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In this paper we seek for relevant information on the asymptotic cosmological dynamics of the
Brans-Dicke theory of gravity for several self-interaction potentials. By means of the simplest tools of
the dynamical systems theory, it is shown that the general relativity de Sitter solution is an attractor of the
Jordan frame (dilatonic) Brans-Dicke theory only for the exponential potential UðφÞ ∝ expφ, which
corresponds to the quadratic potential VðϕÞ ∝ ϕ2 in terms of the original Brans-Dicke field ϕ ¼ expφ, or
for potentials which approach to expφ at the stable point. At the de Sitter attractor, as well as at the stiff-
matter equilibrium configurations, the dilaton is necessarily massless. We find bounds on the Brans-Dicke
coupling constant ωBD, which are consistent with well-known results.
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I. INTRODUCTION

The Brans-Dicke (BD) theory of gravity [1] represents
the slightest modification of general relativity (GR), by the
addition of a new (scalar) gravitational degree of freedom
ϕ, in addition to the 10 degrees which are associated with
the metric tensor gμν. Besides being the first physically
viable modification of GR, this theory has been cornerstone
for a better understanding of several other modifications of
general relativity. In particular, the equivalence between
BD theory and the fðRÞ theories of gravity has been clearly
established [2]. In contrast to Einstein’s GR, the BD theory
is not a fully geometrical theory of gravity. Actually, one of
the propagators of the gravitational field: the metric tensor,
defines the metric properties of the spacetime; meanwhile
the scalar field ϕ, which also propagates gravity, is a
nongeometric field. The latter modifies the local strength of
the gravitational interactions through the effective gravita-
tional coupling Geff ∝ ϕ−1.
While many aspects of BD theory were well explored in

the past (see the textbooks [3,4]), other aspects were cleared
up just recently. Thanks to the chameleon effect [5], for
instance, it was just recently understood that the lower
experimental bounds on the BD coupling parameter ωBD,
which were set up through experiments in the Solar
System, might not apply in the large cosmological scales
if one considers BD theory with a potential. According to
the chameleon effect, the effective mass of the scalar field
mϕ computed in Einstein’s frame depends on the back-
ground energy density of the environment: In the large
cosmological scales where the background energy density

is very small (of the order of the critical density), the
effective mass is also very small, so that the scalar field
degree of freedom has impact in the cosmological dynam-
ics. Meanwhile, in the Solar System, where the averaged
energy density of the environment is huge compared with
the one in the cosmological scale, the effective mass is
large, so that the Yukawa component of the gravitational
interaction associated with the scalar field ∝ e−mϕr=r is
short-ranged, leading to an effective screening of the scalar
field degree of freedom in the Solar System.1

The Brans-Dicke theory has found very interesting
applications especially in cosmology [4], where it has been
explored as a possible explanation of the present stage of
the accelerated expansion of the Universe [6]. The problem
with this is that, but for some anomalies in the power
spectrum of the cosmic microwave background [7], at the
present stage of the cosmic evolution, any cosmological
model has to approach to the so-called concordance or
ΛCDM model [8]. The mathematical basis for the latter is
the GR (Einstein-Hilbert) action plus a matter action piece:

SΛCDM ¼ 1

16πG

Z
d4x

ffiffiffiffiffi
jgj

p
ðR − 2ΛÞ þ

Z
d4x

ffiffiffiffiffi
jgj

p
LCDM;

ð1Þ

where LCDM is the Lagrangian density of (pressureless)
cold dark matter (CDM). On the other hand, it has been
known for decades that GR can be recovered from the BD
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1In addition to the chameleon effect, the thin-shell effect,
which amounts to a weakening of the effective coupling of the
scalar field to the surrounding matter, conspires to allow for
further screening of the scalar field in the Solar System [5].
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theory only in the limit when the BD coupling con-
stant ωBD → ∞.
In Refs. [9–11], by means of the tools of the dynamical

systems theory, it was (apparently) shown that the Jordan
frame (JF) Brans-Dicke theory leads naturally to the
ΛCDM model since, as the authors showed in [9], the
GR–de Sitter solution is an attractor of JF-BD theory,
independent on the choice of the self-interaction potential
for the BD scalar field.2 The interesting thing is that the
bounds on ωBD found in [9] (ωBD ≈ −3=2), and in [10]
(ωBD ≈ −1), are far from the Solar System–based exper-
imental bound ωBD > 40000 [15].
Although the chameleon effect could (in principle)

explain such a discrepancy between the bounds on ωBD
based in Solar System experimentation, and those based in
cosmological considerations, nevertheless, the bounds
estimated on the basis of cosmological arguments:
ωBD > 120 in [16], and 10 < ωBD < 107 in [17], neither
are consistent with the ones found in Refs. [9,10]. Besides,
we stress that the conclusion on the existence of the GR–de
Sitter (stable) critical point independent on the assumed
potential in [9–11] is misleading. As a matter of fact, in [11]
the authors seem to recognize that the de Sitter equilibrium
configuration arises only for the quadratic monomial
VðϕÞ ∝ ϕ2 and for the lineal VðϕÞ ∝ ϕ potentials. Since
the estimates of [9–11] are based on the analysis of
linearized solutions which are, in fact, very small pertur-
bations around the stable GR–de Sitter critical point (hence
are highly dependent on the choice of the initial condi-
tions), we suspect that these estimates could be physically
meaningless. Actually, linear solutions around general
relativity (plus a cosmological constant), which is obtained
in the formal limit ωBD → ∞ of Brans-Dicke theory, cannot
be reliable sources of bounds on the parameters of the BD
theory.
In this paper we shall apply the simplest tools of the

theory of the dynamical systems—those which are based
on knowledge of linear algebra and of the theory of the
ordinary differential equations—to uncover the dynamics
of cosmological models which are based in the Brans-
Dicke theory of gravity, for several self-interaction poten-
tials, in a convenient phase space. Unlike [9–11], here we
shall explore specific potentials other than (but also
including) the quadratic and the lineal monomials: VðϕÞ ∝
ϕ2 and VðϕÞ ∝ ϕ, respectively (see Sec. IV). For a better
understanding of our analysis we shall study the vacuum
BD theory, and the BD theory with matter, separately

(see Secs. V and VI, respectively). In Sec. VII, we shall
show that it is not enough that the de Sitter solution be a
critical point of the dynamical system, in order for the
ΛCDM model to be an attractor of the BD theory with a
potential. It is a necessary condition for the latter that the
GR–de Sitter, i.e., the de Sitter point which leads to
ϕ ¼ ϕ0 ¼ const, to be a stable critical point instead. It
will be shown that, as a matter of fact, only (exclusively) for
the quadratic monomial potential VðϕÞ ∝ ϕ2, or for poten-
tials that approach to ϕ2 at the stable point, the ΛCDM
model is an attractor of the BD cosmology.
Here we shall pay special attention to the discussion on

the actual physical meaning—if any—of the linearized
solutions which were used in [9–11], in order to bound the
free parameters of the BD theory (see Sec. VIII). Our
discussion favors the estimates based on computations
made at the stable BD–de Sitter equilibrium configuration,
over the estimates based on computations performed at the
linearized solutions around the GR–de Sitter point. For
simplicity of mathematical handling we shall use the
dilatonic field variable φ instead of the standard BD field
ϕ. These variables are related by Eq. (3) below.
At the end of the paper the reader can find an Appendix

with concrete criticism on the procedure and on the results
discussed in Ref. [9].

II. BASIC SETUP

Here we assume the Brans-Dicke theory [1] to dictate the
dynamics of gravity and matter. In the Jordan frame, which
is the one considered in this paper, it is depicted by the
following action:

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
ϕR −

ωBD

ϕ
ð∂ϕÞ2 − 2V þ 2Lm

�
; ð2Þ

where ð∂ϕÞ2 ≡ gμν∂μϕ∂νϕ, V ¼ VðϕÞ is the scalar field
self-interaction potential, ωBD is the BD coupling param-
eter, and Lm is the Lagrangian density of the matter degrees
of freedom. The natural units 8πG ¼ 8π=M2

BD ¼ c ¼ 1 are
adopted. For convenience we rescale the BD scalar field
and, consequently, the self-interaction potential is also
redefined:

ϕ ¼ eφ; VðϕÞ ¼ eφUðφÞ; ð3Þ

so that the action (2) is transformed into the dilatonic BD
action:

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p
eφfR − ωBDð∂φÞ2 − 2U þ 2e−φLmg: ð4Þ

Within the context of the (low-energy) effective string
theory, the latter action is meant, also, to represent the so-
called “string-frame” representation of the theory [18].
Here we prefer, for the moment, to keep talking about

2For prior works where the de Sitter solutions are investigated
within the frame of the scalar-tensor theories, see Ref. [12], where
de Sitter exact and intermediate inflationary solutions are found
for Friedmann-Robertson-Walker (FRW) models with appropri-
ate choice of the coupling function ωBDðφÞ. In [13] it is shown
that intermediate “almost de Sitter” solutions might arise also
when CDM is included. Other, more recent works on this subject
are also found in [14].
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dilatonic JF-BD theory instead of string-frame effective
action.
The following motion equations are obtained from (4):

Gμν ¼ ðωBD þ 1Þ
�
∂μφ∂νφ −

1

2
gμνð∂φÞ2

�

− gμν

�
1

2
ð∂φÞ2 þUðφÞ

�

þ∇μ∂νφ − gμν∇2φþ e−φTðmÞ
μν ;

∇2φþ ð∂φÞ2 ¼ 2

3þ 2ωBD
ð∂φU −UÞ þ e−φ

3þ 2ωBD
TðmÞ;

ð5Þ

where ∇2 ≡ gμν∇μ∂ν, Gμν ¼ Rμν − gμνR=2, and T
ðmÞ
μν is the

stress-energy tensor of the matter degrees of freedom.
In this paper we shall consider FRW spacetimes with flat

spatial sections for which the line element takes the simple
form

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; i; j ¼ 1; 2; 3:

We assume the matter content of the Universe in the form of
a cosmological perfect fluid, which is characterized by the
following state equation pm ¼ wmρm, relating the baro-
tropic pressure pm and the energy density ρm of the fluid,
where wm is the so-called equation of state parameter.
Under these assumptions the cosmological equations (5)
are written as follows:

3H2 ¼ ωBD

2
_φ2 − 3H _φþU þ e−φρm;

_H ¼ −
ωBD

2
_φ2 þ 2H _φþ ∂φU − U

3þ 2ωBD

−
2þ ωBDð1þ wmÞ

3þ 2ωBD
e−φρm;

φ̈þ 3H _φþ _φ2 ¼ 2
U − ∂φU

3þ 2ωBD
þ 1 − 3wm

3þ 2ωBD
e−φρm;

_ρm þ 3Hðwm þ 1Þρm ¼ 0; ð6Þ

where H ≡ _a=a is the Hubble parameter.
Due to the complexity of the system of nonlinear second-

order differential equations (6), it is a very difficult (and
perhaps unsuccessful) task to find exact solutions. Yet, even
when an analytic solution can be found it will not be unique
but just one in a large set of them. This is in addition to the
problem of the stability of given solutions. In this case the
dynamical systems tools come to our rescue. These very
simple tools give us the possibility to correlate such
important concepts in the phase space like past and future
attractors (also saddle equilibrium points), limit cycles,
heteroclinic orbits, etc., with generic behavior of the
dynamical system derived from the set of equations (6),

without the need to analytically solve them. Avery compact
and basic introduction to the application of the dynamical
systems in cosmological settings with scalar fields can be
found in Refs. [19–24].

