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Local non-negative initial data scalar characterization of the Kerr solution
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For any vacuum initial data set, we define a local, non-negative scalar quantity that vanishes at every
point of the data hypersurface if and only if the data are Kerr initial data. Our scalar quantity depends only
on the quantities used to construct the vacuum initial data set that are the Riemannian metric defined on the
initial data hypersurface and a symmetric tensor that plays the role of the second fundamental form of the
embedded initial data hypersurface. The dependency is algorithmic in the sense that given the initial data
one can compute the scalar quantity by algebraic and differential manipulations, being thus suitable for an
implementation in a numerical code. The scalar could also be useful in studies of the nonlinear stability of
the Kerr solution because it serves to measure the deviation of a vacuum initial data set from the Kerr initial

data in a local and algorithmic way.
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I. INTRODUCTION

The Kerr metric [1] is one of the most important exact
solutions in general relativity, and it has been extensively
studied since its discovery from both the mathematical and
the physical points of view. On the physical side the
solution represents a rotating black hole with the physical
properties that black holes existing in nature are expected to
have, and therefore the Kerr solution is regarded as a good
approximation to rotating black holes in an astrophysical
scenario [2].

On the mathematical side we know that this solution is
the subject of powerful existence and uniqueness theorems
(see [3] for an up-to-date revision of them), and it is also the
subject of important open questions in mathematical gen-
eral relativity. One of them is the expectation that the Kerr
solution is the asymptotic final state in the evolution of an
isolated system which has undergone gravitational collapse
turning it into a black hole. Another open issue is how far
the existence and uniqueness results mentioned above can
be refined when assumptions such as the analyticity of the
space-time are dropped (the most recent results in this
direction can be found in [4-6]). There is also the old
problem of the existence of an interior solution that can
be matched to the Kerr solution through a hypersurface
playing the role of the surface of a body. Finally a fourth
open question is the nonlinear stability of the domain of
outer communication of the Kerr solution. The nonlinear
stability of solutions of Einstein’s field equations is a
subject that has recently received wide attention, and a
number of different techniques to address this important
problem have been employed (a selection of them can be
found in [7-13]).
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A recent approach toward the nonlinear stability problem
relies on the construction of non-negative quantities out
of a vacuum initial data set, which are zero if and only if the
data development is a subset of a globally hyperbolic
region of the Kerr geometry [14—17]. The idea is that these
quantities could serve to define when a vacuum initial
data set is close to a Kerr initial data set. Such a notion
is necessary in order to formulate the problem of the
nonlinear stability of the Kerr solution. With a similar
motivation it is also possible to introduce non-negative
quantities characterizing the Kerr solution defined in the
space-time rather than on an initial data set [18]. In the
present work we follow this motivation and show how to
construct a non-negative scalar out of the quantities used to
define a vacuum initial data set that vanishes if and only
if the data set is a Kerr initial data set. We follow the
convention laid by previous authors and call the scalar we
construct the non-Kerrness even though this does not
necessarily imply that our scalar is related in some way
to other previous definitions.

In our approach the non-Kerrness can be defined on a
three-dimensional Riemannian manifold playing the role of
a vacuum initial data set for Einstein’s field equations.
What this means is that there exists a symmetric tensor field
on the manifold that together with the Riemannian metric
fulfills the so-called vacuum constraint conditions. These
conditions are satisfied if and only if the Riemannian
manifold can be isometrically embedded in a four-
dimensional space-time that is a vacuum solution of the
Einstein equations. The image of the Riemannian manifold
under the embedding corresponds to the initial data hyper-
surface of the vacuum equations, and the symmetric tensor
is just the second fundamental form of the embedded
manifold. The non-Kerrness defined in this work depends
only on the Riemannian metric, the symmetric tensor used
to define the vacuum initial data set, and their covariant
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derivatives (with respect to the Riemannian metric Levi-
Civita connection), all of them evaluated at each point
of the Riemannian manifold. It is a non-negative scalar
computed in an algorithmic fashion, and we prove that this
scalar is zero at every point of the Riemannian manifold if
and only if it is isometrically embeddable into the Kerr
solution. The algorithmic nature just pointed out implies
that if the scalar is used in a numerical simulation, then its
computation is not very demanding once the data on a
numerical slice are known.

This paper is structured as follows: the mathematical
preliminaries and notation used are summarized in Sec. II.
In Sec. IIT we review the local characterization of the
Kerr solution developed by Ferrando and Sdez [19]. This
is a characterization of the Kerr solution written in terms
of concomitants of the Riemann tensor, and it plays an
essential role in our work. Ferrando and Séez characteri-
zation is reviewed in Theorem 3. In Sec. IV we perform the
orthogonal splitting of the conditions given in Theorem 3
and obtain a number of results needed to define our local
non-Kerrness. The orthogonal splitting of Ferrando and
Séez conditions yield necessary conditions which ensure
that the development of a vacuum initial data set is a subset
of the Kerr space-time. In principle, one needs additional
conditions to obtain a characterization of a Kerr initial data
set. To obtain these we follow a procedure already used in
[20] which consists in finding the conditions that guarantee
the existence of a Killing vector in the data development.
Once this is done we use the Killing vector to propagate the
necessary conditions obtained in the previous step to the
data development, thus proving that they hold in an open
set of the space-time that contains the initial data hyper-
surface. The necessary and sufficient conditions required
for the existence of a Killing vector in the data development
are reviewed in Theorem 2, and in Lemma 1 we explain
how to use them in our proof. With all this information
we construct in Sec. V the non-negative scalar quantity
used to characterize a Kerr initial data set. The scalar
quantity is defined in Theorem 4 where we prove that the
scalar has the required properties. Finally we discuss some
applications in Sec. VI. The computations carried out in
this paper have been performed with the xAct tensor
computer algebra suite [21].

