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In this paper, we construct a new class of black hole solutions which is coupled to the logarithmic
nonlinear electrodynamics in the context of dilaton gravity. We consider an n-dimensional action in which
gravity is coupled to the logarithmic nonlinear electrodynamics field and a scalar dilaton field to obtain
the equations of motion of the gravitational, dilaton and electromagnetic fields. This leads to finding a new
class of n-dimensional static and spherically symmetric black hole solutions in the presence of
two Liouville-type dilaton potentials. The asymptotic behavior of these solutions is neither flat nor
(anti-)de Sitter [(A)dS], and in the limiting case where the nonlinear parameter β goes to infinity,
our solutions reduce to the black holes of Einstein-Maxwell-dilaton gravity in higher dimensions.
Thermodynamic quantities such as mass, temperature, electric potential and entropy are also computed, and
it is shown that they agree with the first law of thermodynamics. Furthermore, we find that for small values
of the electric charge parameter q, and the dilaton coupling constant α, as well as small dimension n, the
solutions are thermally stable. By increasing n, the region of stability stands for smaller values of α
independent of q. Finally, we use the method of thermodynamical geometry and find the phase transition
points by calculating the Ricci scalar of a thermodynamic metric.
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I. INTRODUCTION

Classical linear Maxwell electrodynamics with charged
pointlike particles has two limited properties. First, the
electromagnetic energy of a pointlike particle diverges at its
location. Second, the Lorentz force must be postulated to
describe interactions between pointlike particles and the
electromagnetic field. Nonlinear vacuum electrodynamics
is free of these imperfections. The theory of nonlinear
electrodynamics was first introduced in the 1930s by Born
and Infeld (BI) [1]. Their purpose was to obtain a classical
theory of charged particles with finite self-energy by
introducing an upper bound for the electric field at the
origin [1]. BI theory has received a lot of attention because
it has applications to the description of D-branes, mostly in
the context of type-IIB string theory and to the AdS/CFT
correspondence [2,3]. However, the BI theory is not the
only nonlinear electrodynamics theory proposed so far. In
recent years, other types of nonlinear electrodynamics, such
as exponential [4], power law [5] and logarithmic [6], were
proposed. It is worth mentioning that the logarithmic form
of the electrodynamic Lagrangian, like BI electrodynamics,
removes divergences in the electric field, while the expo-
nential form of the nonlinear electromagnetic field does not
cancel the divergency of the electric field at r ¼ 0;

however, its singularity is much weaker than Einstein-
Maxwell theory.
On the other side, the idea of dilaton gravity has received

a lot of attention because of its close connection with the
low-energy limit of string theory. The low-energy limit of
string theory leads to Einstein gravity, coupled nonmini-
mally to a scalar dilaton field, which is massless in all finite
orders of perturbation theory [7]. In fact, in order to avoid
conflict with classical tests of the tensor character of
gravity, the physical dilaton should have mass. Some
classes of black hole solutions have been found for massive
dilatons [8–10]. At the classical level, and at distance scales
small compared to the dilaton Compton wavelength, we
can neglect the mass and study the effect of the dilaton on
low-energy physics. In this theory, neutral black holes are
still described by the Schwarzschild metric, and the scalar
dilaton plays no role. For charged black holes, however, the
dilaton plays a crucial role in modifying the causal structure
of the solutions. The studies on the dilaton black holes have
been carried out in various aspects (see, e.g., Refs. [11–13]
and references therein).
Four-dimensional black holes have a number of remark-

able properties. It is natural to ask whether these properties
are general features of black holes or whether they crucially
depend on the world being four dimensional. There are
several motivations for studying higher-dimensional black
holes. The first originates from string theory, which is a
promising approach to quantum gravity. String theory
predicts that spacetime has more than four dimensions
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[14,15]. Another reason originates from the AdS/CFT
correspondence, which relates the properties of an n-
dimensional black hole with those of a quantum field
theory in (n − 1) dimensions [16]. Considering these facts,
we have enough motivation to investigate the higher-
dimensional logarithmic nonlinear (LN) electrodynamics
in the presence of the scalar dilaton field. Previously, n-
dimensional black hole solutions of BI theory coupled to
the dilaton field (BId) [17–26], exponential nonlinear
electrodynamics coupled to the dilaton field (ENd) [27],
and the power-law Maxwell field in the presence of the
dilaton field [28] have been constructed, and their thermo-
dynamics have also been explored.
In this paper, we would like to fill in the gap existing in

the literature by investigating the n-dimensional black
hole solutions of LN theory in the presence of the scalar
dilaton field (LNd). The Lagrangian of this theory, in four
dimensions, was previously introduced, and its exact black
hole solutions, as well as their thermodynamics, were
explored [29]. Here, we would like to generalize the
four-dimensional LNd solutions [29] to all higher
dimensions. The suitable Lagrangian has the following
form:

LLNdðF;ΦÞ ¼ −8β2e4αΦ=ðn−2Þ

× ln

�
1þ e−8αΦ=ðn−2ÞF2

8β2

�
; ð1Þ

where Φ is the dilaton field, F2 ¼ FμνFμν, Fμν ¼ ∂ ½μAν� is
the electromagnetic field tensor, and Aμ is the electromag-
netic potential. The constant α measures the strength of the
coupling of the scalar and electromagnetic field, while β is
the nonlinear parameter with dimension of mass. In the
absence of the dilaton field (α ¼ 0) and in four dimensions
where n ¼ 4, LðF;ΦÞ reduces to the LN electrodynamic
Lagrangian presented in [6]. The series expansion of (1) for
large β leads to

LLNdðF;ΦÞ ¼ −e−4αΦ=ðn−2ÞF2 þ e−12αΦ=ðn−2ÞF4

16β2

− e−20αΦ=ðn−2ÞF6

192β4
þO

�
1

β6

�
: ð2Þ

One of the criterion for choosing different kinds of non-
linear electrodynamics is that they have the same expansion
for large β. Indeed, the series expansion of two nonlinear
Lagrangians, namely, BId DHSR and ENd [27], have the
same form as (2),

