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We consider a synchrotron radiation from a charged particle moving in a bound orbit around a weakly
magnetized Schwarzschild black hole (a static black hole immersed into a constant uniform magnetic field)
in its equatorial plane, perpendicular to the magnetic field. In particular, we study the case when the Lorentz
force acting on the charged particle is directed outward from the black hole. In this case, for sufficiently
large values of the particle’s energy, the particle moves in a nongeodesic bound orbit with loops. Due to a
synchrotron radiation, such an orbit decays to a nongeodesic circular stable orbit. We study this transition
and calculate the radiated power and energy loss of the particle.
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I. INTRODUCTION

Recent observations indicate that there is a strong
magnetic field of several hundred gauss around a super-
massive black hole at the center of the Milky Way [1]. A
magnetic field around a black hole can be present due to
dynamo mechanism in the plasma of an accretion disk
around a black hole (see, e.g., [2]). It can also originate
from a pulsar orbiting the black hole. For instance, it can be
shown that a black hole located far enough from a magnetar
and close to its equatorial plane is immersed into a nearly
homogeneous magnetic field [3,4]. We call such a black
hole a weakly magnetized black hole (for details see
Sec. II). The presence of such a magnetic field can
significantly modify a test charged particle’s motion. In
particular, if a Lorentz force acting on a charged particle
orbiting a weakly magnetized Schwarzschild black hole is
directed outward, then, for a sufficiently large value of the
magnetic field, the particle orbit can come arbitrary close to
the black hole horizon (see, e.g., [5–9]). Motion of a test
charged particle around a static black hole in the presence
of a magnetic field was studied in many works. For
example, a study of small radial and latitudinal harmonic
oscillations about circular orbits around a weakly magnet-
ized Schwarzschild black hole showed that such orbits are
stable (see, e.g., [5,6]). An extensive analysis of such
oscillations was done in [10]. A study of circular orbits and
their stability in the Ernst metric with a uniform magnetic
field was done in [5], and in a uniform electric, as well as in
a uniform magnetic field, in [11]. A dynamics of an
axisymmetric string loop currying an electric current in
the spacetime of a weakly magnetized Schwarzschild black
hole was studied in [12]. Critical escape velocity and
chaotic motion of a charged particle moving around a
weakly magnetized Schwarzschild black hole was studied

in [13]. In these works, the effect of an electromagnetic
radiation from a charged particle was not considered. On
the other side, a magnetic field can cause a charged particle
to move with an ultrarelativistic velocity. An ultrarelativ-
istic particle emits an electromagnetic radiation whose
properties are very similar to the properties of the synchro-
tron radiation from electrons in accelerators. In this paper
we shall study a synchrotron radiation from a charged
particle moving in the equatorial plane of a weakly
magnetized Schwarzschild black hole.
A synchrotron radiation in a strong gravitational field

generated by a black hole was studied quite widely. For
example, a synchrotron radiation from a charged particle
moving in a circular nongeodesic orbit around a weakly
magnetized Schwarzschild and Kerr black hole was studied
in, e.g., [14] and [15,16], respectively. High-frequency
electromagnetic and gravitational radiation froma relativistic
particle falling into a Schwarzschild and a Kerr black hole
was considered and the spectral and angular distributions of
the radiation power were calculated in [17]. The spectrum of
electromagnetic radiation power from radially free falling
monopole and pointlike dipole into a Schwarzschild black
hole was found in [18]. Characteristic features of the
electromagnetic spectrum of radiation from a radially free
falling dipole were studied subsequently in [19]. An electro-
magnetic bremsstrahlung spectrum of a dipole falling into a
Schwarzschild black hole along a spiral orbit was studied in
[20]. An electromagnetic radiation spectrum from charged
particles moving slowly in an eccentric bound equatorial
orbit around a Schwarzschild black hole immersed in to a
weak dipolar magnetic field was derived in [21].
In this paper, we shall study a synchrotron radiation from