II. PRELIMINARIES

Let (M,g,,) denote a smooth orientable space-time.
Unless otherwise stated all the structures defined on M are
assumed to be smooth. The following conventions will be
used: plain Greek letters a, 3, v, ..., denote abstract indices
in four dimensions and, occasionally, free index notation
will be used in which case we will denote the corresponding
tensors with boldface letters (and an arrow overhead if
the tensor is a vector field on the manifold). The signature
of the metric tensor G will be taken to be (—, +,+, +),

while R,,,, R, = R%,,, and C,p,, denote, respectively,
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the Riemann, Ricci, and Weyl tensors of g,,. The tensor
Napoy 18 the volume element that is used to define the Hodge
dual of any antisymmetric tensor. This operation is denoted
by the standard way of appending a star * to the tensor
symbol. The operator £; symbolizes the Lie derivative
with respect to the vector field u.

A. The notion of Kerr initial data

We review next the standard formulation of the Cauchy
problem for the vacuum Einstein equations. In this formu-
lation one considers a three-dimensional connected
Riemannian manifold (X, /;;)—we use small plain Latin
letters i, j, k, ..., for the abstract indices of tensors on this
manifold—and an isometric embedding ¢: £ — M. The
map ¢ is an isometric embedding if ¢*g,, = h;; where as
usual ¢* denotes the pullback of tensor fields from M to X.
The metric h;; defines a unique affine connection D; (Levi-
Civita connection) by means of the standard condition

The Riemann tensor of D; is r;j;, and from it we define
its Ricci tensor by r;; = rly ; and its scalar curvature
r=ri,—in X indices are raised and lowered with hij
and its inverse h'/.

Theorem 1. Let (X, /;;) be a Riemannian manifold and
suppose that there exists a symmetric tensor field K;; on it
that satisfies the conditions (vacuum constraints)

r—l—Kz—Kin,-j:O, (23)

D/K;j— DK =0, (2b)
where K = K';. Provided that h; ; and K;; are smooth, there
exists an isometric embedding ¢ of X into a globally
hyperbolic, vacuum solution (M, g,, ) of the Einstein field
equations. The set (Z, &;;, K;;) is then called a vacuum
initial data set and the space-time (M, g,,) is the data
development. Furthermore the spacelike hypersurface ¢(X)
is a Cauchy hypersurface in M.

As stated before we assume the smoothness of /;;, K;; in
the previous theorem, but it is, in fact, true under more
general differentiability assumptions (see Theorem 8.9 of
[22]). Since ¢(X) is a Cauchy hypersurface of M we shall
often use the standard notation D(X) for M [the identi-
fication <> ¢(X) is then implicitly understood].

The main object of this paper is the characterization of
Kerr initial data. We give next the formal definition of this
concept.

Definition 1. A vacuum initial data set (X, h,;;, K;;) is
called Kerr initial data or a Kerr initial data set if there
exists an isometric embedding ¢: ¥ — M where M is an
open subset of the Kerr space-time.
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By the Kerr space-time we understand the maximal
extension of the Kerr solution [23]. We do not impose any
restriction on the mass or angular momentum parameters
of the Kerr solution. In principle the open subset of the
previous definition can be in any region of the Kerr space-
time although in the applications one is interested in
globally hyperbolic regions of the Kerr space-time.

Under the conditions of Theorem 1 and Definition 1, we
may construct a foliation of M with n* as the timelike unit
vector that is orthogonal to the leaves. We shall denote by
{Z: },eicr the family of leaves of this foliation, and we
choose the foliation in such a way that ¢(X) = X, (we
assume that O € I). The leaf X is called the initial data
hypersurface. The interest of introducing a foliation is that
the unit vector n* enables us to perform the orthogonal
splitting of any tensorial quantity defined on M and relate
the parts resulting from this splitting to tensorial quantities
defined on £ by means of the embedding ¢. This is a
well-known procedure, which we review next for the sake
of clarity in our exposition.

1. The orthogonal splitting

Let n* be a unit timelike vector, nn, = —1 defined on
M. Then any tensor can be decomposed with respect to n*,
and the way to achieve it is the essence of the orthogonal
splitting (also known as 3 +1 formalism), which is
described in many places of the literature (see, e.g.,
[24,25] and references therein). We review next the parts
of this formalism needed in this work. The spatial metric
is defined by h,, = g,, +n,n,, and it has the algebraic
properties #*, = 3, h,°h,, = h,,,. We shall call a covariant
tensor Ty, , spatial with respect to hy,, if it is invariant
under ¥, i.e., if

halﬁl .“hamﬁmTal"'am = Tﬁl"'ﬁm’ (3)

with the obvious generalization for any mixed tensor. This
property is equivalent to the inner contraction of n* with
Ty, .4, (taken on any index) vanishing. The orthogonal
splitting of a tensor expression consists in writing it as a
sum of terms that are tensor products of the unit normal and
spatial tensors of a lesser degree or the same degree, in
which case the unit normal is absent [see Eq. (7)]. To find
the orthogonal splitting of expressions containing covariant
derivatives, we need to introduce the spatial derivative D,
which is an operator whose action on any tensor field
% p>P 4 €N is given by

DﬂTalmapﬁl...ﬂq
= halpl ...ha”pphalﬂl ...haqﬁthMVQTpl"'p”al___o.q. (4)

From (4) is clear that D, T% % b, is spatial.

