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Can a black hole that suffers a superradiant instability evolve towards a “hairy” configuration which is
stable? We address this question in the context of Einstein-charged scalar field theory. First, we describe a
family of static black hole solutions which possess charged scalar-field hair confined within a mirror-like
boundary. Next, we derive a set of equations which govern the linear, spherically symmetric perturbations
of these hairy solutions. We present numerical evidence which suggests that, unlike the vacuum solutions,
the (single-node) hairy solutions are stable under linear perturbations. Thus, it is plausible that stable hairy
black holes represent the end point of the superradiant instability of electrically charged Reissner-
Nordström black holes in a cavity; we outline ways to explore this hypothesis.
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I. INTRODUCTION

The belief that a “typical” galaxy hosts a supermassive
black hole, of mass M ∼ 105–1010M⊙, is supported by
dynamical evidence from nearby galaxies and extrapolation
of the black hole mass–velocity dispersion relation [1].
Recent surveys suggest that a supermassive black hole may
possess significant angular momentum [2,3]. Black hole
spin is conjectured to power relativistic jets in quasars
through the Blandford-Znajek process [4], featuring an
accretion disk and a force-free magnetosphere [5].
The Blandford-Znajek process is just one example of a

Penrose process [6], in which a black hole may liberate
energy and angular momentum (and/or charge) whilst still
increasing its horizon area. Penrose processes are consistent
with—indeed, encouraged by—the second lawof black hole
mechanics [7] and thus, it would appear, the second law
of thermodynamics [8,9]. One intriguing example of a
Penrose process is superradiance [10], in which a low-
frequency electromagnetic or gravitational wave packet is
amplified by a black hole (see Ref. [11] for a recent review).
In the “black hole bomb” scenario [12], an exponentially
growing instability is stimulated by reflecting a superradiant
field back onto the black hole. In scenarios with light
bosonic fields (e.g. axions [13] or massive photons [14]),
the instability may develop in the gravitationally bound
modes of the field [15–25], and thus arise spontaneously
[26]. Variations on this theme involving only electromag-
netic fields and accretion disks have also been dis-
cussed [27].
In this article we address a key question: can a super-

radiant instability, pursued into the nonlinear regime, lead
to a new stable hairy black hole configuration?

Superradiant instabilities appear to pose a challenge to
the “no-hair” (Israel-Carter) conjecture [28–30], which
asserts that a perturbed black hole should settle back into
a stationary state, changing only a small number of param-
eters (mass M, angular momentum J, and charge Q). The
conjecture has been codified in a number of theorems in
asymptotically flat scenarios involving massless scalar,
electromagnetic and gravitational fields under certain min-
imal assumptions [31–35]; there also exist stability theorems
for Kerr spacetime [36–38]. Nevertheless, as was recently
shown in Refs. [39,40], there exists an asymptotically flat
family of Kerr black holes endowed with (complex, mas-
sive) scalar-field “hair,” which reduce to well-known “soli-
tonic” boson star solutions in awell-defined limit. Crucially,
these new solutions lie beyond the scope of the no-hair
theorems, as the scalar field is only helically symmetric,
rather than being stationary and axisymmetric. More pre-
cisely, the scalar field is only invariant under a single Killing
field, which is tangent to the null generators of the horizon.
Novel solutions with a single Killing field were described in
Ref. [41]. For a succinct summary of the relationship
between various asymptotically flat scalar-hairy solutions,
the no-hair theorems, and the violated assumptions, see
Table I in Ref. [42].
In the small-amplitude regime, superradiance arises for

charged scalar perturbations of the Kerr-Newman space-
time which have frequency σ satisfying σðσ − σcÞ < 0. The
critical frequency σc is given by