III. DYNAMICAL SYSTEMS

As it is for any other physical system, the possible states
of a cosmological model may be also correlated with points
in an equivalent state space or phase space. However,
unlike in the classical mechanics case, where the phase
space is spanned by the generalized coordinates and their
conjugate momenta, in a cosmological context the choice
of the phase space variables is not a trivial issue. This leads
to a certain degree of uncertainty in the choice of an
appropriate set of variables of the phase space. There are,
however, certain—not written—rules one follows when
choosing these variables: (i) these should be dimensionless
variables, and (ii) whenever possible, these should be
bounded. The latter requirement is necessary to have a
bounded phase space where all of the existing equilibrium
points are “visible”; i.e., none of them goes to infinity.
Unfortunately it is not always possible to find such
bounded variables.
Besides, a certain controversy is related with the actual

usefulness of the dynamical systems approach in cosmo-
logical settings due to the apparent spurious character of
attractors [25,26]. In spite of this, the dynamical systems
theory provides powerful tools which are commonly used
in cosmology to extract essential information on the
dynamical properties of a variety of cosmological models,
in particular, those models where the scalar field plays a
role [19–24,27–33]. In the case of scalar-tensor theories, in
particular the BD theory of gravity [1], in spite of several
published works [9–11,34–40], the dynamical systems are
not of common usage. In this paper, following the studies in
[9–11], we want to show the power of the simplest tools of
the dynamical systems theory in order to extract essential
information on the cosmological dynamics of BD-based
cosmological models.
In general, when one deals with BD cosmological

models it is customary to choose the following variables
[9–11]:

x≡ _φffiffiffi
6

p
H

¼ φ0ffiffiffi
6

p ; y≡
ffiffiffiffi
U

pffiffiffi
3

p
H
; ξ≡ 1−

∂φU

U
; ð7Þ

where the tilde means derivative with respect to the variable
τ≡ ln a—the number of e-foldings. As a matter of fact x
and y in Eq. (7) are the same variables which are usually
considered in similar dynamical systems studies of FRW
cosmology, within the frame of Einstein’s general relativity
with a scalar field matter source [19]. In terms of the
above variables the Friedmann constraint in Eq. (6) can be
written as
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Ωeff
m ≡ e−φρm

3H2
¼ 1þ

ffiffiffi
6

p
x − ωBDx2 − y2 ≥ 0: ð8Þ

Notice that one might define a dimensionless potential
energy density and an “effective kinetic” energy density

ΩU ¼ U
3H2

¼ y2; Ωeff
K ¼ xðωBDx −

ffiffiffi
6

p
Þ; ð9Þ

respectively, so that the Friedmann constraint can be
rewritten in the following compact form:

Ωeff
K þ ΩU þ Ωeff

m ¼ 1:

The definition for the dimensionless effective kinetic
energy densityΩeff

K has not the same meaning as in GR with
a scalar field. It may be a negative quantity without
challenging the known laws of physics. Besides, since
there is not restriction on the sign of Ωeff

K , then, it might
happen that ΩU ¼ U=3H2 > 1. This is due to the fact that
the dilaton field in the BD theory is not a standard matter
field but it is a part of the gravitational field itself. This
effective (dimensionless) kinetic energy density vanishes
whenever

x ¼
ffiffiffi
6

p

ωBD
⇒ _φ ¼ 6

ωBD
H ⇒ φ ¼ 6

ωBD
ln a

or if

x ¼ 0 ⇒ _φ ¼ 0 ⇒ φ ¼ const;

which, provided that the matter fluid is cold dark matter,
corresponds to the GR–de Sitter universe, i.e., to the
ΛCDM model.
The following are useful equations which relate _H=H2

and φ̈=H2 with the phase space variables x, y and ξ:

_H
H2

¼ 2
ffiffiffi
6

p
x− 3ωBDx2−

3y2ξ
3þ 2ωBD

−
2þωBDð1þwmÞ

3þ 2ωBD
3Ωeff

m ;

φ̈

H2
¼−3

ffiffiffi
6

p
x− 6x2þ 6y2ξ

3þ 2ωBD
þ 1− 3wm

3þ 2ωBD
3Ωeff

m : ð10Þ

Our goal will be to write the resulting system of
cosmological equations (6), in the form of a system of
autonomous ordinary differential equations (ODEs) in
terms of the variables x, y, ξ, of some phase space. We have

x0 ¼ φ̈ffiffiffi
6

p
H2

− x
_H
H2

;

y0 ¼ y

� ffiffiffi
6

p

2
ð1 − ξÞx −

_H
H2

�
;

ξ0 ¼ −
ffiffiffi
6

p
xð1 − ξÞ2ðΓ − 1Þ; Γ≡ U∂2

φU

ð∂φUÞ2 ; ð11Þ

or, after substituting Eqs. (10) into (11), we obtain the
following autonomous system of ODEs:

x0 ¼ −3xð1þ
ffiffiffi
6

p
x − ωBDx2Þ þ

xþ ffiffiffiffiffiffiffiffi
2=3

p
3þ 2ωBD

3y2ξ

þ
1−3wmffiffi

6
p þ ½2þ ωBDð1þ wmÞ�x

3þ 2ωBD
3Ωeff

m ;

y0 ¼ y

�
3x

�
ωBDx −

ξþ 3ffiffiffi
6

p
�
þ 3y2ξ
3þ 2ωBD

þ 2þ ωBDð1þ wmÞ
3þ 2ωBD

3Ωeff
m

�
;

ξ0 ¼ −
ffiffiffi
6

p
xð1 − ξÞ2ðΓ − 1Þ; ð12Þ

where Ωeff
m is given by Eq. (8) and it is assumed that Γ ¼

U∂2
φU=ð∂φUÞ2 can be written as a function of ξ [24]:

Γ ¼ ΓðξÞ. Hence, the properties of the dynamical system
(12) are highly dependent on the specific functional form of
the potential U ¼ UðφÞ.

IV. THE DYNAMICAL SYSTEM FOR DIFFERENT
SELF-INTERACTION POTENTIALS

In this section we shall write the dynamical system (12)
for a variety of self-interaction potentials of cosmological
interest. It is worth noticing that the only information on the
functional form of the self-interaction potential is encoded
in the definition of the parameter Γ in Eq. (12). Hence, what
we need is to write the latter parameter as a concrete
function of the coordinate ξ for given potentials.

A. Exponential potential

We start with the study of the exponential potential

UðφÞ ¼ M2ekφ; ð13Þ

which, in terms of the standard BD field ϕ [see Eq. (3)],
amounts to the power-law potential VðϕÞ ¼ M2ϕkþ1 in the
action (2). In Eq. (13), M2 and k are free constant
parameters. In this—the most simple—case

ξ ¼ 1 −
∂φU

U
¼ 1 − k

is a constant, so that the system of ODEs (12) reduces
dimensionality from 3 to 2. The fact that, for the
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exponential potential Γ ¼ 1, is unimportant in this case
since, as said, ξ is not a variable but a constant.
The following plane-autonomous system of ODEs is

obtained:

x0 ¼ −3xð1þ
ffiffiffi
6

p
x − ωBDx2Þ þ

3ð1 − kÞ
3þ 2ωBD

ðxþ
ffiffiffiffiffiffiffiffi
2=3

p
Þy2

þ
1−3wmffiffi

6
p þ ½2þ ωBDð1þ wmÞ�x

3þ 2ωBD
3Ωeff

m ; ð14Þ

y0 ¼ y

�
3x

�
ωBDx −

4 − kffiffiffi
6

p
�
þ 3ð1 − kÞ
3þ 2ωBD

y2

þ 2þ ωBDð1þ wmÞ
3þ 2ωBD

3Ωeff
m

�
; ð15Þ

where, as stated before, Ωeff
m is given by Eq. (8).

B. Combination of exponentials

The combination of exponentials (M2, N2, k and m are
free constant parameters)

UðφÞ ¼ M2ekφ þ N2emφ; ð16Þ

which corresponds to the BD potential

VðϕÞ ¼ M2ϕkþ1 þ N2ϕmþ1;

leads to the following:

ΓðξÞ ¼ ðkþmÞ ð1 −
mk
kþm − ξÞ

ð1 − ξÞ2 ; ð17Þ

where we have taken into consideration that

ξ ¼ 1 −
∂φU

U
¼ 1 − kþ ð1 −mÞðNMÞ2eðm−kÞφ

1þ ðNMÞ2eðm−kÞφ :

As a consequence the third autonomous ODE in the
dynamical system (12) can be written as

ξ0 ¼ −
ffiffiffi
6

p
x½kþm −mk − 1 − ðkþm − 2Þξ − ξ2�: ð18Þ

The particular case when M2 ¼ N2, m ¼ −k, corre-
sponds to the cosh potential:

UðφÞ ¼ 2M2 coshðkφÞ; ð19Þ

for which ΓðξÞ ¼ k2=ð1 − ξÞ2, and

ξ0 ¼ −
ffiffiffi
6

p
x½k2 − ð1 − ξÞ2�: ð20Þ

C. cosh and sinh-like potentials

The cosh-like potentials

UðφÞ ¼ M2 coshkðμφÞ; ð21Þ

where M2, k and μ are constant parameters, are also very
interesting from the point of view of the cosmology [41].
These correspond to potentials of the following kind:

VðϕÞ ¼ M2ϕ½coshðlnϕμÞ�k; ð22Þ

in terms of the original BD field ϕ. We have

ξ ¼ 1 −
∂φU

U
¼ 1 − kμ tanhðμφÞ;

so that

ΓðξÞ ¼ k2μ2 þ ðk − 1Þð1 − ξÞ2
kð1 − ξÞ2 : ð23Þ

The resulting autonomous ODE—third equation in (12)—
reads

ξ0 ¼ −
ffiffiffi
6

p

k
x½k2μ2 − ð1 − ξÞ2�: ð24Þ

Notice that by setting k ¼ 1 and then replacing k → μ one
recovers the ODE (20) for the cosh potential (19).
Working in a similar way with the sinh-like potential

UðφÞ ¼ M2sinhkðμφÞ; ð25Þ

we obtain

ξ ¼ 1 − kμcotanhðμφÞ;

and the same

ΓðξÞ ¼ k2μ2 þ ðk − 1Þð1 − ξÞ2
kð1 − ξÞ2 ;

so that the corresponding autonomous ODE is the same
Eq. (25) as for the cosh-like potential. The difference
resides in the range of the variable ξ. For the cosh-like
potential one has

1 − kμ ≤ ξ ≤ 1þ kμð−∞ < φ < ∞Þ; ð26Þ

while for the sinh-like one

1þ kμ ≤ ξ < ∞;

when −∞ < φ < 0, and
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−∞ < ξ ≤ 1 − kμ;

if 0 < φ < ∞. Here we have assumed that both k and μ are
non-negative quantities (k ≥ 0, μ ≥ 0).