a charged particle moving in an equatorial plane around a
weakly magnetized Schwarzschild black hole. We shall
consider the case when the Lorentz force acting on the
particle is directed outward. In this case, the particle can
move in a bound orbit with loops. Such a bound orbit can*ashoom@ualberta.ca
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be considered as a combination of a circular motion and a
slow motion of its guiding center. The circular motion is a
cyclotron revolution due to the magnetic field and the
guiding center motion is a Keplerian motion due to
the gravitational field of the black hole (for details see
[9]). The particle radiates a synchrotron radiation during its
cyclotron revolution. As a result, its energy decreases, that
results in decrease of the size of the loops and a subsequent
transition of the orbit with curls into a circular orbit. Here
we shall study such a transition. We shall calculate the
radiation power, the corresponding energy loss, the char-
acteristic frequency of the synchrotron radiation, the proper
time of the transition, and the portion of the particle orbit
where the transition takes place.
This paper is organized as follows: In Sec. II we describe

briefly a weakly magnetized Schwarzschild black hole.
In Sec. III we review an equatorial motion of a charged
particle around a weakly magnetized Schwarzschild black
hole. Section IV contains a description of synchrotron
radiation in a strong gravitational field. In Sec. V we
calculate the energy loss of a charged particle due to its
radiation. In Sec. VI we study the synchrotron radiation
from a charged particle moving in a bound orbit in the
equatorial plane of a weakly magnetized Schwarzschild
black hole. Section VII contains a summary of the derived
results.
We shall use the conventions adopted in [22] and units

where G ¼ c ¼ 1. Occasionally, we shall use the Gaussian
system of units.

II. WEAKLY MAGNETIZED SCHWARZSCHILD
BLACK HOLE

In this section we briefly review the construction of a
weakly magnetized Schwarzschild black hole. An extended
review of magnetized black holes is presented in [6]. To
construct a weakly magnetized Schwarzschild black hole of
the mass M we assume that there is a weak magnetic field
of the characteristic strength B, such that the spacetime
curvature due to this magnetic field is much less than the
spacetime curvature near the black hole alone, i.e.,
GB2=c4 ≪ c4=G2M2. This gives

B ≪
c4

G3=2M⊙

�
M⊙
M

�
∼ 1019

�
M⊙
M

�
G; ð1Þ

where M⊙ is the solar mass. In this case, the back reaction
of the magnetic field on the spacetime geometry can be
neglected. As a result, the spacetime metric is that of the
Schwarzschild one,

ds2 ¼ −
�
1 −

rg
r

�
dt2 þ

�
1 −

rg
r

�
−1
dr2 þ r2dΩ2;

dΩ2 ¼ dθ2 þ sin2θdϕ2; rg ¼ 2M: ð2Þ

This spacetime has isometries defined by the Killing vectors
ξμðtÞ ¼ δμt , the generator of time translations, and ξμðϕÞ ¼ δμϕ,

the generator of azimuthal rotations. Let the magnetic field
be static and axisymmetric. Such a magnetic field can be
constructed as follows (see, e.g., [6,23]): The Maxwell
equation for an electromagnetic 4-potential Aμ in the Lorenz
gauge Aμ

;μ ¼ 0 reads Aμ;ν
;ν ¼ Rμ

νAν. On the other side, a
Killing vector obeys the equation ξμ;ν;ν ¼ −Rμ

νξ
ν. Thus,

because the metric (2) is Ricci flat, one can take

Aμ ¼ B
2
ξμðϕÞ; ð3Þ

whereB ¼ const. This 4-vector potential defines a magnetic
field which is static, axisymmetric, and homogeneous at the
spatial infinity, where it has the constant strength B > 0 and
directed upward, orthogonal to the equatorial plane
θ ¼ π=2.
The 4-potential (3) is invariant with respect to the

isometries of the Killing vectors, i.e., LξðiÞA ¼ 0,
i ¼ ðt;ϕÞ. The corresponding electromagnetic field tensor
Fμν ¼ Aν;μ − Aμ;ν has the following form:

Fμν ¼ 2Br sin θðsin θδr½μδϕν� þ r cos θδθ½μδ
ϕ
ν�Þ: ð4Þ

The Schwarzschild metric (2) together with the vector
potential (3) define a weakly magnetized Schwarzschild
black hole—a Schwarzschild black hole immersed into a
constant uniform magnetic field.