LBIdðF;ΦÞ ¼ −e−4αΦ=ðn−2ÞF2 þ e−12αΦ=ðn−2ÞF4

8β2

− e−20αΦ=ðn−2ÞF6

32β4
þO

�
1

β6

�
; ð3Þ

LENdðF;ΦÞ ¼ −e−4αΦ=ðn−2ÞF2 þ e−12αΦ=ðn−2ÞF4

8β2

− e−20αΦ=ðn−2ÞF6

96β4
þO

�
1

β6

�
: ð4Þ

Comparing the series expansions given in (2), (3) and (4),
we see that all of them have the same behavior up to a
coefficient number. For β → ∞, all of these Lagrangians
reduce to the standard linear Maxwell Lagrangian coupled
to the dilaton field in n dimensions, −e−4αΦ=ðn−2ÞF2

[30,31]. This is an expected result, since in the limit of
large β, these nonlinear theories should recover the
Einstein-Maxwell-dilaton (EMd) theory.
For the above mentioned, the investigation on the black

hole spacetimes in the framework of LNd theory is of great
importance. In the present work, by considering two
Liouville potentials for the dilaton field and making a
suitable ansatz, we construct a new class of n-dimensional
black hole solutions in the framework of LNd theory (1).
We also investigate the physical properties of the spacetime
and explore thermodynamics and thermal stability, as well
as thermodynamic geometry of the obtained solutions.
Throughout this paper, we work in natural units and
set ℏ ¼ c ¼ G ¼ kB ¼ 1.
This paper is organized as follows. In Sec. II, we

introduce the n-dimensional action in which gravity is
coupled to the dilaton and EN electrodynamics. Then, we
vary the action to obtain the corresponding field equations.
By taking the suitable ansatz, we construct a new class of
static and spherically symmetric black hole solutions of this
theory. In Sec. III, we investigate the physical properties as
well as the structure of the obtained solutions. In Sec. IV,
we study thermodynamics of higher-dimensional dilaton
black holes in the presence of nonlinear electrodynamics
and check the validity of the first law of thermodynamics.
In Secs. V and VI, we study thermal stability of the
obtained solutions in canonical and grand-canonical
ensembles, respectively. Using the thermodynamic geom-
etry approach, we study the phase transition points in
Sec. VII. We finish our paper with some concluding
remarks in Sec. VIII.

II. FIELD EQUATIONS AND
BLACK HOLE SOLUTIONS

We consider the n-dimensional (n ≥ 4) action in which
gravity is coupled to the dilaton and nonlinear electrody-
namic fields,

S ¼ 1

16π

Z
dnx

ffiffiffiffiffiffi−gp �
R − 4

n − 2
ð∇ΦÞ2 − VðΦÞ

þ LLNdðF;ΦÞ
�
; ð5Þ
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where R and VðΦÞ are, respectively, the Ricci scalar
curvature and the dilaton potential. We take the potential
of the dilaton field as

VðΦÞ ¼ 2Λ0e2ζ0Φ þ 2Λe2ζΦ: ð6Þ

The dilaton potential has two Liouville terms in which Λ0,
Λ, ζ0 and ζ are constants. This kind of potential has been
studied in the context of BId black holes [24,25] as well as
EMd gravity [30–34]. Our purpose in this paper is to study
LN electrodynamics coupled to the scalar dilaton field in n-
dimensional spacetime. First of all, for simplification, we
write LLNdðF;ϕÞ as

LLNdðF;ΦÞ ¼ −8β2e4αΦ=ðn−2ÞLðYÞ; ð7Þ

where we have defined

LðYÞ ¼ lnð1þ YÞ; ð8Þ

Y ¼ e−8αΦ=ðn−2ÞF2

8β2
: ð9Þ

Varying action (5) with respect to the gravitational field gμν,
the dilaton field Φ and the electromagnetic field Aμ,
we have

Rμν ¼
4

n − 2

�
∂μΦ∂νΦþ 1

4
gμνVðΦÞ

�
þ 2e−4αΦ=ðn−2Þ∂YLðYÞFμηFν

η

−
8β2

n − 2
e4αΦ=ðn−2Þ½2Y∂YLðYÞ − LðYÞ�gμν; ð10Þ

∇2Φ ¼ n − 2

8

∂V
∂Φ − 4αβ2e4αΦ=ðn−2Þ½2Y∂YLðYÞ − LðYÞ�;

ð11Þ

∇μðe−4αΦ=ðn−2Þ∂YLðYÞFμνÞ ¼ 0: ð12Þ

In the limit of linear electrodynamics ðβ2 → ∞Þ, we have
LðYÞ ¼ Y, and the system of equations restores those of
EMd theory [30–34].
We would like to search for the static and spherically

symmetric solutions of the field equations (10)–(12). The
proper metric for the spacetime of these solutions is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2R2ðrÞdΩ2
n−2; ð13Þ

where fðrÞ and RðrÞ are functions of r and we should gain
them. Here, dΩ2

n−2 denotes the metric of a unit (n − 2)-
sphere. In the absence of a dilaton field (α ¼ 0), we have
RðrÞ ¼ 1. Using the metric (5), we try to solve the field
equations (10)–(12). First, we solve the electromagnetic

field equation (12) to find Fμν. We assume all components
of Fμν are zero, except Ftr. Integrating Eq. (12), we obtain
Ftr as

Ftr ¼
2qe4αΦ=ðn−2Þ
ðrRðrÞÞn−2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

β2ðrRðrÞÞ2n−4

s !−1
; ð14Þ

where q, an integration constant, is the charge parameter. In
the limiting case where β → ∞, Eq. (14) reduces to

Ftr ¼
qe4αΦ=ðn−2Þ
ðrRðrÞÞn−2 þO

�
1

β2

�
: ð15Þ

This expression is the electric field of an n-dimensional
EMd black hole [31]. In the absence of the dilaton field and
for n ¼ 4, Eq. (14) recovers [35]

Ftr ¼
2q
r2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

β2r4

s !−1
: ð16Þ

For other unknown functions fðrÞ, RðrÞ and ΦðrÞ, we
should solve the field equations (10) and (11). In order to
obtain these functions, we make the ansatz