σc ¼ mΩH þ qϕH; ð1:1Þ
where ΩH ¼ J=2M2rþ and ϕH ¼ Q=rþ are the angular
frequency and electric potential of the black hole horizon at
r ¼ rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ðJ=MÞ2 −Q2

p
, and m and q are the

azimuthal mode number and charge of the scalar field,
respectively. At the critical frequency σ ¼ σc, linear per-
turbations are stationary: they do not decay or grow (see
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e.g. Ref. [43]). In the limit of small field amplitude, the
Kerr-scalar solutions in Refs. [39,40] reduce to a Kerr black
hole (Q ¼ 0) with a corotating dipolar (l ¼ m ¼ 1, where
l is the total angular momentum mode number) perturba-
tion in the massive scalar field at the critical superradiant
frequency, σ ¼ σc.
Analyzing the stability of the nonlinear Kerr-scalar

solutions (with J ≠ 0, Q ¼ 0) is challenging, principally
because such solutions are only helically symmetric (as
well as being numerically determined, i.e. not known in
closed form). Here, we consider a simpler spherically
symmetric model, with J ¼ 0, Q ≠ 0, of scalar electrody-
namics coupled to gravity [44]. In this scenario, super-
radiance is associated with charge, rather than angular
momentum. It was shown by Bekenstein (see Ref. [31],
Sec. IV) that asymptotically flat finite-energy configurations
with charged scalar-field hair are forbidden. Instead, we
consider an analogue of the black hole bomb scenario of
Press and Teukolsky [12], in which the black hole is
enclosed by a reflecting mirror.
It was shown in Refs. [45–47] that, in the linear (small-

amplitude) regime, a charged scalar field with a mirror on a
Reissner-Nordström black hole background (J ¼ 0,Q ≠ 0)
suffers exponential growth due to superradiance, provided
the mirror is sufficiently far from the horizon. Here we
consider the progression into the nonlinear regime. We
present charged-scalar black holes which are plausible end
points for the above charge-superradiant instability, and
examine their stability under perturbation.
The outline of this paper is as follows. In Sec. II we

describe our Einstein-charged scalar field model and briefly
review the instability of Reissner-Nordström black holes
under spherically symmetric charged scalar field perturba-
tions [45–47]. We also present static, spherically symmetric
black hole solutions with nontrivial charged scalar field
hair. The charged scalar field has zeros outside the event
horizon; the reflecting mirror can be situated at any one of
these zeros. To see if these hairy black holes are plausible
end points of the charge superradiant instability, in Sec. III
we investigate their stability under linear, spherically
symmetric perturbations. If the mirror is located at the
first zero of the charged scalar field, we present numerical
evidence that at least some of the hairy black holes are
stable. Our conclusions are presented in Sec. IV.

II. BLACK HOLE SOLUTIONS WITH HAIR

A. The model

We consider a fully coupled system consisting of gravity,
an electromagnetic field and a massless charged scalar
field. The action is given by

S ¼
Z ffiffiffiffiffiffi

−g
p �

R
16πG

−
1

4
FabFab −

1

2
gabD�

ðaΦ
�DbÞΦ

�
d4x;

ð2:1Þ

where Fab¼∇aAb−∇bAa is the Faraday tensor and
Da¼∇a−iqAa, where ∇a is the covariant derivative, Aa
is the electromagnetic vector potential and q is the charge of
the scalar field Φ. Tensor indices are lowered and raised
with the metric gab and its inverse gab, and g denotes the
metric determinant. Round and square brackets on indices
denote symmetrized and antisymmetrized combinations,
XðabÞ ¼ 1

2
ðXab þ XbaÞ and X½ab� ¼ 1

2
ðXab − XbaÞ.

By varying Eq. (2.1), three equation of motions are
obtained

Gab ¼ 8πGTab; ð2:2aÞ
∇aFab ¼ Jb; ð2:2bÞ

DaDaΦ ¼ 0; ð2:2cÞ

alongside the usual Bianchi identities for the Faraday and
Riemann tensors, ∇½aFbc� ¼ 0 ¼ ∇½aRbc

de�. The stress-
energy tensor is given by Tab ¼ TF

ab þ TΦ
ab where

TF
ab ¼ FacFb

c −
1

4
gabFcdFcd; ð2:3aÞ

TΦ
ab ¼ D�

ðaΦ
�DbÞΦ −

1

2
gab½gcdD�

ðcΦ
�DdÞΦ�; ð2:3bÞ

and the field current Ja is given by

Ja ¼ iq
2
½Φ�DaΦ − ΦðDaΦÞ��: ð2:4Þ

The current and stress-energy are covariantly con-
served, ∇aJa ¼ 0 ¼ ∇aTab.
The charged scalar field Φ and vector potential Aa are

defined up to the usual gauge freedom, as Fab and DaΦ are
invariant under the mapping

Φ → eiχΦ; Aa → Aa þ q−1χ;a; ð2:5Þ

where χ is any scalar field.Wewill make use of this freedom
both when we consider static equilibrium solutions and
time-dependent, spherically symmetric perturbations.