III. EQUATORIAL MOTION OF A
CHARGED PARTICLE

In this section we review the main results derived in [9].
A dynamical equation for a charged particle of the mass m
and the electric charge q moving in the vicinity of a weakly
magnetized Schwarzschild black hole reads

m
D2xμ

dτ2
¼ qFμ

νuν: ð5Þ

HereD=dτ stands for the covariant derivative defined in the
metric (2), τ is the particle’s proper time, Fμν is given by
Eq. (4), and uμ ¼ dxμ=dτ is the particle 4-velocity,
uμuμ ¼ −1. For this motion there are two conserved
quantities associated with the spacetime Killing vectors:
the energy E > 0 and the generalized azimuthal angular
momentum Lϕ ∈ ð−∞;þ∞Þ,

E≡ −ξμðtÞPμ ¼ m
dt
dτ

�
1 −

rg
r

�
; ð6Þ

Lϕ ≡ ξμðϕÞPμ ¼
�
m
dϕ
dτ

þ qB
2

�
r2sin2θ: ð7Þ
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Here Pμ ¼ muμ þ qAμ is the generalized 4-momentum of
the particle, where the 4-potential Aμ is given by Eq. (3). An
invariance of the 4-potential with respect to the spacetime
isometries [LξðiÞA ¼ 0, i ¼ ðt;ϕÞ] ensures the conservation
of E and Lϕ along dynamical orbits defined by Eq. (5).
Note that Lϕ is defined with respect to the axis r ¼ 0 where
fixed points of the Killing vector ξμðϕÞ are located.
One can check that the θ-component of the dynamical

equation (5) allows for a solution θ ¼ π=2. This is a motion
in the equatorial plane of the black hole, orthogonal to the
magnetic field. For an equatorial motion the conserved
quantities (6) and (7) are sufficient for the complete
integrability of the dynamical equation.
In what follows, it is convenient to introduce the

dimensionless quantities

T ¼ t
rg
; ρ ¼ r

rg
; σ ¼ τ

rg
;

E ¼ E
m
; l ¼ Lϕ

mrg
; b ¼ qBrg

2m
: ð8Þ

The first integral of the dynamical equation in the equa-
torial plane takes the following form:

_T ¼ Eρ
ρ − 1

; _ϕ ¼ l
ρ2

− b; _ρ2 ¼ E2 −U; ð9Þ

U ¼
�
1 −

1

ρ

��
1þ ðl − bρ2Þ2

ρ2

�
; ð10Þ

where U is the effective potential. Here and in what
follows, the overdot stands for the derivative with respect
to σ. The effective potential is positive in the domain of
interest ρ ∈ ð1;þ∞Þ. It vanishes at ρ → 1 and diverges at
ρ → þ∞. Depending on values of l and b the potential is
either monotonically increasing or has two extrema, a local
maximum and a local minimum.
Equation (9) is invariant with respect to the discrete

transformations

b → −b; l → −l; ϕ → −ϕ: ð11Þ

According to the direction of the magnetic field (B > 0),
for a positive electric charge qwe have b > 0. Without loss
of the generality, we can take q > 0. Equations for a
particle with a negative charge are derived from those for a
particle with a positive charge by the transformation (11).
The parameter l can be positive or negative. For l > 0

the Lorentz force acting on a charged particle is repulsive,
i.e., it is directed outward from the black hole. For l < 0
the Lorentz force is attractive, i.e., it is directed toward
the black hole. In what follows, we shall consider the
case when l > 0. In this case, according to Eq. (9) for
the azimuthal coordinate ϕ, there is a critical value

ρcr ¼
ffiffiffiffiffiffiffiffi
l=b

p
> ρmin for which _ϕ ¼ 0. For ρ < ρcr one

has _ϕ > 0 and for ρ > ρcr one has _ϕ < 0. As a result,
there are two different types of bound orbits separated by
the critical one. The first type corresponds to ρ2 < ρcr and
looks similar to a contracted trochoid. The second type
corresponds to ρ2 > ρcr and has loops. It looks similar to a
prolate trochoid. The critical type is defined by ρ2 ¼ ρcr
and has cusps. It looks similar to a cycloid (see Fig. 3
below). Orbits with loops correspond to the larger than
Ecr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=ρcr

p
values of the particle’s energy. Such

orbits can be considered as a result of a superposition of a
cyclotron rotation along small circles and a slow drift of the
guiding center of a circle (see [9]). For such orbits their
local curvature radius is sufficiently smaller than the
characteristic scale of the gravitational field. In this case,
the wave equation for an electromagnetic radiation in
curved spacetime can be approximated by that in a flat
spacetime (for details see the next section).
Here we shall consider bound orbits.1 A study of such

orbits may help to analyze motion of particles in a black
hole accretion disk. Bound orbits exist if the effective
potential has two extrema: E2

max ¼ UðρmaxÞ and
E2
min ¼ UðρminÞ. For a bound orbit the radial coordinate

ρ oscillates between the minimal ρ1 and the maximal ρ2
values, such that ρmax ≤ ρ1 ≤ ρmin ≤ ρ2 and for a particular
bound orbit the particle’s energy E obeys the relation
Emin ≤ E ≤ Emax.