The results just described hold for an arbitrary unit
timelike vector n* but in our framework we only need to
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consider integrable timelike vectors that are characterized
by the condition n,V,n, =0 (Frobenius condition). In
this case there exists a foliation of M such that the vector
field n# is orthogonal to the leaves of the foliation. We
shall work with foliations related to an initial data set
(Z.h;,K;;) by means of an imbedding ¢: £ — M as
explained after Definition 1.

The tensor h,, plays the role of the first fundamental
Jorm for any of the leaves while the symmetric tensor K,
defined by

K, =- E?zh/w (5)

=
S
N =

can be identified with the second fundamental form for any
of the leaves. Combining the previous definition with the
Frobenius condition we easily derive
vn,=-K,-nA, (6)
where A¥ = n/’Vpn/‘ is the acceleration of n*.
By using the quantities just introduced, one is in
principle able to work out the orthogonal splitting of any
tensorial expression. If Ty .y, PEN is an arbitrary

covariant tensor field on M, then we can write its
orthogonal splitting in the form

J
T = ;Tgfﬁ)nj, (7)

where n; represents a product of J copies of the 1-form n,

with appropriate abstract indices and T EQ) is a spatial

covariant tensor with respect to n,. The index P labels
all possible spatial tensors appearing in the splitting. If no
factors n, are present, then we set J = 0.

Once the orthogonal splitting of a tensor in M has been
achieved, then the terms of the splitting are directly related
to tensors in X by means of the embedding ¢. For example,
one has ¢*h,, = h;;. Other key relations are

¢*K;w = Kij9 ¢*(D;¢Tﬁ,.../}q) = Di(¢*Tﬁl.../fq)- (8)

In general for any tensor T defined on M we have the
property

Tlys) =0 T() =0 & ¢*(T},) =0.

0 = V. (9)

where the pullback ¢* (TEQ)) of any spatial covariant tensor

TEQ) is computed by just replacing the Greek indices by
Latin ones.

We supply below the explicit orthogonal splittings for
some particular space-time tensors that will be needed
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repeatedly in the text (see, for example, [26] and references SW = r(S) n,n, + 2j(5) (W) T t(8>uw (1 1)
therein for further details about these formulas).
(i) Orthogonal splitting of the volume element

s = st~ (0) V5 nd 1)
pv

Here €,5, = n"1,,p, is the spatial volume element (iii) Orthogonal splitting of a Weyl candidate. Any
that is a fully antisymmetric spatial tensor. tensor, W,,;,, with the same algebraic properties
(ii) Orthogonal splitting of a symmetric tensor. If S,, is as the Weyl tensor can be decomposed into its
an arbitrary symmetric tensor, then its orthogonal electric part, E(W),,, and magnetic part, B(W),,.

splitting takes the form More precisely, one has that

|
Wyvla = 2(114[25(W)0]v - lv[/lg(W)a]y - n[ﬁB(W>a]rETW - n[ﬂB(W)v]rgf/lzr)v (1221)
W/jl/lg = 2(lﬂ[}»B(W)o']u - lv[/lB(W)o—]ﬂ + l’l[ﬁg(W)O.]T&'TMD -+ nLME(W)V}Te?TM), (12b)
where

EW)eg = Wogn'n®,  B(W),, =W, n'n", (13)

and [, =h, +n,n, The tensors E(W)
n&W),, =n"BW),, =0.

(iv) Orthogonal splitting of a Riemann-like tensor. If R, ,; is a tensor with the same algebraic symmetries as the
Riemann tensor, then we define

w and B(W), —are symmetric, traceless, and spatial:

1

1 1
"Raprs = 2 Napps R yss Reapys = 2 Mpoys Rap”” Reprs = 2 Nap”" Rpoys: (14)

Next we introduce the following spatial tensors (spatial parts of R,,,,):

Y(R),, = R’ nd, Z(R)y = *Reappsn’n’, X(R),, = *Rzﬁy{sn/”n‘s. (15)
The algebraic symmetries of the Riemann tensor entail the properties
X(R)(aﬂ) - X<R)aﬂ’ Y(R)(aﬂ) - Y(R)aﬂ’ Z(R)aa =0. (16)

If just the monoterm symmetries of the Riemann tensor are assumed for R, and the Bianchi identity is not, then
the tensor Z (R)ay is not traceless. The spatial parts of R,,; contain all the information in R, ,; as is easily checked
by a simple count of their total number of independent components. They also enable us to find the orthogonal
splitting of R, 45, Which reads

