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For any vacuum initial data set, we define a local, non-negative scalar quantity that vanishes at every
point of the data hypersurface if and only if the data are Kerr initial data. Our scalar quantity depends only
on the quantities used to construct the vacuum initial data set that are the Riemannian metric defined on the
initial data hypersurface and a symmetric tensor that plays the role of the second fundamental form of the
embedded initial data hypersurface. The dependency is algorithmic in the sense that given the initial data
one can compute the scalar quantity by algebraic and differential manipulations, being thus suitable for an
implementation in a numerical code. The scalar could also be useful in studies of the nonlinear stability of
the Kerr solution because it serves to measure the deviation of a vacuum initial data set from the Kerr initial
data in a local and algorithmic way.
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I. INTRODUCTION

The Kerr metric [1] is one of the most important exact
solutions in general relativity, and it has been extensively
studied since its discovery from both the mathematical and
the physical points of view. On the physical side the
solution represents a rotating black hole with the physical
properties that black holes existing in nature are expected to
have, and therefore the Kerr solution is regarded as a good
approximation to rotating black holes in an astrophysical
scenario [2].
On the mathematical side we know that this solution is

the subject of powerful existence and uniqueness theorems
(see [3] for an up-to-date revision of them), and it is also the
subject of important open questions in mathematical gen-
eral relativity. One of them is the expectation that the Kerr
solution is the asymptotic final state in the evolution of an
isolated system which has undergone gravitational collapse
turning it into a black hole. Another open issue is how far
the existence and uniqueness results mentioned above can
be refined when assumptions such as the analyticity of the
space-time are dropped (the most recent results in this
direction can be found in [4–6]). There is also the old
problem of the existence of an interior solution that can
be matched to the Kerr solution through a hypersurface
playing the role of the surface of a body. Finally a fourth
open question is the nonlinear stability of the domain of
outer communication of the Kerr solution. The nonlinear
stability of solutions of Einstein’s field equations is a
subject that has recently received wide attention, and a
number of different techniques to address this important
problem have been employed (a selection of them can be
found in [7–13]).

A recent approach toward the nonlinear stability problem
relies on the construction of non-negative quantities out
of a vacuum initial data set, which are zero if and only if the
data development is a subset of a globally hyperbolic
region of the Kerr geometry [14–17]. The idea is that these
quantities could serve to define when a vacuum initial
data set is close to a Kerr initial data set. Such a notion
is necessary in order to formulate the problem of the
nonlinear stability of the Kerr solution. With a similar
motivation it is also possible to introduce non-negative
quantities characterizing the Kerr solution defined in the
space-time rather than on an initial data set [18]. In the
present work we follow this motivation and show how to
construct a non-negative scalar out of the quantities used to
define a vacuum initial data set that vanishes if and only
if the data set is a Kerr initial data set. We follow the
convention laid by previous authors and call the scalar we
construct the non-Kerrness even though this does not
necessarily imply that our scalar is related in some way
to other previous definitions.
In our approach the non-Kerrness can be defined on a

three-dimensional Riemannian manifold playing the role of
a vacuum initial data set for Einstein’s field equations.
What this means is that there exists a symmetric tensor field
on the manifold that together with the Riemannian metric
fulfills the so-called vacuum constraint conditions. These
conditions are satisfied if and only if the Riemannian
manifold can be isometrically embedded in a four-
dimensional space-time that is a vacuum solution of the
Einstein equations. The image of the Riemannian manifold
under the embedding corresponds to the initial data hyper-
surface of the vacuum equations, and the symmetric tensor
is just the second fundamental form of the embedded
manifold. The non-Kerrness defined in this work depends
only on the Riemannian metric, the symmetric tensor used
to define the vacuum initial data set, and their covariant
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derivatives (with respect to the Riemannian metric Levi-
Cività connection), all of them evaluated at each point
of the Riemannian manifold. It is a non-negative scalar
computed in an algorithmic fashion, and we prove that this
scalar is zero at every point of the Riemannian manifold if
and only if it is isometrically embeddable into the Kerr
solution. The algorithmic nature just pointed out implies
that if the scalar is used in a numerical simulation, then its
computation is not very demanding once the data on a
numerical slice are known.
This paper is structured as follows: the mathematical

preliminaries and notation used are summarized in Sec. II.
In Sec. III we review the local characterization of the
Kerr solution developed by Ferrando and Sáez [19]. This
is a characterization of the Kerr solution written in terms
of concomitants of the Riemann tensor, and it plays an
essential role in our work. Ferrando and Sáez characteri-
zation is reviewed in Theorem 3. In Sec. IV we perform the
orthogonal splitting of the conditions given in Theorem 3
and obtain a number of results needed to define our local
non-Kerrness. The orthogonal splitting of Ferrando and
Sáez conditions yield necessary conditions which ensure
that the development of a vacuum initial data set is a subset
of the Kerr space-time. In principle, one needs additional
conditions to obtain a characterization of a Kerr initial data
set. To obtain these we follow a procedure already used in
[20] which consists in finding the conditions that guarantee
the existence of a Killing vector in the data development.
Once this is done we use the Killing vector to propagate the
necessary conditions obtained in the previous step to the
data development, thus proving that they hold in an open
set of the space-time that contains the initial data hyper-
surface. The necessary and sufficient conditions required
for the existence of a Killing vector in the data development
are reviewed in Theorem 2, and in Lemma 1 we explain
how to use them in our proof. With all this information
we construct in Sec. V the non-negative scalar quantity
used to characterize a Kerr initial data set. The scalar
quantity is defined in Theorem 4 where we prove that the
scalar has the required properties. Finally we discuss some
applications in Sec. VI. The computations carried out in
this paper have been performed with the xAct tensor
computer algebra suite [21].

II. PRELIMINARIES

Let ðM; gμνÞ denote a smooth orientable space-time.
Unless otherwise stated all the structures defined onM are
assumed to be smooth. The following conventions will be
used: plain Greek letters α; β; γ;…, denote abstract indices
in four dimensions and, occasionally, free index notation
will be used in which case wewill denote the corresponding
tensors with boldface letters (and an arrow overhead if
the tensor is a vector field on the manifold). The signature
of the metric tensor gμν will be taken to be ð−;þ;þ;þÞ,
while Rμναρ, Rμν ¼ Rα

μαν, and Cαβμν denote, respectively,

the Riemann, Ricci, and Weyl tensors of gμν. The tensor
ηαβσν is the volume element that is used to define the Hodge
dual of any antisymmetric tensor. This operation is denoted
by the standard way of appending a star * to the tensor
symbol. The operator £~u symbolizes the Lie derivative
with respect to the vector field ~u.

