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High-order tail in Schwarzschild spacetime
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We present an analysis of the behavior at late times of linear field perturbations of a Schwarzschild black
hole spacetime. In particular, we give explicit analytic expressions for the field perturbations (for a specific
¢-multipole) of general spin up to the first four orders at late times. These expressions are valid at arbitrary
radius and include, apart from the well-known power-law tail decay at leading order (~¢273), a new
logarithmic behavior at third leading order (~¢2¢=> In ¢). We obtain these late-time results by developing an
analytical formalism initially formulated by Mano, Suzuki and Takasugi (MST) [Prog. Theor. Phys. 95,
1079 (1996); 96, 549 (1996)] formalism and by expanding the various MST Fourier-mode quantities for
small frequency. While we give explicit expansions up to the first four leading orders (for small frequency
for the Fourier modes, for late time for the field perturbation), we give a prescription for obtaining

expressions to arbitrary order within a “perturbative regime.”
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I. INTRODUCTION

The study of linear field perturbations of black hole
background spacetimes is important for several purposes.
For example, itis important for the investigation of the (linear)
stability of black holes, the effect that black holes have on
fields propagating in their neighborhood or the binary inspiral
of a black hole and another compact, astrophysical object. In
1955 and subsequent years [1-7], the equations describing
linear field perturbations of a nonrotating (Schwarzschild)
black hole spacetime were decoupled and separated. This
rendered the equations treatable semianalytically as the full
perturbation may be obtained as a sum of Fourier modes, with
the radial part satisfying the so-called Regge-Wheeler (RW)
ordinary differential equation. It was not until 1972 that a
similar feat was achieved by Teukolsky [8,9] in the case of a
rotating (Kerr) black hole spacetime. In the Schwarzschild
limit, the radial part of the Teukolsky equation reduces to the
so-called Bardeen-Press-Teukolsky (BPT) equation [10],
which was also obtained in 1972.

The RW and the BPT radial equations are satisfied by
different quantities (different combinations of field com-
ponents and their derivatives) and their solutions have been
studied thoroughly, both numerically as well as with
asymptotic analyses. Of particular interest for this paper,
is the result by Price [3,4] (obtained by studying the field
perturbations without Fourier decomposing) for the behav-
ior at late times of a RW field perturbation of any spin of a
Schwarzschild black hole. Price found that its radiative
Z-multipole decays to leading order in the form of a power
law: r~2~3, where ¢ the Schwarzschild time. The analysis in
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[11] of the Teukolsky equation in Kerr shows that the same
leading-order power-law tail behavior is satisfied by
the radiative multipoles of BPT field perturbations in
Schwarzschild. In this paper we present analytic expres-
sions for the behavior of general-spin field perturbations in
Schwarzschild up to the first four orders for late times,
revealing a new logarithmic behavior in the third leading
order (~t~2/=31n{). Furthermore, although most analyses
(though see, e.g., [12] for an exception) that give the radius-
dependent coefficient of the leading-order power-law have
been constrained to large radius, our results for all four
orders are valid for arbitrary radius. We obtain this late-
time behavior both for the field quantities satisfying the RW
as well as the BPT equation. We obtain these results by
developing a method which is valid not only at late times,
but it may be used to obtain results valid in principle at any
time regime. We now briefly introduce this method.

In 1986, Leaver [13] derived various analytical represen-
tations for the solutions of the RWand BPTequations in terms
of infinite series of special functions. A series of Japanese
researchers later “revamped” some of Leaver’s series repre-
sentations and derived other new series representations for
these radial solutions [14—16]. These latter series represen-
tations, to which we shall refer as MST expansions after the
authors [14—16], are naturally adapted to carrying out small-
frequency expansions. Small-frequency expansions yield the
late-time behavior of the full linear perturbation after inte-
gration over frequency. We note, however, that the MST
series in principle converge for any value of the frequency,
although the speed of their convergence decreases as the
magnitude of the frequency increases.

The MST method is a powerful method which only
relatively recently researchers have been starting to use in
order to obtain results in black hole perturbation theory. For
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example, in the case of a spherically symmetric back-
ground, the MST formalism has found applications in the
calculation of the self-force [17] on a point particle
[18-20], post-Newtonian coefficients and gauge-invariant
quantities [21-25] and dynamical tidal interaction of
compact objects [26]. The MST method has proven
particularly useful for calculating the retarded Green
function (GF) of the wave equation satisfied by the field
perturbation, which is a fundamental quantity as it deter-
mines the evolution in time of any given initial data. The
Fourier modes of the GF possess poles (the so-called
quasinormal modes) and a branch cut (BC) in the
complex-frequency plane [27]. It is known (e.g., [27,28])
that the small-frequency part of the BC is the contribution
to the GF that gives rise to the late-time behavior; the non-
small-frequency part of the BC contributes to the behavior
at earlier times (see [20,29-32]).

In this paper we derive in detail some of the results on the
GF Fourier modes and black hole perturbations that we
briefly presented in the paper [33]. Namely, we derive a
small-frequency expansion of the MST series in general, and
of the BC in particular, which we then use to obtain the late-
time behavior of the GF and field perturbations. We obtain
the late-time behavior up to the first four leading orders at
arbitrary radius in Schwarzschild spacetime and for general-
integer spin' of the field. In [20] we used the calculation of the
late-time GF derived in [33] in order to find its contribution to
the self-force on a scalar charge in Schwarzschild. The MST
method has also been used to calculate the quasinormal mode
contribution to the GF in Schwarzschild spacetime [20] and
in Kerr spacetime [34]; in the former case the GF calculation
was applied to obtain the scalar self-force and, in the latter
case, to obtain the radiation emitted given a specific
perturbation source. The calculations of the quasinormal
mode series in [20,34] involved evaluating the MST series at
frequencies with “arbitrarily” large magnitude.

Apart from an explicit small-frequency/late-time analy-
sis, we shall also generally develop the MST formalism in
Schwarzschild spacetime. In particular, we shall present
MST expressions (valid for general frequency) for the
solutions of the RW equation for general integer spin. To
the best of our knowledge, these expressions are new for
spin-1 since the MST formalism has not yet been presented
for the RW equation for spin-1 (it only has been for spin-0
and spin-2). Furthermore, we develop, also for the first time
in the literature, the MST formalism for calculating the
contribution to the GF of Fourier modes along the BC. We
also give the relationships between the BPT quantities and
the RW quantities via the so-called Chandrasekhar trans-
formation. We then give explicit expressions for the main

'We do not give the expansions explicitly for polar gravita-
tional (Zerilli) perturbations nor for positive BPT spin but these
can be derived directly from, respectively, axial (RW) gravita-
tional perturbations or negative BPT spin, both of which we do
derive explicitly.
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MST quantities up to the first four leading orders for small
frequency, for general spin and multipole number #. We
note that although small-frequency expansions have been
given for some of these quantities already, that has typically
been done within a post-Newtonian framework, and so for
the radial solutions expanded about radial infinity. In here,
instead, we give small-frequency expansions for the radial
solutions which are valid for arbitrary radius. Our small-
frequency expansions converge within a perturbative
regime which we specify later in the text (end of Sec. IV).

For the reader who is not interested in the details and who
just wants to use our results in order to obtain the late-time
behavior of the Green function or a field perturbation to high
order, the main resultis in Sec. VII A. In particular, in Eq. (7.4)
we give the late-time behavior of the £-modes of the GF of the
RW equation; above that equation we indicate how to find the
coefficients appearing in the equation; below that equation we
indicate how to obtain a similar late-time expansion in the
BPT case. Of course, if one wants the late-time behavior of
some given initial data for the field perturbation, one should
convolute the obtained small-frequency expansions for the GF
with the initial data as in Eq. (7.6).

The layout of this paper is as follows. In Sec. II we present
the RW and BPT equations, expressions for their GFs and the
BC contributions, as well as the relationships between the RW
and BPT quantities. In Sec. Il we develop the MST
formalism both for the RW and BPT equations, including
our new derivation in the specific case of the RW equation for
spin-1. In Secs. IV and V we give explicit expansions of the
various MST quantities, except for the radial functions, up to
the first four leading orders for small frequency. In Sec. VI we
extract the small-frequency expansions for the radial func-
tions using a novel method. In Sec. VII we calculate the late-
time behavior of the GF (Sec. VII A) and of a perturbation
response (Sec. VIIB) and compare it with highly accurate
numerical results. In Appendix A we plot the small-frequency
expansions of MST quantities and check that they match with
an independent method (presented in [29]) which is valid in a
“midfrequency” regime. In Appendix B we relate the radial
coefficients of the solutions of the RW and BPT equations.

In this paper we use geometrized units: ¢ = G = 1. We
shall use a bar over a quantity to indicate that the quantity has
been made dimensionless via an appropriate factor of “2M”
(except where otherwise indicated), where M is the black hole
mass; e.g., ® = 2M o indicates a dimensionless frequency @
and 7 = r/(2M) a dimensionless Schwarzschild radius r.

II. BRANCH CUT GREEN FUNCTION
A. Regge-Wheeler equation

Decoupled and separated equations for linear field
perturbations of a Schwarzschild black hole spacetime
were derived for axial—also called “odd”—gravitational
perturbations (spin s =2) in [1], for electromagnetic
perturbations (s = 1) in [2,7], and for scalar perturbations
(s =0) in [3,4]. All these integer-spin-field perturbation
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equations can be written compactly as one single partial
differential equation, which in Schwarzschild coordinates
reads

[vava b5 Z—ﬂ X, =S, (2.1)
r

where Xy = X(t, 1,0, ¢) is a scalar function that describes
the field perturbation of spin s created by a source S, and

PR a0\, 1 (. 2
Aor F2or\ or 2sin000 \""" 90

N 1 0
r?sin%6 O¢*

Ve, =
(2.2)

is the Klein-Gordon operator in Schwarzschild spacetime,
where A = r(r — 2M) and M is the mass of the black hole.
Separating variables we may obtain a complete set of
solutions of the form

(9 ¢) Xfm(r a))’

where ¢ and m are, respectively, the multlpolar and azimuthal
numbers and Y, (0,¢) are the scalar (spin-weight 0)
spherical harmonics. As in [35], we treat Eq. (2.1) as a
scalar wave equation, although in the electromagnetic and
gravitational cases we have to be aware that the nonradiative
(¢ < |s|) modes would drop out when constructing the
electromagnetic and gravitational potentials and so these
modes would have to be included separately. The radial
functions satisfy the ordinary differential equation

1d d Ad  o*r
(A=) 0222
LZ dr< dr> Adr A

B <f(£ +1) 2M(1- S2)>:|5Xfm _ S, (24)

S‘Xfmw(t’ r, 9’ ¢) = e_ithf (2.3)

+
72 3

where (S,,, = Sz, (7, w) are the corresponding modes of the
source S;. We shall refer to Eq. (2.4) as the (radial) Regge-
Wheeler (RW) equation and to Eq. (2.1) as the four-
dimensional RW equation (as per [35]). Introducing the
standard “tortoise” coordinate r, =r+2MIn(r/(2M)—1),
Eq. (2.4) may also be written as

2M(1 - 52)>] X,

Spm- (2.5)

d? A
(¢ +1
{dr* + o’ r < (Z+1)+

A
r2’

The case of polar—or “even”—gravitational perturbations
was derived in [5,6]; the corresponding radial equation is the
so-called Zerilli equation. Solutions of the Zerilli equation can
be obtained as linear combinations of solutions and their radial
derivatives of the RW equation for s = 2 [36].

We define the retarded Green function (GF) of the four-
dimensional RW equation (2.1) as the solution of [35]
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2

M
{V“Va + 52 7:| SGret('x’ )C/)

=—=5(x,x') = —%5(2‘ —1")8(r—r)s(Q—-9Q), (2.6)
which obeys appropriate causal boundary conditions,
where x and x’ are two spacetime points. Here, Q is the
solid angle of the 2-sphere. For notational simplicity, we
use time translation invariance to henceforth take ¢ = 0.
We may then use the symmetries of the spacetime to write

0 4

oo+ic do
S X Y0 0Y0.0)

=0 m—¢
x e7 G,(r,V;m),

xGret ()C, .X/)

(2.7)

where ¢ > 0, and the Fourier modes (G,(r,r;w) must

satisfy
d? A 2M (1 - s?)
{d 2+60 }"4 </1+r>}st(r,r’;a))
A / /
===08(r=7r)==6(r.—7,), (2.8)
.
where* 1= (¢ + 1). Correspondingly,
Gu(r. o) = _ff(r<,a))gf(}’>,a)> (2.9)

W(w) '

where r. =max(r,7), r.=min(r,7”), and the

Wronskian is given by

dgf df,
dr,”

W(w) =W[f(r,),g,(r,0)] = f (2.10)

Here, the “ingoing” f, = f,(r,®) and “upgoing” g, =
ge(r, w) radial functions are solutions of the homogeneous
version of the RW equation (2.5) which, for general spin,
behave asymptotically as

f { e—i(ur*’
70 :

A?e—twr* + A;ute-‘rzwr*’

7* - —00,
) (2.11)
r, = +o0,

where 7, =r,/(2M), A" and A% are complex-valued
constant coefficients [we give higher-order terms of
Eq. (2.11) in Appendix B], and

gy~ etiors (2.12)

7, = +oo.

It is then easy to see that’

*We note that our definition of A is slightly different from
that in [16].
*Note that due to a typographical error the right-hand side of
Eq. (2.3) of Ref. [29] should read ffg’f fl9, instead of
9ef’ — feg, so that it is indeed W = 2iwA' as claimed below
Eq. (2.7) [29].
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W = 2iwAL. (2.13)

It will be convenient for the next section to define similar
ingoing and upgoing solutions of Eq. (2.5) without choos-
ing a specific overall normalization: (X7

Xil’l,trile—ia)r* 7 ——00
: Rt ’ * ’
X0~ 2.14
e Xin,inc —iwr, Xinsmf +ior, N ( )
Ky 14 e + Ky 14 e ’ r* +m7
and
i i gef _j =
I O T
she ™ up.tra_ +jopr, = ( : )
X, e , 7, — +o0,

inc,in/ref /tre inc/ref/tra .. .
where | X7/ ang XU/ e ingoing/reflection/

transmission coefficients. It is clear that

Xin = xrp, o X = Xy, (2.16)

Using the standard spherical harmonic addition theorem,
we may now rewrite Eq. (2.7) as

sGret(x,X7) = W;@f‘*‘ 1)Ps(cosy)GE'(r, 75 1),
(2.17)
where
1 co+ic ]
sGI;tO’, r’;l) E—/ da)st(r’ r/;w)e—za)t7 (218)
2z —oo+ic

and y is the angle between the spacetime points x and x’.

The upgoing radial solution g,, unlike f,, possesses a
branch cut (BC) in the complex-frequency plane starting at
the origin w = 0 and extending down the negative imagi-
nary axis [13,27,33]. This BC is inherited by Ai;) and by the
Fourier modes (G, (r, ;) of the GF. This BC in g,,
however, only occurs as a change of sign in its imaginary
part as the frequency crosses the negative imaginary axis,
therefore |g,| and |A?| do not possess a BC. We will use a
new “frequency variable” ¢ > 0, so that when w = —ic
then it lies on the negative imaginary axis and when @ =
+ic then it lies on the positive imaginary axis.! We
define 5A(6) =A_(—ic) —A_(—ic) for any function
A = A(@) possessing a BC along the negative imaginary
axis (NIA), where A.(—i6) = lim,_q+A(xe — i), with
o > 0, where 6 =2Mo and @ = 2Mw.