R, 5 — 2nyn[aY(R)ﬁ]6 + 2h(1[5X(R)y]ﬁ + 2”5”[/3Y(R)a]y + Zn[ﬁz(R)py]eaﬂp

+ zn[ﬁZ(R)/)a] Eysp + h[)’ﬁ(ha}'X(R)pp - X(R) ) + hﬂy (X(R)aé - h(lﬁx(R)pp)‘ (17)

afly

ay

B. Killing initial data sets

A Killing initial data set (KID) associated with a vacuum initial data (X, h;;, K;;) is a pair (Y, Y;) consisting of a scalar ¥
and a vector Y; defined on X satisfying the following system of partial differential equations on X, the KID equations:

D;D;Y — LyK;; =Y (r; + KK;; = 2K;K'}). (18b)

For us the most important result about a KID is the following theorem [27-29].
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Theorem 2. The necessary and sufficient condition for
there to exist a Killing vector & in the data development of
a vacuum initial data set (X, &;;, K;;) is that a pair (Y,Y;)
fulfills Egs. (18a) and (18b). The orthogonal splitting of &
with respect to any unit timelike normal n# related to the
data set (%, hij, Kij) as described in Sec. II A reads

Y =—(n,&),
» (D) =,

& =Yn,+7Y,

Y, =(hYE,), ¢Y, =Y. (19)

From any arbitrary pair of covariant tensor fields Y, Y;
on X, not necessarily fulfilling (18a) and (18b), we define
the following tensors for later use:

%ij = D(IYj) - YKij’
(gljED[DJY_£Y]K11_Y(rlj+KKlj_2KllKlj) (20)

II. THE INVARIANT CHARACTERIZATION
OF FERRANDO AND SAEZ

In this section we summarize the invariant characteri-
zation of the Kerr metric given by Ferrando and Séez [19].
To this end we start by introducing some necessary
nomenclature.

Let C,,;, denote the Weyl tensor of the space-time.
Recall that “C,,;, = C,,,,, a property that indeed holds for
any Weyl candidate. Let

G;u//{p = 9ur9vp — GupYva-

We shall make use of the following scalar invariants of
the Weyl tensor:

1
A = gcﬂyipcﬂyiﬂ, (21)
— 1 WUAp
B=oCM0C,,, (22)
1 v o z
D= EC” wpC" W C? o (23)
— 1 Uy on *Ap
E= EC 1 C W C oy (24)
Furthermore, let
AD + BE
Ly (25)
AE — BD

Next we define the following Riemann-like tensors:

PHYSICAL REVIEW D 92, 124053 (2015)
Q/uMp = ﬂCywlp + aC;M/;v (27)
H/u//lp = aC/w/lp - ﬁC;y/Ip - ((12 + ﬁz)Gﬂulp’ (28)

and the 1-forms

1
R, =

v =305 5y AVsA T BYB). (29)

1

=————(BV,A—-AV,B).
®I4 3(A2+B2)( H K ) (30)

One needs further scalars

2R,0"

K=—F"—, (31)
R,R" — 0,06/
p BD-—AE
T=—=——, 32
a AD+ BE (32)
1= K(KT +1) (33)
- K?-3KT -2’
2 R,R" - 0,06/
P S i (34)
32 -1 427 =1)
Using the above objects one defines
B, = ! (I, (R*R? — ©*0©”)
Y a-2yvar 4
+ Oy (R*®” + ORP)). (35)

The crucial result for our purposes is the following one
([19], Theorem 2).

Theorem 3. A solution (M.,g,,) of the vacuum
Einstein field equations is locally isometric to the Kerr
space-time if and only if the following conditions hold in
an open set of M:

A? 4+ B* #0,

QuiyV'BV'B#£0,  6>0, (36)

1 1
Py C”T;w Cmﬂp + ac;w/l/) + ﬂC;y/lp Y (AGMM/) - Bnyu/lp) =0,

2 3
(37)

Q”M/,V"AVlA + Qﬂuﬂ/)vﬂBviB - 0, (38)
(1=32)p+13-2)a=0, (39)

and there exists a vector field & fulfilling the properties

_ a \3
Sy = (m) fpéw vﬂgv + vvfu =0. (40)
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Remark 1. The characterization presented in
Theorem 3 is written in terms of concomitants of the
Weyl tensor. A concomitant of a tensor is a scalar or
tensorial quantity that is constructed exclusively from the
tensor itself and its covariant derivatives with respect to
the Levi-Civita connection.

Remark 2. Condition (40) was formulated in a slightly
different way in [19]

25, utut + =, > 0, (41)

where u* is an arbitrary unit timelike vector. To check that
indeed Theorem 2 of [19] can be formulated with (41)
replaced by (40), we first replace the value of =, shown in
(40) into the right-hand side of (41) getting

(1—;“312)§<2<u"5ﬂ>2 +EE,). (42)

This scalar quantity is always positive if #* is unit timelike
(this is trivial if £ is spacelike or null and follows from the
reverse Cauchy-Schwarz inequality when & is timelike).
Hence we conclude that any space-time in which (36)—(40)
hold is locally isometric to the Kerr solution. Consistency
with the Killing condition on & follows either by using
Proposition 4 of [19] or by doing the explicit computation
in a local coordinate chart of the Kerr metric. Reciprocally,
take the Kerr solution in the local coordinates given by
[see [30], Eq. (21.16)]
ds? — (xz + yz) A+ (xz +y2)
X(x) Y(y)

+ 55— (X(x)(dt - y2dz)? = Y(y)(dt + x*dz)?),
xX“+y

(43)
where

Y(y)=ey’ =2uy+y, X(x)=-ex’+y, (44)
and e, y, u are positive constants. After doing the explicit
computations in the coordinates of (43) we can check that
(36)—(40) are all met. In this case the vector & is given by

V2 0

g=_Vvo 2 4

which is obviously a Killing vector, and so it fulfills the
Killing condition. According to the present analysis, the
Killing condition on &* is, in fact, a consequence of
the other conditions of Theorem 3 in the Ferrando and
Séez result, so it is somehow redundant. However, we
chose to formulate the result including also this condition
because it is more adapted to our purposes.