A. The notion of Kerr initial data

We review next the standard formulation of the Cauchy
problem for the vacuum Einstein equations. In this formu-
lation one considers a three-dimensional connected
Riemannian manifold ðΣ; hijÞ—we use small plain Latin
letters i; j; k;…, for the abstract indices of tensors on this
manifold—and an isometric embedding ϕ: Σ → M. The
map ϕ is an isometric embedding if ϕ�gμν ¼ hij where as
usual ϕ� denotes the pullback of tensor fields fromM to Σ.
The metric hij defines a unique affine connection Di (Levi-
Cività connection) by means of the standard condition

Djhik ¼ 0: ð1Þ

The Riemann tensor of Di is rijkl, and from it we define
its Ricci tensor by rij ≡ rlilj and its scalar curvature
r≡ rii—in Σ indices are raised and lowered with hij
and its inverse hij.
Theorem 1. Let ðΣ; hijÞ be a Riemannian manifold and

suppose that there exists a symmetric tensor field Kij on it
that satisfies the conditions (vacuum constraints)

rþ K2 − KijKij ¼ 0; ð2aÞ

DjKij −DiK ¼ 0; ð2bÞ

where K ≡ Ki
i. Provided that hij and Kij are smooth, there

exists an isometric embedding ϕ of Σ into a globally
hyperbolic, vacuum solution ðM; gμνÞ of the Einstein field
equations. The set ðΣ; hij; KijÞ is then called a vacuum
initial data set and the space-time ðM; gμνÞ is the data
development. Furthermore the spacelike hypersurface ϕðΣÞ
is a Cauchy hypersurface in M.
As stated before we assume the smoothness of hij, Kij in

the previous theorem, but it is, in fact, true under more
general differentiability assumptions (see Theorem 8.9 of
[22]). Since ϕðΣÞ is a Cauchy hypersurface of M we shall
often use the standard notation DðΣÞ for M [the identi-
fication Σ↔ϕðΣÞ is then implicitly understood].
The main object of this paper is the characterization of

Kerr initial data. We give next the formal definition of this
concept.
Definition 1. A vacuum initial data set ðΣ; hij; KijÞ is

called Kerr initial data or a Kerr initial data set if there
exists an isometric embedding ϕ: Σ → M where M is an
open subset of the Kerr space-time.
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By the Kerr space-time we understand the maximal
extension of the Kerr solution [23]. We do not impose any
restriction on the mass or angular momentum parameters
of the Kerr solution. In principle the open subset of the
previous definition can be in any region of the Kerr space-
time although in the applications one is interested in
globally hyperbolic regions of the Kerr space-time.
Under the conditions of Theorem 1 and Definition 1, we

may construct a foliation ofM with nμ as the timelike unit
vector that is orthogonal to the leaves. We shall denote by
fΣtgt∈I⊂R the family of leaves of this foliation, and we
choose the foliation in such a way that ϕðΣÞ ¼ Σ0 (we
assume that 0 ∈ I). The leaf Σ0 is called the initial data
hypersurface. The interest of introducing a foliation is that
the unit vector nμ enables us to perform the orthogonal
splitting of any tensorial quantity defined on M and relate
the parts resulting from this splitting to tensorial quantities
defined on Σ by means of the embedding ϕ. This is a
well-known procedure, which we review next for the sake
of clarity in our exposition.

1. The orthogonal splitting

Let nμ be a unit timelike vector, nμnμ ¼ −1 defined on
M. Then any tensor can be decomposed with respect to nμ,
and the way to achieve it is the essence of the orthogonal
splitting (also known as 3þ 1 formalism), which is
described in many places of the literature (see, e.g.,
[24,25] and references therein). We review next the parts
of this formalism needed in this work. The spatial metric
is defined by hμν ≡ gμν þ nμnν, and it has the algebraic
properties hμμ ¼ 3, hμσhσν ¼ hμν. We shall call a covariant
tensor Tα1…αm spatial with respect to hμν if it is invariant
under hμν, i.e., if

hα1β1…hαmβmTα1…αm ¼ Tβ1…βm; ð3Þ

with the obvious generalization for any mixed tensor. This
property is equivalent to the inner contraction of nμ with
Tα1…αm (taken on any index) vanishing. The orthogonal
splitting of a tensor expression consists in writing it as a
sum of terms that are tensor products of the unit normal and
spatial tensors of a lesser degree or the same degree, in
which case the unit normal is absent [see Eq. (7)]. To find
the orthogonal splitting of expressions containing covariant
derivatives, we need to introduce the spatial derivative Dμ,
which is an operator whose action on any tensor field
Tα1…αp

β1…βq , p, q ∈ N is given by

DμTα1…αp
β1…βq

≡ hα1ρ1…hαpρph
σ1

β1…hσqβqh
λ
μ∇λTρ1…ρp

σ1…σq : ð4Þ

From (4) is clear that DμTα1…αp
β1…βq is spatial.

The results just described hold for an arbitrary unit
timelike vector nμ but in our framework we only need to

consider integrable timelike vectors that are characterized
by the condition n½μ∇νnσ� ¼ 0 (Frobenius condition). In
this case there exists a foliation of M such that the vector
field nμ is orthogonal to the leaves of the foliation. We
shall work with foliations related to an initial data set
ðΣ; hij; KijÞ by means of an imbedding ϕ: Σ → M as
explained after Definition 1.
The tensor hμν plays the role of the first fundamental

form for any of the leaves while the symmetric tensor Kμν

defined by

Kμν ≡ −
1

2
L~nhμν ð5Þ

can be identified with the second fundamental form for any
of the leaves. Combining the previous definition with the
Frobenius condition we easily derive

∇μnν ¼ −Kμν − nμAν; ð6Þ

where Aμ ≡ nρ∇ρnμ is the acceleration of nμ.
By using the quantities just introduced, one is in

principle able to work out the orthogonal splitting of any
tensorial expression. If Tμ1…μp , p ∈ N is an arbitrary
covariant tensor field on M, then we can write its
orthogonal splitting in the form