RðrÞ ¼ e2αΦ=ðn−2Þ: ð17Þ

This ansatz was first introduced in [36] for the purpose of
finding black string solutions of EMd gravity, and later was
applied for constructing black hole solutions of nonlinear
BId theory [25]. The mentioned ansatz is according to our
expectation; namely, in the absence of a dilaton field
(α ¼ 0), it recovers RðrÞ ¼ 1. Using the ansatz (17), the
metric (13) and the electric field (14), we can solve the
gravitational and dilaton field equations (10) and (11). We
find

fðrÞ ¼ − ðn − 3Þðα2 þ 1Þ2
ðα2 − 1Þðα2 þ n − 3Þ b

−γrγ − m

rn−3−ðn−2Þγ=2

þ 2ðα2 þ 1Þ2ðΛ − 4β2Þbγ
ðn − 2Þðα2 − nþ 1Þ r2−γ

−
8β2ðα2 þ 1Þbγ

ðn − 2Þrn−3−ðn−2Þγ=2

×
Z

rnð1−γ
2
Þ−2
� ffiffiffiffiffiffiffiffiffiffiffi

1þ η
p − ln

�
η

2

�

þ ln ð−1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p
Þ
�
dr; ð18Þ

ΦðrÞ ¼ ðn − 2Þα
2ðα2 þ 1Þ ln

�
b
r

�
; ð19Þ

where m and b are integration constants and
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γ ¼ 2α2

1þ α2
; ð20Þ

η ¼ q2bð2−nÞγ

β2rðn−2Þð2−γÞ
: ð21Þ

The above solutions will fully satisfy all components of the
field equations provided we choose

ζ0 ¼
2

αðn − 2Þ ; ð22Þ

ζ ¼ 2α

n − 2
; ð23Þ

Λ0 ¼
ðn − 2Þðn − 3Þα2

2b2ðα2 − 1Þ : ð24Þ

In relation (18), Λ is a free parameter which plays the role
of the cosmological constant. We can redefine it as usual,
Λ ¼ −ðn − 1Þðn − 2Þ=2l2, where l is a constant with
dimension of length. By solving the integration in relation
(18), we have

fðrÞ ¼ − ðn − 3Þðα2 þ 1Þ2
ðα2 − 1Þðα2 þ n − 3Þ b

−γrγ − m

rn−3−ðn−2Þγ=2
þ 2ðΛ − 4β2Þðα2 þ 1Þ2bγ

ðn − 2Þðα2 − nþ 1Þ r2−γ

þ 8β2ðα2 þ 1Þ2
ðα2 − nþ 1Þ2 b

γr2−γ
�
1 − 2F1

��−1
2

;
α2 − nþ 1

2n − 4

�
;

�
α2 þ n − 3

2n − 4

�
;−η

��

þ 8β2ðα2 þ 1Þ2
ðn − 2Þðα2 − nþ 1Þ b

γr2−γ
� ffiffiffiffiffiffiffiffiffiffiffi

1þ η
p − ln

�
η

2

�
þ ln ð−1þ ffiffiffiffiffiffiffiffiffiffiffi

1þ η
p

Þ
�
; ð25Þ

where 2F1ð½a; b�; ½c�; dÞ is the hypergeometric function
[37]. It is worth mentioning that the solutions are ill
defined for α ¼ 1 and α ¼ ffiffiffiffiffiffiffiffiffiffiffi

n − 1
p

. We expect that for
large β, the function fðrÞ reduces to the obtained solution
of higher-dimensional black holes in EMd gravity [31].
Indeed, if we expand (25) for large β, we arrive at

fðrÞ ¼ − ðn − 3Þðα2 þ 1Þ2
ðα2 − 1Þðα2 þ n − 3Þ b

−γrγ − m

rn−3−ðn−2Þγ=2

þ 2Λðα2 þ 1Þ2
ðn − 2Þðα2 − nþ 1Þ b

γr2−γ

þ 2q2ðα2 þ 1Þ2b−ðn−3Þγ
ðn − 2Þðα2 þ n − 3Þrðn−3Þð2−γÞ

− q4ðα2 þ 1Þ2b−ð2n−5Þγ
4β2ðn − 2Þðα2 þ 3n − 7Þrð2n−5Þð2−γÞ þO

�
1

β4

�
:

ð26Þ

Setting α ¼ γ ¼ 0 in (26), we reach

fðrÞ ¼ 1 − m
rn−3

þ r2

l2
þ 2q2

ðn − 2Þðn − 3Þr2n−6

− 1

4β2ðn − 2Þð3n − 7Þ
q4

r4n−10
þO

�
1

β4

�
; ð27Þ

which has the form of static, spherically symmetric, n-
dimensional Reissner-Nordstrom (RN) black holes in AdS
spacetime in the limit β → ∞. The last term in the right-
hand side of (27) is the leading nonlinear correction term to
the RN-AdS black hole in the large β limit. It is interesting

to investigate the asymptotic behavior of the obtained
solutions. From Eq. (26), one can easily see that in the
presence of the dilaton field, the asymptotic behavior of the
solution is neither flat nor AdS. Let us explicitly write the
large r limit of fðrÞ,

lim
r→∞

fðrÞ ¼ − ðn − 3Þðα2 þ 1Þ2
ðα2 − 1Þðα2 þ n − 3Þ b

−γrγ

þ 2Λðα2 þ 1Þ2
ðn − 2Þðα2 − nþ 1Þ b

γr2−γ: ð28Þ

For example, if we take α ¼ ffiffiffi
2

p
, n ¼ 6 and b ¼ 1, we find

lim
r→∞

fðrÞ ¼ − 27

5
r4=3 − 3Λ

2
r2=3: ð29Þ

Clearly, the metric function (29) is neither flat nor (A)dS.
Indeed, it has been shown that no dilaton dS or AdS black
hole solution exists with the presence of only one or two
Liouville-type dilaton potentials [13]. In the presence of
one or two Liouville-type potentials, black hole spacetimes
which are neither asymptotically flat nor (A)dS have been
explored by many authors (see, e.g., Refs. [30–34]). It is
important to note that this asymptotic behavior is not due to
the nonlinear nature of the electrodynamic field, since as
r → ∞ the effects of the nonlinearity disappear. This is due
to the fact that the r → ∞ limit corresponds to β2 → ∞, and
in this case Ftr, as well as the metric functions fðrÞ, restore
the results of EMd with an unusual asymptotic [31].
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III. PHYSICAL PROPERTIES
OF THE SOLUTIONS

Now, we investigate the physical properties of the
solutions. As we mentioned in the Introduction, one of
the main purposes for introducing the nonlinear electro-
dynamics is to remove the singularity of the electric field at
the origin. So, to check the correction of the corresponding
nonlinear theory, we should investigate whether this theory
could remove this divergency or not. To have a better
understanding of the behavior of the electric field, we plot
EðrÞ versus r for different values of the parameters.
Replacing (19) and (17) in (14), we have