PHYSICAL REVIEW D 92, 124053 (2015)

For the sake of completeness we give the following result
also found in [19].

Proposition 1. If g, is isometric to the Kerr metric, then

(i) the mass parameter, m, is given by

|a]
S — 46
o032 =1 (46)

m

(i1) the angular momentum parameter, a, is given by

1

T 2%l 1 2

(AR, O + ©,0/ + 4061%)'/2. (47)

IV. ORTHOGONAL SPLITTING OF FERRANDO
AND SAEZ CHARACTERIZATION

The local characterization of the Kerr solution presented
in Theorem 3 is written exclusively in terms of concom-
itants of the Weyl tensor, and hence we can take each of
these concomitants and compute their orthogonal splitting
with respect to a unit vector orthogonal to the leaves of a
foliation, in the manner explained in Sec. I A 1.

We start by adapting (12a) to the particular case of the
Weyl tensor. In this case we shall write

E,=&(C)y  Bu=B(C)g,. (48)
Note also that
E(C*);w = B/w’ B(C*)yy - _EﬂIJ'

Crucial for the present purposes is to realize that given an
initial data set (X, h;;, K;;) for the Einstein vacuum equa-
tions, the pullback to X of the space-time tensors E,,, B,
can be written entirely in terms of initial data quantities.
Following the notation of Il A 1, if we set E;; = ¢"E,,, and

B;j = ¢*B,,, then we have that
Eij:rij_I_KKij_KikKkj’ (49)

B;; = " ;DK y). (50)
Therefore, any concomitant of the Weyl tensor whose
orthogonal splitting results in an expression that contains
only £, and B,,, (with no covariant derivatives thereof) can
be written exclusively in terms of quantities defined from
the data (X, %;;, K;;) when pulled back to X. This will
always be the case for a concomitant of the Weyl tensor not
containing any covariant derivative of the Weyl tensor.

For later use we also need the evolution equations for £,
and B, with respect to 7 which result from the orthogonal
splitting of the Bianchi identity of the Weyl tensor in
vacuum. These are

124053-6
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£:E,, = =2AP(B (%, 55) + 2E,,KP s — 2E /K 5 = 3E,PK 5 + EP°K ysh,, + £,5sD°B,/ (51)

£;B,, = 2AP(E%¢,55) + 2B, K’ s — 2B,/ K, ; — 3B,/ K 5+ B/"Ky,h,, — €,5, D'E, /. (52)

Next, using the orthogonal splitting of the Weyl tensor we write the scalars A, B, D, E in terms of E,, and B,

A =-B,B" + E, F", (53)
B =2B"E,, (54)

D =E,(3B,*B" — E,*E"), (55)
E = B*(B,'B,; —3E,'E,)). (56)

Using (51) and (52) on the first and second equations of the previous list, we obtain

A(A) = £;A = 6(B,/BY — E;JE¥)K, + 4AK7, + 2¢4,5(E¥D’B,7 + BYD’E,?), (57)

B(B) = £;B = —4(3B¥E,’K,, — BK",)) + 2¢;,;(B¥YD’B, — E¥D’E,}), (58)

which we keep for later use. Note that these expressions do
not depend on the acceleration A* of the vector field n*.

The orthogonal splitting of the scalars «, f, and T is
found using their definitions and (53)—(56). It is evident
that these expressions are functions of only E,,, B,,, and
their explicit form is not needed in this article. Therefore
we conclude that «, 8, and T can be rendered exclusively
in terms of the Weyl tensor electric and magnetic parts.

The orthogonal splitting of the tensor Q,,,, is written
in terms of its electric and magnetic parts just as happens
with any other Weyl candidate. These are given in terms
of the Weyl tensor electric and magnetic parts by

&(Q),, =PE,, +aB,, (59)
B(Q),, = BBy, — aE,,. (60)

We have now gathered enough information to compute the
orthogonal splitting of the different scalar and tensorial
quantities used in Theorem 3. The results of these compu-
tations are presented in the following series of propositions.
The proofs are straightforward but tedious computations
involving the results reviewed in Sec. Il A 1 and the results
just presented about the splitting of the Weyl tensor.