*We note that in [29,30,33] (and in the BC literature references
therein) we used a different symbol for the frequency o = iw. The
symbol used there coincided with the symbol for the “renormal-
ized angular momentum” parameter introduced later on that is
used throughout the MST literature and which we also use in this
paper; hence the reason for the change of symbol to o.
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The contribution from the BC to the #-mode G' is
given by

1 (<)
SGE(rrin) = o / do8,Gy(r,r';0)e™.  (2.19)

Tt Jo

Using the obvious symmetry g,(r,—@*) = g/(r, o)
together with the boundary condition g,(r, +ic) ~ e "™
as 7, — oo and the fact that all three functions g, (r, —io),
go_(r,—io) and g,(r,+ic) satisfy the same homogenous
linear second-order differential equation (namely, the RW
equation) with real-valued coefficients along both the
negative and the positive imaginary axes (since @ = *io
with ¢ > 0 there), it follows that

89, = iq(0)gs(r. +io), (2.20)
for some real-valued function ¢(s), and that
Wlg,_(r,—ic), gs, (r,—ic)] = —2icq(c). We refer to
q(o) as the “BC strength.” The symmetry f,(r,—@*) =
f5(r, w) together with the fact that f, has no BC means that
fe(r,—ic), with 6 > 0, is a real-valued function. Putting all
these results together, we find that the discontinuity along
the BC of the Z-modes of the GF is given by

8,Gy(r,1r;0) = —ZiU%f,;(r, —io)fs(r, —io),

(2.21)
which is a purely imaginary quantity. The reader may refer
to [30,37] for details.

B. Bardeen-Press-Teukolsky equation

The Newman-Penrose formalism offers an alternative
way of describing spin-field perturbations of a
Schwarzschild black hole background spacetime to that
provided by the RW formalism (one key advantage of the
Newman-Penrose formalism, however, is that it generalizes
to Kerr spacetime). The scaled Newman-Penrose scalars
U, = WU(1,r,0,¢p) obey the following equation [8—10]:

2s Mr*\ 0 d .cosf O

vov, + = (ot MEN O oy L 880 9

{ «t 2 [( TR >8t+(r )6r+lsin268¢
_ ccof?

+1+C°t9] }\ys =T, (2.22)

where T, is the matter source term. The scalings of the
Newman-Penrose scalars here are given by

wo or rYyy,, s=42o0rs=-2,
U, =< ¢ or Py, s=+1ors=—I,
Q, s =0,

where 4 are the radiative Weyl scalars, ¢/, are the
radiative Maxwell scalars and ¢ is a massless scalar field.
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We note that in the scalar case (s = 0), Eq. (2.22) is the
same as the four-dimensional RW equation (2.1).

As for the RW equation [Eq. (2.3)], we may obtain a
complete set of solutions of Eq. (2.22) in the form

\Ils(t’ r.0, ¢) = e_ths Yfm (9’ ¢)stm(r7 w)’ (223)
where (Y, (0,¢) are the spin-weighted spherical
harmonics [38,39]. These are given explicitly by

oY (0, 8) = Y, (0, 9),

1
1Y (0,0) :m {?89 sin 6345] Y (0,0),

£>1,
Y, (0.¢) = !
£25AmA _\/(f—l)f(f+1)(f+2)

x [8§—cot989 000y F 2”"5‘90934,

%0 2} Yen(0.9). £22. (2.24)

The spin-weighted spherical harmonics satisfy the follow-
ing relations:
(1) the conjugation
(=D)"™ Yy (6, ¢);
(ii) the orthonormality relation

relation Y5, (0. ¢) =

/ dzgs Y;m(gv ¢)sz’m’(97 ¢) = 5/1,”5mm’;

(iii) the completeness relation

&) 4
> Z Y5 (0.0)Y (6. 4)

t=|s|m
= 5(cos —cos@)5(p — ¢');

(iv) the  parity  relation

(_l)f—sz(—m) (9, ¢>’

(v) and the generalized addition relation

szm(ﬂ_07”+¢) =

D Y in(0.0)5, Y, (0.0

m

2041

i (2.25)

S Yf(—sz) (77 (Z) e_is]ﬁ?

where
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a = tan~!(cos @sin @ — sin @ cos & cos(¢p — ¢'),
—sin@sin(¢ — ¢')),
p = tan~!(sin @ cos & — cos @sin & cos(¢p — ¢'),
—sin@ sin(¢p — ¢')).

In particular, when s; = 5, = s,
Zsyfm (97 (p)sy;m (9/’ (ﬂ/)

21+1 +cosy 25 025
)< 3 ) P;_'S)(cosy)e

—is(a+p)

(2.26)

where P,(:"b) (x) are the Jacobi polynomials.
The radial part of the functions in Eq. (2.23) satisfies the
ordinary differential equation

d? d (r*w = 2is(r — M))r*w
A—+4+2(r—M 1)—

dr2+ (r )(s—|— )dr+< A

+disor +s(s+1) — /1)] Rom = 12T o, (2.27)

where (Ty,, = ;T s, (r,®) are the corresponding modes of
the source 7';. We shall refer to Eq. (2.27) as the (radial)
Bardeen-Press-Teukolsky (BPT) equation and to Eq. (2.22)
as the four-dimensional BPT equation. We may write the
former in self-adjoint form as

d d (r*w = 2is(r — M))r*o
_AS+1 . AS
{dr dr + ( A

+4disor +s(s+1) - l)] Rom = PN Ty, (2.28)

or, writing th’m(ra w) = (A_S/Z/r)s)(fm(r’ a))’

d? , 2is(r=3M)w A 2MA M*s’
+ @ + 5

R B L
As/2+1
= (2.29)

st ém-

Let us denote by .y, a general homogeneous solution of
Eq. (2.29). Asymptotically, the homogeneous version of
Eq. (2.29) takes the form

d2
[—2—1— (@ — isk) } »~0, Py = —00,

dr;
d? ,  2isw
dr2+w + , x)(fNO, r, — 400,
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where k= 1/(4M) and correspondingly the solutions
behave (omitting dimensionful constant factors) as linear
combinations of

+i(w—isk)r,

A +s5/2 _
He~e NeiS/Z <( )2 eila)r*, 7, — —00,

tiwr,
S){f,\/r:FSe Lr. s

1) S/ze—H(ur* +

w SR;PJHC (ZM) I+s (ﬁ —
sKe ™~
s

up.tra_ g iwr,
~Rf I se+tmr ,

for general BPT spin. The corresponding ingoing and
upgoing solutions® of the homogeneous version of the
BPT equation (2.27) respectively behave asymptotically as

Rin {SR?'traA_se‘i“”*, F, — —00,
sy ™~ Fa. . ; ) . _
SR;l-lﬂCr—le—zmr*+sR?,r€fr—1—256+ta)r*’ 7, = +00,
(2.32)
and
up,inc_{igr, up,ref A —s —jwr, -
sty tra —1_-9¢ . _
SR;P- a}" | 2Ae+lwr*, 7, — +00,
(2.33)
£/t L. . L.
where Rln Ane/ref /i o ve the incidence/reflection/transmission

coefﬁments of the ingoing radial BPT solution; similarly for
SR ine/ref/ 3 gor the upgoing solution. It is convenient to
define the following ingoing and upgoing solutions and
coefficients with a hat on, which are normalized with respect
to the corresponding transmission coefficients: R y=
Rm/SRm tra, SRUP _ R;p/sRup Jtra k?,inc = SR?,iHC/SRi;,tra.
Then it is easy to see that

Wl (w)=
=Ast! (SR?SR;I)I —

WIRD (R
SRP RN =2iw R, (2.34)

where primes denote differentiation with respect to r. The
quantity W7 is a “generalized Wronskian” in the sense that it
is independent of r. Similarly to the RW case, the solution

>We keep a spin s subindex in the solutions (R and ;R of the
BPT equation while we did not for the solutions f, and g, of
the RW equation because of the explicit spin dependence in the
asymptotic equations (2.32) and (2.33) for the former set of
solutions [as opposed to Egs. (2.11) and (2.12) for the latter set];
this leads to the explicit spin dependence in Eq. (2.36).
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We may define ingoing solutions of the homogeneous

version of Eq. (2.29) by their asymptotic behavior as

Rmtra(2M)1 5( r_ 1)—s/2e_iwr*’ 7, — —o0,

in 2M
s)(f L ) ¢ )
SRy rseT o SR;"re rSetior F— 400,
(2.30)

and the upgoing solutions as
R (201)1 - (L - 1)‘” oo R oo
N ’ * k)

‘ M (2.31)

[

4R}’ has a BC along the negative imaginary axis of the
complex frequency plane, which is inherited by W7, whereas
SIA?? has no BCs [13].

The GF of the four-dimensional BPT equation is the
solution of Eq. (2.22) with the source T replaced by the

distribution &(r — r')6(cos @ — cos8)5(p — ¢')//—9-
may be expressed as
'Gret T(x x/)

_ZA

where

)sGE T (rrs0)sY 1 (0.90),Y 5, (0,90). (2.35)

SG?LT(I", ;1)

co+ic X
/ dw,GL(r,r;w)e ",
co+ic
Rf (r<’ )“R;p(r» a))

Go(r.rio) = - W (w)

In order to obtain an expression for the BC contribution
,G2CT to the ¢-mode (GE'T of the GF of the four-
d1mensi0na1 BPT equation we proceed similarly to the
previous subsection for the RW equation. This contribution
can be expressed as in Eq. (2.21) for the RW case, but with
,G2C and 6,G, replaced by ;G5 and 63‘*6';, respectively.
We then note  that RE(r,—w*) = (R (r,w) and that
A~ _RP(r,+ic) goes like e™"*/r as ¥ — oo (neglecting
a constant factor). It can be shown that all three functions
R (r.—ic), (R (r.—ic) and A=_ R}’ (r,+ic) satisfy
the same homogenous linear second-order differential
equation (namely, the BPT equation) with real-valued
coefficients along the imaginary-w axis (since ®w = *tio
with o > 0 there). The two former solutions have the same
large-7 behavior, which is linearly independent from that of

the latter. Therefore, it follows that
SRYP =

q" (6) A _RP(r, +io), (2.36)
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for some real-valued function ¢”(c), and that
WIRY , RP ] = —Zzaq (6). We emphasize that the
“BC strength” function ¢ is calculated using the upgoing
radial function along the positive imaginary axis with the
opposite spin sign, as opposed to the same spin sign for
calculating ¢ in the RW case [see Eq. (2.20)]. The property
R (r,—w*) = R™ (r,w) together with the fact that (R
has no BC means that SIAQi;‘(r, —ic), with ¢ > 0, is a real-
valued function. Putting all these results and properties
together, we find that the discontinuity along the BC of the
¢-modes of the four-dimensional BPT GF is given by

q"
—2ig1 %) (o) R (r,—ic) R (' ,—ic).

5,GL(r,r';0)= WP

(2.37)

In the next subsection we relate the BPT quantities to the
RW quantities and, in particular, we present an alternative
way [namely via the RW “BC strength” ¢(o)] of calculat-
ing the BPT discontinuity §,GZ.

C. Relationship between RW and BPT quantities

The so-called Chandrasekhar transformation relates, in
the homogeneous case, solutions of the RW equation to
solutions of the BPT equation. We note that while the RW
equations (2.1) and (2.4) are symmetric under s < —s, the
BPT equations (2.22) and (2.27) are not. We here write the
Chandrasekhar transformation compactly for spin s = 0,
—1, =2 (see [40] for spin-2 and, e.g. [41] for spin-1;
there are similar transformations in the case of positive
spin—which of course only changes the BPT equation, not
the RW equation—but we do not deal with these in
this paper).

Let us generically denote by (X ,(z, r) a homogeneous
solution of the 4D RW equation (2.1) after factorizing out
the angle dependence via scalar spherical harmonics;
similarly, we generically denote by (W,(z,r) a homo-
geneous solution of the 4D BPT equation (2.22) after
factorizing out the angle dependence via spin-weighted

1

1

T (-1 + D +2) - 12iMw)c,

PHYSICAL REVIEW D 92, 124055 (2015)

spherical harmonics. The corresponding Chandrasekhar
transformation is then [35]

s\I]z,’(t’ }") = O(Z’ r)s‘)(f(t’ }"),

A\ Bl 2 Is|
O(t,r) = <7> (ar_%at) Pol-1,

up to a normalization constant. We already gave in Eq. (2.24)
the angular counterpart of the above transformation, i.e.,
the transformation from the angular factor in the 4D RW
Z-modes (namely, the scalar spherical harmonics) to the
angular factor in the 4D BPT /-modes (namely, the spin-
weighted spherical harmonics). We note that if Eq. (2.24)
were naively applied to the modes # < |s| it would yield the
zero function.

It is useful to write the Chandrasekhar transformation in
the frequency domain explicitly for each spin s =0, —1
and —2 separately. We now generically denote by (X, and
sR, homogeneous solutions to the (radial) RW equa-
tion (2.4) and (radial) BPT equation (2.27), respectively.
Introducing the operators

(2.38)

d iw ., d o
D=—q_——  D=—-_2
ar " 70) ar~ £
where f(r) = A/r?, we may express the BPT solutions in

terms of the RW solutions as

ok, = ﬁoxﬂ
r
LR, =i(r=2M)D_ X, = ¢ r[f(r)_ X, +io_ X,].
R, =o(r - 2M)*DA(r .0y
= o,[2(irw + r =3M)r(f(r)_,X,/ +iw_,X,)

+ (0 + r—6M)f(r) ,X,], (2.39)

where ¢, ¢; and ¢, are constants of proportionality and
primes denote differentiation with respect to r. Conversely,
we have

R | ior R

_[ f‘( +f(r)>'1 4’

r3'DT2<—2Rf>
)”2

(-1 +1)(¢+2) - 12iMw)c,
=2Mr(¢(¢ + 1) + iwr + 10) + 24M?

N (¢ + 1) = 2r’0* + 8iwr + 4)

F@M—r—mﬁ)

r(r—2M)>?

LR, (2.40)

124055-7
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We will now use the Chandrasekhar transformation in
order to relate the BPT and RW Wronskians as well as the
BPT and RW BC strengths. The specific normalizations
(2.11) and (2.12) of the RW radial functions f, and g, yield
specific normalizations for the corresponding BPT radial
functions via the transformation equation (2.38). We will
denote the BPT radial functions and coefficients with
these specific normalizations with a tilde superscript,

ie. RM=0,(Nfs RP=0,(r)g, and R

SR are, respectively, the coefficients (RY™,
RPT L of (RY and (RJ. In Appendix B we use the

Chandrasekhar transformation in order to find these BPT
radial coefficients and Wronskian in terms of the RW radial
coefficients and Wronskian. We are here using the obvious
notation of O, (r) for O(t, r) after replacing “0,” by “—iw”
in it.