Ftr ¼ EðrÞ ¼ 2qbð4−nÞγ=2

rn−2þ2γ−nγ=2

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2b−ðn−2Þγ

β2rðn−2Þð2−γÞ

s #−1
:

ð30Þ

Expanding for large β, we get

EðrÞ ¼ qbð4−nÞγ=2

rn−2þð4−nÞγ=2 −
q3

4β2
bγð4−3n=2Þ

r3n−6þγð4−3n=2Þ

þ q5

8β4
bγð6−5n=2Þ

r5n−10þγð6−5n=2Þ þO
�
1

β6

�
: ð31Þ

We have plotted the behavior of EðrÞ versus r in Figs. 1–5.
The similar characteristic of all figures is that for large r,
EðrÞ goes to zero independent of the values of the other
parameters. Figure 1 shows the effects of the dilaton field
on the electric field of LNd electrodynamics. As one can
see from this figure, the curve α ¼ 0 satisfies our expect-
ation and the electric field is finite at the origin. But in the
presence of the dilaton field ðα ≠ 0Þ, EðrÞ leads to infinity
at exactly r ¼ 0. So the presence of the dilaton field in this
theory, like BI theory, leads to the divergency. Also, by

r

E
(r

)

0.4 0.8 1.2
0
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15

20

EMd
ENd
LNd
BId

FIG. 2 (color online). The behavior of the electric field EðrÞ
versus r for EMd, ENd, LNd and BId electrodynamics for
b ¼ 0.1, q ¼ 2, β ¼ 3, n ¼ 6 and α ¼ 0.
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FIG. 3 (color online). The behavior of the electric field EðrÞ of
LNd black holes versus r for α ¼ 1, b ¼ 2, q ¼ 2 and β ¼ 6.
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FIG. 1 (color online). The behavior of the electric field EðrÞ of
LNd black holes versus r for b ¼ 1, q ¼ 1, β ¼ 3 and n ¼ 6.
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FIG. 4 (color online). The behavior of the electric field EðrÞ of
LNd black holes versus r for b ¼ 1, q ¼ 1, α ¼ 0.4 and n ¼ 6.
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increasing α, the divergency of the electric field near the
origin increases.
In Fig. 2, we have compared the behavior of the electric

field for EMd, BId, ENd and LNd electrodynamics in the
absence of the dilaton field (α ¼ 0). At r ¼ 0, the electric
field of EMd and ENd goes to infinity but the divergency of
the latter is weaker compared to the former. However, the
electric fields of LNd and BId theories have finite values at
r ¼ 0. In Fig. 3, we have plotted the behavior of EðrÞ of
LNd for different values of dimensions. The behavior of
EðrÞ is independent of the dimension. In Fig. 4, we have
plotted EðrÞ of LNd black holes for different values of the
nonlinear parameter β. As β becomes larger, the plot gets
closer to the EMd and the electric field diverges as r → 0.
This is an expected result, since for large β, our theory
reduces to the well-known EMd gravity [31].
It is important to explore the casual structure of the

solutions and check whether there are the curvature
singularities and horizons or not. To find the singularity
of the spacetime, we should study the Kretschmann scalar
RμνλκRμνλκ. We find that the Kretschmann scalar diverges as
r → 0. Thus, the spacetime has an essential singularity
located at r ¼ 0. Then, we find the horizons. To find the
location of the horizons of the spacetime, we should solve
fðrþÞ ¼ 0 and obtain its roots. Because of the complex
form of fðrÞ, we cannot find the locations of the horizons
analytically. To have a better understanding of the nature of
the horizon, we plot fðrÞ versus r for different values of the
metric parameters in Figs. 5 and 6. For simplification, we
choose l ¼ b ¼ 1. Depending on the value of the metric
parameters, our solutions can represent a black hole with
two horizons, an extremal black hole or a naked singularity.
In the case of an extremal black hole, the two horizons meet
each other, and for a naked singularity, we have no
horizons. For example, in Fig. 5, by decreasing the value
of m (for fixed values of the other parameters), the number
of horizons decreases. Also, in Fig. 6, we see that we have a
qmin and a qext (the values of the other parameters are fixed)
for which the number of horizons depends on the charge

parameter q. For different values of q, we have different
black holes as follows:

8>>><
>>>:

q< qmin; nonextremal black hole ðq¼ 0.1Þ;
qmin <q<qext; black hole with two horizons ðq¼ 0.9Þ;
q¼ qext; extremal black hole ðq¼ 1.79Þ;
q > qext; naked singularity ðq¼ 2.5Þ:

ð32Þ

For a nonextremal black hole, the sign of fðrÞ for r > rþ
differs from the one for r < rþ. Also, it is notable to
mention that the values of qmin and qext are determined by
the other parameters. The plot of mass parameter m versus
rh is also helpful for probing the horizons. By solving
fðrhÞ ¼ 0 and finding mðrhÞ, we can write the mass
parameter as

mðrhÞ¼− ðn−3Þðα2þ1Þ2
ðα2−1Þðα2þn−3Þb

−γrn−3−ðn−4Þγ=2h

þ2ðΛ−4β2Þðα2þ1Þ2bγ
ðn−2Þðα2−nþ1Þ rn−1−nγ=2h

þ8β2ðα2þ1Þ2
ðα2−nþ1Þ2b

γrn−1−nγ=2h

×

�
1− 2F1

��−1
2
;
α2−nþ1

2n−4

�
;

�
α2þn−3

2n−4

�
;−ηh

��

þ 8β2ðα2þ1Þ2
ðn−2Þðα2−nþ1Þb

γrn−1−nγ=2h

×

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þηh

p − ln

�
ηh
2

�
þ lnð−1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1þηh
p

Þ
�
;

ð33Þ

where ηh ¼ ηðr ¼ rhÞ. In Fig. 7, we have plotted the curve
of mðrhÞ for the fixed values of the parameters
ðα ¼ 0.8; β ¼ 2; n ¼ 7; q ¼ 1.2Þ, and the other curves
are for mðrhÞ ¼ m, where m is constant. Again, for

r
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FIG. 5 (color online). fðrÞ versus r for α ¼ 0.5, q ¼ 2, β ¼ 1
and n ¼ 6.

r

f(
r)

0.4 0.8 1.2

-8

-4

0

4

q = 0.1
q = 0.9
q = 1.79
q = 2.5

FIG. 6 (color online). fðrÞ versus r for α ¼ 0.5, m ¼ 3, β ¼ 4
and n ¼ 6.
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simplicity, in these figures, we set l ¼ b ¼ 1. If the line
m ¼ const can cut the curve mðrhÞ just for one rh, we have
an extremal black hole. In this case, m has the extremal
value mext, like the curve (m ¼ 2.9) [mext is the minimum
value of the curve mðrhÞ]. Form > mext, the black hole has
two horizons like the line (m ¼ 4), and if m < mext, we
have a naked singularity like the curve (m ¼ 1.6). Looking
at Fig. 8, it is clear that in the limit rh → 0, we have a
nonzero value for the mass parameter mðrhÞ. This is in
contrast to the Schwarzschild black holes in which the mass
parameter goes to zero as rh → 0. This contrast is due to the
effect of the nonlinearity of the electrodynamic field.
Figure 9 shows that mext decreases with an increase in
the dimension of the spacetime.

