the symmetric point. An
important check on the computations is that at the sym-
metric point the divergent terms in ϵ can be minimally
subtracted and the resulting renormalization constants
agree with those of [47,77]. By this we mean that the
wave function renormalization constants associated with
the external legs of the respective vertex functions are such
that the final renormalization constant corresponding to the
coupling constant correctly emerges in agreement with the
known two-loop MS result of [1,2,75,76]. An additional
check is that the relations between various amplitudes
which were observed in [37] at one loop are maintained at
two loops. For instance, those of the triple off-diagonal
gluon in the MAG are the same as those of the triple gluon
in the linear covariant gauge. Thus, at the symmetric point
we have checked that the relations

Σggg
ð1Þ ðp; qÞjMS

p2¼q2¼−μ2
¼ Σggg

ð2Þ ðp; qÞjMS
p2¼q2¼−μ2

¼ −
1

2
Σggg
ð3Þ ðp; qÞjMS

p2¼q2¼−μ2

¼ −Σggg
ð4Þ ðp; qÞjMS

p2¼q2¼−μ2
¼ 1

2
Σggg
ð5Þ ðp; qÞjMS

p2¼q2¼−μ2
¼ −Σggg

ð6Þ ðp; qÞjMS
p2¼q2¼−μ2

Σggg
ð7Þ ðp; qÞjMS

p2¼q2¼−μ2
¼ 2Σggg

ð9Þ ðp; qÞjMS
p2¼q2¼−μ2

¼ −2Σggg
ð11Þðp; qÞjMS

p2¼q2¼−μ2
¼ −Σggg

ð14Þðp; qÞjMS
p2¼q2¼−μ2

Σggg
ð8Þ ðp; qÞjMS

p2¼q2¼−μ2
¼ −Σggg

ð13Þðp; qÞjMS
p2¼q2¼−μ2

Σggg
ð10Þðp; qÞjMS

p2¼q2¼−μ2
¼ −Σggg

ð12Þðp; qÞjMS
p2¼q2¼−μ2

ð4:1Þ

emerge correctly to two loops for the triple off-diagonal
gluon vertex. For the off-diagonal ghost vertex there are
two amplitudes but the nature of the vertex in the MAG is
such that only one is independent. Therefore, we found

Σccg
ð1Þ ðp; qÞjMS

p2¼q2¼−μ2
¼ −Σccg

ð2Þ ðp; qÞjMS
p2¼q2¼−μ2

: ð4:2Þ

Finally, for the quark off-diagonal gluon vertex, we have
verified that

Σqqg
ð2Þ ðp; qÞjMS

p2¼q2¼−μ2
¼ Σqqg

ð5Þ ðp; qÞjMS
p2¼q2¼−μ2

;

Σqqg
ð3Þ ðp; qÞjMS

p2¼q2¼−μ2
¼ Σqqg

ð4Þ ðp; qÞjMS
p2¼q2¼−μ2

ð4:3Þ

are satisfied like the others for all values of α. The
amplitudes associated with channels 1 and 6 in the
quark-gluon vertex are not related to any of the others.
The former corresponds to the tree level vertex and the latter
is in a separate partition of spinor space as discussed in [70].
One feature which is apparent in MAG expressions, and
those at one loop in [37], is that the amplitudes correspond-
ing to the original Feynman rule are nonsingular in α. Thus,
using this channel for the definition of MOM schemes does
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not lead to problems in the true definition of the MAG. For
the Curci-Ferrari gauge the same relations between the
amplitudes hold. For the ghost-gluon vertex this is different
from the situation in the linear covariant gauge. In that
gauge the ghost-gluon vertex is not antisymmetric since the
spacetime derivative in the Lagrangian only acts on one of
the ghost fields unlike the Curci-Ferrari gauge. Thus, in the
latter the amplitudes are related as given above.
Now that the evaluation of the vertex functions have been

established in the MS scheme and the correct renormaliza-
tion group functions emerge we turn to the situation in the
MOM schemes. To summarize we have defined MOMi
with respect to the Lorentz channel corresponding to the
tree level vertex structure. In other words at the fully
symmetric point the coupling constant renormalization
constant is chosen such that there are no OðaÞ corrections
in keeping with the ethos of [38,39]. The process is an
iterative one. Briefly, at a given loop order all 2-point
functions are first rendered finite in MOMi. Then the
appropriate MOMi vertex is renormalized at the same loop
order. Once equipped with this coupling constant renorm-
alization constant, the subsequent loop order of all the
2-point functions is renormalized in MOMi before repeat-
ing the exercise for the coupling constant renormalization.
This establishes the MOMi renormalization constants at
two loops and then we deduce the various conversion
functions to two loops. These are required for going beyond
this order to determine the three-loop renormalization
group functions ahead of an explicit computation. In order
to achieve this, we require the mappings of the parameters
between the schemes which are formally defined in (2.28).
There are various checks on the full analytic expressions