Let us now try to find an alternative expression to
Eq. (2.37) for the BPT 5,G? in terms of the RW ¢(o).
We first reexpress the BPT modes (G of Eq. (2.35) in
terms of the RW solutions f, and g, by using the
Chandrasekhar transformation equation (2.38):

T(r o) — fe(re, 0)ge(rs, ®)
sGh(r.rio) = =0, (r.)0,(rs) R gy

(2.41)

Using this expression we can find the discontinuity of the
BPT #-modes as

w
pintra pup,trayy, 7
A‘le’ SRf W

__2ioq(o) R}

5SGZ;(I’,I"/;0): Ow(r)ow(r/)ést(rvr,;U)

R Rup-tras@(”ﬂ’)sk?("'aw)-
W+, R

(2.42)

In deriving Eq. (2.42) we have used the fact that
W/ (R . RP"WT) does not have a BC (as can be
seen from the expressions in Appendix B) and we have

made use of Eq. (2.21).
|

6(A2=21—1)

(132% = 5223 + 164% + 721 + 36)5>

PHYSICAL REVIEW D 92, 124055 (2015)

Comparing Egs. (2.37) and (2.42) we immediately
obtain a relationship between the RW and BPT BC
strengths:

WT % Siein,tra
7o) = () amaer @4
sy
Using the results in Appendix B, we have that
1 s =0,
_agay s=—1
q"(0) = q(o)q ~ 20ai> ’ (2.44)
B (o +2M>B. ) _
gy STk
and
| & =0
9 _RW g q )& 1
— = p— — 2, © ’ - ’
|WT|2 SRI;p.tra WT |W|2 |W|2 oa,
(a +2M?p. ) §=-2
2M20'2ﬂ°° ’ - .
(2.45)

Inverting the relationship and using the results in
Appendix B, we explicitly obtain

T
q q
—|W|2 = C—|WT|2 (2.46)
with
C =4M?, s =0,
16AM*
C=— 20 (1-45+45%), — 1,
</1_524_1)2( G+ 467) s
256M°(1 —25)*(1 — 5)?
C= 51— ta , s = =2. (2.47)

The small-frequency behavior of C for s =0 and —1 is
already manifest in the exact result above; for s = -2 we
expand it as

256M° (

C_(/I—Z)/I (A=2)2

From Egs. (2.37) and (2.46) and the fact that the radial
functions f, and SIAQi; are generically of the same leading
order (order zero) in 6 as 6 — 0 (see Secs. IIIVI), it
follows that the RW and the BPT BC modes 6,G, and
6SG; are of the same leading order in 6 as 6 — 0. As a

(A—2)222

) +0(5%), s=-2. (2.48)

I
consequence, the RW and BPT GFs are of the same
leading order in 7 as 7 — oo, as we explicitly see in
Sec. VII. That is, the RW and the BPT quantities
describing black hole perturbations decay at the same
rate at late times.

124055-8
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III. MST FORMALISM FOR THE RW AND BPT
EQUATIONS FOR GENERAL SPIN

The MST method for the Teukolsky equation in Kerr
(and, therefore, for the BPT equation in Schwarzschild) was
given in ST for general spin, and earlier in [14] (henceforth
MSTa) just for spin-2. To the best of our knowledge,
however, the MST method for the RW equation has only
been given for spin-2, which was done in [15] (henceforth
MSTb). Therefore, the MST method for the RW equation
still has not been developed for spin-1 (obviously, the RW
spin-0 case is essentially just the same as in ST with s = 0).
In this section, we develop the MST method for the RW
equation for general spin: for spin-2 we recover MSTb, for
spin-0 we essentially recover ST with s = 0 and, for spin-1,
to the best of our knowledge, the results are new. We also
develop the MST method for the BPT equation which,
although already existing in the literature, will allow us to
emphasize the connections between the MST formalism for
the RW and BPT equations for general spin s = 0, —1 and
—2. In particular, we write the expansions for the radial
solutions of both the RW and BPT equations in terms of just
one set of “universal” coefficients (namely, a,). When
referring to the literature, we shall use the generic term
MST to refer to all MSTa, MSTb and ST.

We shall use the notation of X™™"? and R™ P (i.e., with a
slight change in the subindices with respect to the homo-
geneous RW solutions ,X'*/"? and the BPT solutions ;%"
respectively) for the 1ng01ng/upg01ng solutions of the RW
and BPT equations when using the specific normalization as
in MST [i.e., the one in Egs. (3.12) and (3.20) below]. A
similar change in the subindices notation applies to their
incidence, reflection and transmission coefficients.

A. Series of hypergeometric functions

In this section we shall assume that s < 0. For the RW
functions we write

Xlxn — ei&)?s+le—ia)r* Vip(x)
— pstl —1a)(r 1)(,,._ 1) [51‘n<)€)

= (1 =0 e () o5 (), (1)
where x = 1 — 7. This leads to the ordinary differential
equation

[So]

PHYSICAL REVIEW D 92, 124055 (2015)
x(1=x)p(x) + (1 = 2i@(1 — x)? = 2(1 + 5)x) piV(x)
+((£=5)(¢+s+1)+2io(1+5)(1 —x))pn(x) =0.
(3.2)

Correspondingly, for the BPT functions we write (as in ST)

Rin — ez ( 1)—se—iwr*pisn(x)
— I(D( )(r_ 1)—3—(Dipisn(x)
)

which leads to the equation
x(1 = x)p"(x) + (4iMwx(1 — x) +2(2iMw — 1)x
+ (1 =s—4iMw))p™(x) + (£(£ + 1)
+4iMw(1 = s)(1 —x))p(x) = 0. (3.3)

In terms of pi"(x) and p"(x) the Chandrasekhar trans-
formations take the form

pi(x) = copi(x),
Pi—nl (x) = Clpml/( ),
P (x) = e p™m)" (x),

and conversely

po(x) = _Po 7 (x),

P (x) = ﬁ [¥(1 = )P/ ()
+ (1= 2id(1 — x)2)pi", (x)].
sin = !
P = (e + 1) + 2) = 6id)es

X [x(1 =x)(2x 4+ 1 = 2iw(1 —x)z)p"‘z’( )
— (2 + 1)x(1 =x) +4@*(1 —x)*
+6id(x + 1)(1 — x)? =2(2x + 1)) p% (x)].

We now follow MST and introduce the expansion in
terms of hypergeometric functions,

y . I(—n—-v+s—io)l'(in+v+s+1—id
P =N Y n :

(1 - 2id)

n=-—oo

I—n-v—io)l(n+v+1-i)
(1 -s5-2i®)

= N i a,

n—=—00

JFi(—n—v—io,n+v+1—iv;1 -5 —2id;x),

i (—n—v+s—ion+v+s+1—iw; 1 —2id;x),
(3.4a)

(3.4b)

124055-9
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where N is a normalization constant which we
specify later on. Here, the parameter v is referred to as
the renormalized angular momentum and is determined
by the requirement that these series converge both as
n— oo and n — —oo, it has the property that either
v=¢+0(®) or v=-¢—-1+0(®); see MSTa or
ST for a full discussion. These series representations

PHYSICAL REVIEW D 92, 124055 (2015)
In these terms, the Chandrasekhar transformations fol-
low from the standard identity [Eq. (15.5.1) [42]]
d ab
azFl(a,b;C;x) = 72F1(a + lyb + I,C + 1;)(:)’

for some parameters a, b and c. Inserting into their

in terms of hypergeometric functions converge  respective differential equations and using the standard
Vr € 2M, ). hypergeometric function identities
|
a(b—c) cla+b-1)—2ab
Fi(a,b;c;ix) = F Lb-1ic Fi(a.b;c;
x,F(a,b;c;x) @b a—b11) 1(a+ cx)+(a—b—l)(a—b+l)2 1(a, b;c;x)
b(a—c)
Fila—1,b+ 1;¢;x),
+(a—b—1)(a—b)2 1(a + 1;¢5x)
d ab(c —b) ab(2c—a—-b-1)
1—x)—,F b;c;x) = F 1,b-1;c¢; Fi(a,b;c;
x( X)dxz 1((1, Cx) (a—b)(a—b+1)2 1((l—|— Cx)+(a_b+1)(a_b_l>2 l(a CX)
ab(a —c)
Fila-1,b+1;c;x),
+(a—b)(a—b—1)2 (a=1,b+1;¢3x)
we find that d, and a, must satisfy the same three-term recurrence relation:
Anlpp + puan +vnap-1 =0, (35)

where

ion+v+1—io)(n+v+1+s—id)n+v+1+s+iv)(n+v)

a, =—

(2n+2v+3) '

Bo=—-An+v)n+v+ 1)+ (n+v)n+v+1)+a*)?+ 52,
ion+v+io)(n+v—-s+id)(n+v—s—id)(n+v+1)

Yn =

The overall normalization of the coefficients in the homo-
geneous equation (3.5) is, of course, irrelevant for the value
of the a, but the above form has the advantage that all
denominators are bounded away from O in the perturbative
(small-frequency) regime. By perturbative regime we
essentially mean the frequency regime where v is real—
see the end of Sec. IV for further details. We choose the
normalization dy = ag = 1, so then we have d, = q,,
Vn € Z, and from now on we will write down all series
using the universal set of coefficients a,,. These coefficients
a, are equal, for s = —2, to the a% in MSTb as long as the
same normalization is chosen for the two sets.

We could alternatively choose to include the I'-functions
in the coefficients, that is, write

RW I(—n—v+s—io)(n+v+s—io+1)

ayW xa, (1= 2i) . (3.6)
aZoca,,N_n_y_i&))r(n_'—y_i@_'—1>, (37)

I'(1—s5-2i®)

(2n+2v-1)

|

where the constants of proportionality are independent of n
and so just reflect the normalization of the series. A
particularly convenient choice is

AV =a,(-v+s—iv)_,(v+s—ivo+1), (3.8)

— 1 1
agsan(_y—i@)_n(y—im1)n=anm(—1)n.
(3.9)

As we choose the normalization an = 1, we also have

ay = a¥%V = 1. Using this convention the corresponding

three-term recurrence relations have coefficients

n+v+1—-s—+iw
al;W:_ Ay,

n+v+14+s—iw

RW__n—I—I/—I—s—lw
RW oo

ﬂ}}w = ﬁn’

) 3.10
ntv—stio" (3.10)

124055-10
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and for BPT. In particular, v depends only on |s| which

T n+v+1+iw T
On == n+v+1—ia %n» P = P can be seen directly since under the transformation s — —s,
T n+v—i n+v——-n—-v-—1, B, is invariant while @, and y, are
Yn = —m}’w (3.11) simply interchanged.

As the event horizon of the Schwarzschild black hole is
Note that, in the perturbative regime, where v is real, approached, we have
Eq. (3.11) may be reexpressed as

T _ % T _ g% T _ % : ;= ; v
a, = ay, ﬁn - ﬁn» Yn = 7n- X{vn ~ e’“’e"wr*plsn(O) and

Up to irrelevant overall normalization, the coefficients ., Ry ~e'(F = 1) pi(0), r—2M.
AT and y! and corresponding a! are the same as the
corresponding quantities in Eq. (123) ST.
As the corresponding coefficients differ by a scaling  That is, our solutions (3.4a) and (3.4b) are normalized
that tends to 1 for large |n|, v is the same for RW according to [see Egs. (2.14) and (2.32)]
|

. o .. I'-n—v+s—id)l(n+v+s+1—io)
X&n,tra N (0] }n 0) = len i " 5 3.12

epi(0) = Ni'e nzz_m” (1 - 2ia) (3.122)

_— ,_ . I = I(-n—-v—io)l(n+v+1-iw)
Rlyn,trd = e ®(2M 25 4,in 0) = Ninei® (2M 2s . 3.12b
P = M) p(0) = NP M D a, R (3.12)

We note that the particular normalization choice,
. 'l —s-—2ia

Nin = (1~ s —2id) (3.13)

[(—v—io)(1+v—i®)’

yields the specific normalization used in ST for the ingoing BPT solutions, and so that is our choice henceforth.

B. Series of Coulomb wave functions

An alternative expansion is useful for the construction of the “up” solutions. In terms of the variable z = wr = @7, the
RW equation may be written as

@ > - 52
] _%>sx’f(z)+<1+ 0 2 z—f(ﬂ—l)‘(l )')YXAZ)_O'

2(z-®) Z(z—a)

X+ (

Z—

Writing (X,(z) = (1 - %)""Z’hvs(z) this becomes
. . . . . 1. .
Phy + [+ 207 — £(6 + D)y = @ [z(h;’ + hy) = (1 =2i@)h — (s> = (1 — i@)?) —h, — &)hs} . (3.14)
Z

The left-hand side is the operator defining the Coulomb wave equation [Eq. (33.14.1) [42]] with the solution satisfying “up”
boundary conditions at infinity given by

HY (—,2) = Wiy p1(=2i2) = €%(=2i2) T U(C + 1 = i@, 26 + 2, 2iz),

where A } (=@, z) denotes the (unnormalized) irregular Coulomb function [Sec. 33.2(iii) [42]] and W denotes the Whittaker
function (Sec. 13.14 [42]), We use a “hat” to denote that in writing the above we have dropped the conventional
normalization prefactor e~#¢/2+i0¢(@) g=25/2 \where ¢,(—®) is the Coulomb phase shift, which is irrelevant to our current
discussion. U denotes the irregular confluent hypergeometric function (Sec. 13.2 [42], ¥ in the notation of [44]). Again,
following Leaver [13] and MST, this suggests that we introduce the expansion for the upgoing solution,
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I'n+v+l+s—io)(n+v+1—iv) - )
= N .
' ; n+v+l-st+i)(ntv+l+io) " no(=0,2)
i(_n; . Tnt+v+1+s—i@(n+v+1—id)
— N%Peiz(_Djr )+l

(=2iz) ,1:Z_OOF(”+”+1_s+i@)r(’1+v+1+i@)a"

: (3.15)

x (=2iz)"U(n+v+1—i®,2n +2v+2,-2iz)

where N;" is a normalization constant that we will specify later so that our normalization agrees with ST. Inserting into
Eq. (3.14), eliminating second derivatives using the differential equation satisfied by A 1 (=n, z), and noting the following
identities which follow from standard properties of the functions U:

’/I 7+ . (L + ”7 ) P+

- HT (=

( ’77Z)+1L(2L+ )l L—l( H’Z)’

1. . (L+1-ip) 4
ZH (- ,Z7) = — HT,  (-n, —t
i) == e+ Men A T
d .. . L(L+1-1in) ., n A (L+1)(L+in)
—Hf (-n,2) = H (-7, H} (-1, H
az e = e g Men )+ g e+ oy i ne2),
we find that a, must satisfy the same three-term recurrence relation Eq. (3.5)
Similarly, the BPT equation becomes
1 2(@ + is) &)( is) f(f+1)—s(s+1)>
RU(Z) 4 (1 +s — = | \Ry(2) + 1+ - - . sRe(2) =0.
R+ (1-49) (2 )oote) + (14 2O B2 HEE DA D) g
= 771751 = 2)=~@p (7) this becomes
1
(1 —s—=2i0)h — (1 —i®)(s — 1 + i®)—hy + i(s + i@)h,]
Z
(3.16)

Writing (R,(z)
(22 +2(@+is)z— (¢ + 1)|h, = @[z(h) + hy) —

2h +
is,z) and the corresponding expansion for the upgoing solution is

The appropriate Coulomb function is now H; (—@
Fn+v+1l+s—io)(n+v+1—-iv) . )
I( ._) t (=@ —is, 7)

hs? 1)*N?
; I'n+v+1l-s+io)l'(n+v+1+id)
“Tn+v+l+s—io)(n+v+1—id)

— (=1 sN?P iz(_Dj )+l
(=1)'Ns"e(=2iz) ZF(n+y+1—s+i6))r(n+u+l+lw) !

n—=——00

(=2iz)"U(n+v+1+s—iw,2n+2v+2,-2iz)

% (=i
The Chandrasekhar transformations in this case follow term by term from the Whittaker function identities

@)\ - o)\ —io ) 1—-io )
(1 - ) DO < (1 - Z) Wi(f),L*‘v’%(_le)) = <1 - Z> W1+i17).L+%(_2lZ)7
@\ —i@ ) @ 2-io )
(1 - Z) D2< <1 - ;) Wia),L+%(_ZlZ)> = Z<1 - Z) W2+i(ZJ,L+%(_2lZ>
@)\ 1-io
—-(1-2) Thpca i),

or equivalently
0\ = ®\ 7@

(-2 () “ssens) (-
@\ —io @) 2-io

> H( a),z)> = <1 _z> H  (—&+2i,2),
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_ d o\ 1
DO:@<+i<1—w> )
dz z

Using the relationship between a, and a! we may write
our solution in the alternate form,

where

| =~ (v+1+s—-iw)

h?p = (=1)S = e "@piz(_2D v+1 n
(=1)' 3 e e (=22) n;oo(v+l—s+i6))n

xal (2iz)"U(n+v+1+s—i@,2n+2v+2,-2iz),

(3.17)

where we have made the choice

1

ey 0]

)

Fv+1-s+io)l(v+1+io) )
Fv+1+s—io)l(v+1-io) '
so as to agree with the normalization of ST. However our
original form serves to highlight the boundary conditions
and the link to the RW solution.