IV. CONSERVED QUANTITY
AND THERMODYNAMIC
OF THE SOLUTIONS

In this section, we compute the conserved and thermo-
dynamic quantities of the LNd black holes in all higher
dimensions. We then also check the accuracy of the
obtained thermodynamic quantities using the first law of
black hole thermodynamics.
First, we obtain the charge of the mentioned black holes.

According to Gauss’s law, the electric charge of the black
hole is

Q ¼ 1

4π

Z
r→∞

exp½−4αΦ=ðn − 2Þ��FdΩ ¼ qωn−2
4π

; ð34Þ

where ωn−2 is the volume of a unit (n − 2)-sphere. Another
conserved quantity is the mass of the solutions. There are
several ways for calculating the mass of the black holes. For
example, for asymptotically AdS black holes, one can use
the counterterm method inspired by AdS/CFT correspon-
dence [38,39]. Another way for calculating the mass is
through the use of the substraction method of Brown and
York [40]. As we saw, due to the presence of the dilaton
field, the asymptotic behavior of the solutions is neither flat
nor (A)dS. In this case, the quasilocal formalism of Brown
and York is sufficient to compute the quasilocal mass of a
black hole. If we write the metric of spherically symmetric
spacetime in the form [30]

ds2 ¼ −W2ðrÞdt2 þ dr2

V2ðrÞ þ r2dΩ2
n−2; ð35Þ

and the matter action contains no derivatives of the metric,
then the quasilocal mass is given by

M ¼ n − 2

2
rn−3WðrÞðV0ðrÞ − VðrÞÞ: ð36Þ

Here, V0ðrÞ is an arbitrary function which determines the
zero of the energy for a background spacetime and r is the
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FIG. 7 (color online). The mass parameter m versus rh for
α ¼ 0.8, q ¼ 1.2, β ¼ 2 and n ¼ 7.
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α ¼ 0.5, q ¼ 1 and β ¼ 2.
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radius of the spacelike hypersurface boundary. If no
cosmological horizon is present, the large r limit of (36)
is used to determine the mass. For the obtained solutions,
there is no cosmological horizon, and if we transform the
metric to the form (35), then we obtain the mass of the
black hole,

M ¼ bðn−2Þγ=2ðn − 2Þωn−2
16πðα2 þ 1Þ m: ð37Þ

In the absence of a nontrivial dilaton field (α ¼ 0 ¼ γ),
this expression for the mass reduces to the mass of the
n-dimensional asymptotically AdS black hole.
Next, we calculate the temperature associated with the

horizon of LNd black holes. The Hawking temperature of
the black hole on the outer horizon rþ may be obtained
through the definition of surface gravity [4],

Tþ ¼ κ

2π
¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

2
ð∇μχνÞð∇μχνÞ

r
; ð38Þ

where κ is the surface gravity and χ ¼ ∂=∂t is the null
Killing vector of the horizon. Taking χν ¼ ð−1; 0; 0;…Þ,
we have χν ¼ ðfðrþÞ; 0; 0;…Þ and hence ð∇μχνÞð∇μχνÞ ¼
− 1

2
½f0ðrþÞ�2, which leads to

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

2
ð∇μχνÞð∇μχνÞ

r
¼ 1

2

�
dfðrÞ
dr

�
r¼rþ

: ð39Þ

So the temperature of the charged dilaton black hole in the
presence of the LN electrodynamics is obtained as

Tþ ¼ 1

4π

�
dfðrÞ
dr

�
r¼rþ

¼−α2þ1

4π
r1−γþ

�ðn−3Þb−γr2γ−2þ
α2−1

þ2ðΛ−4β2Þbγ
ðn−2Þ

þ8β2bγ

n−2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þηþ

p − ln

�
ηþ
2

�
þ ln

	
−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þηþ
p 
��

;

ð40Þ

where ηþ ¼ ηðr ¼ rþÞ and we have used fðrþÞ ¼ 0 for
omitting m. For large β, we can expand T and arrive at

Tþ ¼ − ðn− 3Þðα2 þ 1Þb−γ
4πðα2 − 1Þ rγ−1þ −Λðα2 þ 1Þbγ

2πðn− 2Þ r1−γþ

− q2ðα2 þ 1Þb−γðn−3Þ
2πðn− 2Þ r5−2n−3γþnγ

þ

þ q4ðα2 þ 1Þb−γð2n−5Þ
16πðn− 2Þβ2 r9−4n−5γþ2nγ

þ þO
�
1

β4

�
: ð41Þ

In the limiting case where β → ∞, the temperature reduces
to the temperature of the higher-dimensional EMd black

holes [31]. The behavior of T versus rþ is shown in Figs. 10
and 11. Again, we fix l ¼ b ¼ 1, for simplicity. These
figures show that for large values of rþ, each curve goes to
a constant value independent of the model parameters. In
Fig. 10, the temperature increases by increasing α. In
Fig. 11, by increasing dimension n, the value of the
temperature increases. The temperature of an extremal
black hole is zero. We can obtain rext (the corresponding
r for the extremal black hole) by solving Tþ ¼ 0,

ðn−3Þb−γr2γ−2ext

α2−1
þ2ðΛ−4β2Þbγ

ðn−2Þ

þ8β2bγ

n−2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þηext

p
þ ln

�
ηext
2

�
þ lnð−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þηext
p

Þ
�
¼0:

ð42Þ

So rext is the positive root of the above equation, where

ηext ≡ q2extr
ðn−2Þðγ−2Þ
ext

β2bðn−2Þγ
: ð43Þ
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FIG. 10 (color online). The temperature T versus rþ for
different values of α. Here, we take q ¼ 2, n ¼ 5 and β ¼ 1.
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FIG. 11 (color online). The temperature T versus rþ for
different values of dimension n. Here, we take α ¼ 2, q ¼ 3
and β ¼ 1.
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Also, we see that, for r > rext, the temperature is positive
(T > 0). In this case, the black hole has two horizons, r−
and rþ. For r < rext, the temperature is negative (T < 0),
and we encounter a naked singularity. It is notable that the
value of rext depends on the other parameters and alters by
changing the metric parameters.
Next, we calculate the electric potential. For this pur-

pose, we use the definition Fμν ¼ ∂μAν − ∂νAμ, where Fμν

is the electromagnetic field tensor and Aμ is the corre-
sponding gauge potential. For the static solution, all
components of Fμν are zero, except Ftr which is given
by (30). This implies that Ftr ¼ ∂tAr − ∂rAt, and the gauge
potential is only a function of r, namely, At ¼ AtðrÞ, which
is obtained as

AtðrÞ ¼ −
Z

Ftrdr

¼ −
Z

2qbð4−nÞγ=2

rn−2þ2γ−nγ=2 ×
1

1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p dr; ð44Þ

where η is defined in (21). Integrating (44) yields

At ¼
qðα2 þ 1Þbð4−nÞγ=2

α2 þ n − 3
r3−n−ð4−nÞγ=2

× 3F2

��
1

2
; 1;

3 − n − α2

4 − 2n

�
;

�
2;
7 − 3n − α2

4 − 2n

�
;−η

�
;

ð45Þ

where 3F2 is the hypergeometric function and we have
set the constant of integration equal to zero. The electric
potential U is Aμχ

μ at infinity with respect to the
horizon [26],

U ¼ Aμχ
μjr→∞ − Aμχ

μjr¼rþ
; ð46Þ

where χ ¼ ∂t is the null generator of the horizon.
Therefore, the electric potential is

U ¼ qðα2 þ 1Þbð4−nÞγ=2
α2 þ n − 3

r3−n−ð4−nÞγ=2þ

× F

��
1

2
; 1;

3 − n − α2

4 − 2n

�
;

�
2;
7 − 3n − α2

4 − 2n

�
;−ηþ

�
:

ð47Þ

Expanding for large values of β, we arrive at

U ¼ qðα2 þ 1Þbð4−nÞγ=2
ðα2 þ n − 3Þrn−3þ2γ−nγ=2

þ
þO

�
1

β2

�
; ð48Þ

which is the electric potential of the higher-dimensional
EMd black holes [31]. The behavior of the electric potential
U as a function of horizon radius rþ is displayed in Figs. 12

and 13 for b ¼ 1. In both figures, U goes to zero for large
values of rþ independent of the model parameters. In
Fig. 12, for special values of α the value of U is finite in the
limit rþ → 0. This is the other proof of the success of
nonlinear theory. By increasing the value of α, U goes to
infinity. Also in Fig. 13, up to a certain value of parameter
β, nonlinear electrodynamics could cancel the divergency
and cause finite values at the origin. By increasing the value
of β, the divergency returns and the curve comes closer to
the electric potential of EMd black holes.
To obtain entropy of the LNd black hole, we use the so-

called area law of entropy. This law states that the entropy
of the black hole is a quarter of the event horizon area [41].
This near universal law applies to almost all kinds of black
holes, including dilaton black holes, in Einstein gravity
[42]. The entropy of the black hole can be calculated as

S ¼ bðn−2Þγ=2rðn−2Þð1−γ=2Þþ ωn−2
4

: ð49Þ
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FIG. 12 (color online). The electric potential U versus rþ for
q ¼ 1, b ¼ 1, β ¼ 1 and n ¼ 6 and different α.
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FIG. 13 (color online). The electric potential U versus rþ for
b ¼ 1, α ¼ 0.5, n ¼ 6 and q ¼ 1 and different β.
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After calculating thermodynamic quantities, we are now in a position to check the first law of thermodynamics. In order to
do this, we obtain m by solving fðrþÞ ¼ 0, and replace it in the mass expression (37) of the black hole. Then, by using
Eqs. (34) and (49), we obtain the mass M as a function of extensive quantities S and Q,

MðS;QÞ ¼ − ðn − 2Þðn − 3Þðα2 þ 1Þb−α2ð4SÞα2þn−3
n−2

16πðα2 − 1Þðα2 þ n − 3Þ þ ðΛ − 4β2Þðα2 þ 1Þbα2ð4SÞ−α2þn−1
n−2

8πðα2 − nþ 1Þ

þ ðn − 2Þβ2ðα2 þ 1Þbα2
2πðα2 − nþ 1Þ2 ð4SÞ−α2þn−1

n−2

�
1 − 2F1

��−1
2

;
α2 − nþ 1

2n − 4

�
;

�
α2 þ n − 3

2n − 4

�
;−ζ

��

þ β2ðα2 þ 1Þbα2
2πðα2 − nþ 1Þ ð4SÞ

−α2þn−1
n−2

� ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p − ln

�
ζ

2

�
þ lnð−1þ ffiffiffiffiffiffiffiffiffiffiffi

1þ ζ
p

Þ
�
; ð50Þ

where ζ ¼ π2Q2

S2β2 . If we expand MðS;QÞ for large β, we get

MðS;QÞ ¼ − ðn − 2Þðn − 3Þðα2 þ 1Þb−α2
16πðα2 − 1Þðα2 þ n − 3Þ ð4SÞα2þn−3

n−2 þ Λðα2 þ 1Þbα2
8πðα2 − nþ 1Þ ð4SÞ

−α2þn−1
n−2

þ 2πQ2ðα2 þ 1Þbα2
α2 þ n − 3

ð4SÞα2þn−3
2−n − 4π3Q4ðα2 þ 1Þbα2

β2ðα2 þ 3n − 7Þ ð4SÞ−α2−3nþ7
n−2 þO

�
1

β4

�
; ð51Þ

which is exactly the Smarr-type formula obtained for EMd
black holes in the limit β → ∞ [31]. One may then regard
the parameters S and Q as a complete set of extensive
parameters for the mass MðS;QÞ. So we can define their
related intensive parameters S and Q as

T ¼
�∂M
∂S
�

Q
; U ¼

�∂M
∂Q
�

S
: ð52Þ

Numerical calculations show that the intensive quantities
calculated by Eq. (52) coincide with Eqs. (40) and (47).
Thus, our obtained thermodynamic quantities obey the first
law of black hole thermodynamics,

dM ¼ TdSþ UdQ: ð53Þ
The ability of the mentioned theory to remove the diver-
gency of the electric field at the origin, reducing all the
obtained quantities in the limit β → ∞ to the known results
in the literature [31,35], and finally the correction of the
obtained quantities in the frame of the first law of black
hole thermodynamics all confirm the truth of our calcu-
lation. Our results are also in agreement with other methods
such as the Euclidean action method [43].