Proposition 2. Condition (37) of Theorem 3 is equiv-
alent to the following two conditions expressed in terms
of E,, and B,,:

1
a, =-B/B,+E/E, — gAhW -E,a—-B,p=0,

(61)

1
b,=B/E,+B/E, —gBh,w —B,a+E,p=0. (62)

|
Proof.—Define the tensor

1
R,,Mp = 5 CGTﬂuCGr/lp + aC/wlp + ﬂC;y/lp

1
- § (AGﬂMp - B’/I;w/lp)' (63)

This tensor has the same algebraic monoterm symmetries
as the Riemann tensor, and therefore its orthogonal splitting
is similar to it. To carry out the proof, we compute the
orthogonal splitting of R, using its definition in terms of
the Weyl tensor and then equate the resulting expression
to (17). In this way one obtains the explicit expressions for
the tensors X(R),,, Y(R),,,» Z(R),, in terms of E,,, B, .
These expressions turn out to be

Y(R)

pw = T

Z(R),, = b X(R),, = a

Hv Hv

(64)
Since R,,, is zero if and only if all its spatial parts vanish,
then the proposition follows. O

Remark 3. From Eq. (64) we deduce that the only
independent spatial parts of R,,,, are just a,, and b,,,
which are symmetric and traceless. Therefore the tensor
R, has the same number of independent components as
the Weyl tensor (10 components), and, in fact, its orthogo-
nal splitting is rendered as shown in (12a) and (12b). From
this we can conclude that R,,,;, is indeed a Weyl candidate,
something that is not evident from its tensor definition.

Proposition 3. The orthogonal splitting of the quantities
R, and ©, is

©,=n0l+0%,,  R,=nRI+R-, (65

124053-7
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where
el = ey <(2B(E/’“E7a — BF*BY,) + 4ABP°EY ) Ky,

2

-3 e5,5(E* (BD°B,’ + AD°E,") + B (—AD’°B," + BD%J))) , (66)
Rl = —ﬁKV +—F— ! 5 | (2A(EP*EY, — BP*BY ) + 4BBPEY ,) K
3 A2 +B a a) ™ py

2

—=e3,5(B*(BD°B,’ + AD°E,) + E**(AD°B,’ — BD°E,})) |, 67
3 Pr
1
RY, = 2D, (log(A” + B?)), (68)
1

e, = 3 (A*+ B*)"'(BD,A — AD,B). (69)

Proof.—To prove this we need to find the orthogonal splitting of V,A and V,B, which is given by
V,A=D,A-n#A.  V,B=D,B—n,t;B. (70)
From these relations the values for R*, and ©*, follow straightforwardly while for Rl and Ol we get

1 1
Rl = —gf;,(log(Az + B?)), el = 3 (A% + BY)1(A£;B — B£;A). (71)

The final result follows by using on these expressions (57) and (58). O
Using the result of this proposition, we can compute the orthogonal splittings of the scalars K and o

2RI@I = 2RL1E@L
K= K (72)
RIZ - @2 — RER + @0+

1 RIZ_@l2 - RLRLr L @Lleln 8
6= (=2+ K~ 3KT)? x (— TR T OO o ). ()
4 K*(14+ KT)*—= (K> —=3KT —2)* (K*—-3KT -2)*-3K*(1+KT)
With these relations we can get the orthogonal splitting of A4 by using (33).
Proposition 4. Define the tensors
A,y = 0, VFAVAA, B,, = 0,,,V*BV’B.
Then we have
r(A) =A,n'nt = £(0),, D'ADYA, (74)
i(A), =A,,n"n, MK,,B(Q)[D*AD"A - E(Q)MA(A)DM,
t(A),, = Agh" 0",
= D*A(-2D, A8(Q) + h,E(Q) ., D"A +2A(A)B(Q)(y”eb)m)
+£(Q),, (DADA + (A(A))?). (75)

Similar relations and definitions exist for T(B)bp (they are just obtained by replacing A by B in the previous relations).
Proof.—To prove this, one computes the orthogonal splitting of the tensor Q,,,, in the way explained when we obtained
(60) and uses (57) and (58). |

124053-8
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In view of the previous proposition we have the equivalence

Quip V' AVIA + 0,,,,V*BV'B =0 & t(A) = —x(B),  j,(A) =—i,(B).  t(A), =-t(B),.  (76)
Proposition 5. The orthogonal splitting of =, is given by
1
t(2) = x (X(I),, (—@++eL + R RY) — 2£(Q),, RHOMY)), 77
) E AT E (X(IT),,, ( ) —28(0), ) (77)
()=
= nva s
X (®J_y(g(Q) Rl + X(H)uyGH - 8/4/)(12(H)ya®lﬂ)
- RJ_D(R”X( ) E(Q)W/@” + EﬂyaB<Q)pa®Lp + Eﬂpa(_RLpZ(H)va + B(Q>1/a®lp)>)’ (78)
(S =
(R 1)WATE B?
x (X(I)? (R Ry — ©;0;) —2£(Q),,(R16! 4+ R0 )
—2¢,,( U(B(Q) p(Rlp@H + RII@Lp) + g(Q)M)p(_RIIRLp + @II@lp))
+28(0) (RO, + R;;017) + 2X(IT) . (R R + ©,,07)
+X(M),,(R1? + RyR — 07 —©,067)
+ (XM (=Ry R + ©,0°7) = 2£(Q) ,,R O + X(IT) ,, (R RE" — ©17017))), (79)
|
where (2, hy; i K;;) that vanishes if and only if the data develop-
X(H)W = 5( Q)/w —hy, (a2 n ﬁz)‘ (80) ment is locally isometric to the Kerr solution.