The corresponding upgoing BPT solution is given by

7\ —S—i®
RY = Z—H(l —%) hs(z).

This series representation in terms of irregular confluent
hypergeometric functions converges Vr > 2M. Since
|

(3.18)

kP (2) = i":F(n+v—s+1—id))F(n+v+1+id))
T L Tt v+st 1+ (n+v+1—io)

n=—00

PHYSICAL REVIEW D 92, 124055 (2015)

U(a,c,x) ~x* as |x| — oo, it is straightforward to write
down the asymptotic forms

XlSlP ~ (zl')sAziei(H»u')lnz)’

Rlslp ~ Aiz‘1‘25ei(z+5’lnz),
where

AV = <2i)—se—’5’dze—i§(u+1)2—1+i(b

> v+ 1+s—io),v+1—-id)
L “a,. 3.19
x n;”(u+ I—stio), Wit 1)
Clearly, then, from Eq. (2.33),
X}:P»“a _ (Zi)SAieid)ln&),
?p,tra _ Azia)—l—Zsei&; ln(Z)' (320)

To conclude this subsection, we note that we could have
used the ansatz ;X ,(z) = (1 —2)"”k,(z) for the RW equa-
tion, giving

2k + [+ 207 — £(€ + 1))k,
= @z(k] + ky) — (1 + 2id)k;

— (2= (1 + i) %ks _ak], (321)

and the upgoing solution

anﬁ]rJtrJru(_@’ Z)

TR i Fn+v-s+1—id)l(n+v+1+io)
N Fn+v+s+1+ia)(n+v+1-iod)

n=—0o

a,(=2i)"U(n+v+1—id,2n+2v+2,-2iz).

While this expansion seems to more naturally capture the boundary conditions of the RW equation, the Chandrasekhar
transformation is less natural in terms of it, so we will discuss it no further.

C. Relation between the two solutions

Using the standard relation Eq. (15.8.3) [42], we may reexpress X" in terms that are better suited for discussing its

behavior at radial infinity:

“T(—n—v+s—io)l2n+2v+1)

Xlsn — len(l _x)y+1+irbeir?}x(_x)—irb Z

n—=—0o

n

I'n+v+1-s5—io)

1
x (I —x)",F, <—n—1/+s—icb,—n—v—s—icb;—Zn—Zv;m>

[Se]

+ len(l _ x)—u+i6)ei¢bx(_x)—izb Z

n=—0oo

I'n+v+1+s—io)'(-2n-2v-1)

[(-n—v—s—i®) !

1
x(l—x)‘"2F1<n+u+1+s—id),n+u+1—s—id);2n+2v+2;1—>.
— X
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The second term can be obtained from the first by the  (Note that N is invariant under this transformation.)
substitution n - —n, v - —v — 1 and correspondingly the It is easily checked that each of these terms is independ-

terms are denoted by X% and X;*~! respectively, so ently a solution of the RW equation and moreover are
' linearly independent (MSTb). In terms of z=odF =
Xin = Xy + X5vl. (3.22) @1 -x),

o —i® vhio 2 T(—p — —io)['(2 2 1
X(”)(z)—N?V“e’“’e_’z<§—1> (E) Z ( n—v-+s la)) (Vl+ v+ )

@ @ e Fn+v+1-s5—io) i
X <§> ,F, <—n—1/—i&),—n—u—s—iﬁ);—Zn—Zv;B) (3.23)
@ z
In an identical fashion we can write
Risn — Rzé 4 Rab—l (324)

with

o ) —5—i® v+io 2 I(=n—-—v—io)(2 2 1
Ry = Ne'®e™i (é - 1> <%> Z a, (-n—v—i®)'(2n+2v+1)
n=-—o00

0 Fn+v+1-s5s—id)

zZ\" ®
X|=| ,F|-n—v—id,—n—v—s—id;—2n—2v;— . (3.25)
Z

)

This series representation for R converges Vr > 2M.
To obtain solutions in terms of confluent hypergeometric functions suitable for discussing the behavior at the horizon, we
introduce the auxiliary solutions involving the regular Coulomb wave function,

A (Z+1+io) .
Ff<_w7 Z) = I“(2f + 2) i(?),f+%(_2lz)
N+ 1+io0) . N _
=2 ei(2i) T M+ 1 —i@,2¢0 +2,-2
raz 1 2) e (=2iz) (+1—i@,2¢ + iz)
re+1+io) . . N .
=— e i(2iz)/ T M(£ + 1 ,2¢ +2,2iz),
raz 1 2) ™% (=2iz) (€ +1+4i@,2¢ + 2,2iz)

where we include the prefactor for reasons that will become clear when we consider the Chandrasekhar transformation
below. The function F,(—7, z) then satisfies the following identities:

1. . (L+1=ip) . N . (L+in) .
EFL(—’%Z)—lmFul(—’%Z)+mFL(—’7»Z)—lmFL-1(—’7,Z)’

d . _ L LL+1-in) o n_ (L +1)(L +in) »

d? L(=n.2) = —lmf‘lﬂ(—’%z) +mFL(—’7»Z) - W L-1(=1.2).

Proceeding as before we construct the corresponding solutions:

. @\~ - Fn+v+1l+s—io)(n+v+1-iad), .
XV = Nle 21 =2 -2 v+1 2iz7)"
c(2) ce ( z) (=2i2) n;m "Tn+v+1-s+i@)[(2n+2v+2) (2iz)
XM(n+v+1+id,2n+2v+ 2,2iz) (3.26)

and

124055-14



HIGH-ORDER TAIL IN SCHWARZSCHILD SPACETIME PHYSICAL REVIEW D 92, 124055 (2015)

. @\ ~STio , - I'n+v+1l+s—io)(n+v+1-—io) .
RY = Nle 21 == —1-s ) v+1 2iz)"
cz) = Nee ( z) <) n;x, S ¥ PRSI WS P R R )
XxMn+v+1—-s+io,2n+2v+2,2iz), (3.27)

where

, Tw+1l-=s+io)l'(v+1+id)
CT At 1l+s—id)(v+1—id)

e+, (3.28)

for agreement with Eq. (139) ST when z > 0. Our normalization for X{. follows from that of R via the Chandrasekhar
transformation, and so for s = —2 it does not coincide with the normalization choice in MSTb. Specifically, for s = —2, our
X¢ is equal to that in MSTb times

Fv+1-s+io)'(v+1+io)
Fv-1-io)Fv+1-io)

The Chandrasekhar transformation when using these series representations follows term by term from the Whittaker
function identities:

@)\ - @)\ —i® @)\ -io
(1-2)00( (1-2) Mipsg-2i0)) = @+ 1+ 10)(1-2) My -2,

) @ 2_2 @)\ ~i® ) o N @) 2-io )
| 1= Z Dylz( 1= 7 Mi@.L+%(_2ZZ> =(L+1+i@)(L+2+id)z(1- B M2+,-5,.L+%(—21z),
@\ 1-id
(1-2) " hi-a+ i)

o\ = @\ "
A1=-2VD( (1-2) Fr(~d.z
) @ 2_2 @ —i(Z)AJr _ @ 2—1’0‘)/\+ ~ ]
z 1—; D z 1—; Fro(-a,2) | =z 1—; Fl (=@ +2iz),

or equivalently

where

These solutions can be related to Xi” and R;® using the identity in Eq. (6.7(7)), Vol. 1 [45] (valid for b¢Z):

D e U (a,b,2iz) + 1 el PF XU (b ~ a,b,~2iz).  Re(z) > 0,
r

mffl) e~ U(a,b,2iz) + %e_(”_b)”iezizU(b —a,b,-2iz), Re(z) <0,

M(a,b,2iz) = {

the first and second terms on each line yielding the incoming and outgoing wave solutions at infinity, respectively. Thus,
X¢(z) = X% (z) + X“(z), where

. @\ ~i® = T(n+v+1+s—io)
XY = NleFTrop=iz| 1 — = 2 v+1 27"
Y (z) = Nget™e ( Z) (2iz)1 ) a"F(n+y+1—s+icZ))( iz)

n=-—oo

xUn+v+1+iw,2n+2v+2,2iz)

[Se]

1_9 _i@(ZiZ)Hl Z anF(rH—v—l—l+s—f'c_7))F(n—|—v+1—ilcz))
z I'n+v+1l-s+io)'(n+v+1+id)

xUm+v+1—iw,2n+2v+2,-2iz), (3.29)

X (Z) — NZée$mDe¢2(u+l)nieiz< (_le)n

n=—00
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where the signs correspond to Re(2) <0 Here we take the BC on the complex z-plane to lie along z < 0.5 Similarly,

RY(z) = R%.(z) + R“(z), where

0]

o0

~ . —s—i® r 1 —ia
RI_;_(Z) — (_1>leée:Fere—lz (1 _ _> Z—l—s(ziz>1/+1 Z a, (I’l +v+ lw) (—ZiZ)n

<

n=—0oo

xUmn+v+1-s+id,2n+ 2w+ 2,2iz),
@
Z

RY (Z) _ (_1>leée:FmZ)e:F2(u+l)nieiz <1 _ _> _S_Iwz—l—s(zl'z)b+1

xUm+v+1+s—io2n+2v+2,-2iz).

Note that our naming convention here follows ST
and is opposite in sign to MSTb. In particular, the minus
solutions are just multiples of the corresponding “up”
solutions.

Critically as noted by MST, The functions X§
and X{ solve the same differential equation and
have the same analytical behavior as functions of z;
similarly for R{ and R{. Therefore, they must be
proportional:

C(n+v+1+id)

0

Z F'n+v+1+s—io)'(n+v+1-id)
a
"Th+v+1-—s+io)(n+v+1+ i)

(=2iz)"

n=—oo

(3.30)

X4 =K,X% and RY=K,R., — (3.31)

where K, is the constant of proportionality. Equating the
corresponding Laurent series we can obtain explicit expres-
sions for K, in terms of v and our a, coefficients. The
results are given for general spin by ST (based on their
Teukolsky equation analysis), we repeat them here for
completeness specialized to Schwarzschild spacetime:

i®(2) 27" (1 — 5 — 2i@)T(r + 2v + 2)

14

Fr+v+1l-s+io)l'(r+v+1+i0)l(r+v+1+s+iod)

" (ir(n+r+2u+1)F(n+v+1+s+i(I))F(v+1+id)) >

(n—r)!

n=r

(v+1+s—io),(v+1-iw),

Tntv+l-s—id)Dw+1—id)"

- 1
. (Z (r=m)(r+2v+2),v+1-s+iv),(v+1+i),

n=-—0o

The parameter r here is an arbitrary integer number.

The above expressions lay out the foundations for taking
the 7 — oo limit of the ingoing solutions and thus finding
their incidence and reflection coefficients. First we relate
the quantities at —v — 1 to those at v. From Eq. (3.28) we
have

S sin (z(v + i@)) sin (z(v + i@ — s))

NV —im o= NV,
¢ T Sin(zlv—id))sin(zv—iw+s) < €
(3.33)
Then, from Eq. (3.29) it follows that
xomt 2 SEWEI0) sy (3.34)

sin (z(v — i@))

®This is different from the choice in the other sections of the
paper of BC on the complex w-plane along the NIA. However,
that does not matter for Re(w) > 0, to which we restrict
ourselves.

a,,>_1. (3.32)

and

X7Vl = etlimveminv ol xv (3.35)
where the upper/lower sign corresponds to Re(z) positive/
negative. From now on we assume Re(w)> 0 [for
Re(w) <0 one may use the symmetries of the radial
solutions].

From Eqgs. (3.22) and (3.29) and (13.7.3) [42] we can
take the r — co limit and obtain the incidence and
reflection coefficients of the ingoing RW solution:

sin (z(v + i@))

Xin.inc — (K — ie—im/
' ( g sin (z(v — i@))

K_,,_1>A1€_i&’lm
(3.36)
and
Xl — (K, 4 ie™K_,_|)(2i)*Ave®n®  (337)

where
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F'v+1-s+io)l(v+io+1)

Avi —mu/2€l7(b+l)2 1-i@

XZ(]

n=—oo

Tv+1+4s—io)l(v—io+1)
I'n+v—io+1+s)
ICn+v+io+1—s)

a,. (3.38)

We can proceed similarly for the BPT solution. By
taking z — oo in Eq. (3.24) we obtain the incidence and
reflection coefficients of the ingoing BPT solution:

sin (z(v—s + i@))
sin (z(v+ s — i®)) K_”_1>

REH,IHC — Cl)_l (K _ le—uw

XAq/_e_iE)ln(D (339)
and
RM = w71 75(K, + ie™K_,_;)ALe®n®  (3.40)
where
AL/+ = e—m?)/2ei%(y+l—s)2—1+x—i17)
Fv+1-s+io)'(v+id+1)
Fv+1+s—io)(v—io+1)
W — 1
x Z (ntv=io+l) g4

= I'n4+v+io+1)
‘We note that one can obtain the radial incidence, reflection
and transmission coefficients of the RW solution from
those of the BPT solution (or vice versa) via the
Chandrasekhar transformation Eq. (2.40) [or Eq. (2.39)].
In doing so, the leading order for large-r would be
annihilated and one would require a higher order term.

IV. LOW-FREQUENCY EXPANSION OF THE
COEFFICIENTS AND OF v

In this section our goal is to provide the low-frequency
behavior of the MST series renormalized angular momen-
tum v and series coefficients a,. We will provide the
expansions explicitly up to the first five leading orders. The
behavior of the coefficients a®V and a! may be deduced
immediately from Eqgs. (3.8) and (3.9).

We start by noting that Egs. (3.2) and (3.3) reduce to the
hypergeometric equation when @ =0, indeed it was

|

(C—s+1)2f—s+2)*(f—s+3)* (£ —s5+4)?
96(7+ 1) (¢ 12)(20 1 1)(20 1322 + 5227+ 7)
(s 1) (E-s+22(E 543,

aj, =

(B +120+11) (£ =5+ 1)2(£—s+2)2(£—s5+3)?