V. VACUUM BRANS-DICKE COSMOLOGY

A significant simplification of the dynamical equations is
achieved when matter degrees of freedom are not consid-
ered. In this case, since Ωeff

m ¼ 0⇒ y2¼ 1þ ffiffiffi
6

p
x−ωBDx2,

then the system of ODEs (12) simplifies to a plane-
autonomous system of ODEs:

x0 ¼
�
−3xþ 3

xþ ffiffiffiffiffiffiffiffi
2=3

p
3þ 2ωBD

ξ

�
ð1þ

ffiffiffi
6

p
x − ωBDx2Þ;

ξ0 ¼ −
ffiffiffi
6

p
xð1 − ξÞ2ðΓ − 1Þ: ð27Þ

In the present case one has

ΩU ¼ U
3H2

¼ y2 ¼ 1þ
ffiffiffi
6

p
x − ωBDx2;

Ωeff
K ¼ xðωBDx −

ffiffiffi
6

p
Þ ⇒ Ωeff

K þ ΩU ¼ 1; ð28Þ
where we recall that the definition of the effective
(dimensionless) kinetic energy density Ωeff

K has not the
same meaning as in GR with scalar field matter, and it
may be, even, a negative quantity. In this paper we
consider non-negative self-interaction potentials
UðφÞ ≥ 0, so that the dimensionless potential energy
density ΩU ¼ y2 is restricted to be always non-negative:
ΩU ¼ 1þ ffiffiffi

6
p

x − ωBDx2 ≥ 0. Otherwise, y2 < 0, and the
phase plane would be a complex plane. Besides, we shall be
interested in expanding cosmological solutions exclusively
(H ≥ 0), so that y ≥ 0. Because of this the variable x is
bounded to take values within the following interval:

α− ≤ x ≤ αþ; α� ¼
ffiffiffi
3

2

r �
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ωBD=3
p

ωBD

�
: ð29Þ

This means that the phase space for the vacuum Brans-
Dicke theory Ψvac can be defined as follows:

Ψvac ¼ fðx; ξÞ∶α− ≤ x ≤ αþg; ð30Þ
where the bounds on the variable ξ—if any—are set by the
concrete form of the self-interaction potential (see below).
Another useful quantity is the deceleration parameter

q ¼ −1 −
_H
H2

¼ −1 − 2
ffiffiffi
6

p
xþ 3ωBDx2

þ 3ð1þ ffiffiffi
6

p
x − ωBDx2Þξ

3þ 2ωBD
: ð31Þ

Seemingly, in accordance with the results of [9–11],
without the specification of the function ΓðξÞ, there are
found four dilatonic equilibrium points Pi∶ðxi; ξiÞ, in the

phase space corresponding to the dynamical system (27).
The first one is the GR–de Sitter phase:

ð0; 0Þ ⇒ x ¼ 0 ⇒ φ ¼ φ0 and

y2 ¼ 1 ⇒ 3H2 ¼ U ¼ const;

which corresponds to accelerated expansion q ¼ −1. Given
that the eigenvalues of the linearization matrix around this
point depend on the concrete form of the function ΓðξÞ,

λ1;2 ¼ −
3

2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ð1 − ΓÞ

3ð3þ 2ωBDÞ

s !
;

at first sight it appears that nothing can be said about the
stability of this solution until the functional form of the self-
interaction potential is specified. Notice, however, that
since ξ ¼ 0 at this equilibrium point, this means that
UðφÞ ∝ eφ; i.e., the function Γ is completely specified:
Γ ¼ 1. As a matter of fact, the eigenvalues of the lineari-
zation matrix around (0,0) are λ1 ¼ −3, λ2 ¼ 0. This means
that (0,0) is a nonhyperbolic point.
We found, also, another de Sitter solution:

q ¼ −1 ⇒ _H ¼ 0, which is associated with scaling of
the effective kinetic and potential energies of the dilaton:

P∶
�

1ffiffiffi
6

p ð1þ ωBDÞ
; 1

�
⇒

Ωeff
K

ΩU
¼ −

6þ 5ωBD

12þ 17ωBD þ 6ω2
BD

;

λ1 ¼ −
4þ 3ωBD

1þ ωBD
; λ2 ¼ 0; ð32Þ

where, as before, λ1 and λ2 are the eigenvalues of the
linearization matrix around the critical point. We call this as
BD–de Sitter critical point to differentiate it from the
GR–de Sitter point.
In order to make clear what the difference is between

both de Sitter solutions, let us note that the Friedmann
constraint (8), evaluated at the BD–de Sitter point above,
can be written as

e−φρm ¼ 3H2
0 þ

6þ 5ωBD

6ð1þ ωBDÞ2
3H2

0 − U0;

i.e., e−φρm ¼ const. This means that the weakening or
strengthening of the effective gravitational coupling
(Geff ∝ e−φ) is accompanied by a compensating growing
or decreasing property of the energy density of matter
ρm ∝ eφ, which leads to an exponential rate of expansion
aðtÞ ∝ eH0t. This is to be contrasted with the GR–de Sitter
solution: 3H2

0 ¼ U0 ⇒ aðtÞ ∝ e
ffiffiffiffiffiffiffiffi
U0=3

p
t, which is obtained

only for vacuum, ρvac ¼ U0; ρm ¼ 0.
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The effective stiff-dilaton critical points (Ωeff
K ¼ 1)

P�∶ðα�; 1Þ ⇒ q� ¼ 2þ
ffiffiffi
6

p
α�;

λ�1 ¼ 6

�
1þ

ffiffiffi
2

3

r
α�

�
; λ2 ¼ 0; ð33Þ

are also found, where the α� are defined in Eq. (29).
In the paragraph starting below Eq. (31), we said that,

seemingly (in accordance with the results of Refs. [9–11]),
the obtained critical points are quite independent of the
form of the function Γ. Notice, however, that this is not true
at all. For the GR–de Sitter point, for instance, ξ ¼ 0, which
means that

ξ ¼ 1 −
∂φU

U
¼ 0 ⇒ U ∝ eφ;

forcing Γ ¼ 1. For the remaining equilibrium points,
ξ ¼ 1 ⇒ U ¼ const, and Γ ¼ undefined. This means that
the equilibrium points listed above exist only for specific
self-interaction potentials, but not for arbitrary potentials.
Hence, contrary to the related statements in [9–11], the
above results are not as general as they seem to be.
Given that the critical points obtained before were all

nonhyperbolic, resulting in a lack of information on the
corresponding asymptotic properties, in the following
subsections we shall focus in the exponential potential
(13): UðφÞ ∝ expðkφÞ ⇒ ξ ¼ 1 − k, which includes the
particular case when

k ¼ 1 ⇒ ξ ¼ 0 ⇒ UðφÞ ¼ M2 expφ ⇒ Γ ¼ 1;

and the cosmological constant case

k ¼ 0 ⇒ ξ ¼ 1 ⇒ U ¼ M2;

with the hope to get more precise information on the
stability properties of the corresponding equilibrium
configurations.3 These particular cases: ξ ¼ 0 and ξ ¼ 1,
correspond to the four critical points obtained above. For
completeness we shall consider also other potentials than
the exponential.

A. Exponential potential

Let us investigate the vacuum FRW-BD cosmology
driven by the exponential potential (13). In this case, since
ξ ¼ 1 − k is a constant, the plane-autonomous system of
ODEs (27) simplifies to a single autonomous ODE:

x0 ¼ −
�ðkþ 2þ 2ωBDÞx −

ffiffi
2
3

q
ð1 − kÞ

1þ 2ωBD=3

�

× ð1þ
ffiffiffi
6

p
x − ωBDx2Þ: ð34Þ

The critical points of the latter dynamical system are

x1 ¼
ffiffiffiffiffiffiffiffi
2=3

p ð1 − kÞ
kþ 2þ 2ωBD

; x� ¼ α�; ð35Þ

where the α� are given by Eq. (29). Notice that, since xi ≠
0 (but for k ¼ 1, in which case x1 ¼ 0 and q ¼ −1), there
are not critical points associated with constant φ ¼ φ0. This
means that the de Sitter phase with _φ ¼ 0 (φ ¼ const),
UðφÞ ¼ const, i.e., the one which occurs in GR and which
stands at the heart of the ΛCDM model, does not arise in
the general case when k ≠ 1.
Hence, only in the particular case of the exponential

potential (13) with k ¼ 1 (ξ ¼ 0), which corresponds to the
quadratic potential in terms of the original BD variables:
VðϕÞ ¼ M2ϕ2, the GR–de Sitter phase is a critical point of
the dynamical system (34). In this case the critical points
are [see Eq. (35)] x1 ¼ 0, x� ¼ α�. Worth noticing is
that x1 ¼ 0 corresponds to the GR–de Sitter solution
3H2¼M2expφ0; meanwhile, the x� ¼ α� correspond to
the stiff-fluid (kinetic energy) dominated phase: Ωeff

K ¼ 1.
While in the former case the deceleration parameter
q ¼ −1 − _H=H2 ¼ −1, in the latter case it is found to be

q ¼ 2þ
ffiffiffi
6

p
αþ > 0: ð36Þ

For small (linear) perturbations ϵ ¼ ϵðτÞ around the
critical points: x ¼ xi þ ϵ, ϵ ≪ 1, one has that, around
the de Sitter solution, ϵ0 ¼ −3ϵ ⇒ ϵðτÞ ∝ expð−3τÞ, so
that it is an attractor solution. Meanwhile, around the stiff-
matter solutions,

ϵ�ðτÞ ∝ e3ð2þ
ffiffi
6

p
α�Þτ;

so that, if one assumes non-negativeωBD ≥ 0, the points x�
are always past attractors (unstable equilibrium points)
since 2þ ffiffiffi

6
p

α− > 0. For negative ωBD < 0, these points
are both past attractors whenever ωBD < −3=2. In this latter
case, for −3=2 < ωBD < 0, the point xþ is a past attractor,
while the point x− is a future attractor instead.