B. Linear perturbations in electrovacuum

In the case Φ ¼ 0, the spherically symmetric solution of
the field equations (2.2) is the Reissner-Nordström black
hole spacetime,

ds2 ¼ gabdxadxb ¼ −fRNdt2 þ f−1RNdr
2 þ r2dΩ2; ð2:6Þ

where (in appropriate units),

fRN ¼ 1 −
2M
r

þQ2

r2
¼ ðr − rþÞðr − r−Þ

r2
ð2:7Þ
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and the element of solid angle is

dΩ2 ¼ dθ2 þ sin2θdφ2: ð2:8Þ

The quantities

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
ð2:9Þ

are, respectively, the radii of the outer (event) and inner
(Cauchy) horizons.
One may introduce a small-amplitude scalar field Φ, and

neglect the backreaction on the electromagnetic and gravi-
tational fields (as Tab and Ja are quadratic in the scalar field
amplitude). Let us consider a monochromatic, spherically
symmetric perturbation with frequency σ

Φ ¼ ϕðrÞ
r

e−iσt; ð2:10Þ

which, via Eq. (2.2c), satisfies

d2ϕ
dr2�

þ
��

σ −
qQ
r

�
2

−
fRN
r

dfRN
dr

�
ϕ ¼ 0; ð2:11Þ

where the tortoise coordinate r� is defined by dr�=dr¼
f−1RN . The scalar field perturbation should be ingoing at the
horizon, that is, regular in a (future) horizon-penetrating
coordinate system, which implies that

ϕ ∼ e−iσr� as r� → −∞: ð2:12Þ

Imposing a “mirror” boundary condition ϕðrmÞ ¼ 0 at r ¼
rm leads to a discrete spectrum of states with, in general,
complex frequencies σn. A positive (negative) imaginary
component of frequency corresponds to exponential growth
(decay). The states are labeled with n, the number of nodes
they possess in the region r < rm.
An analytic approximation for the discrete frequencies

σn can be found in Ref. [48]. We used this approximation as
an initial input value for the frequency σ0 of the funda-
mental mode n ¼ 0, numerically integrating the radial
perturbation equation (2.11) and searching for the value
of σ0 for which the scalar field perturbation vanishes on the
mirror.
Figure 1 shows the real and imaginary parts of the

fundamental mode frequency σ0 as a function of mirror
radius rm, for a selection of black hole and field charges, Q
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FIG. 1 (color online). The real (left) and imaginary (right) part of the frequency σ0 of the fundamental massless scalar perturbation of
Reissner-Nordström spacetime with a reflecting mirror, plotted against the mirror radius rm with (top row) fixed black hole charge
Q ¼ 0.9 and (bottom row) fixed scalar field charge q ¼ 0.5 (we use units in which the black hole mass M ¼ 1). The right-hand plots
show the transition points where the imaginary part of σ0 changes sign from negative (decaying) to positive (growing).

STABILITY OF BLACK HOLES IN EINSTEIN-CHARGED … PHYSICAL REVIEW D 92, 124047 (2015)

124047-3



and q. The plots illustrate the following point: with the
mirror placed close to the black hole, the n ¼ 0 mode
decays exponentially; with the mirror placed far from the
black hole, the n ¼ 0 mode grows exponentially, generat-
ing a superradiant instability; between these regimes is a
“transition point,” at exactly σ ¼ σc, at which the scalar
field is in equilibrium with the black hole.
In this paper we restrict our attention to a massless