Proof.—To prove this result we need to compute the
orthogonal splitting of the tensors IL,,,;, Q,,,,, ©,, and R,
[see Eq. (35)]. The orthogonal splitting of Q,,,, was
worked out in (59) and (60) while that of ®, and R,
can be found in Eq. (65) in Proposition 3. The tensor I1,,,,,
has the same algebraic symmetries as the Riemann tensor.
Therefore we use again (17) to compute its orthogonal
splitting. In this particular case one has that the corre-
sponding spatial parts of I, ,, are

X(1),, = B(Q),, = hyu(a® + ),

v _Buz/a - E;wﬁ =-£(0) Yy, =-X

)% A
(81)

Hence, after replacing this into Eq. (17), the orthogonal
splitting of I1,,,,; follows. Inserting this splitting and those
of Q1> ©,, R, into (35), the result follows after long
algebra. O

Hv?

V. CONSTRUCTION OF A POSITIVE SCALAR
CHARACTERIZING THE KERR SOLUTION

We use the results of the previous sections to define a
positive scalar quantity on a vacuum initial data set

The quantities obtained from the orthogonal splittings
computed in the previous section can be pulled back to X if
the foliation generated by the integrable unit normal is
related to the data set (X, h;;, K;;) in the way explained in
Sec. IT A. This means that all the spatial scalars and tensors
that we defined in the previous sections can indeed be
regarded as scalars and tensors defined in a three-
dimensional Riemannian manifold X with metric h;;.
Consistent with the conventions of Sec. II A we keep the
same notation and symbols for them and only replace
Greek by Latin indices in the tensors. In the case of scalar
quantities the context will indicate whether they are
regarded as space-time quantities or quantities defined
on 2.

Lemma 1. If n is the unit vector orthogonal to the leaves
of a foliation related to X in the way described in Sec. [T A 1

and % is a vector field on M, then one has the following
equivalence:

(= (=5 3AZ> 5”5””,@:0@ (52

Q= (1), - MY,Y))(t(E)Y — MY'Y)) =0,
Y2 — r(E) o ( ) (83)
M’ / Y’

124053-9
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where

= —¢"(m,&"), (85)
Yj = ¢*(hﬂpéu)v (86)

and t(Z), j(E);, are the pullbacks to X of the corresponding
space-time quantities defined in Proposition 5. Moreover
the quantity Q is non-negative.

Proof.—The quantity Q is a tensor square defined in a
Riemannian manifold so it is trivially non-negative. Define
now the tensor

_ a \3
Aﬂl, =S <1_73/12> 5;451/' (87)

The orthogonal splitting of A, is easily computed given

that we know the orthogonal splitting of each of the terms

intervening in its definition (cf. Proposition 5)

Y= —n, &, (88)
Y, =ht'E,. (89)

t(A),, =t(E),, - MYV, (90)

We now use Eq. (9) to conclude that A, vanish on ¢(Z) if
and only if the corresponding pullback covariant tensors

t(A), i(A);, t(A),; are zero on 2. This entails
% (Y % (Y Y(E) _I(E)

L

(x(A) +x(B))* + (j(A); +i(B))((A) +

PHYSICAL REVIEW D 92, 124053 (2015)

which are just the last two equations in (83). Finally
since X is a Riemannian manifold, the scalar Q is zero
if and only if

which, according to (90), is equivalent to t(A);; = 0. O
We are now ready to present our explicit characterization
of a Kerr initial data set.
Theorem 4. Let (X, 4;;,K;;) be a vacuum initial data
set and assume that on X the data fulfills the properties

c>0, (93)
where ¢ is defined by (73), and

K= (x(B)’ +i(B)ii(B) + t(B);;t(B))(A* + B*) > 0.
(94)

with A, B given by (53) and (54) and t(B), i(B);, t(B),; are
defined in Proposition 4. Furthermore, with the definitions

of Proposition 5, we introduce two covariant vector fields
Y, Y; on X defined by

(= i(2);
Y? = Ew)’ Yj:—M—Y’, (95)

where by assumption one has on X
Y #0. (96)

Under these conditions define the following non-negative
scalar quantity on X:

i(B)) + (£(A4);; + £(B);;) (1(A)” + £(B)")

614

C(,'jaij + BUBU
i

62

where the intervening quantities are defined in the follow-
ing places of the text:
(i) r(A), j(A);, t(A),; are defined in Proposition 4.

(ii) a;;, b;; are defined in Proposition 2.

(ii1) A1is defined in terms of K and T in (33), K is defined
in (72), T is defined in (32) in terms of A, B, D, E,
which in turn are defined in (53)—(56).

(iv) B;;, C;; are defined in (20) for the Y and Y/
introduced above.

n (1 =322+ A3 = 1*)a)? 4

— +

(8,;87)  (€,;6Y) Q
c* * o o2’

(v) Q is defined in Lemma 1.

(vi) The fields E;; B;; on X are defined by (49) and (50).
All these quantities are defined exclusively from the initial
data variables h;;, K;;, and their covariant derivatives.
Under the stated assumptions we have that on X the scalar
L >0 and it vanishes if and only if the data (X, &;;, K;;)
correspond to Kerr initial data.