for these renormalization group functions. The first is that
the two-loop results agree with those determined in [37].
The method we used in [37] was to exploit the properties of

the renormalization group. In other words the one-loop
vertex function renormalization in the MOM schemes
produced the conversion functions which, via the renorm-
alization group formalism, determined the then to be
explicitly computed two-loop anomalous dimensions.
Therefore using this blind check it is satisfying to record
that the explicit computation is in agreement. The other
main check is due to the relation the MAG has with the
Curci-Ferrari gauge. If one takes the limit of the MAG
where the Abelian sector is formally removed, then the
remaining Lagrangian involving the off-diagonal fields is
equivalent to the massless Curci-Ferrari Lagrangian of [40].
Therefore, the renormalization group functions of the MAG
in the Nd

A=N
o
A → 0 limit should agree with those in the

Curci-Ferrari gauge in each of the three schemes. This is the
case for MS, [47]. For the MOMi schemes this is also the
situation here since the three-loop MOMi renormalization
group functions have been evaluated directly in the Curci-
Ferrari gauge. We note that we have taken the Nd

A=N
o
A → 0

limit in the MAG and verified that both computations are
consistent. The final check rests in the fact that the double
poles in ϵ in the renormalization constants in the various
MOM schemes are not independent and are determined by
the simple pole at one loop. That the double poles are in
agreement in both gauges indicates that those graphs with
subgraph divergences have been correctly treated within the
symbolic manipulation programs we have developed.
Finally, the relations between the amplitudes in (4.1),
(4.2) and (4.3) for MS in both gauges also hold after
renormalization in the MOM schemes too.
Having compiled all the renormalization group functions

in each of the three schemes, it is interesting to make an
initial comparison of the size of the corrections. As a simple
benchmark we consider the three-loop MAG β functions in
each of the four schemes for α ¼ 0. We have, for instance,

βMSða; 0Þ ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 102.000000�a3
þ ½−6.018518N2

f þ 279.611111Nf − 1428.500000�a4 þOða5Þ
βMOMgggða; 0Þ ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 93.608510�a3

þ ½−2.658115N3
f þ 54.791594N2

f þ 401.565562Nf − 3543.358228�a4 þOða5Þ
βMOMhða; 0Þ ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 108.000000�a3

þ ½−25.035332N2
f þ 674.085832Nf − 2991.050472�a4 þOða5Þ

βMOMqða; 0Þ ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 96.936557�a3
þ ½−22.587812N2

f þ 627.275918Nf − 2266.490127�a4 þOða5Þ; ð4:4Þ

where the MS results were given originally in
[1,2,74,76,78]. At two loops there is not a significant
departure from the MS value of the comparable term. The
major difference is in the three-loop term where, for
instance, in the Yang-Mills case the coefficient in each

of the three MOM schemes is roughly twice that of the
three-loop MS value, while for mass-independent renorm-
alization schemes the three-loop term is the first point
where scheme dependence will arise. By contrast in mass
dependent schemes, which includes the MOM cases, this
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will occur at the previous order as is evident in (4.4). What
is not predictable prior to an explicit computation is the
magnitude of any correction. While the large difference
with MS is consistent within the three schemes, a better
comparison might be with a physical quantity which we
will consider later. From [70] comparing the same Nf
independent Landau gauge coefficient in the three-loop
MOM β functions the MOMggg scheme coefficient of [70]
is roughly the same as the MS value but the MOMq and
MOMh values are more in line with the analogous scheme
in the MAG. This is slightly surprising as naively the
expectation might have been that all three MOM schemes
in the MAG would have been similar to the MOM schemes
of [70].
While the β functions give some insight into the size of

the corrections in various schemes, the effect of the higher-
order corrections on the structure of the vertex functions is
also of interest at the symmetric point. We have chosen to
illustrate this graphically. So in order to construct plots of
the vertex functions at the symmetric point with respect to a
scale we first convert the coupling constant to its explicit
scale dependence. We introduce the partial coupling con-
stants alðμ;ΛÞ, where l is the loop order, which are given
by solving the β function as a differential equation for the
coupling constant. We have

a1ðμ;ΛÞ ¼
1

b0L
; a2ðμ;ΛÞ ¼

1

b0L

�
1 −

b1 lnðLÞ
b02L

�

a3ðμ;ΛÞ ¼
1

b0L

�
1 −

b1 lnðLÞ
b02L

þ ½b12½ln2ðLÞ

− lnðLÞ − 1� þ b0b2�
1

b04L2

�
; ð4:5Þ

where

L ¼ ln

�
μ2

Λ2

�
ð4:6Þ

and the β-function coefficients are defined by

βða; 0Þ ¼ −
X∞
n¼0

bnanþ1: ð4:7Þ

Here Λ is the scale associated with the constant of
integration. It has different values depending on the number
of quark flavors but in this analysis we will leave it as a free
parameter and not fix it to any specific value. For the
higher-order forms of alðμ;ΛÞ in (4.5) we have chosen to
use the versions given in [79] and for this analysis we will
concentrate on the α ¼ 0 case as this is the value which
defines the MAG. We will use alðμ;ΛÞ at the lth loop to
construct the truncated vertex functions and compare them.
Therefore, if we write