T ¼
X
J;P

TðJÞ
ðPÞnJ; ð7Þ

where nJ represents a product of J copies of the 1-form nμ
with appropriate abstract indices and TðJÞ

ðPÞ is a spatial

covariant tensor with respect to nμ. The index P labels
all possible spatial tensors appearing in the splitting. If no
factors nμ are present, then we set J ¼ 0.
Once the orthogonal splitting of a tensor in M has been

achieved, then the terms of the splitting are directly related
to tensors in Σ by means of the embedding ϕ. For example,
one has ϕ�hμν ¼ hij. Other key relations are

ϕ�Kμν ¼ Kij; ϕ�ðDμTβ1…βqÞ ¼ Diðϕ�Tβ1…βqÞ: ð8Þ

In general for any tensor T defined on M we have the
property

TjϕðΣÞ ¼ 0 ⇔ TðJÞ
ðPÞ ¼ 0 ⇔ ϕ�ðTðJÞ

ðPÞÞ ¼ 0; ∀ J; ð9Þ

where the pullback ϕ�ðTðJÞ
ðPÞÞ of any spatial covariant tensor

TðJÞ
ðPÞ is computed by just replacing the Greek indices by

Latin ones.
We supply below the explicit orthogonal splittings for

some particular space-time tensors that will be needed
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repeatedly in the text (see, for example, [26] and references
therein for further details about these formulas).

(i) Orthogonal splitting of the volume element

ηαβγδ ¼ −nαεβγδ þ nβεαγδ − nγεαβδ þ nδεαβγ: ð10Þ

Here εαβγ ≡ nμημαβγ is the spatial volume element
that is a fully antisymmetric spatial tensor.

(ii) Orthogonal splitting of a symmetric tensor. If Sμν is
an arbitrary symmetric tensor, then its orthogonal
splitting takes the form

Sμν ¼ rðSÞnμnν þ 2jðSÞðμnνÞ þ tðSÞμν; ð11Þ

where jðSÞμ and tðSÞμν are spatial and tðSÞðμνÞ ¼
tðSÞμν.

(iii) Orthogonal splitting of a Weyl candidate. Any
tensor, Wμνλρ, with the same algebraic properties
as the Weyl tensor can be decomposed into its
electric part, EðWÞμν, and magnetic part, BðWÞμν.
More precisely, one has that

Wμνλσ ¼ 2ðlμ½λEðWÞσ�ν − lν½λEðWÞσ�μ − n½λBðWÞσ�τετμν − n½μBðWÞν�τετλσÞ; ð12aÞ

W�
μνλσ ¼ 2ðlμ½λBðWÞσ�ν − lν½λBðWÞσ�μ þ n½λEðWÞσ�τετμν þ n½μEðWÞν�τετλσÞ; ð12bÞ

where

EðWÞτσ ≡Wτνσλnνnλ; BðWÞτσ ≡W�
τνσλn

νnλ; ð13Þ

and lμν ≡ hμν þ nμnν. The tensors EðWÞμν and BðWÞμν are symmetric, traceless, and spatial:
nμEðWÞμν ¼ nμBðWÞμν ¼ 0.

(iv) Orthogonal splitting of a Riemann-like tensor. If Rμνρλ is a tensor with the same algebraic symmetries as the
Riemann tensor, then we define

�Rαβγδ ≡ 1

2
ηαβρσRρσ

γδ; R�
αβγδ ≡ 1

2
ηρσγδRαβ

ρσ; �R�
αβγδ ≡ 1

2
ηαβ

ρσR�
ρσγδ: ð14Þ

Next we introduce the following spatial tensors (spatial parts of Rμνρλ):

YðRÞαγ ≡Rαβγδnβnδ; ZðRÞαγ ≡ �Rαβγδnβnδ; XðRÞαγ ≡ �R�
αβγδn

βnδ: ð15Þ

The algebraic symmetries of the Riemann tensor entail the properties

XðRÞðαβÞ ¼ XðRÞαβ; YðRÞðαβÞ ¼ YðRÞαβ; ZðRÞαα ¼ 0: ð16Þ

If just the monoterm symmetries of the Riemann tensor are assumed for Rμναβ and the Bianchi identity is not, then
the tensor ZðRÞαγ is not traceless. The spatial parts ofRμνρλ contain all the information inRμνρλ as is easily checked
by a simple count of their total number of independent components. They also enable us to find the orthogonal
splitting of Rμναβ, which reads

Rαβγδ ¼ 2nγn½αYðRÞβ�δ þ 2hα½δXðRÞγ�β þ 2nδn½βYðRÞα�γ þ 2n½δZðRÞργ�εαβρ
þ 2n½βZðRÞρα�εγδρ þ hβδðhαγXðRÞρρ − XðRÞαγÞ þ hβγðXðRÞαδ − hαδXðRÞρρÞ: ð17Þ

B. Killing initial data sets

A Killing initial data set (KID) associated with a vacuum initial data ðΣ; hij; KijÞ is a pair ðY; YiÞ consisting of a scalar Y
and a vector Yi defined on Σ satisfying the following system of partial differential equations on Σ, the KID equations:

DðiYjÞ − YKij ¼ 0; ð18aÞ

DiDjY − LYlKij ¼ Yðrij þ KKij − 2KilKl
jÞ: ð18bÞ

For us the most important result about a KID is the following theorem [27–29].
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Theorem 2. The necessary and sufficient condition for
there to exist a Killing vector ξμ in the data development of
a vacuum initial data set ðΣ; hij; KijÞ is that a pair ðY; YjÞ
fulfills Eqs. (18a) and (18b). The orthogonal splitting of ξμ

with respect to any unit timelike normal nμ related to the
data set ðΣ; hij; KijÞ as described in Sec. II A reads

ξμ ¼ ~Ynμ þ ~Yμ; ~Y ≡ −ðnνξνÞ;
~Yμ ≡ ðhμνξνÞ; ϕ�ð ~YÞ ¼ Y; ϕ� ~Yμ ¼ Yj: ð19Þ

From any arbitrary pair of covariant tensor fields Y, Yj
on Σ, not necessarily fulfilling (18a) and (18b), we define
the following tensors for later use:

Bij ≡DðiYjÞ − YKij;

Cij ≡DiDjY − £YlKij − Yðrij þ KKij − 2KilKl
jÞ: ð20Þ

III. THE INVARIANT CHARACTERIZATION
OF FERRANDO AND SÁEZ

In this section we summarize the invariant characteri-
zation of the Kerr metric given by Ferrando and Sáez [19].
To this end we start by introducing some necessary
nomenclature.
Let Cμνλρ denote the Weyl tensor of the space-time.