PHYSICAL REVIEW D 92, 124055 (2015)

precisely for this reason that Leaver [13] and MST wrote
them in this way. For the “in” RW and BPT solutions we
want the regular solutions correspondlng to, respectively,

Fl(€+1+s,—C+s,1;x)=,F (- +s,6+1+s,1;x)

and

F(Z+1,-¢,1-s;x) =,F,(-¢, £+ 1,1 —s;x).
The left-hand sides of these expressions correspond to v =
¢ and the right-hand sides to v = = — 1 when @ = 0. In
fact, under v - —v — 1, a, equals y_, and f, equals f_,
and therefore, a, satisfies the same recurrence relation as
a_, under v - —v — 1; the equivalent symmetries hold for
the RW counterparts (aRV, aR®Y, gRW and yRW) and for the
BPT counterparts (a}, a), ﬂT and Yn ) This symmetry stems
from the fact that the renormalized angular momentum v
was introduced into the ordinary differential equation
[Eq. (119) ST] in the form v(v 4+ 1), which is invariant
under v — —v — 1. In addition, we may determine the
expansion of v about Z from that about “—¢ —1.”

With the natural ansatz that a, = O(@"'), the 3-term
recurrence relation [Eq. (3.5)] can be solved directly yielding

1 1 A(154=11)+3s* +6(A—1)s% _
gk (ﬁri) [1_ A(@1=3)(@1+1) ’
P(?4) (/1,S2) . )
+4(/1—2)/13(4,1_04115)(4/1_3)3(4/14» 1)260 +0(a°)
(4.1)

for the renormalized angular momentum. Note that the
expansion of v must be even in s in Schwarzschild spacetime
since it also arises through the expansion of the RW equation
which manifestly has this property. As it will be needed later
on, let us define v, as minus the coefficient of @? in the above
expansion for 7, i.e.,

v="~F—1,0* + 0(@%). (4.2)

For the series coefficients themselves, the above pro-
cedure yields

@*+0(@°),

BTuE (1221261322015 ¢
(C—s+12(—s+2) _,

C24(+1)2 (64220 +3) (20 + 1) (20 +3)2(26 +5)
(f=s+1)(f—s5+2)? -

@*+0(a°),

CETM e )26+ )20 1 3)
PIY (¢ .s)

THE1 1) 12)2f+1)(2613)

o*+ 0(@),

BT 1) (042 (0 +3) 20— 1) 20+ 1V (20 + 31 (20 +7)

124055-17



MARC CASALS and ADRIAN OTTEWILL PHYSICAL REVIEW D 92, 124055 (2015)

L (f=sH1)2 (st 1), P39(e,s) .
DTN ) T e e )Y TR 112 2e- ) 2e + 1) (2 1322 +5)
(126
(¢.s)
+8f(f+1>4<f+2)<2f_1)(25+1)3(zf+3)2(2f+5)
B ) PR G ) PES(.s) .
e+ ) T 222+ ) 3= )P (e )2l =3) 2= 1) (2l 1172 +3)
126(f )
TR DAer )2 13;(2/ 122+ 1) (26 +3)
 (CHs—1)Hl+s)? (C+s=1)*(E+s)? .4
DT — 12 )Y Tae-)2ei-n2e+ )
(158“ 5)
R TIC P\ TV T P T YRS v e
(E+s—22(f+s—1)2E+s)? . P_s4(15.8)(Z.5)
24— 1)l -3)(20 =120+ 1) T e =120 =3) 2 =122l + 1)
L (CHs=3)(C+s-2)2(C+s—1)*(E+s)?
“AT96(6—1)2(26—5) (26 —3)2 26— 1) (2 + 1)

o*+ 0(@Y),

o*+ 0(@),

o*+0(@),

o*+ 0(@°),

a_sz =

o*+0(@°), (4.3)

where P("")(x, y) denotes a real polynomial with integer coefficients of degree m in x and n in y and recall 2 = I(I + 1).
The precise form of the polynomials is easily determined to high order but is too long to be useful in printed form for general
s. For completeness, we give, as the most important example, the term in the renormalized angular momentum for s = 0,
-1, =2:

P (2,0) = —22(4 — 2)(3240 + 87331 — 8262542 4 15529523 — 1050004* + 184804°),
P (2,1) = =(2 = 2)(405 + 19172 — 324042 — 1630523 + 194352 + 5449575 — 848401° 4 1848017),

P (2,4) = 51840 4 1028162 — 95342412 4 5152223 + 1232334* + 857754° — 241516 + 6132077 — 1848025,

The naive pattern evident in the leading behavior under o@"y n>-¢,
= 0(a'" i
the ansatz a, = O(@") is 4, =4 0@") —(26+1) <n<—2, (4.5)

O(@hl-1 <—(2£+1).

4 %%ﬁ%ﬁ%w%ﬂ@W+o<“w n>0, @) n<-Qr+1)
I = (=92 0,20 i
(- 25’)\ \( 2f—1)z\n\|"|!

@) + o(@*) n<o, The same rules apply to s # 0 with the overrides:

(4.4) s=-2:a,=0(@"*?), n=-£+1 and n=-¢,

(4.6)
where (x), denotes the Pochhammer symbol (x),=
I'(x+n)/T'(x)=x(x+1)...(x+n—1). Note that reflecting
the symmetry noted at the beginning of the section, we have s = —1: a, = O(@/"1*?), n=-¢, (4.7)
a, > a_, under £ - —¢—1. We have also derived
Eq. (4.4) via an alternative method: by imposing that s=+1:a, = O(g)\n\—l)’ n=-¢-1, (4.8)
Eq. (3.32) for K, is independent of the parameter r.

Critically, Eq. (4.4) reveals that the ansatz a, = . . a1 .

O(@") is flawed since the denominator vanishes whenever s =42 a, = 0(@"), n=-¢—1 and
|n| >2¢ + 1 while, in addition, the numerator vanishes n=-¢-2. (4.9)
when [n] > ¢ + s+ 1. A detailed analysis reveals that the Inserting this revised ansatz into Eq. (3.5), together with
correct ansatz for v = £ + O(®”) and s = 0 is an expansion for v, yields equations that can be solved
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recursively along rising and falling diagonals (treating v as if it were a;)) to very high order. Through the diagonal nature of
this procedure, it becomes clear in all cases that the general terms given above work for a, through the following orders
while beyond this they must be supplemented by expansions based on the corrected ansatz:

0(6)n+2£+l), n> _f’
General expressions of Eq.(4.3) valid for s < 0to order¢ O(@™), —2¢+1)<n<-¢,
O(@™"?), n<-Q26+1).

We may usefully turn this around, if we wish to work uniformly to order @", the most anomalous behavior occurs at either
n=-¢/—¢—1oratn =—(2¢+ 1) and we may use the general expansions except when min(¢ + 1,2¢ — 1) < N. For
example, the expansions to order @* of Eq. (4.3) are valid for any # > 2 while we need to calculate the expansions for # < 2

using the revised, correct ansatz to order @*:

s=0:7=0 042%@4, @z%i&ﬁ—%(b“, azz—éaﬂ—éi(bh%@‘*,
L1y 331, 541, 7, 9449
aI:—Eza}—FEa) _ﬁ +%a) , v:—ga) —%a) ,
w2y T AO1 L, BTN TIOS6I3 L 883 9679
1T 9 27" T 2835 T32020"” 7500094007 0 279" 54 73780 32020
2,2 12430 1 L a2
T Ve L v T R e TG ol
1 4 13 3 1 1741
=1 a4:@a}4, a3:%l 3_ﬁ @* azz—%wz—z—() a)3—mw4,
11, 2447, 2221 19 , 1325203 _,
=3O e 1e500" T18900” T YT T30% 35910007
11, 169 ., 467 545, 5341,
=676 T20520'Y T4104” 0 2T T4332"Y T 259907
25 , 5 ., 5070221 _, 25 e S 3,
A3 == 08" T30840892% T T 2166 3249”0 5T 144a”
5 5 47 12 1 87826
(=2 =@ @ =gl —gsgg® = pgs® —3Sli’ —gan S0t
3.1, 21793, 38383 , 79 , 708247
“=10"10Y T 1a1000'” T1323000” 0 YT 210% 9261000
11, 1613, 1399 1, 1, 5104,
A1 =500 731500 T31500” T 2T 90 760" T5599125%
7 49
a3 =@ =0 as=—qaeet
35 0 . 37 _ 25 .5 . 2323091 _
£=3 a=gon® =500l ® ~ 1@ B =5 ® 5 e e0sa
_2 1, 3s1sal g WI7ISL 169, 74380421
= 12224520 T9779616” © YT T630” ~2750517000"
po B L 6019 29887 3 1 15979
T T4 7205800 T 18522007 0 42T 175 70" T 51450007
as= ! i@+ LY a_4=0, a_s=0.

2100 12600

124055-19



MARC CASALS and ADRIAN OTTEWILL PHYSICAL REVIEW D 92, 124055 (2015)

s=—1:lea4:%d)4, a3:2—11i6)3—%(7)4, a2:—%d)2—éid)3—%d)4,
3.3, 14977, 24847 47, 43908007 _,
B e " 33600' T67200” " YT 60 " 71064000%
7, 1T, 5,107, 200 , 10, 152936921
GITTog' g T T T T 00”141 T 3074199037
150 . 85 48
a_4=22091a) +ma), a_szmw
5 10 . 47 _ 20 , 5. . 440941
=2 a4:ﬁw4, a3:mla)3—ma}4, azz—mwz—@mﬁ—mw“,
8 8 , 32987 ., 56647 169 , 6832249
H= 5 5 7330750 T992250% 0 YT 2T 420% ~74088000%
11, 5707 ., 7397 o, T, B
=50 0% 1680007 T336000° 0 2T 760" 43T Teosa? 4470
49
=T 57122
10 5 47 15, 5 . 730781 _
s==2:¢=2 a4—@a)4, a3—ﬁza)3—@ 4 (12:_@0)2_%1@3_63386400)4’
Sy S 12009, 19519 107, 1695233 1
6”18 T52920'” T158760% 210“ 9261000 " 41T 720" T30
a_zzﬁ&)“, aﬂ;z—ﬁ&ﬁ, a_,=0, a_5:—1194849@4. (4.10)

In order to evaluate ¢’ (s) via Eqgs. (5.10) and (5.11) we also need the sum of the a,. Using Eq. (4.3) we obtain,
to order @*,

i | Ot AR =TiA )+ A4A+9)s +64(41=3)s7 +3(2A— 1) (42 +4=6)s? +24(44=3) (T=6)s _,
a, = 10— 5
e 24 472(42-3)?
P3 .3 P4 4 _s
o(ar), 4.11
TaG-aa-nr T asu-arAw- @ o) (4.11)
where

Py = (A—2)A2(423 + 21322 — 3091 + 108) + i(443 + 6942 — 811 + 54)s°
— 18i(4 — 2)A(44 — 3)s° — iA(3643 — 1752 + 4324 — 252)s* — 12i(A — 2)A(44 — 3)(54 = 3)s°
— iA(364* — 2793 + 68642 — 7381 + 288)s% — 6i(A — 2)42(44 — 3)(74 — 6)s, (4.12)
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—(A—2)%22(4482% 4 1358417 — 682201° — 3726932 42636097 4* — 522908143 + 49676221 — 23473804 + 437400)

— (A—2)A(4482° 4 62882 + 196204* — 33498913 + 95831142 — 8419951+ 109350) s

+18(A—2)2A(44—15) (44— 3)2 (422 — 1021+ 45)s7

+ (=256 —24896° + 4568047 + 194874020 — 121013461 +288463142*

—343058494% 4216255422 — 73337404 + 1312200) 5

+6(2—2)A(44—15)(44—3)2(1004* — 119413 +4425)% — 3744 + 540) s>

+ (9600410 — 14243229 + 53264818 + 211796647 —23736786° + 79670331

—1303270294* + 1134717664 — 545661364% + 14346720 — 1749600)s*

+2(4=2)2% (44— 15) (44— 3)?(5404* — 63344> +256414% — 408961 + 15660)s°

— (256210 +571522° — 50507248 + 7324217 + 143706661° — 682511824

+1510626694* — 18327870047 + 12373819242 — 437594401 + 6415200)s>

+2(A—=2)22(4A— 15) (44— 3)% (8445

with special cases

—33421% + 2129523 — 475981 + 420481 — 11880)s,

(4.13)

6343 276257

s=0:7=0 ni: an:g 57—410)—%"24—@1'6)3+25004706)4+0(&)5),

=1 ni:ooa"_l ;z@—% 2 %i@3—%@4+0(@5),

£ ni:m =l % o= % - 3357278 i = 4186575302233169834 o'+ 0@).
e S S M

£=2 niooanzl —la)—l—%_2 137—22981'6)3—%@44-0(6)5),
=Tr=2 i =1 _%“" _%—2 i ?2)3; i’ - 21377056065038;1376 o'+ 0(@).

Finally we should note that the power series for v
cannot be valid V@ € C. The reason is that, for example
for @ € R, the exact value of v is known to be real for
small values of @ but, as @ increases, v reaches some
half-integer value and then it suddenly picks up an
imaginary part. For real frequency, this behavior can
be seen in, e.g., Table 1 in ST, and estimates for the
frequency where it happens have been given in [46,47];
we have found a similar behavior for @ on the negative
imaginary axis. The power series for v, however, is purely
real for @ real and so it cannot reproduce this behavior. In
this paper, however, we are only interested in the small-@
behavior, where the power series does converge. We have
been referring to such a regime as the “perturbative
(small-frequency) regime.”

V. LOW-FREQUENCY EXPANSION OF THE
BRANCH CUT INTEGRAND

It is clear from Egs. (2.17) and (2.19) that the late-time
asymptotics of the BC contribution to the GF is provided by
the small-6 expansion of the modes 6,G,. The small-6
expansion of §,G,, in its turn, is given by the small-6
asymptotics of the radius-independent quantity ¢/|W|*> and
the radial solution f,. In this section we will derive the
small-G asymptotics of g/|W|>. We will use these asymp-
totics later in order to prove in Eq. (7.4) that (GBC ~ 17273,
to leading order for large-¢, for general integer spin.

Specifically, in the following subsections we provide
explicit expansions for small-@ up to the first three leading
powers (which actually correspond to the first four leading
orders, since the third order has the same power of @ as the
fourth order but, as we shall show, it contains a logarithm in
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@) for the various perturbation quantities (except for the a,
and v, which we gave in the previous section, and for the
radial functions, which we give in the next section). We
provide these expansions for general integer-spin s and
multipole number 7. These expansions will yield the first
three leading powers (so four leading orders) for late times of
the multipole-Z GF and field perturbations. The above
comments apply to the RW GF and field perturbations but
a similar argument applies to the BPT ones. In fact, we shall
give the small-6 expressions explicitly for BPT quantities;
one can then readily find the corresponding expansions for
the RW quantities via the transformations given in Sec. II C.

From now on and for the rest of the paper we shall
restrict ourselves to the case that the BPT spin is a negative
integer, s = 0, —1, —2 (RW spin, of course, is indistinc-
tively positive or negative). BPT quantities for positive spin
can be obtained from those for negative spin via the
Teukolsky-Starobinskii identities [36,48].

Also, as mentioned, from now on we will focus on small-
frequency expansions up to the first three leading powers of
the frequency. It is easy to see from the results in the previous
section [e.g., compare the general-Z and —s expressions in
Eq. (4.3) with the specific-mode expressions in Eq. (4.10)]
that the expressions that we shall obtain for general

2T+ )2 +2)I(1—s) _

PHYSICAL REVIEW D 92, 124055 (2015)

multipole-# and spin-s in principle are not necessarily valid,
up to the first three leading powers of the frequency, for the
three specific modes £ =0 (and s =0) and # =1 (and
s = 0, —1). Indeed, some general-s and —¢ expressions that
we shall give appear to have singularities at the s and Z values
for these modes. We have dealt with these three modes
separately by carrying out small-frequency expansions after
setting the corresponding values of s and ¢ right from the
start. Remarkably, we have found that our general-s and —¢
expansions up to the first three leading powers of the
frequency, for ¢, SR"‘ ¢ and all subsequent quantities
derived from these two quantities, actually give the correct
result for two of these anomalous modes, namely for Z = 1,
with s = 0 and —1.” For the mode s = ¢ = 0, the general-s
and —7 expressions do not give the correct result and we
present the results for this mode (as well as for £ = —s = 1
and 2, for completeness) in Sec. V E.