ΣV
ðkÞðp; qÞjp2¼q2¼−μ2

¼
X∞
n¼0

ΣV
ðkÞna

n ð4:8Þ

for each vertex V and channel k then we define the
truncated vertex functions TV

k;l at the symmetric point by

TV
k;l ¼

Xl

n¼0

ΣV
ðkÞnðalðμ;ΛÞÞn; ð4:9Þ

where l is the number of loops at which the truncation
occurs. Having defined the truncated vertex functions we
will give plots for l ¼ 1 and 2 in the MS scheme at the
symmetric point for the channels corresponding to the tree
level vertex structures. This is because for the MOM
schemes the symmetric point vertex functions are by
definition a constant for all l for the same channels. Our
plots are given in Fig. 2, and we have selected a repre-
sentative for each vertex and one of four values of Nf. This
is primarily because overall the plots are very similar in
form to the ones not given. In general, the behavior from
one to two loops is the same in that at higher values of Nf,
there is little difference between one and two loops, while
the Nf ¼ 3 plots suggest a larger discrepancy. Quantifying
the difference, it transpires that over the range of x ¼ μ=Λ
given in the figures, there is only a change of 1%. This is as
expected as we are well within the range of perturbative
reliability. Moreover, comparing these corrections with
comparable plots, [56], the order of the corrections is
similar if not marginally better than those for the linear
covariant gauge fixing. This is reassuring in light of the full
off-shell two-loop analysis of [56] where it was shown that
the two-loop corrections were not significantly different
from one loop for all ranges of the external momenta away
from the symmetric point. The plots in Fig. 2 represent the
diagonal section across the ðp2=μ2; q2=μ2Þ plane. In [56]
the vertex functions in a linear covariant gauge were
determined over this whole plane.
The situation in the Curci-Ferrari gauge follows a similar

pattern. However, as the main difference in that gauge
compared with the linear covariant gauge is the nature of
the ghost-gluon vertex we focus our discussion on the
corresponding amplitudes. We have illustrated these in
Fig. 3 for a range of Nf in the MS scheme. Concerning the
normalization we have chosen in this case to plot the
channel 1 amplitude multiplied by a factor of 2. This is to
allow us to compare with a similar plot for the linear
covariant gauge given in [70]. A similar picture emerges in
that for larger values of Nf the one and two-loop correc-
tions are effectively the same. While the discrepancy looks
large for smaller values of Nf at any specific value of x, the
variation is no more than 0.5%. If we compare the Curci-
Ferrari gauge ghost-gluon vertices with the off-diagonal
ghost-gluon vertex in the MAG we see that at high
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momenta they are virtually indistinguishable. Where there
is any difference, it is at lower values of x. This is not
unexpected as in effect at large energy the one-loop piece of
each vertex would be dominant. Moreover, the one-loop
running of the coupling constant is both scheme and gauge
independent.
As the MS results give an indication of the effect of the

higher-order corrections and the small changes that the
two-loop contributions make, the situation with the MOM
schemes cannot be seen given that we are focused at the
symmetric point. Instead it seems appropriate to consider a
physical quantity and compare values for it in the different
schemes. In [80] the flavor nonsinglet R ratio was evaluated
in the MOM schemes of Celmaster and Gonsalves for the
Landau gauge at three loops and compared with the MS
scheme form, [81–87]. Therefore, we have repeated that
exercise for the MOM schemes of the MAG. First, we

recall the notation used in [80] and define the R ratio in
scheme S by

RSðsÞ ¼ NF

�X
f

Q2
f

�
rSðsÞ; ð4:10Þ

where NF is the dimension of the fundamental representa-
tion, Qf is the charge of the active number of quarks, s is
the center of mass energy and the perturbative expansion is
defined by

rSðsÞ ¼
X∞
n¼0

rSn ðsÞaSn ð4:11Þ

and rS0 ¼ 1 in all schemes. From this the partial sums of the
series can be computed which are defined by

FIG. 2. Comparison of various MS MAG vertex functions for different values of Nf.
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aSpq