V. THERMODYNAMIC STABILITY
IN CANONICAL ENSEMBLE

The other interesting and necessary subject for studying
black holes is investigating the thermal stability in different
ensembles. The stability of a thermodynamic system is
determined by analyzing the behavior of the entropy
SðM;QÞ with respect to small variations of the thermody-
namic coordinates around the equilibrium. The local

stability in any ensemble requires that SðM;QÞ be a
concave function of the intensive variables. The energy
MðS;QÞ is also another parameter for investigating stability
which should be a convex function of its extensive variable.
Therefore, by finding the determinant of the Hessian matrix
of MðS;QÞ with respect to its extensive variables Xi,
HM

XiXj
¼ ½∂2M=∂Xi∂Xj�, we can study the local stability

[44,45]. The number of Xi depends on the ensemble that is
used. In the canonical ensemble, the charge is a fixed
parameter, and thus the positivity of the heat capacity
guarantees the local stability. The heat capacity is defined
as

CQ ¼ T

�∂S
∂T
�

Q
¼ T

�∂2M
∂S2

�−1

Q
: ð54Þ

The negative temperature is not physically accepted, so the
required condition for the local stability is the positivity of
T and ð∂2M=∂S2ÞQ, simultaneously. In order to find the
stable region for the corresponding black hole in the
canonical ensemble, we have plotted ð∂2M=∂S2ÞQ and
temperature versus α for different values of q in Figs. 14–
16. We have fixed l ¼ b ¼ 1 in these figures. As one can
see from Figs. 14(a), 15(a) and 16(a), there is a qmin for
which ð∂2M=∂S2ÞQ are positive for all values of α provided
q > qmin. For q < qmin, there is an αmax for which
ð∂2M=∂S2ÞQ are positive for α < αmax, while they are
negative for α > αmax. By increasing n, the value of qmin
becomes larger, which indicates that the region of stability
becomes smaller. Also, for every q < qmin, the value of
αmax decreases, so the region of stability becomes smaller.
In Figs. 14(b), 15(b) and 16(b), we see that, for α < 1

and the lowest dimension (n ¼ 4), there is a qmin
1 in which
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FIG. 15 (color online). Thermal stability in the canonical ensemble for β ¼ 1, rþ ¼ 1.8 and n ¼ 6.

FIG. 16 (color online). Thermal stability in the canonical ensemble for β ¼ 1.5, rþ ¼ 1.8 and n ¼ 8.
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FIG. 14 (color online). Thermal stability in the canonical ensemble for β ¼ 1, rþ ¼ 1.8 and n ¼ 4.
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for q > qmin
1 , the temperature is negative, while the temper-

ature is positive for q < qmin
1 . By increasing n, T is positive

for all values of q and α < 1. For α > 1, there is a qmin
2 for

which the temperature is negative for q > qmin
2 and all

values of α. For q < q2min, there is an αmin in which the
temperature is negative for α < αmin and positive for
α > αmin. By increasing the dimension n, the value of
qmin
2 increases.

VI. THERMODYNAMIC STABILITY
IN GRAND-CANONICAL ENSEMBLE

In this section, we investigate thermal stability in the
grand-canonical ensemble. In this ensemble, both chargeQ
and entropy S are thermodynamic variables. Therefore, in
the ranges of the parameter spaces where the determinant of
the Hessian matrix H, the two diagonal elements of H, and
the temperature are positive, we have local stability. The
Hessian matrix is ðH11

H21

H12

H22
Þ, and the components of its

determinant are

H11 ¼
�∂2M
∂S2

�
Q
; H22 ¼

�∂2M
∂Q2

�
S
;

H21 ¼ H12 ¼
� ∂2M
∂S∂Q

�
: ð55Þ

Since the above components are too long, for economical
reasons, we do not use them here. It is important to note that
in the canonical ensemble, the system is thermally stable
provided T > 0, ð∂2M=∂S2ÞQ > 0, and

detðHÞ ¼
�∂2M
∂S2

�
Q

�∂2M
∂Q2

�
S
−
� ∂2M
∂S∂Q

�
2

> 0: ð56Þ

Thus,

�∂2M
∂Q2

�
S
>

� ∂2M
∂S∂Q

�
2

=

�∂2M
∂S2

�
Q
> 0: ð57Þ

This clearly shows that the positivity of detðHÞ and
ð∂2M=∂S2ÞQ leads to ð∂2M=∂Q2ÞS > 0. In order to study
the stability, we have plotted the determinant of the
Hessian matrix and temperature versus β for different q
in Figs. 17–18. Again, we choose l ¼ b ¼ 1 for simplicity.
From Fig. 17(a), we see that for the lowest dimension
n ¼ 4, the determinant is positive for all values of q and
α ¼ 0.5 ðα < 1Þ. In Fig. 17(b), the temperature is positive
for small q and all values of β. For large q, there is a βmax
for which the temperature is positive for β < βmax and
negative for β > βmax. From Fig. 18, we see that for higher
dimensions (n ¼ 7) and α < 1, the Hessian matrix deter-
minant and the temperature are positive for α ¼ 0.5,
rþ ¼ 1.5.