Proof—If (, h;;, K;;) is a vacuum initial data set, then
the Cauchy development D(X) is a vacuum solution, and

ij»

124053-10



LOCAL NON-NEGATIVE INITIAL DATA SCALAR ...

thus the Riemann and the Weyl tensors are the same. Also
L is a sum of squares so it is trivially non-negative. If £
vanishes, then, since X is a Riemannian manifold, this is
equivalent to the following conditions:
(1) x(A) = -x(B),
2 i(A); = —i(B);,
) ( )ij = —t(B)y,
4) a;; =0,
5) 5 =0,
©) ((1-3
(7) B, =
@) ¢; =
% Q=0.
If conditions 7 and 8 hold, then (18a) and (18b) hold on X
and the Cauchy development D(X) admits a Killing vector
& such that ¢*(n,&") = =Y, ¢*(h,,&) = Y; (Theorem 2).
In addition, from condition 9 and Lemma 1 we deduce

(E/w - ( 3/12> é;té:y)

Also conditions 1-3, conditions 4 and 5, and condition 6
imply each [see Eq. (9)]

P)B+3-2)a) =0,
0,
0

=0. (98)

#(2)

(QMM/,V”AVAA + Q,M,,V”BVAB)MZ) =0, (99)

1
(5 CGTF Cadp + acﬂyﬂp + /)) uvip

1
- g (AGm//lp - B’7ﬂuﬂp)> =0,

$()

(100)

(1 =32)+ A3 = 2)a)|yz) = (101)

The Lie derivative with respect to a Killing vector
vanishes for any concomitant of the Weyl tensor, and thus

we have
a \}
o (i) o
(VAT + 0, TBVE) =0, (103)
1 0T
£é EC w Caﬁp + aC,wAp +/} uvip
1

~3 (AG,p — B”uvlﬂ)> =0, (104)
£:((1=322)p + A3 = 2%)a) = 0, (105)

Combining (98)—(101) with (102)—(105) we deduce that
there exists an open set U; C D(X), ¢(X) C U; in which

(37)—(40) are fulfilled as long as the vector field % is not
tangent to ¢(X) [if it were, then ¢(X) would be a

PHYSICAL REVIEW D 92, 124053 (2015)

characteristic of the system (102)—(105)]. The vector field

% is tangent to ¢(X) at a point if and only if ¥ = 0 at that
point, but this is not possible if (96) holds. In addition, the
hypotheses K > 0 and ¢ > 0 on the initial data entail
the existence of another open set U/, C D(X), X C U, such
that on that set

(A2 + B)|; #0,

(QﬂpﬂpvﬂBle)‘z 56 O, o> 0.

(106)

We thus deduce that all the conditions of Theorem 3 are met
in the open set U/ N U,, and therefore we conclude that the
space-time is locally isometric to the Kerr solution in
Uy NU,. Reciprocally let us assume that the vacuum data
set (X, h;;, K;;) is a Kerr initial data set. The conditions of
Theorem 3 1mp1y (98)—(101), (106), and then the compu-
tations carried out in Propositions 2, 3, 4, 5 and Lemma 1 in
combination with (9) entail conditions 1-6 and 9 above.
They also imply the condition ¢ >0 and K > 0, and
therefore the scalar £ is well defined for any Kerr initial
data set. Next we apply Lemma 1 and the fact that the

vector & appearing in (40) of Theorem 3 is a Killing vector.
This means that ¥ and Y/ defined by (85) and (86) fulfill
(18a) and (18Db) (see Theorem 2) and condition (95). Hence
we find that conditions 7 and 8 are also satisfied for the Y
and Y/ defined by (95). From this we finally conclude that
the scalar £ vanishes on X under the conditions of the
theorem, as desired. |

Remark 4. The scalar £ is defined in such a way that it
is dimensionless. One could pursue alternative definitions
keeping the spirit of Theorem 4 resulting in a scalar
quantity with dimensions.

VI. CONCLUSIONS

We have introduced a non-negative scalar quantity £ that
is defined for a vacuum initial data set fulfilling certain
algebraic nondegeneracy conditions that are included in
the hypotheses of Theorem 4. The scalar £ is defined
exclusively in terms of the quantities used to construct the
vacuum initial data, namely, a Riemannian manifold, its
Riemannian metric, and a symmetric tensor defined on it
that satisfies the vacuum constraint equations (2a) and (2b).
The scalar £ is a scalar quantity defined at each point of
the Riemannian manifold as a concomitant of the initial
data quantities (polynomial expression of the quantities and
their covariant derivatives with respect to the Levi-Civita
covariant derivative of the Riemannian metric). An impor-
tant step in its definition is the use of Egs. (48)—(50)
because many intermediate expressions are rendered in
terms of them.

The main applications of this scalar are twofold. On
one hand, it can be used in the study of the nonlinear
stability problem of the Kerr solution to measure how far
an initial data set is from the Kerr initial data. As already

124053-11
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mentioned the formulation of the nonlinear stability
problem requires the introduction of a notion that enables
us to decide when a hypersurface of the space-time is
close in some sense to a hypersurface embeddable in the
Kerr space-time and our scalar fulfills this role in a
simple way. The second main application arises from
numerical relativity. If one carries out a dynamical
simulation of a collapsing isolated system and one wishes
to test whether the asymptotic evolution in the exterior
region of the source is close to the Kerr solution,
one could compute numerically the scalar £ at each
slice with constant time in the computational domain
of the simulation and study whether it approaches zero
(and if it does the convergence rate). Note that the

PHYSICAL REVIEW D 92, 124053 (2015)

computation of the scalar £ is totally algorithmic as it
involves only algebraic and differential manipulations.
Therefore its numeric computation should be computa-
tionally less intensive than other computations in which
it is necessary to solve numerically partial differential
equations on the time slices.
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