A. K,

The quantity K, introduced in Eq. (3.31) is needed in
order to obtain the Wronskian below [in Eq. (5.4)]. We
obtain the following small-@® expansion of K, from
Eq. (3.32):

2CHTRAT( +HT(1 = 5)(2(6 + )E(Hy —2H _ + yg) + 2 + € — 5?)

N e
27073124 + N2 + 2)I(1 — 5)
L+ 1) —s+1)?

—+s+1

X @

K® _H6@2+£-1)s?

K£3)6)—f+s+2 + 0(6)"’4”3),

SRl + )2 (f—s+1)

(5.1)

+ (6 +1)(156% + 156 =11) +3s*)2Hy_y + Hy —2Hyy —2Ho | +1n(20) +75)

0+ 1)(20-1)(20+1)(26+3)

2

§ @ 2
_4<_m+2yE+1>(Hf_zH—S+yE)_4(Hf_2H—s)2_4<2Hf—)s+Hf

1
(12261220 +3)

2

2((€+1)(823 =167 =247 +9)s* + (£ + 1)X(8¢6* + 16° — 462 — 136+ 4)

—(16£5+104¢5 + 1644 — 1663 —131£% - 3£+ 18)s2) }. (5.2)
Doing similarly for K_,_;, we obtain
(=D (1 =)D+ D2+ s+ 1) _
K = s+f 19) £+s—1 53
vt (27 + )27 +2)13 0@, (5:3)

In obtaining Eq. (5.3), we have used Eq. (4.4) together with the fact that I'(—n + @) ~

nonnegative integer.

(=D" = .
Fnins 8 @ = 0 when n is a

We note that the asymptotics of K, in Eq. (5.1) and those of K_,_; in Eq. (5.3) imply, via Eq. (168) ST (and since

£>|s

), that K_,_; is not necessary for obtaining Sﬁ?’inc to the first four leading orders (K_,_; starts playing a part only in

7Specifically, for,e.g., s = 0 and £ = 1, the general-s and — expression for K, gives the wrong coefficient in the third leading power

of @ and for K

——

| it gives the wrong leadmg order. However, for this mode, the two incorrections in K, and in K_,_; somehow

miraculously cancel each other out to give the right result for (R¥™ up to the first three leading powers of @.
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the next order), except in the cases £ = 0 and # = 1. As mentioned at the start of this section, though, Egs. (5.1) and (5.3)
are in principle not valid for £ = 0 and 1, although the general-s and —¢ expressions that we give for quantities from now on
are, somewhat surprisingly, also valid for # = 1 (with s = 0, 1). The case s = £ = 0 we treat separately in Sec. VE 1.

B. Radial coefficients and Wronskian

We now turn to the coefficients in Eq. (2.32) of the ingoing radial (BPT) solution. We have obtained the following
expansion for the radial coefficient ;R™™ by carrying out small-5 asymptotics of R™™ /R where R™™/"™ are the
incidence/transmission coefficients of R{' (i.e., with the specific normalization used in Sec. III, which is the same
normalization as in MST). The expression for the coefficient RY""™ is given in Eq. (3.12) whereas for Ry""™ we used
Eq. (168) ST (which requires K, and K_,_;). We obtain

Z—K—Se%in(f—s+1>r(2f+ DLQRE+2)T(1-s) 1
T+ D)0 —s+ DD +s+1) @~
1 _\, Im i(Z(¢+1)+52)]_
e (e e o2 cwen G ) S o
L [ +6= )+ £+ )15 +156 = 1) +364) (Hyoy + Hey + He=2Ho = 2oy +1n(20) 5+ 1)
2006+ 1) (20— 1) (20+ 1) (20 +3)

I"e?.inc _ M1_2s
s

1 52 in
———+1 -H,_ —H, ,—H,+2H In(2d) ——
Z(Z/ﬂ(f—i-l)—i_ )( £—s {+s f+ —s+n< w) 2+7E>

1 r 2 1 2
_5(_Hf—s_Hf+s_Hf+2H—s+ln(2[b)_g—i_YE) +§<_H§”2_)s_H§”242s_H(fZ)+4H(—2s)_%)
(87 -162=24049)s" 8441607 -4 =130+ 4
42 (¢ 4+1)(2¢ - 1)>(2¢ +3)? 426 -1)%(2¢ +3)?
(1620 —8¢% — 1162 —48¢° + 1012 + 21— 18)s?] _, 1
- 2 2 2 2 w +o —/——1 |- (54)
42 (6 +1)* (26 —-1)*(2¢ +3) @'

We note that the leading order of Eq. (5.4) agrees with Eq. (3.6.13) [49], which is obtained via an independent method
based on Page’s [50]. As a token example of the more simplified form that adopts the expansion for a particular value of s,
we give Eq. (5.4) specifically for s = 0:

1 pinine _ 27 e HID(2¢ + D26 +2) 1
M*C T 37+ 1) @’
27124 + D026 +2) (6w (£ + 1) =2In(20) + in +4yp — 1) 1
+ 3 =7
P(+1) @
23N (¢ + DI(E +3) 1522 +15¢ — 11
In(2i@) — iz —2 6w (£ +1)-1
A0+ 1) <(“( o) =i YE)<(2K—1)(2L”+1)(2£+3)+ w(#+1) )
(152 4+ 15¢ = 11) By (€ + 1) = 2p(2€ + 1) = 20 (26 +2) + 2y%) 20+ 1
(22 -1)(2¢+1)(2¢ +3) 4(2¢ —1)2(2¢ + 3)?
2 (1) . . > 27[2 1 1 1
=9+ 1) +3p(@+1)+3p (€ +1) - | n2iw) — iz — 2yE) ~ 5 "2 F—'_ prag
s=0. (5.5)

Here, the function y(z) = I"(z)/T'(z) is the digamma function [42] and ") (z) its nth derivative. We note that the digamma
function may be expressed as y(¢) = Hy_; — yg, in terms of the harmonic numbers used above.

C. BC strength g7

In this section we will provide a small-G for the BC strength ¢”. The solution R of the BPT equation has the following
asymptotics, from Eqs. (3.39) and (3.30) (taking the upper sign),
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R" 1 .
RU,Jtrra ~ _e—zwr*’ 7 — 00, (56)
+
where
Ritm(a)) = Aljra)_le_i(bln(b, (57)

and A% is given in Eq. (3.41). Comparing with Eq. (2.33), it follows that

R% (r,w) Au s
thra(w) = —stp<r7 _a)>A . (58)

Now, from Eq. (3.18) together with the analytic continuation of the irregular hypergeometric U-functions on the
complex-w plane [Eq. (13.2.41) [42]], we find

R (r,we*™) = e RP (r,w) + [e77® — e 7V |RY (r, w). (5.9)

Using the definition Eq. (2.36) of the BC strength, it then follows that

. R (—io)
T(6) = i[l = e2rlo-i)] - 2 7 5.10
q ( ) [ ]Rgp,trd(_i(;) ( )
We can therefore calculate the ratio of coefficients on the right-hand side via
Rl/ﬁll’a Ay B
+ (0)) _ —+a)2"6)_2””, (51 1)

R?p,tra(w) - Ali

where we have made used of Egs. (5.6) and (3.20). From Egs. (5.10) and (5.11) and expanding Eq. (3.41) for A% and
Eq. (3.19) for A%, we find the first five leading orders for the BC strength:

G5 2a(=1)HT(f = 5 + 1)
M* L +s+1)
N 16£3 +39£% + 11¢ — 17 N 3s*

22/ -1)(2¢ + 1)(20 +3) ' 2£(¢ + 1)(20 = 1)(2¢ + 1)(2€ + 3)

6(2+¢—1)s>+£(¢ + 1)(16£% +39¢% + 11 — 17) + 3s*
—2H,_,—2H,,, - 4 _H

+K fos TS s 6+ 1)20 - 1) (26 +1)(2¢ 1 3) e J\ Ve~ Hes
1 1

In(25 _l -2 - H —l ’ ~(Hyoy—H, )+~ (H? —HP?
+1n(25) 5 ve—Hes =3 +2( rrs —Hey) +2< crs —HZZ)

32+ —1)s2

q"(0) = £+ 120 = 1)(2¢ + 1)(2¢ + 3)

{1 + |:Hf—s + Hf+s +

—21n(25) - 274 G

s(76% +7¢ + 35 — 6)
20(¢+1)(2¢ — 1)(2¢ 4 3)

2
+ 2In?(25) — g} 5'2} + 0(5)%13. (5.12)

Using Eq. (2.44) to relate BPT’s g7 with RW’s ¢, it is easy to check that the leading order in Eq. (5.12) agrees with Eq. (41)
[27] (the “ig” here being “K” in [27]) for all spins s = 0, —1, —2 (the leading order of RW’s ¢ is independent of the spin).

Again, as a token example of the more simplified form for a particular value of s, we give Eq. (5.12) specifically for
s=0:

(1643 +39¢2 4+ 11¢ — 17)
T — = ir(—=1) @< 2 l(
¢'(0) = glo) = in( )“’{ +< 8% + 1272 —27 -3
_(20162° +392% + 11 = 17)(w(£ +1) = In(25)) = 843 +27¢* + 13/ - 14
(2¢-1)(2¢ +1)(2¢ + 3) (2¢ - 1)(2¢ + 1)(2¢ +3)

+4iy(£+1)—4i ln(26)> @

+4<u/(f +1) = In(25))* _”;)@2} + 0(@?).

s =0. (5.13)
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D. ¢"/|WT?

We are finally in a position to give an expansion for the main target of this section: the radius-independent quantity in the
BC integrand Eq. (2.19). From Egs. (5.4) and (5.12) it follows that

qT<O') - M2s (_1)/+S”22—2f+2s+11"3(f — 5+ 1)]’*(5_’_ s+ 1) |:—2f+1 ~ 5.2f+2
WT2 24 + Or2(2¢ + 2)r2(1 - s) ’
20+ 1)(£(8C +T7) = 6)s> + (€ + 1)(£(£(32¢ + 63) +7) —23) + 3s*
* - 1) 2 —D)2f + 1)(27 1 3)

20+ 1)(82 +71-6)s> + 11+ 1)(328 + 632 +71-23) +3s*\ _ .5 52643
I(I+1)(21=1)(21+ 1)(21 +3) ) - 00 +] +0(6 "), (5.14)

(SH_S —2H,_,—2H,.,—4H,

where

(=6(¢2 + £ = 1)8> + £(£ + 1)(11 = 156(£ + 1)) = 35%) (Hy_y — 4Hop + 2H_, + In(25) + 7z)
(6 +1)(26 —1)(2f + 1)(2¢ + 3)
2

Q

2

s 1
—4H_(2H_,+———+2 —2H,+4H_+————+2 |(Hy_ + Hy\, +2H,) —= (H,_, + H,,,)>?
—s( _S+f(f—|—l)+ )+< f+ _S+f(f+l)+ )( f—s+ f+s+ f) 2( f—s+ f—‘rs)
3?  HY 356 (76* +7¢ - 6)s
20H 2 ‘—s {+s H(Z)_4H(—2y>_ _
FUAH) Ty ST )22l —1) 20 + )20 +3) 20(¢ + D2/ - 1)(20 + 3)

(128£° + 768¢° 4 1088¢* + 1203 — 364£? + 187 + 45)s*
4% (6 + 1)2(26 — 1)2(2€ + 1)2(2¢ + 3)?
—512£° —2016¢° — 1616£* + 1472¢3 + 1128¢£% — 7224 + 59
426 = 1)%(2¢ 4+ 1)*(2¢ + 3)?
(25648 + 1464¢7 + 26600 + 10825 — 1361£* — 92643 + 12277 + 937 + 18)s?

20%( +1)2(2¢ = 1)2(2¢ + 1)2(2¢ + 3)?
3S3 77;2
T2 AN -1)2f+3) 3 (5.15)

Here we give the value of ¢/|W/|* specifically for the case s = 0. From Egs. (5.5) and (5.13), or equivalently from
Eq. (5.14) with s = 0 (or, equivalently, from [33]8), we have

,4"(0) _alo) _ (—1)%( (27 +1)¢! )2 {(_’ZM _(—,2f+2( 323 —63/2 7/ +23 o )]
W2 (w2 2203 \((27 + 1)!1)? 2026 +3)(2¢ + 1)(2¢ - 1) ‘
(-1)%( 27 + 1)¢! )2_2“3{ 4(15¢2 + 15¢ - 11)

220-1 \ (22 4+ 1)11)? (22 -1)(2¢+1)(2¢ +3)

512¢° + 2016£5 4 1616¢* — 14723 — 112847 + 7226 — 59

(2¢ = 1)2(2¢ + 1)2(2¢ + 3)? ]

(In(26) + H, — 4Hy, + yg)

—4(~8H % + 8H, + 3HY + 2HY)) +

+ 0(52f+3)’
s =0, (5.16)

where H ip is the Zth harmonic number of order r.

We note the appearance in (5.14) of a logarithmic behavior in & at order ** 3 for small frequency. It is worth pointing out
the following “curious” fact. Even though the logarithmic behavior appears already at second leading order both in the BC
strength g7 [see Eq. (5.12)] and in the radial coefficient Sf?i,?'i“c [see Eq. (5.4)], there is a delicate cancellation between the
terms which leads to the logarithmic behavior for ¢ /|WT|? appearing not at second order but at third leading order instead.

8We note a typo of an extra overall “—1” in Eq. (8) [33].
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As shown later in Sec. VII, this implies that the logarithmic
behavior of the Green function or a field perturbation will
also appear at third—as opposed to second, as one might
have expected—Ieading order for late times.

E. Cases £ = —s

As pointed out at the start of this section, the expression
in Eq. (5.16) might not be valid for the case s =7 = 0. In
this section we present the results obtained by carrying out
a specific calculation for this case by setting s =¢ =0
right at the start of the calculation. Although the BPT
results for £ = —s =1, 2 can be obtained directly by
putting in these values into the general s and ¢(> 0)
expressions found above, we also include these cases for
completeness and because they require an extra step in
order to obtain the RW results from the BPT results.

1. Case s =¢ =0

We have carried out a specific calculation for the case
s = ¢ = 0 by setting these values right from the start and
we have obtained

1 pin,inc 1 — . 1
MSR/ :—g—l-ln(Za)—m—H/E—l-E
1
+—5(157% - 61n(25)(21n (25)

36
—6ix + 6y — 8) + 36iypn — 48irx

+6(8 = 3yp)ve — 82) + 0(5). (5.17)
We note that the first two leading orders agree with
Eq. (5.5) with £ =0 but the third leading orders differ
slightly in the term which does not contain any “In(25).”