IV. SYNCHROTRON RADIATION

For an ultrarelativistic particle of a charge q moving in
Minkowski spacetime the radiated four-momentum is
given by

dPα̂ ¼ 2q2

3

d2xμ̂

dτ2
d2xμ̂
dτ2

uα̂dτ; ð12Þ

where xα̂ are natural (Minkowski) coordinates (see, e.g.
[24]). Because of nonlocal nature of the process of
formation of electromagnetic radiation, this expression
generally is not applicable for a charged particle moving
in a curved spacetime. This is the case when the particle
moves along a spacetime geodesic and the characteristic
length δl of the particle’s orbit where the dominant part of
the radiation is formed is of the order of the characteristic
scale of the gravitational field L ∼ rg. However, if dynam-
ics of the particle is mostly governed by forces of non-
gravitational, e.g. electromagnetic, nature such that the
particle’s world line is not a geodesic, then the process of
formation of electromagnetic radiation can approximately
be described by local quantities (see, e.g., [14,25,26]).

1Bound orbits of small harmonic radial and latitudinal oscil-
lations around a stable circular orbit were studied in [10].

SYNCHROTRON RADIATION FROM A WEAKLY … PHYSICAL REVIEW D 92, 124066 (2015)

124066-3



To see why such a description is possible, let us consider
a locally geodesic frame of reference localized somewhere
in the vicinity of the midpoint of δl. Such a frame of
reference can be defined by the normal Riemann coordi-
nates yα̂ (see, e.g., [22]). In this frame we have

gμ̂ ν̂ ¼ ημ̂ ν̂ þOðy2Þ; ð13Þ

Γα̂
μ̂ ν̂ ¼ −

1

3
ðRα̂

μ̂ ν̂ γ̂ þ Rα̂
ν̂ μ̂ γ̂Þyγ̂ þOðy2Þ; ð14Þ

where ημ̂ ν̂ is an orthonormal metric and y is the proper size
of the spacetime domain in the vicinity of the particle
location covered by the normal Riemann coordinates. Let
us now estimate the characteristic wavelength of a syn-
chrotron radiation, λ�. The angular distribution of the
synchrotron radiation is localized in a narrow cone of
the opening angle δφ ≈ γ̂−1 ≪ 1 around the direction of the
particle velocity (see, e.g., [24,27]). This “projector effect”
is characteristic for a synchrotron radiation. Let rc be the
local curvature radius of the particle orbit. Then, δl ≈ rcγ̂−1.
We shall now find the characteristic wavelength of the
radiation. One has λ� ¼ T̂, where T̂ is the period of the
radiated wave measured by a local observer. On the other
side, δl ¼ δt̂0 ¼ ðdt̂0=dt̂ÞT̂, where t̂0 is the time measured in
the particle’s frame and t̂ is the time measured by the
observer. To calculate dt̂0=dt̂ we shall use the relation
t̂ ¼ t̂0 þ R̂ðt̂0Þ, where R̂ðt̂0Þ is the distance measured from
the particle to the observer along the light trajectory. Using
the obvious expression dR̂=dt̂0 ¼ −n̂ · v̂ ¼ v̂ cos δφ, where
n̂ is the unit vector in the direction of the radiation, we
derive

dt̂
dt̂0

≈ 1 − v̂þ v̂
2
δφ2 ≈ γ̂−2: ð15Þ

As a result, we find

λ� ≈ δlγ̂−2 ≈ rcγ̂−3: ð16Þ

This expression implies that λ� ≪ rc. It means that the
wave zone of the radiation begins at the distances shorter
than rc.
The wave equation for the radiation 4-vector potential

Aα
rad reads

−Aα;β
rad ;β þ Rα

βA
β
rad ¼ 4πJα; Aα

rad ;α ¼ 0: ð17Þ

In a locally geodesic frame, in a vacuum spacetime, with
the use of the expressions (13)–(14) it takes the following
linear in yα̂ form:

−□Aα̂
rad þ

2

3
ðRα̂ μ̂

ν̂ γ̂ þ Rα̂
ν̂
μ̂
γ̂Þyγ̂Aν̂

rad;μ̂ ≈ 4πJα̂;

Aα̂
rad ;α̂ ≈ 0; ð18Þ

where □ is the wave operator defined in the orthonormal
metric ημ̂ ν̂. For a synchrotron radiation the terms containing
the Riemann tensor components are of the relative order of
λ�y=L2. For y≲ L the relative order of the terms propor-
tional to the Riemann tensor due to large Lorentz gamma
factor is small even for rc ∼ L. Thus, such terms can be
neglected and the wave equation can be approximated by
that in a flat spacetime.
As a result, the synchrotron radiation from an electrically

charged particle moving in a nongeodesic world line in the
vicinity of a weakly magnetized Schwarzschild black hole
can be described in a locally geodesic frame of reference
where the spacetime is practically flat and the expression
(12) is applicable. Note, however, that this expression
correctly covers the entire range of frequencies in flat
spacetime only. In a curved spacetime the low frequency
part depends on the gravitational field which is not included
into consideration. As a result, the low frequency part is
neglected when one uses the expression (12) in a curved
spacetime.
In the global Schwarzschild coordinates the radiated

four-momentum of a charged particle moving around a
weakly magnetized Schwarzschild black hole, as measured
by a static observer located in the asymptotically flat
region, reads

dPα ¼ 2q2

3

D2xμ

dτ2
D2xμ
dτ2

dxα: ð19Þ

For the dynamical motion (5) this expression can be
written as

dPα ¼ 2q4

3m2
Fμ

νuνFμλuλdxα: ð20Þ

For an equatorial motion ðθ ¼ π=2Þ in the ultrarelativistic
approximation γ ¼ dt=dτ ≫ 1, the radiated four-
momentum (20) reads

dPα ¼ 2q4B2

3m2
γ2
�
1 −

rg
r

�
2

dxα: ð21Þ

One can also calculate the spectral distribution function
for the synchrotron radiation. Introducing the radiation
intensity

I ¼ −dE=dt; ð22Þ

where E is the charged particle’s energy, one can derive the
following expression (for details see [25,26]):
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dI
dy

¼ 3
ffiffiffi
3

p

4π

q4B2

m2
γ2
�
1 −

rg
r

�
3

FðyÞ; ð23Þ

where

y ¼ Ω
Ωc

; Ωc ¼
3qB
2m

γ2
�
1 −

rg
r

�
2

; ð24Þ

and

FðyÞ ¼ y
Z

∞

y
K5=3ðxÞdx;

Z
∞

0

FðyÞdy ¼ 8π

9
ffiffiffi
3

p : ð25Þ

Here K5=3ðxÞ is the MacDonald function and Ω is the
radiation frequency. The function FðyÞ is localized hear its
maximum at y ≈ 0.29. Thus, the main part of the synchro-
tron radiation is concentrated around the characteristic
frequency

Ω� ≈ 0.29Ωc: ð26Þ

The total radiation intensity I is derived by integrating the
expression (23) over y ∈ ½0;∞Þ,

I ¼ 2

3

q4B2

m2
γ2
�
1 −

rg
r

�
3

: ð27Þ

V. ENERGY LOSS

The expression (27) allows us to calculate the rate of the
energy loss measured with respect to the particle’s proper
time. Using the expressions (8) and (9) we derive the rate of
the energy loss,

_E ¼ −κE3; κ ¼ 8q2b2

3mrg
: ð28Þ

Integrating we derive

EðσÞ ¼ Eiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2κE2

i σ
p ; ð29Þ

where Ei is the initial energy. This expression illustrates
how the particle’s energy decreases with its proper time due
to the synchrotron radiation. The rate of the energy
decrease is controlled by the parameter κ.
In order to estimate the value of κ, we shall use the