Recall that �Cμνλρ ¼ C�
μνλρ, a property that indeed holds for

any Weyl candidate. Let

Gμνλρ ¼ gμλgνρ − gμρgνλ:

We shall make use of the following scalar invariants of
the Weyl tensor:

A≡ 1

8
CμνλρCμνλρ; ð21Þ

B≡ 1

8
CμνλρC�

μνλρ; ð22Þ

D≡ 1

16
Cμν

λρCσπ
μνCλρ

σπ; ð23Þ

E≡ 1

16
Cμν

λρCσπ
μνC�λρ

σπ: ð24Þ

Furthermore, let

α ¼ −
ADþ BE
A2 þ B2

; ð25Þ

β ¼ AE − BD
A2 þ B2

: ð26Þ

Next we define the following Riemann-like tensors:

Qμνλρ ≡ βCμνλρ þ αC�
μνλρ; ð27Þ

Πμνλρ ≡ αCμνλρ − βC�
μνλρ − ðα2 þ β2ÞGμνλρ; ð28Þ

and the 1-forms

Rμ ≡ 1

3ðA2 þ B2Þ ðA∇μAþ B∇μBÞ; ð29Þ

Θμ ≡ 1

3ðA2 þ B2Þ ðB∇μA − A∇μBÞ: ð30Þ

One needs further scalars

K ≡ 2RμΘμ

RμRμ − ΘμΘμ ; ð31Þ

T ≡ β

α
¼ BD − AE

ADþ BE
; ð32Þ

λ≡ KðKT þ 1Þ
K2 − 3KT − 2

; ð33Þ

σ ≡ 2α

3λ2 − 1
−
RμRμ − ΘμΘμ

4ðλ2 − 1Þ : ð34Þ

Using the above objects one defines

Ξμν ≡ 1

ð1 − λ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p ðΠμλνρðRλRρ − ΘλΘρÞ

þQμλνρðRλΘρ þ ΘλRρÞÞ: ð35Þ

The crucial result for our purposes is the following one
([19], Theorem 2).
Theorem 3. A solution ðM; gμνÞ of the vacuum

Einstein field equations is locally isometric to the Kerr
space-time if and only if the following conditions hold in
an open set of M:

A2 þ B2 ≠ 0; Qμνλρ∇μB∇λB ≠ 0; σ > 0; ð36Þ

1

2
Cστ

μνCστλρ þ αCμνλρ þ βC�
μνλρ −

1

3
ðAGμνλρ −BημνλρÞ ¼ 0;

ð37Þ

Qμνλρ∇μA∇λAþQμνλρ∇μB∇λB ¼ 0; ð38Þ

ð1 − 3λ2Þβ þ λð3 − λ2Þα ¼ 0; ð39Þ

and there exists a vector field ξμ fulfilling the properties

Ξμν ¼
�

α

1 − 3λ2

�2
3

ξμξν; ∇μξν þ∇νξμ ¼ 0: ð40Þ
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Remark 1. The characterization presented in
Theorem 3 is written in terms of concomitants of the
Weyl tensor. A concomitant of a tensor is a scalar or
tensorial quantity that is constructed exclusively from the
tensor itself and its covariant derivatives with respect to
the Levi-Cività connection.
Remark 2. Condition (40) was formulated in a slightly

different way in [19]

2Ξμνuμuν þ Ξμ
μ > 0; ð41Þ

where uμ is an arbitrary unit timelike vector. To check that
indeed Theorem 2 of [19] can be formulated with (41)
replaced by (40), we first replace the value of Ξμν shown in
(40) into the right-hand side of (41) getting

�
α

1 − 3λ2

�2
3ð2ðuμξμÞ2 þ ξμξμÞ: ð42Þ

This scalar quantity is always positive if uμ is unit timelike
(this is trivial if ξμ is spacelike or null and follows from the
reverse Cauchy-Schwarz inequality when ξμ is timelike).
Hence we conclude that any space-time in which (36)–(40)
hold is locally isometric to the Kerr solution. Consistency
with the Killing condition on ξμ follows either by using
Proposition 4 of [19] or by doing the explicit computation
in a local coordinate chart of the Kerr metric. Reciprocally,
take the Kerr solution in the local coordinates given by
[see [30], Eq. (21.16)]

ds2 ¼ ðx2 þ y2Þ
XðxÞ dx2 þ ðx2 þ y2Þ

YðyÞ dy2

þ 1

x2 þ y2
ðXðxÞðdt − y2dzÞ2 − YðyÞðdtþ x2dzÞ2Þ;

ð43Þ

where

YðyÞ≡ ϵy2 − 2μyþ γ; XðxÞ≡ −ϵx2 þ γ; ð44Þ

and ϵ, γ, μ are positive constants. After doing the explicit
computations in the coordinates of (43) we can check that
(36)–(40) are all met. In this case the vector ξμ is given by

~ξ ¼ −
ffiffiffi
2

p

μ1=3
∂
∂t ; ð45Þ

which is obviously a Killing vector, and so it fulfills the
Killing condition. According to the present analysis, the
Killing condition on ξμ is, in fact, a consequence of
the other conditions of Theorem 3 in the Ferrando and
Sáez result, so it is somehow redundant. However, we
chose to formulate the result including also this condition
because it is more adapted to our purposes.