From Eq. (5.17) we readily obtain (assuming evaluation
on the NIA, i.e., v > 0)

(W72 = 462 ,RE-™|> = 1 — (2(In(25) +yg) + 1)5

1

+3¢ (72(1In(26) + ve)? —60(In(25) + y)
+61% +173)5% + 0(52). (5.18)
For the BC strength we obtain

() = q(o) = 275 + % (177 = 122(n(25) + 7))

=3
+ % (121n(25) + 2(12y;; — 17) In(25)

+27p(6yg — 17) +20 — 2%) + 0(5%). (5.19)
We note that if instead of calculating the BC strength
directly for s =7 =0 we had used Eq. (5.12) [or
Eq. (5.13)] with s = ¢ = 0 we would have obtained the
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result in Eq. (5.19) but with the number 14 in the place of
the number 20 in the third leading order.
Finally, from Eqs. (5.18) and (5.19) it follows that

T 2376°  n6°
W:M&Jr - T (1222 = 132(In(25)

+7£) — 85) + 0(&*),

£=s5=0. (5.20)

The third leading order differs from Eq. (5.16) in that the
“—85"is a “+59” in Eq. (5.16); this is a consequence of the
corresponding discrepancies in both g(s) and AY.

2. Cases ¢ =—-s=1,2

By inserting the values £ =—-s=1and /= —-s =2
into Eq. (5.14) we respectively obtain

T

q'(6) 4m_, 227m_
a2 TR s 22T g

WIE~ 9% T35 °

N 7(—=120072 4 5640(In(25) + ) + 10457)

8100
x5 +0(8°), ¢=-s5s=1, (5.21)
and
T
q' (o)
ap*
(W72
_ T s 1917 -6
757 T3500°
2(1960072 — 59920(In(25) + 75) — 348727)
4410000
x &' +o0(5"), £ =—s=2. (5.22)

VI. RADIAL SOLUTIONS

In this section we obtain the small-frequency behavior of
the upgoing and ingoing radial solutions valid for arbitrary
radius r. For this purpose, we use a special trick based on
the Barnes integral representation of the hypergeometric
function. As shown in Sec. II, the radial dependence of the
BC contribution to the GF only comes in through the
ingoing radial solution, not the upgoing one [see
Egs. (2.21) and (2.37))]. Therefore, the radial dependence
at late times of the GF itself also only comes in through the
ingoing radial solution. For this reason, we apply the
mentioned Barnes trick to give explicitly the first three
leading orders of the ingoing radial solution, whereas we
only give the leading order (for which the Barnes trick is
not necessary) of the upgoing solution. We show, however,
how the Barnes trick can be used to obtain the behavior of
the ingoing solution up to arbitrary order in the frequency
within the perturbative regime and we note that it could be
similarly applied to the upgoing solution.
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The technique we use for obtaining the small-frequency expansion of the radial solutions can be applied just the same to
the RW or to the BPT solutions. Besides, from the expansion for the RW solutions one can readily obtain the expansion for
the BPT solutions via the Chandrasekhar transformation of Sec. II C. For this reason, we only give the expansions explicitly
for one type of solutions: the BPT solutions for the upgoing modes and the RW solutions for the ingoing modes.

A. Upgoing radial solution
The results in this subsection correspond to the particular normalization of the BPT solutions that is chosen in ST. Taking
the small-@ asymptotics of Eq. (4.9) MSTa we obtain
w v I'(2¢ + 1)I'(2¢ + 2)
P2+ DI+ s + D't

RY + o(@77752), (6.1)
where we have used Eqs. (5.1) and (5.3). From Eq. (3.25) for Rj we then obtain the leading-order asymptotics:

wp 226 + 1026 + 2) (F—1)"5,F,(=¢,—¢ — 5, -2¢; %)
o T2+ DI +s+ D) —s+1) f 5+

al +o(@™*). (6.2)

B. Ingoing radial solution

In this subsection we consider the ingoing radial solutions of the RW equation. We start with Egs. (2.16), (3.12), (3.1) and
(3.4a),”

Xxin L e )i (& T'(a)T'(b) .
felr,w) = — = p i —=——,F(a,b;c;1=7), (6.3)
len Z;o:_oo a W tho:_oo a F(r)(l;)(b) Pt F(C)
where
a=k+v+s+1—im, =—k—-v+s—io, c=1-2ia. (6.4)

Let us here carry out a basic comparison of MST’s leading order behavior with other results in the literature. We can use
the small-frequency asymptotics for the “in” solution of the Teukolsky equation given by Egs. (3.6.13) and (3.6.15) (491"
(see also [50,51]). Setting a = 0, we obtain

SR (r, @) ~ 1 e RIEA(F — 1) SIS OLE (—f — 5,6 — s + 1,1 — 5 = 2@i; 1 — F)
= 2 e R (7~ )00 (=f = 2id, £ + | — 2ido, | — 5 — 203 | — F),
F-Ho<?+1. (6.5)

In order to obtain the RW ingoing solution from BPT’s one, we need to apply the Chandrasekhar transformation as per
Eq. (2.40). Specifically setting s = 0 in Eq. (6.5), and taking into account of the normalizations as per Egs. (2.11) and
(2.32), we obtain

fr(r,w) ~ e @ (7 = 1) @FHoLF (=, + 1,1 = 2001 —7),(F— Do < £ + 1, s =0. (6.6)

The leading order (@ = 0) behavior of Eq. (6.6) clearly agrees with that from Eq. (6.3). Note that the asymptotics of
Eq. (6.5) are not amenable to carrying out Fourier frequency integrations. We now proceed to give a prescription for
expanding the ingoing RW solution to arbitrary orders in the frequency.

Now that we know from Sec. IV the behavior of the coefficients a; as @ — 0 our challenge is to obtain a suitable
expansion for the hypergeometric functions in Eq. (6.3). To this end we employ the Barnes integral representation
[e.g., Eq. (15.6.6) [42]] which gives

“We note that there is a typographical error on the right-hand side of Eq. (6) [33]: there is a factor 7! missing and the j-sum in the
denominator is missing % as in Eq. (6.4) but with k — j.

""Note that there is a typographical error in Eq. (3.6.15 [49]: a factor 7~ is missing on its right hand side.
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I'(a)'(b) 1 /ioo I'a+0T(b+t)I'(-1)

F 7b5 5 = 5 -
I'(c) 2 i(ab.c.2) 271 )i I(c+1)

(—z)'dr, a,b#0,-1,-2, ... (6.7)

where the path of integration must be chosen to separate the poles of I'(—¢) at =0, 1,2, ... from those of I'(a + ¢) and
['(b + t), respectively at t = —a,—a—1,—a—2,...and t = —b,—b—1,-b =2, ....
For small @ we know from Eqgs. (4.1) and (4.2) that

V=L 46U =1 -1, + 0(@°),

where v, is positive so that the corresponding poles lie at unit intervals left from

—k—C—s—1+4io+ 1,0 + 0(&),
k+¢—s+id—1v,0* + O(@°).

Note that when @ = 0 we have double poles and it is not possible to find a splitting contour and the representation
breaks down.

In Fig. 1 we illustrate the poles and contour C; of the Barnes integral representation for the term of the MST series
Eq. (6.3) for k=1, £ =2, s =0, @ = —0.1i. The proximity of the poles for small @ leads to threading contour C,
complicates evaluation of the integral however we may overcome this simply by deforming the contour to the contour C,
lying to the right of all the poles of T'(a + ¢) and I'(b + t) collecting the residues from the poles of I'(—¢) as we do. The
contour C, can now be taken well away from any poles for example along the line 7/2 + it in Fig. 1 and is exponentially
convergent.

Letting N = max(k + ¢ — s, —k — ¢ — s — 1) denote the rightmost pole of I'(a + t) and I'(b + ¢), the sum over residues
gives

zN:(—l)”F(n+k+f+s+l—i6)+5u)r‘(n—k—f+s—id)—61/)

F
1 (k) n! I(n+1-2i®)

(F=1)", (6.8)

n=0

where the coefficients of the polynomial may readily be expanded about @ = 0. The corresponding contribution from C, is
given by

Fy(k)=—
k) =27 e (N +3/2 = 2id + iy)

x (r—1)N+1/2+iv gy, (6.9)

1 /oor(N+k+f+s+3/2—icb+5y+iy)r(zv—k—f+s+1/2—i@—5y+iy)r(—1v—1/2—iy)

From the above, we obtain

. 0T (1) X
fe(r,@) =P~ S (a r(l)r(b) > ax (Fi(k) + Fs (k). (6.10)
k=—c0 “k TT(c) k=—

We note that the integral in F, is exponentially convergent. All that one has to do is completely trivial small-@ expansions of
the various coefficients appearing in Egs. (6.8) and (6.9). For that, the small-@ expansions for v and for a; of the previous
section are required.

C.Cases?=-s=0,1,2

The results of the previous subsection are valid for any values of the spin s [except for, obviously, Eq. (6.6)] and multipole
number £ > |s|. In this subsection we use those results to give the small-@ expansions for the ingoing RW solutions
specifically for the modes £ = —s = 0, 1 and 2, as these are the modes that we will use in the next section in order to
calculate the Schwarzschild black hole response to a specific perturbation.
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Specifically, for £ = s = 0 we have, for general r,

—_1%-&-1'1; h 7
(7 — 1) sec (”U)}5+é{72+87—6+310g(7—1)(10g(7—1)—|—2)

ff(r,—ia):i"—l—?{—log(?—l)—l—l—/_:dv o

/oo G 1)7+i"sech(rv)
- v
—oo (40> — 8iv — 3)

24
<21 — 37— 6irv + 10iv + 200 ™ 6(3 +2iv)log (7 — 1)) }52 + 0(5%).

(6.11)
For £ = —s = 1 we have, for general r,
. -2 r — — — 1 e — Stip . 5 . 1 —
fe(r,—ic) =7 — F@ — 27+ rlog(F—1)) —1—2 _oodv(r— 1)2tr —iv =3 r iv+5) (o
+ {20 — 1687 + 1447> + 167 + 37* + 15Flog (7 — 1)(6 — 47 + Flog (7 — 1))
1 [ (7= 1)Fsech(zv)D(iv + 1) ) , , )
+Z/_mdv Mo +Y 809 — 157(1 + 2iv) — 60(7 + 2iv) log (7 — 1)
720 480 240 52
154i — 5). 6.12
+ w+2iv+1+2iv+3+2iv+5>}30+0(6) (6.12)
For ¥ = —s = 2 we have, for general r,

1 12 [o : 9 1
fo(r,—ic) =7 — {8(6?3 log (7 — 1) — 197* + 307% — 157 + 10) +—_/ dv(r — 1)%+’”1“<—E - iv)F(— + iv) }5‘

a7 - 2

1
040 r r— 7 7—-1) — 1973 2 1z=
+{50407 [840F log (7 — 1)(37 log (F — 1) — 197 + 3072 — 157 + 10)

+ 3607 + 17287 + 403857+ — 670207 + 494707 — 3977607 + 24860]

1 /“d (F— 1)F T (iv +1)

35727 ) ! [(iv+ %)

| 1 11
+ F(—g— iv)l“(; + iv) (4207’ +4201log (7 — 1) 4+ 420y <i1j + 5) — 420y (iv + 7) - 1019)} }52
+ o), (6.13)

where y is the digamma function.

+

[1757z(F — 1)(13 + 2iv)sech(zv)

VII. LATE-TIME TAIL

In this section we illustrate how one can apply the small-frequency expansions of the previous sections to obtain
physically relevant results: the late-time behavior to high order of the black hole response, at an arbitrary point, to a field
perturbation of arbitrary integer spin. Before we do that in Sec. VII B, we first derive the late-time tail of the Green function
in the next subsection.

A. Late-time tail of the Green function

The late-time behavior of the RW Green function is, via Eq. (2.17), given by that of its #-modes ;G". In its turn, the late-
time behavior of ;G%" is dominated by the BC #Z-modes SG?C in Eq. (2.19). Finally, it follows from the latter equation that
SG];?C at late times is given by the small-frequency behavior of 6,G,. We now give more detailed expressions for these
expansions.

The radius-independent part of the BC integrand in the BPT case is given in general (except for £ = s = 0) in Eq. (5.14),
and specifically in Egs. (5.20)—(5.22) for the lower modes. Let us generically write its small-frequency expansion as

T

q
(w2

= 110(_72/+1 + ’Ul(_72f+2 + (’Uza —+ Vyp In 5')5'2f+3 + 0((_72f+3), (71)
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0.10,-

-0.10L

FIG. 1 (color online). Plot of the contour deformation in the
complex 7-plane for the Barnes integral representation [Eq. (6.7)]
for the hypergeometric function. The straight blue curve is the
contour (C;) in Eq. (6.7). The dashed red vertical line is the
contour (C,) in Eq. (6.9). The circled crosses correspond to
the poles of the various I" functions in the integrand of Eq. (6.7):
the blue ones (at 7 = 0, 1, 2, ...) are those of I'(—¢); the green ones
(at t =—-a,—a—1,—-a—2,...) are those of I'(a + 1); the red
ones (at t = —b,—b — 1,—b — 2, ...) are those of I'(b + t). This
plotis forthe case k = 1,7 =2, s = 0, @ = —0.1i, which yields
a=39+0(®*), b=-3.1+0(&*) and N = 3.

where the &-independent constant coefficients vy, v; and
24/ are readily readable from the mentioned equations. In
order to obtain the corresponding RW quantity, we can
|

(24 +2)!

BC _
sGom=- A M?

PHYSICAL REVIEW D 92, 124055 (2015)

trivially use Eq. (2.46). We write the small-frequency
expansion of the proportionality constant in Eq. (2.46) as

C=Cy+Ci6+C5° + 0(5°), (7.2)
where the 6-independent constant coefficients Cy, /, can be
read off from Egs. (2.47) and (2.48).

The radius-dependent part of the BC integrand in the RW
case is given in general in Eq. (6.10); all that one has to do
is a trivial small-@ expansion of the summand in Eq. (6.8)
and the integrand in Eq. (6.9) [with the use of Egs. (4.1) and
(4.3) in general, and specifically Eq. (4.10) for the lower
modes]. Again, let us write the small-frequency expansion
of the ingoing RW solution as
fe(ri=io)=fe(r)+fa(r)a+fa(r)a®+0(5), (1.3)
where the s-independent (but radius-dependent) coeffi-
cients f, /1> can be readily obtained in the manner just
indicated.

The analytic small-frequency expansions of the radius-
independent [Eq. (7.1) times Eq. (7.2)] and radius-
dependent [Eq. (7.3) evaluated at r times the same
expression but evaluated at 7'] parts of the BC integrand
in the RW case are then to be put together in Eq. (2.21) and

integrated as per Eq. (2.19). The result, for late times is,
straightforwardly,

~{Covofoo(r. ") + (2¢ + 3)[Covofor (1. ') + (Covy + Cyvg) foo(r, r')]T!

+2(2 +2)(22 + 3)[Covofora(r. ') + (voCy + Covy) for (7, 1)

where

Foo(r.v') = fro(r)feo(r),

+ (Covap (W (26 +5) = In7) 4 Covay + v9Ca 4 Cyvy) foo(r, F)]T2}T7273 4 0(17277), (7.4)
for(ri ') = fao(r)for (') + fao(r) for (7).
foro(rs ') = foo(r)f o2 (') + foo(r ) f () + for () for (). (7.5)

Here we are using the dimensionless time 7 = r/(2M). The
leading-order behavior at late times is, therefore, SG];BC ~
7273 for all integer spins. We also note that the loga-
rithmic behavior in Eq. (5.14) for ¢’ /|WT|* for small
frequencies led to the appearance of a logarithmic behavior
in (GBC as 1727 Int. The late-time behavior of the GF of
the four-dimensional RW equation is then obtained by
replacing (G%" in Eq. (2.17) by the expansion in Eq. (7.4).