�
μ2

ΛS2

�
¼

Xp
n¼1

rSn ðsÞðaSq ðμ;ΛSÞÞn: ð4:12Þ

With these partial sums we have plotted aS22ð μ2

ΛS2Þ and

aS33ð μ2

ΛS2Þ for Nf ¼ 3 and 5 and presented representative
results in Fig. 4. That we can analyze the two- and
three-loop partial sums follows from the fact that we have
the coupling constant maps from the MOM schemes to the
MS ones at two loops which allows us to construct the R
ratio at three loops. This is for the same reason why the
three-loop MOM β functions can be constructed in the
MAG. In Fig. 4 we have included the MS result to compare
with and note that there is close agreement of the MOMq
scheme with it. This is not unexpected given that the R ratio
is based on a quark operator correlation. As in [80] the

MOMggg and MOMh scheme results lie further away from
the MS result due to the nature of the underlying quantity
being considered in keeping with the original observations
of [38,39]. For larger values of Nf there appears to be a
larger discrepancy. However, while this mimics the sit-
uation with the canonical linear covariant gauge, if any-
thing the MOM schemes for the MAG lie closer to the MS
result than the former gauge. While the broadness of the
estimate of the R ratio at a particular center of mass energy
scale may appear large on the plot, the range is 5% of a
central value if one includes the MOMh scheme. While this
may appear to be large, the appropriate point is perhaps that
this may be a better way of trying to estimate a theory error
in a measurement in contrast to varying the actual running
scale between two values chosen in an ad hoc manner.
What is also evident from these examples is that the specific

FIG. 3. Comparison of the MS ghost-gluon vertex function in the Curci-Ferrari gauge for different values of Nf.
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value we have chosen in the MAG here, which is α ¼ 0, is
in keeping with the MS case which does not depend on the
gauge parameter. For instance, in the linear covariant gauge
the study of [80] also illustrated that the Landau gauge
versions of the R ratio in the corresponding MOM schemes
was consistent with MS.
While we have considered the effect the various schemes

have on a quantity of experimental interest, this was in the
chiral limit. While this is an idealized situation, we make
brief comments on the complexity of including quark mass
effects. First, at high energies quark masses can be
neglected as a reasonable approximation. However, for
lattice analyses where the matching is performed to merge
with the perturbative results such mass effects would be
important at the interface region short of the high-energy
limit. To estimate the errors on the massless vertex function
results by including physical masses is not immediately
straightforward in the gauges considered here or in the
linear covariant gauge. First, a full quark mass analysis
would require all the relevant master integrals at one and
two loops with propagators for all the possible quark mass
configurations. For two loops these are currently unknown.
At one loop, various masters are available, [88,89], and
general results are known for the one-loop triple gluon and
quark-gluon vertices. For the ghost-gluon vertex the dia-
grams with a quark propagator do not appear until two
loops. Although the general results of [88,89] provide a full
analytic structure of the first of these two vertices the nature
of the vertex functions even at the symmetric point depend
on several Clausen functions whose arguments are ratios of
the quark mass and μ2. However, a symmetric point
analysis is too restrictive to quantify quark mass effects.
Instead a more appropriate approach would be to compute
the corrections to the fully off-shell vertex functions in
powers of m2

q=μ2 where mq is a generic quark mass.

Such an analysis is well beyond the scope of the present
article.

V. DISCUSSION

The results presented in this article represent the com-
pletion of the program of studying QCD fixed in a variety
of covariant gauges at two loops at the fully symmetric
subtraction point. The one-loop investigation for a linear
covariant gaugewas initiated several decades ago in [38,39]
which was extended to two loops in [70]. In this article we
have extended the one-loop MAG and Curci-Ferrari gauge
analyses of [37] to the same order as the linear covariant
gauge case of [70]. In particular, checks on theMAG results
are inextricably entwined with those of the Curci-Ferrari
gauge. Although nonlinear gauges are not necessarily the
gauges of calculational choice for high-energy analyses, the
relation of the MAG to low-energy gluon and quark
confinement [3–7,16] suggests that for understanding
mechanisms in this regime the MAG will be of analytic
importance. While the apparent difference in the ghost-
gluon vertices in the MAG and Curci-Ferrari gauges is
suggestive of such a picture, that observation is very much
still within the perturbative regime. However, having the
precision information on the vertex functions given here
should ensure that Schwinger-Dyson models, and the
assumptions behind the approximations made therein, have
independent information to tally with. Ultimately the
behavior of Green’s functions computed with Schwinger-
Dyson techniques have to agree at high energy with
perturbation theory. The two-loop results will be useful
in this respect. Although ultimately the next order will be of
interest, that program requires the determination of the
three-loop symmetric point master integrals in the Laporta
approach.

FIG. 4. Comparison of three-loop R ratio for Nf ¼ 3 and 5 in various schemes.
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