charged scalar field, but the superradiant instability shown
inFig. 1 is also presentwhen amassive charged scalar field is
considered [45–47]. In Ref. [45], a frequency-domain
analysis was performed and a superradiant instability found
for massive charged scalar field modes with l ¼ m ¼ 1,
where l is the total angular momentummode number andm
is the azimuthal mode number. A time-domain study was
undertaken in Ref. [46], again for a massive charged scalar
field. In the l ¼ 1 case, the results of Ref. [46] show that at
late times, the fundamental unstablemode found inRef. [45]
dominates the evolution. They also found a superradiant
instability for the l ¼ 0 (spherically symmetric) mode,
which grows more quickly than the l ¼ m ¼ 1 unstable
mode. The growth time of the l ¼ 0 unstable modes of the
massless charged scalar field (whose frequencies are shown
in Fig. 1) is of a similar order of magnitude to those in
Ref. [46] for a charged scalar field with mass 0.1M. The
highly explosive (yet still linear) regime was studied
in Ref. [47].

C. Static hairy black holes

At first glance, perturbations at the critical frequency σ ¼
σc are time-dependent via the ansatz (2.10), and thus not
static. However, we may choose a gauge in which the scalar
field is static, by inserting χ ¼ σt into Eq. (2.5). This gauge
transformation removes the time dependence from the field,
and introduces a static constant term to A0. This raises the
possibility that static solutions may also exist for nontrivial
scalar field Φ.

1. Field equations

To investigate this possibility, we now consider the
spherically symmetric spacetime defined as follows:

ds2 ¼ −fhdt2 þ f−1dr2 þ r2dΩ2; ð2:13Þ

where f ¼ fðrÞ and h ¼ hðrÞ and dΩ2 is given by
Eq. (2.8). We may write

fðrÞ≡ 1 −
2mðrÞ

r
ð2:14Þ

where m ¼ mðrÞ is interpreted as the total mass within the
given radius r. We assume that the static scalar field is real
and depends only on the radial coordinate r, setting
Φ ¼ ϕðrÞ. Sincewe are considering a spherically symmetric
spacetime, we can set the Aθ and Aφ components of the

electromagnetic gauge potential to zero, and then use
a gauge transformation (2.5) to set Ar to vanish. Thus the
electromagnetic gauge potential takes the form Aμ ¼
½A0ðrÞ; 0; 0; 0�.
With the above ansatz, the equations of motion (2.2)

yield four nontrivial equations,

h0 ¼ rκ

��
qA0ϕ

f

�
2

þ hðϕ0Þ2
�
; ð2:15aÞ

κE2 ¼ −
2

r

�
f0hþ 1

2
fh0 þ h

r
ðf − 1Þ

�
; ð2:15bÞ

0 ¼ fA00
0 þ

�
2f
r
−
fh0

2h

�
A0
0 − q2ϕ2A0; ð2:15cÞ

0 ¼ fϕ00 þ
�
2f
r
þ f0 þ fh0

2h

�
ϕ0 þ ðqA0Þ2

fh
ϕ; ð2:15dÞ

where κ ¼ 8πG and E2 ¼ ðA0
0Þ2. A prime 0 denotes d=dr.

For ϕ ≠ 0, Eqs. (2.15a)–(2.15d) cannot (apparently) be
solved analytically, and some numerical analysis is
required.

2. Boundary conditions

Let us now consider appropriate conditions to impose on
the fields at the black hole horizon (r ¼ rh) and at the
mirror (r ¼ rm).
We assume that there is a regular event horizon defined

by fðrhÞ ¼ 0 and f0ðrhÞ > 0. Thus, mh ≡mðrhÞ ¼ 1
2
rh.

We demand that all physical quantities are finite in a future-
horizon-penetrating coordinate system. This implies that
the vector potential is zero at the horizon, AðrhÞ ¼ 0, and
hðrhÞ is finite. Without loss of generality, we set hðrhÞ ¼ 1,
which corresponds to a gauge choice in the definition of the
time coordinate t. The scalar field equation (2.15d) implies
that ϕ0ðrhÞ ¼ 0. Hence regular Taylor series expansions of
the field variables about r ¼ rh take the following form:

m ¼ mh þm0
hðr − rhÞ þOðr − rhÞ2;

h ¼ 1þ h0hðr − rhÞ þOðr − rhÞ2;

A0 ¼ Ehðr − rhÞ þ
A00
h

2
ðr − rhÞ2 þOðr − rhÞ3;

ϕ ¼ ϕh þ
ϕ00
h

2
ðr − rhÞ2 þOðr − rhÞ3; ð2:16Þ

where Eh ¼ A0
0ðrhÞ is the electric field on the horizon.