For the sake of completeness we give the following result
also found in [19].
Proposition 1. If gμν is isometric to the Kerr metric, then
(i) the mass parameter, m, is given by

m≡ jαj
σ

ffiffiffi
σ

p j3λ2 − 1j ; ð46Þ

(ii) the angular momentum parameter, a, is given by

a ¼ 1

2σð1þ λ2Þ ðλRμΘμ þ ΘμΘμ þ 4σλ2Þ1=2: ð47Þ

IV. ORTHOGONAL SPLITTING OF FERRANDO
AND SÁEZ CHARACTERIZATION

The local characterization of the Kerr solution presented
in Theorem 3 is written exclusively in terms of concom-
itants of the Weyl tensor, and hence we can take each of
these concomitants and compute their orthogonal splitting
with respect to a unit vector orthogonal to the leaves of a
foliation, in the manner explained in Sec. II A 1.
We start by adapting (12a) to the particular case of the

Weyl tensor. In this case we shall write

Eμν ≡ EðCÞτσ; Bμν ≡ BðCÞτσ: ð48Þ

Note also that

EðC�Þμν ¼ Bμν; BðC�Þμν ¼ −Eμν:

Crucial for the present purposes is to realize that given an
initial data set ðΣ; hij; KijÞ for the Einstein vacuum equa-
tions, the pullback to Σ of the space-time tensors Eμν, Bμν

can be written entirely in terms of initial data quantities.
Following the notation of II A 1, if we set Eij ≡ ϕ�Eμν and
Bij ≡ ϕ�Bμν, then we have that

Eij ¼ rij þ KKij − KikKk
j; ð49Þ

Bij ¼ ϵklðiDjkKljjÞ: ð50Þ

Therefore, any concomitant of the Weyl tensor whose
orthogonal splitting results in an expression that contains
only Eμν and Bμν (with no covariant derivatives thereof) can
be written exclusively in terms of quantities defined from
the data ðΣ; hij; KijÞ when pulled back to Σ. This will
always be the case for a concomitant of the Weyl tensor not
containing any covariant derivative of the Weyl tensor.
For later use we also need the evolution equations for Eμν

and Bμν with respect to ~n which result from the orthogonal
splitting of the Bianchi identity of the Weyl tensor in
vacuum. These are
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£~nEμν ¼ −2AβðBðνδεμÞβδÞ þ 2EμνKβ
β − 2Eν

βKμβ − 3Eμ
βKνβ þ EβδKβδhμν þ ενβδDδBμ

β; ð51Þ

£~nBμν ¼ 2AβðEðνδεμÞβδÞ þ 2BμνKβ
β − 2Bν

βKμβ − 3Bμ
βKνβ þ BβγKβγhνμ − ενβγDγEμ

β: ð52Þ

Next, using the orthogonal splitting of the Weyl tensor we write the scalars A, B, D, E in terms of Eμν and Bμν,

A ¼ −BμνBμν þ EμνEμν; ð53Þ

B ¼ 2BμνEμν; ð54Þ

D ¼ Eνλð3Bμ
λBμν − Eμ

λEμνÞ; ð55Þ

E ¼ BμνðBμ
λBνλ − 3Eμ

λEνλÞ: ð56Þ

Using (51) and (52) on the first and second equations of the previous list, we obtain

AðAÞ≡ £~nA ¼ 6ðBα
γBαβ − Eα

γEαβÞKβγ þ 4AKγ
γ þ 2εβγδðEαβDδBα

γ þ BαβDδEα
γÞ; ð57Þ

BðBÞ≡ £~nB ¼ −4ð3BαβEα
γKβγ − BKγ

γÞ þ 2εβγδðBαβDδBα
γ − EαβDδEα

γÞ; ð58Þ

which we keep for later use. Note that these expressions do
not depend on the acceleration Aμ of the vector field nμ.
The orthogonal splitting of the scalars α, β, and T is

found using their definitions and (53)–(56). It is evident
that these expressions are functions of only Eμν, Bμν, and
their explicit form is not needed in this article. Therefore
we conclude that α, β, and T can be rendered exclusively
in terms of the Weyl tensor electric and magnetic parts.
The orthogonal splitting of the tensor Qμνλρ is written

in terms of its electric and magnetic parts just as happens
with any other Weyl candidate. These are given in terms
of the Weyl tensor electric and magnetic parts by

EðQÞμν ¼ βEμν þ αBμν; ð59Þ
BðQÞμν ¼ βBμν − αEμν: ð60Þ

We have now gathered enough information to compute the
orthogonal splitting of the different scalar and tensorial
quantities used in Theorem 3. The results of these compu-
tations are presented in the following series of propositions.
The proofs are straightforward but tedious computations
involving the results reviewed in Sec. II A 1 and the results
just presented about the splitting of the Weyl tensor.
Proposition 2. Condition (37) of Theorem 3 is equiv-

alent to the following two conditions expressed in terms
of Eμν and Bμν:

aμν ≡ −Bμ
λBνλ þ Eμ

λEνλ −
1

3
Ahμν − Eμνα − Bμνβ ¼ 0;

ð61Þ

bμν≡Bμ
λEνλþBν

λEμλ−1

3
Bhμν−BμναþEμνβ¼ 0: ð62Þ

Proof.—Define the tensor

Rμνλρ ≡ 1

2
Cστ

μνCστλρ þ αCμνλρ þ βC�
μνλρ

−
1

3
ðAGμνλρ − BημνλρÞ: ð63Þ

This tensor has the same algebraic monoterm symmetries
as the Riemann tensor, and therefore its orthogonal splitting
is similar to it. To carry out the proof, we compute the
orthogonal splitting ofRμνλρ using its definition in terms of
the Weyl tensor and then equate the resulting expression
to (17). In this way one obtains the explicit expressions for
the tensors XðRÞμν, YðRÞμν, ZðRÞμν in terms of Eμν, Bμν.
These expressions turn out to be

YðRÞμν ¼ −aμν; ZðRÞμν ¼ bμν; XðRÞμν ¼ aμν:

ð64Þ

SinceRμνλρ is zero if and only if all its spatial parts vanish,
then the proposition follows. □

Remark 3. From Eq. (64) we deduce that the only
independent spatial parts of Rμνλρ are just aμν and bμν,
which are symmetric and traceless. Therefore the tensor
Rμνλρ has the same number of independent components as
the Weyl tensor (10 components), and, in fact, its orthogo-
nal splitting is rendered as shown in (12a) and (12b). From
this we can conclude thatRμνλρ is indeed a Weyl candidate,
something that is not evident from its tensor definition.
Proposition 3. The orthogonal splitting of the quantities