B. Constant potential UðφÞ ¼ M2

The constant potential is a particular case of the
exponential (13), when k ¼ 0 (ξ ¼ 1 ⇒ U ¼ const). In
this case the autonomous ODE (34) simplifies:

x0 ¼
� ffiffiffiffiffiffiffiffi

2=3
p

− 2ð1þ ωBDÞx
3þ 2ωBD

�
ð1þ

ffiffiffi
6

p
x − ωBDx2Þ: ð37Þ

3When the critical point under scrutiny is a nonhyperbolic
point the linear analysis is not enough to get useful information
on the stability of the point. In this case other tools, such as the
center manifold theorem, are to be invoked [42,43].
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The critical points correspond to the following values of the
independent variable x:

x1 ¼
1ffiffiffi

6
p ð1þ ωBDÞ

; x� ¼ α�: ð38Þ

Since, in this case,

_H
H2

¼ −
3 −

ffiffiffi
6

p
ωBDx

3þ 2ωBD
½1 −

ffiffiffi
6

p
ð1þ ωBDÞx�

⇒
_H
H2

				
x1

¼ 0 ⇒ H ¼ H0; ð39Þ

the point x1 corresponds to BD–de Sitter expansion
(q ¼ −1). At x1 the effective kinetic and potential energies
of the dilaton scale as

Ωeff
K

ΩU
¼ −

6þ 5ωBD

12þ 17ωBD þ 6ω2
BD

;

where, as mentioned before, the minus sign is not prob-
lematic since Ωeff

K is not the kinetic energy of an actual
matter field. As already shown—see the paragraph starting
below Eq. (32) and ending above Eq. (33)—this point does
not correspond to a ΛCDM phase of the cosmic evolution,
since, unlike in the GR case, in the BD theory the effective
gravitational coupling Geff ∝ e−φ is not a constant and,
besides, the de Sitter solution H ¼ H0 is obtained in the
presence of ordinary matter with energy density ρm ∝ G−1

eff.
For more on this see Sec. VII.
Given that under a small perturbation (ϵ ≪ 1) around x1

ϵðτÞ ∝ exp

�
−
4þ 3ωBD

1þ ωBD
τ

�
;

this is a stable equilibrium point (future attractor) if the BD
parameter ωBD ≥ 0. In case it were a negative quantity,
instead, x1 were a future attractor whenever ωBD < −4=3
and −1 < ωBD < 0.
The critical points x� in Eq. (38) correspond to kinetic

energy-dominated phases, i.e., to stiff-matter solutions
Ωeff

K ¼ 1, where q ¼ 2þ ffiffiffi
6

p
αþ > 0, and, under a small

perturbation ϵ0 ¼ λ�ϵ,

λ� ¼ 6

�
1þ

ffiffiffi
2

3

r
α�

�
;

so that, assuming non-negative ωBD ≥ 0, the points x� are
always unstable (source critical points). In the case when
ωBD < 0 is a negative quantity, the point x− is unstable if
ωBD < −4=3 (the critical point xþ is always unstable).

C. Other potentials than the exponential

The concrete form of the dynamical system (27) depends
crucially on the function ΓðξÞ. For a combination of
exponentials, for instance, one has [see Eq. (17)]

x0 ¼
�
−3xþ 3

xþ ffiffiffiffiffiffiffiffi
2=3

p
3þ 2ωBD

ξ

�
ð1þ

ffiffiffi
6

p
x − ωBDx2Þ;

ξ0 ¼ −
ffiffiffi
6

p
x½kþm − km − 1−ðkþm − 2Þξ − ξ2�: ð40Þ

In this case (assuming that m > k), since

ξ ¼ 1 − kþ ð1 −mÞðNMÞ2eðm−kÞφ

1þ ðNMÞ2eðm−kÞφ ; ð41Þ

as φ undergoes −∞ < φ < ∞ ⇒ 1 −m ≤ ξ ≤ 1 − k.
Hence, the phase space where to look for equilibrium
points of the dynamical system (40) is the bounded
compact region of the phase plane ðx; ξÞ, given by

Ψc: exp
vac ¼ fðx; ξÞ∶α− ≤ x ≤ αþ; 1 −m ≤ ξ ≤ 1 − kg;

where, we recall, α� ¼ ffiffiffiffiffiffiffiffi
3=2

p ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ωBD=3

p Þ=ωBD
[see Eq. (29)].
In the case of the cosh and sinh-like potentials, Eq. (21)

and (25), respectively, one has

x0 ¼
�
−3xþ 3

xþ ffiffiffiffiffiffiffiffi
2=3

p
3þ 2ωBD

ξ

�
ð1þ

ffiffiffi
6

p
x − ωBDx2Þ;

ξ0 ¼ −
ffiffiffi
6

p

k
xðk2μ2 − 1þ 2ξ − ξ2Þ: ð42Þ

The difference between the cosh and the sinh-like
potentials is in the phase space where to look for critical
points of (42). For the cosh-like potentials one has that the
phase space is the following bounded and compact region
of the phase plane:

Ψcosh
vac ¼ fðx; ξÞ∶α− ≤ x ≤ αþ; 1 − kμ ≤ ξ ≤ 1þ kμg;

while, for the sinh-like potentials the phase space is the
unbounded region Ψsinh

vac ¼ Ψsinh−
vac ∪ Ψsinhþ

vac , where

Ψsinh−
vac ¼ fðx; ξÞ∶α− ≤ x ≤ αþ; 1þ kμ ≤ ξ < ∞g;

Ψsinhþ
vac ¼ fðx; ξÞ∶α− ≤ x ≤ αþ;−∞ < ξ ≤ 1 − kμg:

A distinctive feature of the dynamical systems (40) and
(42) is that the GR–de Sitter critical point with x ¼ ξ ¼ 0,

PdS∶ð0; 0Þ ⇒ H ¼ H0; φ ¼ φ0;

is shared by all of them. However, as it will be shown in
Sec. VII, this does not mean that for potentials of the kinds
(16), (21), and (25), with arbitrary free parameters, the
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ΛCDM model is an equilibrium point of the corresponding
dynamical system. As a matter of fact, only for those
arrangements of the free parameters which allow that the
given potential approaches to the exponential U ∝ expφ as
an asymptote, the ΛCDM model is an equilibrium con-
figuration of the corresponding dynamical system (see the
discussion in Sec. VII).

VI. BRANS-DICKE COSMOLOGY
WITH MATTER

In the former section we have investigated the dynamical
properties of the vacuum Brans-Dicke cosmology in the
phase space. Here we shall explore the case when the field
equations are sourced by CDM, i.e., by pressureless dust
with wm ¼ 0, and for exponential potentials (13) only,
since, in this latter case, ξ ¼ 1 − k is a constant. This means
that the relevant phase space will be a region of the phase
plane ðx; yÞ. For this case the autonomous system of ODEs
(12) results in the following plane-autonomous system [see
Eqs. (14) and (15)]:

x0 ¼ −3xð1þ
ffiffiffi
6

p
x − ωBDx2Þ þ

3ð1 − kÞ
3þ 2ωBD

ðxþ
ffiffiffiffiffiffiffiffi
2=3

p
Þy2

þ 1þ ffiffiffi
6

p ð2þ ωBDÞxffiffiffi
6

p ð3þ 2ωBDÞ
3Ωeff

m ;

y0 ¼ y

�
3x

�
ωBDx −

4 − kffiffiffi
6

p
�
þ 3ð1 − kÞ
3þ 2ωBD

y2

þ 2þ ωBD

3þ 2ωBD
3Ωeff

m

�
; ð43Þ

which has physically meaningful equilibrium configura-
tions only within the phase plane:

Ψmat ¼
n
ðx;yÞ∶α− ≤ x≤ αþ;0≤ y≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
6

p
x−ωBDx2

q o
;

where we have considered the facts that Ωeff
m ≥ 0 and

y ∈ Rþ ∪ 0. The critical points of this dynamical system
are

Pstiff∶
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ωBD=3

p
ffiffiffiffiffiffiffiffi
2=3

p
ωBD

; 0

�
⇒ Ωeff

m ¼ 0;

P0
stiff∶

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ωBD=3
p
ffiffiffiffiffiffiffiffi
2=3

p
ωBD

; 0

�
⇒ Ωeff

m ¼ 0;

Psc∶
�

1ffiffiffi
6

p ð1þωBDÞ
; 0

�
⇒ Ωeff

m ¼ 12þ 17ωBD þ 6ω2
BD

6ð1þωBDÞ2
;

P0
sc∶
�
−

ffiffiffiffiffiffiffiffi
3=2

p
kþ 1

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 4þ 3ωBD

p ffiffiffi
2

p ðkþ 1Þ

�
⇒

Ωeff
m ¼ 2k2 − 3k− 8− 6ωBD

2ðkþ 1Þ2 ;

P�∶
�
−

ffiffiffiffiffiffiffiffi
2=3

p ðk− 1Þ
kþ 2þ 2ωBD

;
β

kþ 2þ 2ωBD

�
⇒

Ωeff
m ¼ 12− 6k− 6k2 þ ð7− 2k− 5k2ÞωBD

2ðkþ 2þ 2ωBDÞ2
; ð44Þ

where, in the last critical point we have defined the
parameter: β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ωBD=3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8þ 6ωBD − kðk − 2Þp
.

The equilibrium points Pstiff and P0
stiff represent stiff-fluid

solutions; meanwhile the remaining points represent scal-
ing between the energy density of the dilaton and the CDM.
Let us to focus into two of the above critical points: P0

sc
and P�. As it was for vacuum BD cosmology, the de Sitter
critical point does not arise unless k ¼ 1. In this latter case
(k ¼ 1), for the last equilibrium point in Eq. (44), one gets

P�∶ð0;1Þ; q¼−1ðH¼H0Þ; Ωeff
m ¼ 0; λ1;2 ¼−3;

where λ1 and λ2 are the eigenvalues of the linearization
matrix around P�∶ð0; 1Þ. This means that, for the

FIG. 1 (color online). Phase portrait of the plane-autonomous system of ODEs (43) for k ¼ 1, corresponding to the exponential
potential UðφÞ ∝ expφ, for different values of the BD coupling constant (from left to right): ωBD ¼ 0, ωBD ¼ 1.5, ωBD ¼ 15 and
ωBD ¼ 150, respectively. The GR–de Sitter point (x ¼ 0, y ¼ 1) is always the future attractor. The stiff-matter solution in the bottom-
right corner in each figure is a saddle critical point in the first two cases, while it is a past attractor in the last two cases. The remaining
stiff-matter point—the one in the bottom-left corner—is always a past attractor.
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exponential potential UðφÞ ∝ expφ, the GR–de Sitter
solution is an attractor of the dynamical system (43).
This is evident from Fig. 1, where the attractor character
of the critical point (0,1) is apparent.
For the scaling point P0

sc, the deceleration parameter is
given by

q ¼ k − 2

2ðkþ 1Þ ;

so that, for k ¼ 0, which corresponds to the constant
potential U ¼ U0, the BD–de Sitter solution is obtained

q ¼ −1 ⇒ aðtÞ ∝ eH0t; e−φρm ¼ const:

However, since

Ωm ¼ 2k2 − 3k − 8 − 6ωBD

2ðkþ 1Þ2 ;

at k ¼ 0,Ωeff
m ¼ −ð4þ 3ωBDÞ is a negative quantity, unless

the Brans-Dicke coupling parameter falls into the very
narrow interval −3=2 < ωBD ≤ −4=3. Hence, for k ¼ 0,
but for −1.5 < ωBD ≤ −1.33, the point P0

sc does not
actually belong in the phase space Ψmat.