A similar analysis can be done for the BPT GF, but using
the corresponding equations instead: (2.37) and (2.35). The
radius-independent part of the integrand, g7 /|WT[?, we
have already given for the BPT case. The radius-dependent

|

part can be obtained from the expansions Eq. (7.3) of the
ingoing RW solutions via the Chandrasekhar transforma-
tion of Eq. (2.39). The late-time behavior of the Z-modes of
the BPT GF is of the same leading order as that in the RW
case (i.e., r2/73) and the logarithmic term also generally
appears at the same order as in the RW case
(.e., 2 Iny).

B. Late-time tail of an initial perturbation

We shall now give a particular application of our late-
time results for the GF. Let us here consider an initial field
perturbation given by uf(r,) =u,(r,.,7 =0) for the
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Z-multipole of the field and S (r,) = d,u,(r,,¢ = 0) for the Z-multipole of the time derivative of the field. Then the
response of a Schwarzschild black hole is given by

o . . 0
ulro = [ an [G( P () + () 5 GE (. 51)|, (7.6)

o

where G5*(r, r'; 1) is the Z-multipole of the retarded GF of the wave equation satisfied by the field. In this section we will
take the RW equation as the wave equation. The late-time asymptotics of the perturbation u, are given by replacing ;G%" by
sG2C in Eq. (7.6) and approximating ;G5€ by performing a small-frequency e>]<1pansi0n of 6,G, in Eq. (2.19).

As in [33], let us consider the following initial perturbation for general spin

. 1 —(r, —x0)? . r,—Xg)
) = ggen( ). i) == ), &
with xy = r,(10M).

In Figs. 2-6 we plot the time evolution via the RW equation of a spin-s field for various multipole numbers # using the
initial data Eq. (7.7), similarly to [33] where we only presented the case s = 0, £ = 1. We calculate the time evolution
numerically up to 7 = 3000M, where T = ¢ — 2x, and we compare it with late-time asymptotics. The numerical solution is
obtained using the code in [53] for the (1 + 1)-dimensional differential equation which results from the 4D RW equation
after factorizing out the angle dependence of the solution via scalar spherical harmonics. We obtain the late-time
asymptotics, up to four leading orders, from the results of the previous section. In order to obtain the small-frequency
expansion of §,G, via Eq. (2.21), we need the small-frequency expansion of ¢/|W|? and of the “in” radial solution f,. We
now give the specific expansions of the perturbation response for different spins s and £ modes.

We found the late-time asymptotics for the case s = 0 and £ = 0 using Eq. (6.11) for the radial solution and Eq. (5.20) for
q/|W|?*; for £ = 1, 2 we merely inserted the corresponding value of # into Eq. (5.16). The results are the following (the
approximation sign is due to the fact that we have rounded up the coefficients to seven significant figures):

20.02467  269.1100 ~—881.0855 In(T) +7561.913 +o(l

uBc 73 7+ 75 o(T), s=¢=0, (7.8)
1144318 5238524  43484.101In(T) — 1746947 -
ubC~ — =t g+ i +o(T77), s=0,=1, (7.9)
4263422 3114525 —17963221n(T) + 146090980 -
ubC ~ -+ n(f) + +o(T7), s=0,0=2. (7.10)

77 78 79

Figures 2—4 show excellent agreement at late times between the numerical solution of the RW equation for s = 0 and
¢ =0, 1, 2 and the late-time asymptotics of Egs. (7.8)—(7.10).

The late-time asymptotics for the RW cases |s| = ¢ = 1 and 2 are obtained similarly to those above for s = 0: we used
Egs. (7.1) and (7.2) for the small-frequency expansions of the radial solution and Egs. (5.21) and (5.22) for that of
q"/|WT 2, which is then simply converted to RW version with the use of Eqgs. (2.44) and (B4). The final results for the late-
time perturbation are the following:

JBC A 1338.214  59157.01 1970216 — 62896.05In(T)

7 —
SR %5 + 7% 77 +o(T77), ls|=¢=1, (7.11)

and

s 6074813 4318418 (198106997 — 3466693 In(T)
UpS N =~ —+ - +
‘ T’ T8 T

o(T~?), |s| =¢=2. (7.12)

A an alternative to the initial data of Eq. (7.7) we could consider the following initial data (as used in [52]): zero for the field and a
Gaussian distribution of small width for the time derivative of the field. In this case, the perturbation response is an approximation to the
Green function. However, we found that such an approximation is not as good as (7.7) for assessing the validity of the late-time
asymptotics to the higher-than-leading orders as intended in this paper.
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FIG. 2 (color online). Scalar field Mu, at r, = x, as a function
of time T/M for the initial data [Eq. (7.7)] with x, = r,(10M)
and s =7 = 0 (i.e., similar to Fig. 1 in [33] and with the same
initial data but here it is for s = # = 0). Red curve: Numerical
solution. Dashed black curve (overlapping with red curve): Late-
time expression given by Eq. (7.8) [which comes from Eq. (5.20)
together with the small-6 results in Sec. VI for the radial
function]. Green curve: Numerical solution minus the leading
order [i.e., O(T3)] in the late-time expression. Solid blue curve:
Numerical solution minus the two leading orders [i.e., O(T~%)
and O(T)] in the late-time expression. Solid cyan curve:
Numerical solution minus the four leading orders [i.e.,
O(T73), O(T™), O(T-31In(T)) and O((T)73)] in the late-time
expression.

Figures 5 and 6 show excellent agreement at late times
between the numerical solution of the RW equation for
|sl=¢=1, 2 and the late-time asymptotics of
Eqgs. (7.11)—(7.12).

The above examples illustrate the appearance of a
higher-order logarithmic behavior of a perturbation
response, appearing after Price’s well-known power-law
tail [3,4]. We note that, as already pointed out in Sec. V D,

1076

—

400 600 800 1000 1200 1400

10—10 L

10—14 L

10—18 L

FIG. 3 (color online). Similar to Fig. 2 but here it is for s = 0,
¢ = 1 (the orders subtracted from the numerical solution are the
corresponding leading order, next-to-leading order and four
leading orders for this case). The late-time expression is given
by Eq. (7.9).
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FIG. 4 (color online). Similar to Fig. 2 but here it is for s = 0,
¢ = 2 (the orders subtracted from the numerical solution are the
corresponding leading order, next-to-leading order and four
leading orders for this case).

FIG. 5 (color online). Similar to Fig. 2 but here it is the RW
solution for |s| = # = 1 (the orders subtracted from the numeri-
cal solution are the corresponding leading order, next-to-leading
order and four leading orders for this case).

Mu,

0.01 \
107F 4 ;.
!

1072

10—17,

. [r—

=l

IS S ST R T S S N B Tk ) L1
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10—22,

FIG. 6 (color online). Similar to Fig. 2 but here it is the RW
solution for |s| = # = 2 (the orders subtracted from the numeri-
cal solution are the corresponding leading order, next-to-leading
order and four leading orders for this case).
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this logarithmic behavior appears at third leading order
at late times. It appears at third leading order, not at
second leading order as one might have naively expected
from the fact that the logarithmic behavior at small
frequency appears at the second leading order both in
the BC strength ¢” and in the Wronskian. This is due to
there being delicate cancellations between certain terms of
g" and the Wronskian, which we have been able to derive
using the precise values of the coefficients in the
expansions.

VIII. CONCLUSIONS

In this paper we have developed the MST formalism
for the solutions of the radial Regge-Wheeler and Bardeen-
Press-Teukolsky equations, which are obeyed by linear
field perturbations of a Schwarzschild black hole space-
time. We have derived, for the first time, the MST
formalism for the solutions of the RW equation for spin-
1 as well as the MST expressions for the branch-cut-
relevant quantities for general spin. We have given explicit
expansions for small frequency up to the first four leading
orders for the various MST quantities for general spin. In
principle, the MST series could be expanded to arbitrarily
large order in the frequency. The main difficulty in
achieving that is the fact that the small-frequency expansion
of the renormalized angular momentum parameter v that
we currently use does not reproduce the numerically
observed behavior of a sudden appearance of an imaginary
part in v as the frequency is increased from 0 to larger real
values.

We have used our small-frequency expansions in order to
obtain the late-time behavior for arbitrary radius of spin-field
perturbations of a Schwarzschild black hole up to the first
four leading orders (for a specific multipole-£). Our results
explicitly reveal a new logarithmic behavior at third order for
late times as 2~ Int. We note that the appearance of a
logarithmic behavior was already predicted by other works
(see, e.g., [28,54-56]). However, to the best of our knowl-
edge, the order at which the logarithmic behavior appears
was not correctly predicted anywhere (nor was the calcu-
lation of the coefficients for general radius carried out). As
we noted at the end of Sec. VD, there is a delicate
cancellation between different logarithmic terms which
averts the appearance of a logarithmic behavior at a lower
order; this delicate cancellation is probably hard to predict
unless an exact and detailed analysis is carried out such as the
one in this paper (see also [57], where they find numerical
evidence that the logarithmic behavior does not appear at
first nor second leading orders).

We succinctly presented in the paper [33] the final results
that we have derived in this paper. We already used some of
these results in the calculation of the scalar self-force in
Schwarzschild spacetime carried out in [20]. The natural
extension of our results is the explicit calculation of the
small-frequency expansions of the MST quantities for the

PHYSICAL REVIEW D 92, 124055 (2015)

Teukolsky equation in Kerr spacetime, with the corre-
sponding late-time analysis of perturbations of a Kerr black
hole. We expect to present the Kerr analysis in the near
future, together with its application to a self-force
calculation.

Finally, while the calculation of the quasinormal modes
has been applied to the modeling of radiation after the
inspiral of two black holes via a matching to a numerical
relativity solution, to the best of our knowledge, the branch
cut has never been taken into account for such purposes.
We would expect that the inclusion in the modeling of the
branch cut, together with the quasinormal modes, would
help match the analytical solution from perturbation theory
with the numerical relativity one.
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APPENDIX A: VALIDATION
OF BC RESULTS

In this section we compare the small-G results presented
in this paper with an independent method which we
presented in [29]. The latter method is naturally adapted
to a midfrequency regime (which, although valid for all
frequencies, is not practical to use in the asymptotic small-
or large-frequency regimes). In this Appendix we illustrate
with plots that there is a region of overlap between the
results obtained with the small-6 method presented here
and those obtained with the midfrequency method of [29].

e

—iwr,f
1

L " " " 1 " " " 1 " " " 1 " " " 1 E

FIG. 7 (color online). The radial function e™" 7, (r,w) at r =
10M as a function of & for s =0, £ = 1. We calculated the
straight blue curve using the so-called Jaffé series (see, e.g.,
[13,29]) and the dashed red curve using the small-frequency
asymptotics presented in this paper up to O(5'?) [specifically,
using Eq. (137) [16] as in this case we did not need to obtain the
coefficients of the expansion analytically via the use of the Barnes
integral method].
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_ r . 2.0
o L
1.5 [
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FIG. 8 (color online). BC strength ¢(c) of Eq. (2.20) [or, equivalently for s = 0, ¢’ (¢) of Eq. (2.36)] as a function of &. In the straight
blue curves we calculated ¢(o) using the midfrequency method of [29] (with the radial functions calculated at r = 5M). In the dashed

red curves we calculated g(o) using the small-frequency asymptotics presented in this paper up to O(5'%). (a) For s = 0, £ = 0. (b) For
s=0,7=1.
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FIG. 9 (color online). The Wronskian W[f,,g,] as a function of & for s =0, # = 1. The straight-blue and dotted-red curves
respectively correspond to the real and imaginary parts of the Wronskian evaluated using the midfrequency method of [29] with the
radial functions calculated at at r = 2.8M; the convergence of the series used in the midfrequency method becomes slower as the
frequency becomes smaller. The dashed blue and red curves respectively correspond to the real and imaginary parts of the Wronskian
evaluated using the small-frequency asymptotics presented in this paper up to O(&'#). In (b) we plot the midfrequency to larger values of

the frequency so as to show its general form; the green-dashed curve here corresponds to the absolute value of the Wronskian. Compare
Fig. 13 [29] for s = ¢ = 2.

In [29]"* we already presented plots of quantities focused 0sGi/M ,
mainly on the s = # = 2 case. Therefore, for variety, here 0'0255 ':'
we will focus on the s =0 and £ = 0, 1 cases. 0.020F
As explained in [29], the ingoing radial function f,(r, ®) 0.01 5
possesses simple poles along the NIA (which are ultimately Tl
irrelevant, as they are canceled out in the Fourier modes of 0.010}
the GF by the corresponding poles in the Wronskian). It is 0.005F
therefore useful to define the following radial func- :
tion: f,(r, ) = sin(=27id)f,(r, ). i o
-0.005F

"2We note that there are two typos in Eq. (3.6) [29]: there FIG. 10 (color online). BC mode 6,G.(r, ', —io) of Eq. (2.21)
should be an overall factor “~1” in the expression for Ak (r,v), ~ as a function of & at r = r(r, = 0.4M), ' = r'(r, = 0.2M) for
using the notation of that paper, and, in the expression for Ah, ,, ~ $ = 0and ¢ = 1. In the straight blue curve we calculated the BC
it should be &, instead of @,_. The minus sign typo carried over ~ mode using the midfrequency method of [29] and in the dashed
to Fig. 10 [29], which is therefore a plot of “+ie*"~Ag,,” instead red curve we calculated it using the small-frequency asymptotics
of “—ie"”*Ag,” as stated there. presented in this paper up to O(5'3).
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In Figs. 7-10 we respectively plot the radial function f .,
the BC strength ¢(o), the Wronskian W and the BC mode
8,Gy(r, ¥, —ic), all as functions of the frequency & along
the NIA.

APPENDIX B: RADIAL COEFFICIENTS

In this Appendix we use the Chandrasekhar transforma-
tion [Eq. (2.38)] in order to relate the BPT and RW radial
coefficients and Wronskians. Let us first add higher orders
to the asymptotics in Eq. (2.11) of the RW solution:

|

PHYSICAL REVIEW D 92, 124055 (2015)
(1+a A+ B A)e o r, —> —00,

fr~ . . ,
Al}l 1 + 117.0 _|_/i_? e~lor, +A2ute+twr*’ r.— +00,
(B1)
where a_, f,, a,, and S, are coefficients to be determined.

By imposing that these asymptotics satisfy the RW equa-
tion, we find

il 5 A2 =2)+4Mi(s*> = 1w
a = —_—— s 0 =
e 2w 8w’
i(A+1-s5%) 4—s* =22+ 22— 16iMw) + s*(24 + 20iMw — 3) — 20iMw
a+ = 2— s ﬁ+ = ) ; R . (B2)
AM-(4AMw + i) 64M*(2Mw + i) (4Mw + i)
We note that a,, a, B, p. are all real valued when w is purely imaginary.
Using the transformation Eq. (2.38) it is straightforward to find the following coefficients of BPT solutions:
Aln, s =0, 57 s =0, 1, s =0,
BRI = L g A s =1, (RM={a, s=-1L  RP"™={2iw s=-1, (B3)
2 AR, s =2, %M%), §— 0 —4e?, 5= -2.
It then immediately follows, using Eqgs. (2.13) and (2.34), that
2M, s =0,
wr=w-{ T s=-1, (B4)
Mpe —
a,F2M2B. s ==2.

Note that W7 is, by definition, independent of the chosen normalization for (R and (R,’.
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