Rμ and Θμ is

Θμ ¼ nμΘ∥ þ Θ⊥
μ; Rμ ¼ nμR∥ þ R⊥

μ; ð65Þ
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where

Θ∥ ¼ 1

A2 þ B2

�
ð2BðEβαEγ

α − BβαBγ
αÞ þ 4ABβαEγ

αÞKβγ

−
2

3
εβγδðEαβðBDδBα

γ þ ADδEα
γÞ þ Bαβð−ADδBα

γ þ BDδEα
γÞÞ

�
; ð66Þ

R∥ ¼ −
4

3
Kγ

γ þ
1

A2 þ B2

�
ð2AðEβαEγ

α − BβαBγ
αÞ þ 4BBβαEγ

αÞKβγ

−
2

3
εβγδðBαβðBDδBα

γ þ ADδEα
γÞ þ EαβðADδBα

γ − BDδEα
γÞÞ

�
; ð67Þ

R⊥
μ ≡ 1

6
DμðlogðA2 þ B2ÞÞ; ð68Þ

Θ⊥
μ ≡ 1

3
ðA2 þ B2Þ−1ðBDμA − ADμBÞ: ð69Þ

Proof.—To prove this we need to find the orthogonal splitting of ∇μA and ∇μB, which is given by

∇μA ¼ DμA − nμ£~nA; ∇μB ¼ DμB − nμ£~nB: ð70Þ

From these relations the values for R⊥
μ and Θ⊥

μ follow straightforwardly while for R∥ and Θ∥ we get

R∥ ≡ −
1

6
£~nðlogðA2 þ B2ÞÞ; Θ∥ ≡ 1

3
ðA2 þ B2Þ−1ðA£~nB − B£~nAÞ: ð71Þ

The final result follows by using on these expressions (57) and (58). □

Using the result of this proposition, we can compute the orthogonal splittings of the scalars K and σ

K ¼ 2R∥Θ∥ − 2R⊥μΘ⊥
μ

R∥2 − Θ∥2 − R⊥
μ R⊥μ þ Θ⊥

μ Θ⊥μ
; ð72Þ

σ ¼ 1

4
ð−2þ K2 − 3KTÞ2 ×

�
R∥2 − Θ∥2 − R⊥

μ R⊥μ þ Θ⊥
μ Θ⊥μ

K2ð1þ KTÞ2 − ðK2 − 3KT − 2Þ2 −
8α

ðK2 − 3KT − 2Þ2 − 3K2ð1þ KTÞ2
�
: ð73Þ

With these relations we can get the orthogonal splitting of λ by using (33).
Proposition 4. Define the tensors

Aνρ ≡Qμνλρ∇μA∇λA; Bνρ ≡Qμνλρ∇μB∇λB:

Then we have

rðAÞ≡ Aνμnνnμ ¼ EðQÞμνDμADνA; ð74Þ

jðAÞμ ≡ Aνρnνhρμ ¼ −εμκπBðQÞλπDλADκA − EðQÞμλAðAÞDλA;

tðAÞμν ≡ Aκπhκμhπν

¼ DκAð−2DðνAEðQÞμÞκ þ hμνEðQÞκπDπAþ 2AðAÞBðQÞðμπενÞκπÞ
þ EðQÞμνðDκADκAþ ðAðAÞÞ2Þ: ð75Þ

Similar relations and definitions exist for TðBÞνρ (they are just obtained by replacing A by B in the previous relations).
Proof.—To prove this, one computes the orthogonal splitting of the tensor Qμνλρ in the way explained when we obtained

(60) and uses (57) and (58). □
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In view of the previous proposition we have the equivalence

Qμνλρ∇μA∇λAþQμνλρ∇μB∇λB ¼ 0 ⇔ rðAÞ ¼ −rðBÞ; jμðAÞ ¼ −jμðBÞ; tðAÞμν ¼ −tðBÞμν: ð76Þ

Proposition 5. The orthogonal splitting of Ξμν is given by

rðΞÞ≡ 1

ðλ2 − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p × ðXðΠÞμνð−Θ⊥μΘ⊥ν þ R⊥μR⊥νÞ − 2EðQÞμνR⊥μΘ⊥νÞÞ; ð77Þ

jðΞÞμ ≡ −1
ðλ2 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p

× ðΘ⊥νðEðQÞμνR∥ þ XðΠÞμνΘ∥ − εμραZðΠÞναΘ⊥ρÞ
− R⊥νðR∥XðΠÞμν − EðQÞμνΘ∥ þ εμναBðQÞραΘ⊥ρ þ εμραð−R⊥ρZðΠÞνα þ BðQÞναΘ⊥ρÞÞÞ; ð78Þ

tðΞÞμν ≡ 1

ðλ2 − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p

× ðXðΠÞρρðR⊥
μ R⊥

ν − Θ⊥
μ Θ⊥

ν Þ − 2EðQÞμνðR∥Θ∥ þ R⊥ρΘ⊥
ρ Þ

− 2ερpðνðBðQÞμÞρðR⊥pΘ∥ þ R∥Θ⊥pÞ þ EðQÞμÞρð−R∥R⊥p þ Θ∥Θ⊥pÞÞ
þ 2EðQÞρðνðR⊥ρΘ⊥

μÞ þ R⊥
μÞΘ

⊥ρÞ þ 2XðΠÞρðνð−R⊥
μÞR

⊥ρ þ Θ⊥
μÞΘ

⊥ρÞ
þ XðΠÞμνðR∥2 þ R⊥

ρ R⊥ρ − Θ∥2 − Θ⊥
ρ Θ⊥ρÞ

þ hμνðXðΠÞααð−R⊥
ρ R⊥ρ þ Θ⊥

ρ Θ⊥ρÞ − 2EðQÞραR⊥ρΘ⊥α þ XðΠÞραðR⊥ρR⊥α − Θ⊥ρΘ⊥αÞÞÞ; ð79Þ

where

XðΠÞμν ≡ BðQÞμν − hμνðα2 þ β2Þ: ð80Þ
Proof.—To prove this result we need to compute the

orthogonal splitting of the tensors Πμνρλ, Qμνρλ, Θμ, and Rμ

[see Eq. (35)]. The orthogonal splitting of Qμνρλ was
worked out in (59) and (60) while that of Θμ and Rμ

can be found in Eq. (65) in Proposition 3. The tensor Πμνρλ

has the same algebraic symmetries as the Riemann tensor.
Therefore we use again (17) to compute its orthogonal
splitting. In this particular case one has that the corre-
sponding spatial parts of Πμνρλ are