VII. (NON)EMERGENCE OF THE ΛCDM PHASE
FROM THE BRANS-DICKE COSMOLOGY

This problem has been generously discussed before in
Ref. [9]. The conclusion on the emergence of the ΛCDM
cosmology starting from the Brans-Dicke theory seems to
be supported by the existence of a de Sitter phase, which
was claimed to be independent on the concrete form of the
self-interaction potential of the dilaton field in [9,10], and
then, in Ref. [11] the same authors somewhat corrected
their previous claim. In this section we shall address this
problem and we will clearly show that, in general [but for
the exponential potential UðφÞ ∝ eφ], the ΛCDM model is
not an attractor of the FRW-BD cosmology.4

Before we go any further, we want to make clear that the
latter statement on the nonuniversality of the GR–de Sitter
equilibrium point,does not forbid the possible existence of
exact de Sitter solutions for several choices of the self-
interaction potential (see, for instance, Ref. [14]). What the
statement means is that, in case such solutions are found,
these would not be generic solutions, but very particular
(unstable) solutions instead, which are unable to represent
any sensible cosmological scenario.
Before we start our discussion, it will be useful to state

that a de Sitter solution arises whenever

q ¼ −1 ⇒ _H ¼ 0 ⇒ H ¼ H0 ⇒ aðtÞ ∝ eH0t:

This condition can be achieved even if x ≠ 0. However,
only when

x ¼ 0 ⇒ _φ ¼ 0 ⇒ φ ¼ φ0;

the de Sitter solution can lead to the ΛCDM model, where
by ΛCDM model we understand the FRW cosmology
within the frame of Einstein’s GR, with a cosmological
constant Λ and cold dark matter as the sources of gravity.
Actually, only if φ ¼ φ0 is a constant, the action (4)—up to
a meaningless factor of 1=2—is transformed into the
Einstein-Hilbert action plus a matter source:

S ¼ 1

8πGN

Z
d4x

ffiffiffiffiffi
jgj

p
fR − 2U0g þ 2

Z
d4x

ffiffiffiffiffi
jgj

p
Lm;

where eφ0 ¼ 1=8πGN . When Lm is the Lagrangian of
CDM, the latter action—compare with Eq. (1)—is the
mathematical expression of what we call the ΛCDM
cosmological model. In the remaining part of this section
we shall discuss the (non)universality of the ΛCDM
equilibrium point. For this purpose, in order to find useful
clues, we shall explore first the simpler situation of vacuum
BD cosmology and, then, the Brans-Dicke cosmology with
CDM will be explored.

A. Vacuum FRW-BD cosmology

In this simpler situation the de Sitter phase arises only if
one assumes an exponential potential of the form

UðφÞ ∝ expφ ⇒ VðϕÞ ¼ M2ϕ2;

which means that ξ ¼ 0 and Γ ¼ 1 are both completely
specified, or if ξ ¼ 1, i.e., if

UðφÞ ¼ M2 ⇒ VðϕÞ ¼ M2ϕ:

As a matter of fact, as shown in Sec. V, for exponential
potentials of the general form

UðφÞ ¼ M2ekφ ⇒ VðϕÞ ¼ M2ϕkþ1;

with k ≠ 1 and k ≠ 0, the de Sitter critical point does not
exist. In other words, speaking in terms of the original BD
variables: but for the quadratic and the lineal monomials,
VðϕÞ ∝ ϕ2 and VðϕÞ ∝ ϕ, respectively—also for those
potentials which approach to either ϕ2 or ϕ at the stable
point of the potential—the de Sitter solution is not an
equilibrium point of the corresponding dynamical system
(see the worked examples in the Appendix).
Now we want to show that, even when a de Sitter

solution is a critical point of (37), the existence of a de Sitter
equilibrium point in the vacuum BD cosmology, by itself,

4A detailed analysis of the procedure and of the misleading
conclusions in [9] can be found in the Appendix.
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does not warrant that the ΛCDM model is approached. As
an illustration of this statement, let us choose the vacuum
FRW-BD cosmology driven by a constant potential (see
Sec. V B). In this case one of the equilibrium points of the
dynamical system (37),

x1 ¼ 1=
ffiffiffi
6

p
ð1þ ωBDÞ ≠ 0;

corresponds to the de Sitter solution since

q ¼ −1 ⇒
_H
H2

¼ 0 ⇒ H ¼ H0:

The tricky situation here is that, although the de Sitter
solution (H ¼ H0) is a critical point of the dynamical
system (37), the ΛCDM model is not mimicked. Actually,
at x1,

x ¼ _φffiffiffi
6

p
H

¼ 1ffiffiffi
6

p ð1þ ωBDÞ
⇒

_φ ¼ H0

1þ ωBD
⇒ φðtÞ ¼ H0t

1þ ωBD
þ φ0;

i.e., the scalar field evolves linearly with the cosmic time t.
This point corresponds to BD theory and not to GR since,
while in the latter Newton’s constant GN is a true constant,
in the former the effective gravitational coupling (the one
measured in Cavendish-like experiments) evolves with the
cosmic time:

Geff ¼
4þ 2ωBD

3þ 2ωBD
e−φ ⇒

_Geff

Geff
¼ −

H0

1þ ωBD
:

Taking the Hubble time to be t0 ¼ 13.817 × 109 y (as, for
instance, in [9]), i.e., the present value of the Hubble
constant H0 ¼ 7.24 × 10−11 y−1, one gets

_Geff

Geff
¼ −

1

1þ ωBD
7.24 × 10−11 y−1: ð45Þ

As a consequence of the above, if one considers
cosmological constraints on the variability of the gravita-
tional constant [44], for instance the ones in [45], which
uses WMAP-5yr data combined with SDSS power spec-
trum data:

−1.75 × 10−12 y−1 <
_G
G

< 1.05 × 10−12 y−1;

or the ones derived in Ref. [46], where the dependence of
the abundances of the D, 3He, 4He, and 7Li upon the
variation of G was analyzed:

j _G=Gj < 9 × 10−13 y−1;

from Eq. (45) one obtains the following bounds on the
value of the BD coupling constant:

ωBD > 40.37jωBD < −69.95

and

ωBD > 79.44jωBD < −81.44;

respectively. These constraints contradict the results of
[9,10] and are more in the spirit of the estimates of [16,47]
(see, also, Ref. [17]).

B. Other potentials

As seen in Sec. V C, for other potentials, such as the
combination of exponentials (16), the cosh (21) and sinh-
like (25) potentials, the GR–de Sitter solution is a critical
point of the corresponding dynamical system. However, do
not get confused: The above statement is not true for any
arrangement of the free constants.
Take, for instance, the combination of exponentials. The

GR–de Sitter point x ¼ ξ ¼ 0 entails that [see Eq. (41)]
either k ¼ m ¼ 1 ⇒ ξ ¼ 0, or, for m ¼ 1, arbitrary k, the
point is asymptotically approached as φ → ∞ if k < 1.
In the former case (k ¼ m ¼ 1) the combination of
exponentials

UðφÞ ¼ M2ekφ þ N2emφ

coincides with the simple exponential (13),
UðφÞ ¼ ðM2 þ N2Þeφ, while in the latter case (m ¼ 1, k
arbitrary), assuming that k < 1, the above potential tends
asymptotically (φ → ∞) to the exponential UðφÞ ≈ N2eφ.
For the cosh and sinh-like potentials one has (see

Sec. IV C):

UðφÞ ¼ M2ðeμφ � e−μφÞk; ð46Þ

where the “þ” sign is for the cosh potential, while the “−”
sign is for the sinh potential, and the 2−k has been absorbed
in the constant factor M2. On the other hand, one has the
following relationships (see Sec. IV C):

ξ ¼ 1 − kμ
eμφ − e−μφ

eμφ þ e−μφ
; ξ ¼ 1 − kμ

eμφ þ e−μφ

eμφ − e−μφ
;

where the left-hand equation is for the cosh-like potential,
while the right-hand one is for the sinh-like potential. Since
at the GR–de Sitter point: x ¼ ξ ¼ 0, then, from the above
equations it follows that this critical point exists, for the
cosh and sinh-like potentials, only if kμ ¼ 1, in which case,
the mentioned potentials (46) asymptotically approach to
the exponential as φ → ∞:
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UðφÞ ≈M2ekμφ ¼ M2eφ:

In summary, only for the exponential potential
UðφÞ ∝ expφ, or for any other potential which, as
φ → ∞, tends asymptotically to the exponential expφ,
the GR–de Sitter solution is an attractor of the dynamical
system (27). This is easily visualized if one realizes that, by
the definition of the variable ξ,

ξ ¼ 1 −
∂φU

U
:

Hence, if one assumes ξ ¼ 0, which is a necessary
condition for the existence of the GR–de Sitter point, then,
necessarily,

∂φU

U
¼ 1 ⇒ UðφÞ ∝ eφ:

C. FRW-BD cosmology with matter

In the case when we consider a matter source for the
Brans-Dicke equations of motion, in particular CDM,
the existence of a de Sitter critical point with
x ¼ 0 ⇒ _φ ¼ 0—which means that the effective gravita-
tional coupling is a real constant that can be made to
coincide with Newton’s constant—is to be associated with
the ΛCDM model.
The autonomous system of ODEs that can be obtained

out of the cosmological FRW-BD equations of motion,
when these are sourced by CDM, is the one in Eq. (43). The
critical points of this dynamical system are given in
Eq. (44). Notice that only one of them:

P�∶
�
−

ffiffiffiffiffiffiffiffi
2=3

p ðk − 1Þ
kþ 2þ 2ωBD

;
β

kþ 2þ 2ωBD

�
;

where β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ωBD=3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ 6ωBD − kðk − 2Þp

, can be
associated with GR–de Sitter expansion, i.e., with what we
know as the ΛCDMmodel, in the special case when k ¼ 1.
In this latter case P�∶ð0; 1Þ. Since we are considering
exponential potentials of the form in Eq. (13), then, the
GR–de Sitter equilibrium configuration is associated,
exclusively, with the potential

∂φU

U
¼ k ¼ 1 ⇒ UðφÞ ∝ eφ:

Although in Sec. VI we have considered only exponen-
tial potentials in FRW-BD cosmology with background
dust, it is clear that the result remains the same as for the
vacuum case: Only for the exponential potential
UðφÞ ∝ expφ, or for potentials that approach asymptoti-
cally to expφ, the GR–de Sitter solution is an equilibrium
configuration of the corresponding dynamical system.