Inserting these expansions back into the field equa-
tions (2.15a)–(2.15d) gives
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m0
h ¼

κr2hE
2
h

4
;

h0h ¼
4κq2r3hϕ

2
hE

2
h

ðκr2hE2
h − 2Þ2 ;

A00
h ¼

2Eh

rh

�
2q2r2hϕ

2
h

ðκr2hE2
h − 2Þ2 − 1

�
;

ϕ00
h ¼ −

2ϕhq2r2hE
2
h

ðκr2hE2
h − 2Þ2 : ð2:17Þ

At fixed q, rh and Eh, these expansions are determined by
just one further constant ϕh.
We insist that the scalar field vanishes at the location of

the mirror

ϕðrmÞ ¼ 0: ð2:18Þ

No further conditions are applied at r ¼ rm, so the metric
functions f, h and the electric gauge potential A0 are
unconstrained at the mirror’s location.

3. Solutions

We seek static solutions by numerically integrating the
equation set (2.15a)–(2.15d). To avoid the regular singular
point at r ¼ rh, we use the series expansions (2.16)–(2.17)
as initial data, evaluated at r ¼ rh þ ϵ (where typically
ϵ ∼ 10−12). We choose units such that κ ¼ 8πG ¼ 1.
Without loss of generality, one may rescale all dimen-

sionful quantities by rh to obtain a dimensionless equation
set. Equivalently, one may simply set rh ¼ 1 (thus
mh ¼ 1=2), leaving three free parameters: q, the scalar-field
charge; ϕh, the scalar-field magnitude on the horizon; and
Eh ≡ A0

0ðrhÞ, the electric field on the horizon. Henceforth,
these should be thought of as dimensionless quantities, in
units of rh. We now explore this three-parameter solu-
tion space.

The left-hand plot in Fig. 2 shows the four field variables
fðrÞ, hðrÞ, A0ðrÞ and ϕðrÞ for the case of scalar field charge
q ¼ 0.9, ϕh ¼ 0.4 and Eh ¼ 0.8. The scalar field ϕðrÞ
oscillates about zero; the other three field variables fðrÞ,
hðrÞ and A0ðrÞ are monotonically increasing with r. Note
that we do not expect that A0ðrÞ, fðrÞ and hðrÞ will
necessarily approach finite limits as r → ∞, since there are
no asymptotically flat black hole solutions in this model
with nontrivial scalar field hair [31]. The right-hand plot in
Fig. 2 shows an example of the scalar field profile outside
the horizon for three values of q with fixed ϕh ¼ 0.3 and
Eh ¼ 0.6. Here, the oscillating behavior of the scalar field
is more clearly seen. One could obtain a black-hole-in-a-
cavity solution by placing the mirror at any of the nodes of
the scalar field. For the majority of this paper we will
consider the case that the mirror is located at the first node.
It is possible to have different black hole configurations

which share the same mirror radius, as illustrated by Fig. 3.
In the left-hand plot in Fig. 3, we show three scalar field
profiles ϕðrÞ for different values of the electric field at the
horizon Eh and fixed scalar-field charge q ¼ 0.1. Each
solution, despite having different values of ϕh and Eh, has a
node of the scalar field at rm ≈ 27. A further three distinct
scalar field profiles are displayed in the right-hand plot in
Fig. 3. For a given Eh ¼ 1 (the scalar-field charge is still
fixed to be q ¼ 0.1), the first, second and third nodes of the
scalar field share the same location.
Figure 4 illustrates the three-dimensional solution space