XðΠÞμν ¼ BðQÞμν − hμνðα2 þ β2Þ;
ZðΠÞμν ¼ −Bμνα − Eμνβ ¼ −EðQÞμν; YðΠÞμν ¼ −Xμν:

ð81Þ

Hence, after replacing this into Eq. (17), the orthogonal
splitting of Πμνρλ follows. Inserting this splitting and those
of Qμνρλ, Θμ, Rμ into (35), the result follows after long
algebra. □

V. CONSTRUCTION OF A POSITIVE SCALAR
CHARACTERIZING THE KERR SOLUTION

We use the results of the previous sections to define a
positive scalar quantity on a vacuum initial data set

ðΣ; hij; KijÞ that vanishes if and only if the data develop-
ment is locally isometric to the Kerr solution.
The quantities obtained from the orthogonal splittings

computed in the previous section can be pulled back to Σ if
the foliation generated by the integrable unit normal is
related to the data set ðΣ; hij; KijÞ in the way explained in
Sec. II A. This means that all the spatial scalars and tensors
that we defined in the previous sections can indeed be
regarded as scalars and tensors defined in a three-
dimensional Riemannian manifold Σ with metric hij.
Consistent with the conventions of Sec. II A we keep the
same notation and symbols for them and only replace
Greek by Latin indices in the tensors. In the case of scalar
quantities the context will indicate whether they are
regarded as space-time quantities or quantities defined
on Σ.
Lemma 1. If ~n is the unit vector orthogonal to the leaves

of a foliation related to Σ in the way described in Sec. II A 1

and ~ξ is a vector field on M, then one has the following
equivalence:

�
Ξμν −

�
α

1 − 3λ2

�2
3

ξμξν

�����
ϕðΣÞ

¼ 0 ⇔ ð82Þ

Ω≡ ðtðΞÞij −MYiYjÞðtðΞÞij −MYiYjÞ ¼ 0;

Y2 ¼ rðΞÞ
M

; Yj ¼ −
jðΞÞj
MY

; ð83Þ
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where

M ≡
�

α

1 − 3λ2

�2
3

; ð84Þ

Y ≡ −ϕ�ðnμξμÞ; ð85Þ

Yj ≡ ϕ�ðhμνξνÞ; ð86Þ

and rðΞÞ, jðΞÞj, are the pullbacks to Σ of the corresponding
space-time quantities defined in Proposition 5. Moreover
the quantity Ω is non-negative.
Proof.—The quantity Ω is a tensor square defined in a

Riemannian manifold so it is trivially non-negative. Define
now the tensor

Aμν ≡ Ξμν −
�

α

1 − 3λ2

�2
3

ξμξν: ð87Þ

The orthogonal splitting of Aμν is easily computed given
that we know the orthogonal splitting of each of the terms
intervening in its definition (cf. Proposition 5)

rðAÞ ¼ − ~Y2M þ rðΞÞ; ~Y ≡ −nμξμ; ð88Þ

jðAÞμ ¼ −jðΞÞμ −M ~Y ~Yμ; ~Yμ ≡ hμνξν; ð89Þ

tðAÞμν ¼ tðΞÞμν −M ~Yμ
~Yν: ð90Þ

We now use Eq. (9) to conclude that Aμν vanish on ϕðΣÞ if
and only if the corresponding pullback covariant tensors
rðAÞ, jðAÞj, tðAÞij are zero on Σ. This entails

Y ¼ ϕ�ð ~YÞ; Yj ¼ ϕ�ð ~YjÞ; Y2 ¼ rðΞÞ
M

; Yj ¼
−jðΞÞj
MY

;

ð91Þ

which are just the last two equations in (83). Finally
since Σ is a Riemannian manifold, the scalar Ω is zero
if and only if

tðΞÞij −MYiYj ¼ 0; ð92Þ

which, according to (90), is equivalent to tðAÞij ¼ 0. □

We are now ready to present our explicit characterization
of a Kerr initial data set.
Theorem 4. Let ðΣ; hij; KijÞ be a vacuum initial data

set and assume that on Σ the data fulfills the properties

σ > 0; ð93Þ

where σ is defined by (73), and

K≡ ðrðBÞ2 þ jðBÞijðBÞi þ tðBÞijtðBÞijÞðA2 þ B2Þ > 0;

ð94Þ

with A, B given by (53) and (54) and rðBÞ, jðBÞi, tðBÞij are
defined in Proposition 4. Furthermore, with the definitions
of Proposition 5, we introduce two covariant vector fields
Y, Yj on Σ defined by

Y2 ¼ rðΞÞ
M

; Yj ¼ −
jðΞÞj
MY

; ð95Þ

where by assumption one has on Σ

Y ≠ 0: ð96Þ

Under these conditions define the following non-negative
scalar quantity on Σ:

L≡ ðrðAÞ þ rðBÞÞ2 þ ðjðAÞi þ jðBÞiÞðjðAÞi þ jðBÞiÞ þ ðtðAÞij þ tðBÞijÞðtðAÞij þ tðBÞijÞ
σ14

þ aijaij þ bijbij

σ4
þ ðð1 − 3λ2Þβ þ λð3 − λ2ÞαÞ2

σ2
þ ðBijBijÞ3

σ4
þ ðCijCijÞ3

σ7
þ Ω
σ2

; ð97Þ

where the intervening quantities are defined in the follow-
ing places of the text:

(i) rðAÞ, jðAÞi, tðAÞij are defined in Proposition 4.
(ii) aij, bij are defined in Proposition 2.
(iii) λ is defined in terms of K and T in (33), K is defined

in (72), T is defined in (32) in terms of A, B, D, E,
which in turn are defined in (53)–(56).

(iv) Bij, Cij are defined in (20) for the Y and Yj

introduced above.

(v) Ω is defined in Lemma 1.
(vi) The fields Eij Bij on Σ are defined by (49) and (50).