VIII. DISCUSSION

The main conclusion above: Only for the exponential
potential UðφÞ ∝ expφ, or for potentials that approach
asymptotically to expφ, the GR–de Sitter solution is a
critical point of the dynamical system (12), is not surpris-
ing. This result can be easily understood if perform a
conformal transformation to the Einstein frame (EF) of the
BD theory5:

ĝμν ¼ Ω2gμν;
ffiffiffiffiffi
jĝj

p
¼ Ω4

ffiffiffiffiffi
jgj

p
;

with Ω2 ¼ eφ. In this case the Jordan frame (JF) Brans-
Dicke action

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p
eφ½R − ωBDð∂φÞ2 − 2U�

is mapped into the Einstein’s frame one [4] (see also
Appendix A of Ref. [18]):

S ¼
Z

d4x
ffiffiffiffiffi
jĝj

p �
R̂ −

�
ωBD þ 3

2

�
ð∂̂φÞ2 − 2Û

�
:

It is seen from this latter action that the EFBD theory is
just general relativity with a self-interacting scalar field
with potential Û ¼ e−φU. Hence, only the exponential
potential UðφÞ ¼ Λeφ leads to general relativity plus a
scalar field with a constant potential. The general relativity
de Sitter state with a constant scalar field is obviously a
solution. It is possible to obtain other de Sitter solutions in
the Jordan frame but in such a case we need a time-
dependent scalar field φ ¼ φðtÞ, to compensate the time
dependence of the Hubble parameter in the Einstein frame,
so this is not the GR limit.
In order to better understand the statement above, let us

write the JF and the EF motion equations which are derived
from the above actions in terms of the FRW metric:

3H2 ¼ ωBD

2
_φ2 − 3H _φþ U;

_H ¼ −
ωBD

2
_φ2 þ 2H _φþ ∂φU −U

3þ 2ωBD
;

φ̈þ 3H _φþ _φ2 ¼ 2
U − ∂φU

3þ 2ωBD
; ð47Þ

and

5This argument was suggested to us by one of the anonymous
referees.
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3Ĥ2 ¼ 2ωBD þ 3

4
_φ2 þ e−φU;

_̂H ¼ −
2ωBD þ 3

4
_φ2;

φ̈þ 3Ĥ _φ ¼ 2e−φðU − ∂φUÞ
2ωBD þ 3

; ð48Þ

respectively. Besides, the JF and the EF Hubble parameters
are related by the following equation:

Ĥ ¼ 1

2
_φþH; ð49Þ

where we took into account the conformal transformation
of the scale factor â ¼ Ωa.
Notice that from the second equation in (48) it follows

that the only possibility to obtain a de Sitter solution in the
Einstein frame is that φ be a constant ( _φ ¼ 0). But, then,
from the third equation in (48) it follows that the self-
interaction potential should be the exponential:

U − ∂φU ¼ 0 ⇒ U ¼ Λeφ;

where Λ is an integration constant. The Friedmann equa-
tion in (48) then reads 3Ĥ2 ¼ Λ. In this case ( _φ ¼ 0), the
relationship (49) implies that in the Jordan frame we will
have also a GR–de Sitter solution H ¼ Ĥ ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

.
From the relationship (49) it follows, also, that there can

be other de Sitter solutions in the Jordan frame (H ¼ H0),
that would require an evolving scalar field φ ¼ φðtÞ
which compensates the time evolution of the EF Hubble
parameter:

H0 ¼ ĤðtÞ − 1

2
_φðtÞ:

In this latter case, however, the mentioned JF de Sitter
solution would not be a general relativity solution since the
effective gravitational coupling in the Jordan frame:
GeffðtÞ ∝ exp ½−φðtÞ�, would be an evolving quantity.
This would entail, in turn, that what we have is a scalar-
tensor theory where, in addition to the metric field, the
scalar field also propagates the gravitational interaction.
Why do our results differ from those in Refs. [9,10], even

when the tools used are the same? Although we should not
aim here at a detailed analysis of the work of [9,10],
nevertheless we can guess what is going on.6 To start with
we shall concentrate, specifically, in the result related with
what the authors of [9,10] call the asymptotic value of the
scalar field mass at the de Sitter point, which is the value of
the BD scalar field mass computed with the help of the
following known Eq. [9,10,48]:

m2 ¼ 2

3þ 2ωBD
½ϕ∂2

ϕVðϕÞ − ∂ϕVðϕÞ�;

or, in terms of the field variables φ and U ¼ UðφÞ in
Eq. (3), the mass squared of the dilaton:

m2 ¼ 2

3þ 2ωBD
ð∂2

φU − UÞ; ð50Þ

evaluated at the GR–de Sitter equilibrium point.
According to [9,10], the asymptotic value of the scalar

field mass mj�, at the de Sitter point, is given by

mj� ≈
1.84 × 10−33ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 2ωBD
p eV:

Then the authors constrain the BD coupling parameter ωBD
by contrasting the above value mj� with known estimates
signaling at mj� ∼ 10−22 eV. The obtained bound

ωBD ≈ −
3

2
þ 10−22

coincides with the conformal coupling value of ωBD. This
value of the BD coupling parameter is a singular value and,
if matter is taken into account, is very problematic since
consistency of the BD motion equations requires that only
traceless matter can be coupled to the BD scalar field if
ωBD ¼ −3=2. The above bound on ωBD is to be contrasted
with our result in Sec. VII A, which was based on the
analysis of the normalized ratio of variation of the gravi-
tational coupling _G=G, which clearly excluded the pos-
sibility of ωBD ¼ −3=2. Then, what is going on?
Let us start to develop our reasoning line by recalling

that, as properly noted in [9,10], the mass squared of the
dilaton (50) can be written as a function of the phase space
variables:

m2 ¼ m2ðx; y; ξÞ ¼ 6H2y2

3þ 2ωBD
½ð1 − ξÞ2ΓðξÞ − 1�: ð51Þ

If one considers, for instance, the vacuum BD cosmology—
see Sec. V—one has that

m2 ¼ 6H2

3þ 2ωBD
ð1þ

ffiffiffi
6

p
x − ωBDx2Þ½ð1 − ξÞ2Γ − 1�:

Worth noticing is that, since the phase space is bounded by
the condition α− ≤ x ≤ αþ, where the α� in Eq. (29) are
the roots of the second-order algebraic equation
1þ ffiffiffi

6
p

x − ωBDx2 ¼ 0, then the mass squared of the
dilaton is a non-negative quantity, provided that
Γ ≥ 1=ð1 − ξÞ2. One immediately notices that, at the
stiff-dilaton (vacuum) solutions, where Ωeff

K ¼ 1, since
6A detailed analysis with specific criticism of the work in

[9,10] is included in the Appendix.
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Ωeff
K ¼ ωBDx2 −

ffiffiffi
6

p
x, then the mass squared of the dilaton

vanishes.7

For the exponential potential UðφÞ ¼ M2 expðkφÞ, for
instance, since ξ ¼ 1 − k, and Γ ¼ 1, then

m2 ¼ 6H2ðk2 − 1Þ
3þ 2ωBD

ð1þ
ffiffiffi
6

p
x − ωBDx2Þ:

In order for the dilaton mass squared to be non-negative, it
is required that k2 ≥ 1. We see that, for the particular case
k ¼ 1, i.e., for the specific exponential potential UðφÞ ¼
M2 expφ, the dilaton is a massless degree of freedom.
Hence, at the GR–de Sitter equilibrium configuration the
mass of the dilaton is necessarily vanishing.
A general demonstration of the above statement can be

based in Eq. (50), where no particular considerations on the
potential (neither on the matter content of the BD theory)
are made. As a matter of fact Eq. (50) is the adopted
definition of the mass squared of the dilaton in the Jordan
frame [48], which is the frame considered in this paper. One
sees that the mass squared of the dilaton m2 ∝ ∂2

φU −U
vanishes provided that

∂2
φU ¼ U ⇒ UðφÞ ∝ e−φjUðφÞ ∝ eφ;

where, as shown above, for the (growing) exponential
potential U ∝ expφ, the GR–de Sitter critical point is an
attractor of the corresponding dynamical system.
Given that the scalar field is necessarily massless at the

GR–de Sitter point, which would be the meaning of the
tiny, yet nonvanishing, asymptotic value mj� computed in
[9]? In this regard notice that the computations in [9,10] are
based on the linearized solutions (perturbations would be
more precise) around the de Sitter point, which are valid up
to linear terms in the initial conditions. Besides, in order to
obtain the bound ωBD ≈ −3=2þ 10−22 on the BD coupling
parameter, the authors of [9,10] assumed what they called
“special initial conditions.” Then, the mass of the BD scalar
field computed in the mentioned references is the mass of
the field at the linearized (perturbed) solutions around the
de Sitter point but not at the point itself, where the dilaton is
actually massless, as we have shown above.
The next question would be: Which is the actual

meaning of the linearized solutions? The linearized sol-
utions correspond to points in the phase space which are

very close to the stable equilibrium point—the de Sitter
critical point in the present case—so that the linear
approximation takes place:

xðτÞ ≈ xc þ ϵxðτÞ; yðτÞ ≈ yc þ ϵyðτÞ; ð52Þ

where xc, yc are the coordinates of the given equilibrium
point, and the perturbations ϵx ∼ ϵy ≪ 1 are very small.
These solutions can be viewed as small deformations of the
stable GR–de Sitter solution. Just as an illustration, let us
consider the FRW-BD theory driven by the exponential
potential UðφÞ ∝ expφ, in a background of CDM (see
Sec. VI). The small perturbations around the de Sitter point
P∶ð0; 1Þ very quickly tend to vanish, restoring the system
into the stable equilibrium state: ϵx ∼ ϵy ∝ expð−3τÞ,
where we have taken into account that the eigenvalues
of the linearization matrix at (0,1) coincide: λ1 ¼ λ2 ¼ −3.
Then, the linearized solutions around the GR–de Sitter
point look like8

xðτÞ ≈ Ae−3τ ⇒ φðaÞ ≈ −
ffiffiffi
2

3

r
A
a3

þ φ0;

yðτÞ ≈ 1þ Be−3τ ⇒ H2ðaÞ ≈M2eφ0−
ffiffi
2
3

p
A
a3

3ð1þ B
a3Þ2

:

These will eventually (perhaps very quickly) decay into the
stable de Sitter solution:

xðτÞ ¼ 0 ⇒ φ ¼ φ0;

yðτÞ ¼ 1 ⇒ H ¼ H0 ¼ Meφ0=2=
ffiffiffi
3

p
:

In Fig. 2 the plots of the energy density of radiation, dust,
and the “energy density of the perturbed solution,”

ρrad ¼
A2

a4
; ρdust ¼

B2

a3
; ρpert ¼

M2eφ0−
ffiffi
2
3

p
A
a3

ð1þ B
a3Þ2

;

respectively, are shown as functions of the scale factor a,
for arbitrarily chosen values of the free constants. Notice
that, while the energy density of “normal matter” such as
radiation and dust dilutes with the cosmic expansion, the
background energy density in the linearized solution grows
with the cosmic time, until, eventually, the perturbed
solution decays into the de Sitter expansion with a constant
(nonevolving) energy density. This means two things: first,
that the background density of the linearized solution
behaves as phantom matter during the decay into the stable
equilibrium (de Sitter) state, and, second, that the back-
ground energy density of the linearized solutions is always

7If one introduces the dilaton’s dimensionless mass squared
density

Ωm2 ¼ m2

3H2
¼ 2ðk2 − 1Þ

3þ 2ωBD
ð1þ

ffiffiffi
6

p
x − ωBDx2Þ;

it is seen that it vanishes at the boundaries x ¼ α�, and it is a
maximum at x ¼ ffiffiffiffiffiffiffiffi

3=2
p

=ωBD, where Ωmax
m2 ¼ ðk2 − 1Þ=ωBD. The

quantity Ωm2 is zero for the exponential potentials U� ∝ exp�φ,
for which k ¼ �1.

8Here A and B are integration constants, which depend linearly
on the initial conditions xð0Þ, yð0Þ, and on other free parameters
such as ωBD.
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smaller than the energy density of the stable de Sitter
solution.
We can say that the linearized solutions have a finite

(perhaps small) lifetime in the sense that, within a finite
amount of “time” τ, they decay into the stable solution. It is
then clear that themass of the dilaton computed at linearized
solutions would be highly dependent on the assumed initial
conditions, in contrast to the mass of the dilaton at the de
Sitter point. Actually, while themass of the field at perturbed
(unstable) solutions depends on the way the perturbations
are generated, at the GR–de Sitter attractor—being a stable
equilibrium configuration—the field is massless regardless
of the initial conditions. Hence, making cosmological
predictions on the base of linearized or perturbed solutions
(around equilibrium points) is meaningless due to the loss of
predictability which is associated with the strong depend-
ence on the initial conditions. The only useful information
the dynamical systems theory allows to be extracted from the
given cosmological dynamical system is encoded in the
equilibrium points themselves but not in the (linear) per-
turbations around them. The latter serve only as probes to
test the stability of the given critical point.
In additionwe have to say that estimates on the parameters

of the BD theory (such as the BD coupling constant ωBD),
made on the basis of linearized solutions in the neighbor-
hood of the GR–de Sitter solution, are not reliable since
these linearized solutions may not depart too much from
general relativity (plus a cosmological constant) which is
obtained from the BD theory in the formal limit ωBD → ∞.
The same reasoning line applies to the computation

of other derived quantities such as the ratio _G=G (see
Sec. VII A). In Sec. VII A we have shown that, at the
BD–de Sitter point

_Geff

Geff
¼ −

H0

1þ ωBD
¼ −

1

1þ ωBD
7.24 × 10−11 y−1;

i.e., the ratio of the variation of the gravitational coupling is
a negative quantity (recall that we are considering cosmic
expansion exclusively, so that H ¼ H0 ≥ 0). Hence, con-
trary to the result of [10], the gravitational coupling
decreases during the cosmic expansion, resulting in the
weakening of the strength of gravity along the cosmic
history. The explanation of the discrepancy of our result
with the corresponding one in Ref. [10] is similar to the
explanation given above to the discrepancy in the bounds
on ωBD. While our computation of the quantity _G=G is
done at the stable BD–de Sitter equilibrium point, meaning
that our result is quite independent of the initial conditions,
the corresponding computation in [10] is done at perturbed
(linearized) solutions around the GR–de Sitter solution
which, as explained above, are unstable and very quickly
decay into the stable GR–de Sitter state. The resulting
computations are highly dependent on the initial conditions
chosen to generate the given perturbation around the de
Sitter point.
We find no reason to believe that we are living in one

such perturbed solution and not in the equilibrium con-
figuration itself (the GR–de Sitter critical point). Besides, if
one wants to avoid the cosmic coincidence problem, an
equilibrium configuration which attracts the cosmic history
into a GR–de Sitter stage is all one needs. Making definitive
conclusions about the entire cosmic history based in
computations made at a perturbed solution (here we are
thinking in the conclusion on the weakening of the strength
of gravity at early times in Ref. [10], based in the positivity
of _G=G) is potentially misleading. The positivity of _G=G at
a perturbed solution, when compared with the negative
value of _G=G at the stable BD–de Sitter equilibrium point,
may only mean that gravity is a bit weaker at the GR–de
Sitter perturbed solution than it is at the stable BD–de Sitter
critical point, no more. This result is closely connected with
the fact that the background energy density of the linearized
solutions is always smaller than the energy density of the
stable de Sitter solution (see the related discussion above).
In a similar way we want to cast reasonable doubt on the

conclusion in Ref. [10] about the correspondence of the
mean value of the BD parameter ωBD with the coupling
parameter between the dilaton and the graviton in the low-
energy limit of the string effective theory ωBD ¼ −1 [18].
As we have discussed above, in this case, in order to check
the observational data, the authors used expressions for the
normalized (squared) Hubble function ðHðaÞ=Hða0ÞÞ2,
which were computed at the linearized solutions (up to
linear terms in the initial conditions) but not at the stable
GR–de Sitter critical point itself. This means that, as
previously discussed, the results of [9,10] are highly
dependent on the initial conditions and, hence, useless to
make cosmological predictions.
We want to underline that the above discussion was

based on the assumption that the computations made in [9]
are correct. However, as we show in the Appendix, these

FIG. 2 (color online). Plots of the energy density of radiation
ρrad ¼ A2=a4 (dashed curve), dust ρdust ¼ B2=a3 (dotted curve),

and the perturbed solution ρpert ¼ M2eφ0−
ffiffiffiffiffiffi
2=3

p
A=a3ð1þ B=a3Þ−2

(dash-dotted curve), vs the scale factor a, for arbitrarily chosen
values of the constants: A ¼ B ¼ M ¼ 1, φ0 ¼ 0. The plot of the
energy density of matter in the perturbed solution is separately
shown in the right-hand panel.
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computations are incorrect in general. Hence, after all, it
may be that the discrepancies of the present results and the
results claimed in [9] (see also [10,11]) is due to the
incorrect procedure performed in those references.

IX. CONCLUSION

In the present paper we have explored the asymptotic
properties of FRW-BD cosmological models (6), driven by
a variety of self-interaction potentials UðφÞ. For this
purpose we have used the simplest tools of the dynamical
systems theory [9–11,19–24,27,30–32,40,42]. We have
shown that, in spite of known results of previously
published work [9–11], the GR–de Sitter phase is not a
universal attractor of the BD theory.9 Only for the specific
exponential potential UðφÞ ∝ expφ, which, in terms of the
original BD field ϕ, amounts to the quadratic monomial
VðϕÞ ∝ ϕ2, or for potentials which asymptotically
approach to expφ (ϕ2), the GR–de Sitter phase is a stable
critical point, i.e., a future attractor in the phase space. We
have shown, also, that at the GR–de Sitter critical point, as
well as at the stiff-matter equilibrium configurations, the
effective mass of the dilaton m2 in Eq. (50) vanishes.
We have learned that physically meaningful conclusions

can be based only on computations performed at the
equilibrium configurations as, for instance, at the stable
GR–de Sitter critical point. On the contrary, the results
based on computations made at perturbed solutions are
highly dependent on the initial conditions chosen and,
hence, useless to make physically meaningful predictions.
In particular, the computations performed at the stable

BD–de Sitter critical point yield to bounds on the value of
the BD coupling parameter ωBD > 40.37jωBD < −69.95,
or ωBD > 79.44jωBD < −81.44, depending on the obser-
vational data assumed, which are consistent with the
estimates of [16,17,47]. These results are to be contrasted
with the ones in Ref. [9]: ωBD ¼ −3=2, or in [10]:
ωBD ≈ −1, which were based on computations made at
perturbed solutions around the GR–de Sitter attractor.
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APPENDIX: COMMENT ON THE PAPER
“BRANS-DICKE THEORY AND THE

EMERGENCE OF ΛCDM MODEL” BY
HRYCYNA AND SZYDLOWSKI [9]

In this Appendix we want to show in details the source of
the incorrect claim on the global character of the de Sitter
attractor in the BD theory, exposed in Ref. [9] (see also
[10,11]). Here we assume the cosmological equations
written in terms of the BD scalar field ϕ [the ones derived
from the action (2)], as well as the same definition of the
phase space variables used in [9]:

x≔
_ϕ

Hϕ
; y≔

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞ
3ϕ

s
1

H
; λ≔ −ϕ

∂ϕVðϕÞ
VðϕÞ : ðA1Þ

The obtained autonomous system of ODE is given by
[Eq. (15) in [9]]

x0 ¼ −x
�
3þ xþ

_H
H2

�
þ 6y2ð2þ λÞ

3þ 2ωBD

þ 3ð1 − 3wmÞ
3þ 2ωBD

�
1þ x −

ωBD

6
x2 − y2

�
;

y0 ¼ −
1

2
y

�
xð1þ λÞ þ 2

_H
H2

�
;

λ0 ¼ xλ½1 − λðΓ − 1Þ�; ðA2Þ

where wm is the barotropic parameter of the matter fluid,
the function

Γ ¼ V∂2
ϕV

ð∂ϕVÞ2

encodes the information of the potential V ¼ VðϕÞ, and it is
assumed to be a function of the parameter λ∶ Γ ¼ ΓðλÞ.
Notice that this function Γ does not coincide with the
similar function defined in Eq. (11) in the main text.
Another useful expression is [Eq. (14) in [9]]

_H
H2

¼ 2x

�
1 −

ωBD

4
x

�
−
3y2ð2þ λÞ
3þ 2ωBD

−
3½2þ ωBDð1þ wmÞ�

3þ 2ωBD

�
1þ x −

ωBD

6
x2 − y2

�
:

ðA3Þ

1. The de Sitter point

The main claim of the authors of Ref. [9] on the global
character of the de Sitter attractor is based on the argument
that the general relativity de Sitter solution, which corre-
sponds to the critical point ðx; y; λÞ ¼ ð0;�1;−2Þ of the
dynamical system (A2), is obtained independent of the