of static hairy black holes in a cavity. The plots indicate that
solutions exist in a contiguous region of fq; Eh;ϕhg
parameter space, in which solutions with at least one node
in the scalar field are permitted. Outside this region, we find
that an excess of stress-energy causes the metric function
fðrÞ to develop an additional zero before the scalar field
develops its first node (suggesting that an additional
horizon forms). We note that (i) solutions with ϕh ¼ 0
are well known: these are the Reissner-Nordström black
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FIG. 2 (color online). Left: An example plot of the two metric functions f, h and two matter functions A0, ϕ for a particular static black
hole solution with q ¼ 0.9, ϕh ¼ 0.4 and Eh ¼ 0.8. Right: Scalar field profiles for three different black hole solutions for fixed ϕh ¼ 0.3
and Eh ¼ 0.6 and three values of the scalar-field charge q.
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FIG. 3 (color online). An example plot of different black hole solutions with scalar charge q ¼ 0.1. Left: Three scalar field profiles
which share the same location of their first node at rm ≈ 27. Right: Three scalar field profiles with fixed Eh ¼ 1 with a common node;
their first (red, solid), second (blue, dashed) and third (green, dot-dashed) nodes coincide at rm ≈ 27.

FIG. 4 (color online). Numerical exploration of the parameter space for static solutions with scalar field hair in a cavity. The system has
three free parameters: q (the charge of the field), ϕh (the scalar field on the horizon), and Eh (the electric field on the horizon). The plots
show two-dimensional slices of the solution space with (top row, left to right) q ¼ 0.1, q ¼ 0.2, (bottom row, left to right) q ¼ 0.4 and
q ¼ 0.8. The shaded area indicates the region where solutions exist, with the scalar field having at least one node, and fðrÞ > 0 for
r > rh. Note that solutions exist throughout the central region all the way towards ϕh → 0, Eh → 0, except along the line Eh ¼ 0. The
colored lines are contours of constant mirror radius rm, where rm lies at the first node of the scalar field ϕ.
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holes; and (ii) uncharged solutions, with Eh ¼ 0 or q ¼ 0,
are not possible, as the scalar field does not develop a node.

III. STABILITY ANALYSIS

In the previous section, we learned that a fully coupled
system of gravity and a charged scalar field admits black hole
solutions with scalar hair confined within a cavity. Are such
hairy configurations stable or unstable? If such solutions are
stable, it is plausible that they represent the end point of the
superradiant instability for a massless charged scalar pertur-
bation on the Reissner-Nordström backgroundwith amirror,
as described in Sec. II B. In this section we examine the
stability of the hairy black hole configurations under linear,
spherically symmetric, perturbations.

A. Dynamical equations

We begin by outlining the ansatz for the field variables.
We consider a spherically symmetric metric of the form
(2.13), but with the functions fðt; rÞ and hðt; rÞ depending
on time t as well as the radial coordinate r. The scalar field
Φ ¼ ϕðt; rÞ similarly is time dependent but is now com-
plex. By virtue of spherical symmetry, we can set
Aθ ¼ 0 ¼ Aφ. Using Eq. (2.5), we may apply a gauge
transformation to eliminate Ar, leaving Aμ with only a
temporal component, Aμ ¼ ½A0ðt; rÞ; 0; 0; 0�.
It is convenient to introduce a new metric variable,

γ ¼ fh1=2: ð3:1Þ

From the Einstein field equations (2.2a), and, in particular,
from the combinations Gtt, Gtt þ γ2Grr and Gtt − γ2Grr,
we obtain

f0

f
¼ −

r
2γ2

ðτ þ fE2Þ þ 1

fr
ð1 − fÞ; ð3:2aÞ

h0

h
¼ rτ

γ2
; ð3:2bÞ

γ0

γ
¼ −

r
2γ2

fE2 þ 1

fr
ð1 − fÞ; ð3:2cÞ

where

τ≡ j _ϕj2 þ jγϕ0j2 þ q2A2
0jϕj2 þ 2qA0Imðϕ _ϕ�Þ: ð3:3Þ

Here, the dot _ and prime 0 denote partial derivatives with
respect to t and r, respectively, and the asterisk � denotes
complex conjugation. We note the equation for γ has no
dependence on τ, and thus it does not explicitly depend on
the scalar field ϕ.
There is one further independent, nontrivial component

of the Einstein field equations (2.2a), namely the Gtr
component, which gives

−
_f
f
¼ rReð _ϕ�ϕ0Þ þ rqA0Imðϕ0�ϕÞ: ð3:4Þ

Note that in the static limit this component is identi-
cally zero.
From the t and r components of the Maxwell equa-