All these quantities are defined exclusively from the initial
data variables hij, Kij, and their covariant derivatives.
Under the stated assumptions we have that on Σ the scalar
L ≥ 0 and it vanishes if and only if the data ðΣ; hij; KijÞ
correspond to Kerr initial data.
Proof.—If ðΣ; hij; KijÞ is a vacuum initial data set, then

the Cauchy development DðΣÞ is a vacuum solution, and
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thus the Riemann and the Weyl tensors are the same. Also
L is a sum of squares so it is trivially non-negative. If L
vanishes, then, since Σ is a Riemannian manifold, this is
equivalent to the following conditions:
(1) rðAÞ ¼ −rðBÞ,
(2) jðAÞi ¼ −jðBÞi,
(3) tðAÞij ¼ −tðBÞij,
(4) aij ¼ 0,
(5) bij ¼ 0,
(6) ðð1 − 3λ2Þβ þ λð3 − λ2ÞαÞ ¼ 0,
(7) Bij ¼ 0,
(8) Cij ¼ 0,
(9) Ω ¼ 0.

If conditions 7 and 8 hold, then (18a) and (18b) hold on Σ
and the Cauchy development DðΣÞ admits a Killing vector
ξμ such that ϕ�ðnμξμÞ ¼ −Y, ϕ�ðhμνξνÞ ¼ Yj (Theorem 2).
In addition, from condition 9 and Lemma 1 we deduce

�
Ξμν −

�
α

1 − 3λ2

�2
3

ξμξν

�����
ϕðΣÞ

¼ 0: ð98Þ

Also conditions 1–3, conditions 4 and 5, and condition 6
imply each [see Eq. (9)]

ðQμνλρ∇μA∇λAþQμνλρ∇μB∇λBÞjϕðΣÞ ¼ 0; ð99Þ
�
1

2
Cστ

μνCστλρ þ αCμνλρ þ βC�
μνλρ

−
1

3
ðAGμνλρ − BημνλρÞ

�����
ϕðΣÞ

¼ 0; ð100Þ

ðð1 − 3λ2Þβ þ λð3 − λ2ÞαÞjϕðΣÞ ¼ 0: ð101Þ

The Lie derivative with respect to a Killing vector
vanishes for any concomitant of the Weyl tensor, and thus
we have

£~ξ

�
Ξμν −

�
α

1 − 3λ2

�2
3

ξμξν

�
¼ 0; ð102Þ

£~ξðQμνλρ∇μA∇λAþQμνλρ∇μB∇λBÞ ¼ 0; ð103Þ

£~ξ

�
1

2
Cστ

μνCστλρ þ αCμνλρ þ βC�
μνλρ

−
1

3
ðAGμνλρ − BημνλρÞ

�
¼ 0; ð104Þ

£~ξðð1 − 3λ2Þβ þ λð3 − λ2ÞαÞ ¼ 0: ð105Þ

Combining (98)–(101) with (102)–(105) we deduce that
there exists an open set U1 ⊂ DðΣÞ, ϕðΣÞ ⊂ U1 in which

(37)–(40) are fulfilled as long as the vector field ~ξ is not
tangent to ϕðΣÞ [if it were, then ϕðΣÞ would be a

characteristic of the system (102)–(105)]. The vector field
~ξ is tangent to ϕðΣÞ at a point if and only if Y ¼ 0 at that
point, but this is not possible if (96) holds. In addition, the
hypotheses K > 0 and σ > 0 on the initial data entail
the existence of another open set U2 ⊂ DðΣÞ, Σ ⊂ U2 such
that on that set

ðA2 þ B2ÞjΣ ≠ 0; ðQμνλρ∇μB∇λBÞjΣ ≠ 0; σ > 0:

ð106Þ

We thus deduce that all the conditions of Theorem 3 are met
in the open set U1 ∩ U2, and therefore we conclude that the
space-time is locally isometric to the Kerr solution in
U1 ∩ U2. Reciprocally let us assume that the vacuum data
set ðΣ; hij; KijÞ is a Kerr initial data set. The conditions of
Theorem 3 imply (98)–(101), (106), and then the compu-
tations carried out in Propositions 2, 3, 4, 5 and Lemma 1 in
combination with (9) entail conditions 1–6 and 9 above.
They also imply the condition σ > 0 and K > 0, and
therefore the scalar L is well defined for any Kerr initial
data set. Next we apply Lemma 1 and the fact that the

vector ~ξ appearing in (40) of Theorem 3 is a Killing vector.
This means that Y and Yj defined by (85) and (86) fulfill
(18a) and (18b) (see Theorem 2) and condition (95). Hence
we find that conditions 7 and 8 are also satisfied for the Y
and Yj defined by (95). From this we finally conclude that
the scalar L vanishes on Σ under the conditions of the
theorem, as desired. □

Remark 4. The scalar L is defined in such a way that it
is dimensionless. One could pursue alternative definitions
keeping the spirit of Theorem 4 resulting in a scalar
quantity with dimensions.

VI. CONCLUSIONS

We have introduced a non-negative scalar quantity L that
is defined for a vacuum initial data set fulfilling certain
algebraic nondegeneracy conditions that are included in
the hypotheses of Theorem 4. The scalar L is defined
exclusively in terms of the quantities used to construct the
vacuum initial data, namely, a Riemannian manifold, its
Riemannian metric, and a symmetric tensor defined on it
that satisfies the vacuum constraint equations (2a) and (2b).
The scalar L is a scalar quantity defined at each point of
the Riemannian manifold as a concomitant of the initial
data quantities (polynomial expression of the quantities and
their covariant derivatives with respect to the Levi-Cività
covariant derivative of the Riemannian metric). An impor-
tant step in its definition is the use of Eqs. (48)–(50)
because many intermediate expressions are rendered in
terms of them.
The main applications of this scalar are twofold. On

one hand, it can be used in the study of the nonlinear
stability problem of the Kerr solution to measure how far
an initial data set is from the Kerr initial data. As already
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mentioned the formulation of the nonlinear stability
problem requires the introduction of a notion that enables
us to decide when a hypersurface of the space-time is
close in some sense to a hypersurface embeddable in the
Kerr space-time and our scalar fulfills this role in a
simple way. The second main application arises from
numerical relativity. If one carries out a dynamical
simulation of a collapsing isolated system and one wishes
to test whether the asymptotic evolution in the exterior
region of the source is close to the Kerr solution,
one could compute numerically the scalar L at each
slice with constant time in the computational domain
of the simulation and study whether it approaches zero
(and if it does the convergence rate). Note that the

computation of the scalar L is totally algorithmic as it
involves only algebraic and differential manipulations.
Therefore its numeric computation should be computa-
tionally less intensive than other computations in which
it is necessary to solve numerically partial differential
equations on the time slices.
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