Gaussian system of units. We have

κ ≈ 191

�
q
e

�
4
�
m
me

�
−3
�

B
108 G

�
2
�

M
M⊙

�
; ð30Þ

where e is the elementary electric charge and me is the
electron mass. According to Piotrovich, Silant’ev, Gnedin,
and Natsvlishvili [28], the characteristic scales of the

magnetic field B are of the order of 108 G near the horizon
of a stellar mass black hole,M ∼ 10M⊙, and of the order of
104 G near the horizon of a supermassive black hole,
M ∼ 109M⊙. As a result, we derive κ ≈ 1.910 × 103 for an
electron orbiting a stellar mass or a supermassive black
hole, and κ ≈ 3.085 × 10−7 for a proton orbiting a stellar
mass or a supermassive black hole.
Thus, ultrarelativistic electrons orbiting astrophysical

black holes lose their energy due to their synchrotron
radiation relatively fast. On the other side, for protons or
heavy ions orbiting astrophysical black holes κ ≪ 1. This
implies that protons and heavy ions lose their energy
relatively slow.

VI. SYNCHROTRON RADIATION FROM
BOUND ORBITS

The shape of the effective potential (10) is controlled by
values of the parameters b and l. For a given weakly
magnetized Schwarzschild black hole and a charged
particle the parameter b is fixed [see Eq. (8)]. In order
to have bound orbits (which are possible if the effective
potential has two extrema) the dynamical parameter l
should take certain values related to the fixed value of b. Let
us estimate these values. In the Gaussian system of units the
parameter b has the following value:

b ≈ 8.663 × 109
�
q
e

��
m
me

�
−1
�

B
108 G

��
M
M⊙

�
: ð31Þ

According to [28], we have b ≈ 4.718 × 107 for a proton
orbiting a stellar mass black hole and b ≈ 4.718 × 1011 for
a proton orbiting a supermassive black hole. For an electron
the value of b is mp=me ≈ 1836 times larger. In order to
find the corresponding value of l we use the equation for
extrema of the effective potential, U;ρ ¼ 0. This equation is
equivalent to the equation

ð3 − 2ρÞl2 − 2bρ2lþ ρ2ð2b2ρ3 − b2ρ2 þ 1Þ ¼ 0; ð32Þ

which is a quadratic polynomial in l. Solving this equation
for l we derive

l� ¼ bρ2 � ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2ρ2ðρ − 1Þ2 − 3þ 2ρ

p
3 − 2ρ

: ð33Þ

The solution l− is positive in the domain ρ ∈ ½ρc;þ∞Þ,
where ρc ∈ ð1; 3=2Þ. The solution lþ has two separate
branches. The branch corresponding to lþ > 0 is defined
in the domain ρ ∈ ½ρc; 3=2Þ. In what follows, according to
our choice (l > 0), we shall consider this branch of lþ.
This branch and the branch l− merge at ρ ¼ ρc. For large
values of b, l ¼ l� is large as well. In this case, the branch
l− corresponds to the minimum of U, l ¼ l−ðρminÞ and
the branch lþ corresponds to the maximum of U,
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l ¼ lþðρmaxÞ. The branches l� are schematically illus-
trated in Fig. 1.
Accordingly, for large values of b one can derive the

following expansions of the expression (33):

lþ ¼ bρ2maxð2ρmax − 1Þ
ð3 − 2ρmaxÞ

þOðb−1Þ; ð34Þ

l− ¼ bρ2min þ
1

4bðρmin − 1Þ þOðb−3Þ: ð35Þ

In the frame of reference where the charged particle is at
rest, the dipole radiation is symmetric and, therefore, the
radiated momentum is zero. However, in another frame of
reference, e.g., in a locally geodesic frame, the dipole
radiation is mostly concentrated in a narrow cone in the
direction of the particle velocity. Thus, the synchrotron
radiation carries away the azimuthal angular momentum
of a charged particle. The expression (21) allows us
to calculate the rate of the angular momentum loss
measured with respect to the particle’s proper time,
dLϕ=dτ ¼ −gϕϕdPϕ=dτ. Using the expressions (8) and
(9) we derive