9This result has been independently confirmed in [43] by
means of the center manifold theorem.
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specific functional form of Γ ¼ ΓðλÞ. This is seemingly the
case, since by substituting x ¼ 0, y ¼ �1 and λ ¼ −2 in
the autonomous system of ODE (A2), one gets x0 ¼ 0,
y0 ¼ 0 and λ0 ¼ 0 without making any assumptions on the
functional form of ΓðλÞ.
Notice, however, that it is mandatory that λ ¼ −2 for the

existence of the GR–de Sitter solution. Actually, as clearly
seen from (A3), when evaluated at x ¼ 0, y ¼ �1 (the de
Sitter condition) one gets

_H
H

				
ð0;�1;λÞ

¼ −
3ð2þ λÞ
3þ 2ωBD

⇒ _H ¼ 0 ⇔ λ ¼ −2:

Having established this fact (as properly done in [9]), the
next step is to notice that, taking into account the definition
of the variable λ in (A1) [Eq. (12) of Ref. [9]], then, at the
de Sitter attractor where λ ¼ −2,

∂ϕVðϕÞ
VðϕÞ ¼ 2

ϕ
⇒ VðϕÞ ∝ ϕ2:

Then, the existence of the general relativity de Sitter
attractor requires that λ ¼ −2 and this, in turn, necessarily
entails that VðϕÞ ∝ ϕ2. As a straightforward consequence
of this, since VðϕÞ ¼ V0ϕ

2, then one invariably gets that

Γ ¼ V∂2
ϕV

ð∂ϕVÞ2
¼ 2V2

0ϕ
2

4V2
0ϕ

2
¼ 1

2
:

This means that, unlike the claim in [9], at the de Sitter
point (λ ¼ −2), the function ΓðλÞ is completely speci-
fied: Γð−2Þ ¼ 1=2.
Summarizing this very simple and straightforward

argument: The GR–de Sitter attractor necessarily entails

λ ¼ −2 ⇔ VðϕÞ ∝ ϕ2 ⇔ Γð−2Þ ¼ 1

2
;

and there is not other way around. This is precisely our
main claim in the present paper: The GR–de Sitter attractor
exists exclusively for the quadratic potential or for poten-
tials that approach to the quadratic one at the stable point;
i.e., it is mandatory that Γð−2Þ ¼ 1=2.
In order to illustrate our arguments, let us choose a pair

of examples. Concrete, very nice illustrations of our above
statement can be, precisely, the examples investigated in [9]
after Eq. (17) and before (20):

VðϕÞ¼V0ðϕ2−v2Þ2; VðϕÞ¼ 1

2
m2ϕ2þα

4
ϕ4; ðA4Þ

which we shall immediately examine in detail.

a. Example 1

Let us start by the potential

VðϕÞ ¼ V0ðϕ2 − v2Þ2: ðA5Þ

The extrema of this potential are at ϕ2 ¼ v2 (minimums)
and at ϕ ¼ 0 (maximum). Since

λ ¼ −ϕ
∂ϕV

V
¼ −

4ϕ2

ϕ2 − v2
⇒

ϕ2

v2
¼ λ

λþ 4
;

then

Γ ¼ ΓðλÞ ¼ V∂2
ϕV

ð∂ϕVÞ2
¼ 1

4

�
3 −

v2

ϕ2

�
¼ λ − 2

2λ
:

The relevant values are precisely the extrema ϕ2 ¼ v2 and
ϕ ¼ 0. At these values we have λ ¼ ∞ (undefined) and
λ ¼ 0, respectively. Besides Γð∞Þ ¼ 1=2 and Γð0Þ ¼ ∞
(undefined).
The attractor solutions for this potential are at ϕ ¼ �v,

i.e., at λ ¼ ∞ (undefined). Notice that the value λ ¼ −2,
which is a necessary requirement for the existence of the de
Sitter critical point, is correlated with an unphysical
solution. Actually, at λ ¼ −2, ϕ2 ¼ −v2 ⇒ ϕ ¼ �iv, so
that the scalar field is pure imaginary and, since the
effective gravitational coupling G ∝ ϕ−1 ¼ �iv−1 is
unphysical, the de Sitter solution is unphysical for this
potential. In consequence it is not a critical point (not
even a point) in the corresponding phase space. This was
expected since, for the potential (A5), Γð−2Þ ¼ 1,
i.e., Γð−2Þ ≠ 1=2.

b. Example 2

The other potential included in the stability analysis of
the de Sitter point in [9] is the following:

VðϕÞ ¼ 1

2
m2ϕ2 þ α

4
ϕ4: ðA6Þ

From the particle physics perspective the physically inter-
esting case is for negative m2 < 0 (as for instance in the
Higgs mechanism). This case (m2 < 0) is another nice
example of a potential that does not approach to the
quadratic potential at the stable point and, hence, does
not drive a stable de Sitter phase.
For this potential

λ ¼ −4
�
m2 þ αϕ2

2m2 þ αϕ2

�
⇒

αϕ2

m2
¼ −

2ðλþ 2Þ
λþ 4

;

ΓðλÞ ¼ ð2þ αϕ2

m2 Þð1þ 3 αϕ2

m2 Þ
ð2þ 4 αϕ2

m2 Þ2
¼ −

4ð8þ 5λÞ
ð8þ 6λÞ2 :
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Since m2 < 0, then αϕ2 ¼ −m2 are minimums, while
ϕ ¼ 0 is a maximum. Hence, the attractor solutions in
this case are at λ ¼ 0, while at the maximum, which
corresponds to an unstable equilibrium point, one has
λ ¼ −2. In other words, the de Sitter solution in this case
exists but it is an unstable point, not an attractor as assumed
in [9]. Besides, for this potential Γð−2Þ ¼ 1=2 at ϕ ¼ 0.
This is because near the maximum ϕ ∼ 0, the potential
behaves like the (negative of the) quadratic potential. In this
case despite that Γð−2Þ ¼ 1=2, the quadratic potential is
not approached at the stable point(s) ϕ2 ¼ −m2=α. Hence,
Γð−2Þ ¼ 1=2 is a necessary condition for the existence of
the GR–de Sitter attractor, but it is not a sufficient
condition. It is required, additionally, that the latter con-
dition is satisfied at the stable point of the potential.
If, on the contrary, one chooses the less physically

motivated case when in (A6), m2 > 0 is a positive quantity,
then VðϕÞ ¼ m2ϕ2=2þ αϕ4=4 has only one extremum: a
minimum at ϕ ¼ 0, where λ ¼ −2 and Γð−2Þ ¼ 1=2. As
explained above, this happens because in the neighborhood
of theminimumatϕ ¼ 0, this potential behaves like∝ ϕ2. In
this case (m2 > 0), the potential approaches to the quadratic
one at the stable point and enters the category of potentials for
which the ΛCDM model is an attractor of the FRW-BD
theory; i.e., it serves as an illustration of our main result.

2. Stability conditions for the de Sitter state

As previously shown, since the present method assumes
that Γ ¼ ΓðλÞ, then for the existence of the de Sitter
attractor, necessarily, Γð−2Þ ¼ 1=2 at the stable point of
the potential:

λ ¼ −2 ⇔ VðϕÞ ∝ ϕ2 ⇔ Γð−2Þ ¼ 1

2
:

Although the authors of [9] seem to perform a kind of
general analysis of the stability conditions of the
GR–de Sitter point by introducing the parameter

δ ¼ 8

3

∂λ0
∂x
				
�
¼ 8

3
λ�½1 − λ�ðΓðλ�Þ − 1Þ� ¼ δðλ�Þ;

as a matter of fact, as shown, at the de Sitter attractor
λ� ¼ −2 and Γð−2Þ ¼ 1=2, so that necessarily

δ ¼ δð−2Þ ¼ −
16

3
½1þ 2ðΓð−2Þ − 1Þ� ¼ 0:

This is precisely the case which in [9] [first paragraph
below Eq. (18)] is called “degenerated.” In more “dynami-
cal systems oriented” terms, what happens in this case is
that the GR–de Sitter solution is a nonhyperbolic critical
point and the Hartman-Grobman theorem cannot be
applied, so that the standard tools of the linear analysis
are useless and one is obliged to resource to other tools such
as the center manifold theorem, etc., as done, for instance,

in [43]. Hence the analysis of the stability in [9] after
Eq. (18) is incorrect and its claimed generality through
δ ≠ 0 is spurious. This is where our analysis in the present
paper starts departing from the one in [9].
As shown, the stability analysis of the de Sitter point

performed in [9] is incorrect since at the de Sitter phase,
necessarily, the apparently “general” parameter δ as a
matter of fact exactly vanishes (δ ¼ 0), so that the GR–
de Sitter solution is a nonhyperbolic critical point and the
linear analysis is helpless. This is precisely the source of
confusion of the authors of [9]: Given that in their analysis
of stability of the GR–de Sitter phase, the parameter δ is
exactly vanishing (a fact not understood by the authors of
[9]), then the eigenvalues of the linearization matrix around
the de Sitter critical point [Eq. (18) of [9]]:

l1 ¼ −3ð1þ wmÞ; l2;3 ¼ −
3

2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2ωBD þ δ

3þ 2ωBD

s !

are actually given by

l1 ¼ −3ð1þ wmÞ; l2 ¼ 0; l3 ¼ −3:

Accordingly, the constant n introduced in Eq. (20) of [9],

δ

3þ 2ωBD
¼ 4

9
nðn − 3Þ;

is also vanishing, so that, for instance, their large and
complicated Eq. (22a) can be simply written as

xðτÞ ¼ 3wm − 1

wmð3þ 2ωBDÞ
e−3ð1þwmÞτ:

Exactly the same is true for the other equations after
Eq. (22) in [9]. For instance, their Eqs. (26a)–(26c) can be
written in the simpler form

ΩM;0 ¼
�
1þ ð1 − 3wmÞð4þ 3wmÞ

3wmð1þ wmÞð3þ 2ωBDÞ
�
Ωm;0;

Ωn;0 ¼
�

1 − 3wm

3ð1þ wmÞð3þ 2ωBDÞ
�
Ωm;i þ

Δx
3

þ 8Δλ
3δ

;

Ω3n;0 ¼
4

3

��
3wm − 1

wmð3þ 2ωBDÞ
�
Ωm;i−Δxþ

2Δλ
ð3þ 2ωBDÞ

�

×

�
a0
aðiÞ

�
−3
;

respectively, where it is seen, for instance, that their
Eq. (26b) (second equation above) is undetermined thanks
to the third term ∼Δλ=δ. The subsequent analysis of the
linearized solutions around the GR–de Sitter point is
plagued by the incorrect assumption that δ ≠ 0, i.e., that
there can be potentials leading to the GR–de Sitter attractor,
for which Γð−2Þ ≠ 1=2.
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