VII. PHASE TRANSITION POINTS
AND SINGULARITIES OF

THERMODYNAMIC GEOMETRY

Another interesting subject for studying black hole
physics is the geometry approach towards thermodynamics.
Weinhold was the first to introduce, in equilibrium space, a
Riemannian metric defined in terms of the second deriv-
atives of the internal energy with respect to entropy and
other extensive variables of a thermodynamic system
[46,47]. Then, Ruppeiner introduced another metric
defined as the negative Hessian of entropy with respect
to the internal energy and other extensive quantities of a
thermodynamic system [48,49]. The Ruppeiner metric is
conformally related to the Weinhold metric with the inverse
temperature as the conformal factor [50],

dS2R ¼ dS2W
T

: ð58Þ

(a) (b)

FIG. 17 (color online). Thermal stability in the grand-canonical ensemble for α ¼ 0.5, rþ ¼ 1.8 and n ¼ 4.
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Weinhold or Ruppeiner metrics have an unavoidable
problem. In equilibrium space, their results depend on
the choice of thermodynamic potential; i.e., the results are
not invariant with respect to Legendre transformations.
After this problem, a possible solution was suggested by
Quevedo whose starting point was the observation that
standard thermodynamics is invariant with respect to
Legendre transformations [51–54]. Quevedo’s metric also
had some problems. Sometimes, the divergency points of
the Ricci scalar are not the same as the phase transition
points, and sometimes, the Ricci scalar diverges at a point
where we have no phase transition. In summary, the
thermodynamical Ricci scalars of Weinhold, Ruppeiner
and Quevedo metrics have some problems, and their
number and location of divergences do not coincide with
phase transition points arising from heat capacity. In order
to solve this problem, a new approach toward a geometrical
concept of black hole thermodynamics was proposed by
Hendi et al. [55]. It was argued that the denominator of the
Ricci scalar of the new metric contains terms which

coincide with different types of phase transitions. In this
section, employing the metric of [55,56], we show that the
phase transition points (the points at which heat capacity is
zero or diverges) happen at the points where the Ricci scalar
diverges. This metric is written as [55,56]

ds2 ¼ S
MS

M3
QQ

ð−MSSdS2 þMQQdQ2Þ: ð59Þ

Using metric (59), we first calculate the Ricci scalar R.
Then, we plot the Ricci scalar, the heat capacity CQ and the
temperature versus rþ in Figs. 19–20. For simplicity, we
choose l ¼ 1 and b ¼ 2. In Fig. 19, we have plotted R, CQ
and T versus rþ for α < 1 and different values of
dimension n. As one can see in Figs. 19(a), 19(b) and
19(c), there is a phase transition point in which the Ricci
scalar R diverges, while the heat capacity CQ is zero. In this
kind of phase transition, the black hole changes its behavior
from an unreal case to a real case. In these figures, the
temperature is not negative, so these phase transition points

FIG. 19 (color online). Ricci scalar R, heat capacity CQ and temperature T versus rþ for α ¼ 0.8, β ¼ 1 and q ¼ 1.

FIG. 18 (color online). Thermal stability in the grand-canonical ensemble for α ¼ 0.5, rþ ¼ 1.5 and n ¼ 7.
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are physical. By increasing the value of n, the rþ of the
related phase transition points becomes larger.
In Fig. 20, we have investigated the phase transition

points for α > 1 and different values of n. As we can see,
by increasing the value of α, the number of phase transition
points increases with respect to the case α < 1. In these
figures, there are two phase transition points in which the
Ricci scalar goes to infinity, while the heat capacity goes to
zero for the first point and to ∞ for the second one. The
temperature is zero for the first point and has a finite value
for the second one. By increasing n, the rþ of the two phase
transition points get closer to each other.

VIII. CONCLUDING REMARKS

The motivation for investigating the nonlinear electro-
dynamics is to remove the divergency of the electric
field of a pointlike charged particle located at the origin
in Maxwell theory. In this paper, we considered LN
electrodynamics in all higher dimensions by taking into
account the dilaton scalar field in the action. By varying the
action, we found the field equations governing the evolu-
tion of the gravitational field, the dilaton field and the
nonlinear gauge field. Then, we constructed a new class of
static and spherically symmetric black hole solutions of this
theory. Probing the electric field, we understood that the
LN electrodynamics could lead to a finite value at the origin
for the electric field in the absence of the dilaton field
(α ¼ 0 ¼ γ).
In all steps, for β → ∞ our solutions restore the higher-

dimensional EMd black hole solutions, while in the
absence of the dilaton field (α ¼ 0γ), they reduce to the
dilaton black holes coupled to EN electrodynamics. Also,
we understood that in the presence of the dilaton field, the
asymptotic behavior of the metric is neither flat nor (A)dS.
We also studied the casual structure of the solutions.
Depending on the different parameters, we may have a
black hole with two horizons, an extremal black hole or a
naked singularity. Then, we calculated the conserved and

thermodynamic quantities such as the mass, temperature
and the electric potential. For the fixed values of the
parameters β, q and n, we have a black hole with two
horizons provided T > 0, an extremal black hole for T ¼ 0
and a naked singularity if T < 0. Using the Smarr-type
formula, we checked the correction of the first law of black
hole thermodynamics in all higher dimensions. We also
investigated thermal stability in the canonical and grand-
canonical ensembles. We found that in both ensembles, the
system is thermally stable for small α independent of the
other parameters. Indeed, in both the canonical and grand-
canonical ensembles, the black holes are stable provided
α < 1, while for α > 1 the system may have an unstable
phase. By increasing n, the region of stability for α
becomes smaller but we have stability for all values
of q.
We also studied thermodynamical geometry by using the

new metric proposed in [55]. We found the phase transition
points of this metric by considering the Ricci scalar. We
have shown that for α < 1, we have just one phase
transition point which becomes larger by increasing n.
In this kind of phase transition, the black hole changes its
behavior from an unreal case to a real case. For α > 1, there
are two phase transition points in which the Ricci scalar
goes to infinity, while the heat capacity goes to zero for the
first point and it goes to ∞ for the second one. The
temperature is zero for the first point, and it has a finite
value for the second one. By increasing the dimension of
spacetime, n, the two points get closer to each other. We
found that, depending on the values of the parameters α, β
and q, the obtained black hole solutions have different
behavior. We showed that for small α and β, we have black
holes which are thermally stable. Indeed, for α < 0.5 and
β < 0.5, the mentioned black holes are thermally stable
with physical temperatures for the arbitrary values of the
charge parameter q, and the electric field and electric
potential also have finite values at the origin for these
ranges of the parameters.

FIG. 20 (color online). Ricci scalar R, heat capacity CQ and temperature T versus rþ for α ¼ 1.4, β ¼ 1 and q ¼ 1.
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Finally, we mention that, in this work, we only consid-
ered the static and spherically symmetric black holes of
LNd theory. Therefore, it is interesting to extend the study
to the rotating black holes or branes and explore their
thermodynamics as well as thermodynamic geometry
of the stationary black holes in the presence of LNd
electrodynamics.
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