_l ¼ −κE2ρ2 _ϕ ¼ −κE2ðl − bρ2Þ: ð36Þ

Having this expression we can compare the relative rate of
the energy and the angular momentum loss. For a charged
particle moving in the vicinity of the black hole we have
ρ ∼ 1 and the expression (35) gives l ∼ b. Using the
expressions (28) and (36) we derive

j _lj
l

∼
j _Ej
E

b−2: ð37Þ

Thus, for relatively short time intervals one can neglect the
angular momentum loss. In what follows, we shall consider
l ≈ const.
Using Eqs. (10), (34), and (35) one can find the

corresponding expansions of the extrema,

E2
max ¼

16b2ρmaxðρmax − 1Þ3
ð3 − 2ρmaxÞ2

þOð1Þ; ð38Þ

E2
min ¼ 1 −

1

ρmin
þ 1

16b2ρ3minðρmin − 1Þ þOðb−4Þ: ð39Þ

Note that lþ and E2
max diverge at ρmax ¼ 3=2. This value of

ρmax corresponds to an unstable circular orbit of the radius
r ¼ 3M, which is a null geodesic of the Schwarzschild
spacetime. However, as it is follows from Fig. 1 and
Eqs. (9), (10), and (35), unlike in a geodesics motion,
the values of the particle’s angular momentum l and energy
E remain finite for ρmin → 3=2 and for bound orbits lying in
the vicinity of ρmin ¼ 3=2. (see Fig. 2). Thus, the expres-
sions in this section are valid for ρmin ¼ 3=2 as well. This
result was also presented in [5,6].
The maximal and the minimal values of a proton’s

energy as functions of ρmin are presented in Fig. 2. One
can see that Emax is of several orders higher than Emin. For a
given value of ρmin which defines a stable circular orbit
about which a charged particle moving in a bound orbit
oscillates, one can find the difference Emax − Emin which is
a measure of the energy carried out by synchrotron
radiation. As one can see from Fig. 2, this energy is of
the order of Emax.
A decrease of the energy of a charged particle moving in

a bound orbit results in a transition from the prolate
trochoid orbit to “cycloid” and to “contracted trochoid”
followed by decay of the radial oscillations, so that the

FIG. 1. The branches l� > 0. The branches lþ and l− merge
at the point c. For sufficiently large values of l ¼ lþðρmaxÞ ¼
l−ðρminÞ the points a and b correspond to the maximum and
minimum of the effective potential, respectively. The maximum
and minimum of the effective potential merge at ρ ¼ ρISCO where
l− has the minimal value.

FIG. 2. The minimal and the maximal values of a proton’s
energy which is moving around a stellar mass black hole in a
bound orbit oscillating about the guiding center stable circular
orbit of the radius ρmin. These values vanish for ρmin → 1.
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particle orbit becomes nearly circular. This transition is
schematically illustrated in Fig. 3. Note that a real prolate
trochoid orbit has a very large number of densely packed
loops (see [9]).
Let us now calculate the dimensionless proper time Δσ

required to lower the particle energy from Ei ¼ Emax to Ef.
Using the expression (29), we derive

Δσ ¼ E2
i − E2

f

2κE2
i E

2
f

: ð40Þ

One can estimate an upper bound of Δσ. Taking Ei ¼ Emax
and Ef ¼ Emin and using Eq. (39) we derive

Δσ ≲ Δσmax ≈
ρmin

2κðρmin − 1Þ : ð41Þ

The corresponding to Δσ portion of the guiding center
stable circular orbit ΔC about which the particle makes the
radial oscillations can be calculated with the use of its drift
angular velocity [cf. Eqs. (9) and (35)],

h _ϕi ≈ l
ρ2min

− b ≈
1

4bρ2minðρmin − 1Þ : ð42Þ

We have

ΔC ¼ Δσ
h _ϕi
2π

≈
Δσ

8πbρ2minðρmin − 1Þ : ð43Þ

The maximal portion of the guiding center circular orbit
corresponds to Δσmax,

ΔCmax ≈
1

16πκbρminðρmin − 1Þ2 : ð44Þ

The quantities defined above are presented in Fig. 4 as
functions of ρmin. One can see that the dimensionless proper
time Δσ as well as the portion of the guiding center circular
orbitΔC rapidly decrease for bound orbits corresponding to
larger values of ρmin. This implies that an intensity of the
synchrotron radiation is considerably greater from particles
moving in bound orbits of larger radii. Note that because
the value of κ for an electron is of many orders larger than

that of a proton or a heavy ion, the corresponding values of
Δσ and ΔC are of many orders smaller. Thus, bound orbits
of electrons decay much faster than bound orbits of protons
and heavy ions.
Let us finally calculate an evolution of the characteristic

frequency of the synchrotron radiation. Using the expres-
sions (8), (9), (24), and (26) we derive the dimensionless
characteristic frequency,

ω� ¼ Ω�rg ≈ 0.87bE2: ð45Þ

Then, the expression (29) gives

ω� ≈
0.87bE2

i

1þ 2κE2
i σ

: ð46Þ

The upper bound on the characteristic frequency is [cf.
Eq. (38)]

ω�max ≈ 14b3
ρmaxðρmax − 1Þ3
ð3 − 2ρmaxÞ2

: ð47Þ

According to Fig. 2, the expression (46) implies that the
characteristic frequency of the synchrotron radiation is larger
for prolate trochoid type bound orbits oscillating about the
guiding center stable circular orbit of the radius ρmin than that
for nearly circular orbits of the same ρmin value. Moreover,
the frequency is larger for the orbits of larger value of ρmin.
The rate of the frequency decrease is considerably larger for
electrons than that for protons and heavy ions.

VII. SUMMARY

In this paper we studied a synchrotron radiation from a
charged particle mowing in an equatorial plane of a weakly
magnetized Schwarzschild black hole. The Lorentz force

FIG. 3. Schematic illustration of the decay of radial oscilla-
tions: a transition from the “prolate trochoid” orbit (section a) to
“cycloid” (section b) and to “contracted trochoid” (section c).
The dashed line represents the guiding center stable circular orbit
of ρ ¼ ρmin.

FIG. 4. The dimensionless proper time Δσ and the portion of
the guiding center circular orbit ΔC for a proton orbiting a stellar
mass black hole. The initial and final energy values of the proton
are Ei ¼ Emax and Ef ¼ γðρmin − 1Þ=ρmin with γ ¼ 100.
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acting on the charged particle is directed outward. The
particle originally moves in a bound orbit with loops, which
is a combination of a cyclotron motion and a slow
Keplerian motion of the guiding center. Due to a synchro-
tron radiation, the particle loses its energy. The particle’s
azimuthal angular momentum loss is negligible, comparing
to its energy loss. As a result of the energy loss, there is a
transition of the orbit with loops to a stable circular orbit of
the radius corresponding to the motion of the guiding
center. We calculated the radiation power, the correspond-
ing energy loss, the proper time of the transition, the portion
of the particle orbit where the transition takes place, and the
characteristic frequency of the synchrotron radiation.
Our results show that the radiation power, as measured

with respect to a charged particle’s proper time, is propor-
tional to the squared magnetic field strength and inversely
proportional to the cubed particle’s mass. Thus, for exam-
ple, for electrons the rate of the energy loss of the
synchrotron radiation is of many orders larger than that
for protons and heavy ions. For a particle of the same
energy and charge-to-mass ratio the radiation power is
greater for a stellar mass black holes than that for a
supermassive ones. Moreover, the power is considerably
greater for particles moving in bound orbits whose guiding
center orbit has larger radius.
The orbit decay results in a transition from a prolate

trochoid bound orbit, which has loops, to cycloid bound
orbit, and finally to contracted trochoid bound orbit. The
maximal transition time, as measured with respect to a
particle’s proper time, is inversely proportional to the
squared strength of the magnetic field and proportional to
the cubed particle’s mass. For a given value of the magnetic
field strength, it is of many orders shorter for electrons than
for protons and heavy ions. The portion of the particle’s orbit

where the transition takes place is proportional to the forth
power of the particle mass and inversely proportional to the
cubed strength of the magnetic field. The portion is smaller
for greater radial values of the guiding center orbit. The
characteristic frequency of the synchrotron radiation is
larger for a charged particle moving in a prolate trochoid
type orbit than for the charged particle moving in a cycloid
and contracted trochoid type orbit.
The derived results could be useful in the model of a

hypothetical thin accretion disk around an astrophysical
black hole which is composed of charged test particles.
Such particles can exchange energy due to their collision.
Suppose that before a collision one of the particles moves in
a circular orbit corresponding to the Lorentz force directed
outward, and let due to the collision the particle acquires
extra energy and begins moving in a bound orbit with
loops. Then, because of the synchrotron radiation, the
particle’s energy is transferred to an electromagnetic wave
and the particle’s orbit becomes circular again. Thus, in this
scenario, according to our results, in such an accretion disk
bound orbits with loops have shorter lifetime if compared
with circular ones.
In the analysis presented in this paper the radiation effects

were considered on “a background of given dynamics”which
defines fixed-energy bound orbits. It would be interesting to
consider a dynamical analysis where the radiation reaction
forces are included into the particle’s dynamics.
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