tions (2.2b) we obtain two dynamical equations

γ

r2

�
r2A0

0

h1=2

�0
¼ Jt ¼ q2jϕj2A0 − qImð _ϕϕ�Þ; ð3:5aÞ

1

r
∂t

�
rA0

0

h1=2

�
¼ γJr ¼ −qImðγϕ0ϕ�Þ: ð3:5bÞ

The scalar field equation (2.2c), first written in the form
rfhDaDaϕ ¼ 0, yields

0 ¼ −ψ̈ þ _γ

γ
_ψ þ γðγψ 0Þ0 − γγ0

r
ψ þ 2iqA0 _ψ þ iq _A0ψ

− iq
_γ

γ
A0ψ þ q2A2

0ψ ; ð3:6Þ

where

ψ ¼ rϕ: ð3:7Þ

The equations (3.2)–(3.6) govern how the spacetime
metric, electromagnetic field and the massless scalar field
evolve with time.

B. Perturbation equations

Our aim in this section is to study the stability of the
hairy black holes found previously in Sec. II C. We there-
fore now consider linear perturbations around a nonvacuum
solution by introducing the following notation:

f ¼ f̄ðrÞ þ δfðt; rÞ;
h ¼ h̄ðrÞ þ δhðt; rÞ;
γ ¼ γ̄ðrÞ þ δγðt; rÞ;

A0 ¼ Ā0ðrÞ þ δA0ðt; rÞ;
ψ ¼ ψ̄ðrÞ þ δψðt; rÞ: ð3:8Þ

In this formalism, f̄ is the equilibrium quantity and δf is the
perturbation. We assume that only δψ is a complex variable
while all other quantities are real. From Eqs. (3.2) and
(3.4)–(3.6) six independent dynamical equations can be
obtained. For the remainder of this section, we work to first
order in the perturbations.
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First, Eq. (3.2a) gives

δf0

f̄
þ
�
1

rf̄2
þ rðĀ0

0Þ2
2γ̄2

−
f̄0

f̄2

�
δf ¼ −

rf̄Ā0
0

γ̄2
δA0

0 −
Ā0q2ψ̄2

rγ̄2
δA0 þ

1

γ̄3

�
q2Ā2

0ψ̄
2

r
þ rf̄ðĀ0

0Þ2
�
δγ

−
iqĀ0ψ̄

2rγ̄2
ðδ _ψ − δ _ψ�Þ þ

�
ψ̄

2r2
−
ψ̄ 0

2r

�
ðδψ 0 þ δψ 0�Þ þ

�
ψ̄ 0

2r2
−
ψ̄q2Ā2

0

2rγ̄2
−

ψ̄

2r3

�
ðδψ þ δψ�Þ:

ð3:9aÞ

A similar equation for δh can be obtained from Eq. (3.2b), that is,

δh0

h̄
−
h̄0

h̄2
δh−

2Ā0q2ψ̄2

rγ̄2
δA0 þ

2q2Ā2
0ψ̄

2

rγ̄3
δγ ¼ iqĀ0ψ̄

rγ̄2
ðδ _ψ − δ _ψ�Þ þ

�
ψ̄ 0

r
−
ψ̄

r2

�
ðδψ 0 þ δψ 0�Þ þ

�
ψ̄

r3
þ ψ̄q2Ā2

0

rγ̄2
−
ψ̄ 0

r2

�
ðδψ þ δψ�Þ:

ð3:9bÞ

It will be useful for our later analysis to have an equation with the same structure for δγ. This can be derived from Eq. (3.2c),
leading to

δγ0

γ̄
−

1

γ̄2

�
rf̄ðĀ0

0Þ2
γ̄

þ γ̄0
�
δγ þ rf̄Ā0

0

γ̄2
δA0

0 þ
�
1

rf̄2
þ rĀ0

0

2γ̄2

�
δf ¼ 0: ð3:9cÞ

Note that Eq. (3.9c) is not an independent equation because it can be derived directly from the definition of δγ ¼ δðfh1=2Þ
and Eqs. (3.9a)–(3.9b). The final component of the Einstein field equations (3.4) takes the form

−
δ _f

f̄
¼

�
ψ̄ 0

2r
−

ψ̄

2r2

�
ðδ _ψ þ δ _ψ�Þ þ iqĀ0ψ̄

2r
ðδψ 0 − δψ 0�Þ − iqĀ0ψ̄

0

2r
ðδψ − δψ�Þ: ð3:9dÞ

The two components of the Maxwell equations (3.5a)–(3.5b) yield the following expressions:

γ̄ffiffiffī
h

p δA00
0 þ

γ̄ffiffiffī
h

p
�
2

r
−

h̄0

2h̄

�
δA0

0 −
q2ψ̄2

r2
δA0 ¼ −

q2Ā0ψ̄
2

r2γ̄
δγ þ γ̄Ā0

0

2h̄
ffiffiffī
h

p δh0 þ 1

2h̄

�
Ā0γ̄q2ψ̄2

γ̄r2
−
γ̄Ā0

0h̄
0

h̄
ffiffiffī
h

p
�
δh

þ iqψ̄
2r2

ðδ _ψ − δ _ψ�Þ þ q2Ā0ψ̄

r2
ðδψ þ δψ�Þ; ð3:9eÞ

δ _A0
0ffiffiffī
h

p −
Ā0
0

2h̄
ffiffiffī
h

p δ _h ¼ iqψ̄ γ̄

2r2
ðδψ 0 − δψ 0�Þ − iqγ̄ψ̄ 0

2r2
ðδψ − δψ�Þ: ð3:9fÞ

Last, the Klein-Gordon equation (3.6) yields

0 ¼ −δψ̈ þ γ̄2δψ 00 þ 2iqĀ0δ _ψ þ γ̄γ̄0δψ 0 þ
�
q2Ā2

0 −
γ̄γ̄0

r

�
δψ −

iqĀ0ψ̄

γ̄
δ_γ þ

�
γ̄ψ̄ 0 −

γ̄ ψ̄

r

�
δγ0 þ

�
2γ̄ψ̄ 00 þ γ̄0ψ̄ 0 −

ψ̄ γ̄0

r

�
δγ

þ iqψ̄δ _A0 þ 2q2ψ̄ Ā0δA0: ð3:9gÞ

It can be seen from Eqs. (3.9d) and (3.9f) that the
imaginary part of the scalar field perturbation, ImðδψÞ, is
out of phase with δf, δh, δA0 and the real part of δψ . For
this reason, we decompose the perturbed scalar field in the
following way:

δψðt; rÞ ¼ δuðt; rÞ þ iδ _wðt; rÞ; ð3:10Þ
where uðt; rÞ and wðt; rÞ are real perturbations. This
definition implies that δwðt; rÞ is only determined up to
an arbitrary function of r. With the definition (3.10), the

Klein-Gordon equation (3.9g) can be now separated into
two independent equations, corresponding to the real and
imaginary parts.
By integrating once with respect to time t, Eqs. (3.9d)

and (3.9f) imply that

δf

f̄
¼ 1

r

�
ψ̄

r
− ψ̄ 0

�
δu −

qĀ0ψ̄
0

r
δwþ qĀ0ψ̄

r
δw0 þ δF ðrÞ;

ð3:11aÞ
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δh

h̄
ffiffiffī
h

p ¼ −
2qγ̄ψ̄ 0

r2Ā0
0

δwþ 2qγ̄ ψ̄
r2Ā0

0

δw0 þ 2ffiffiffī
h

p
Ā0
0

δA0
0 þ δHðrÞ;

ð3:11bÞ

where δF ðrÞ and δHðrÞ are arbitrary functions of
the radial coordinate r. Thus it is straightforward to
obtain

δγ ¼ γ̄

r

�
ψ̄

r
− ψ̄ 0

�
δu −

qγ̄ψ̄ 0

r2Ā0
0

½f̄ h̄þrĀ0Ā0
0�δw

þ qγ̄ ψ̄
r2Ā0

0

½f̄ h̄þrĀ0Ā0
0�δw0 þ γ̄

Ā0
0 δA

0
0

þ γ̄δF þ f̄ h̄
2

δH: ð3:11cÞ

Equations (3.11a)–(3.11c) allow us to rewrite the metric
perturbations δf, δh and δγ in terms of the matter
perturbations δu, δw and δA0, and hence eliminate the
metric perturbations from the Maxwell (3.9e)–(3.9f) and
Klein-Gordon (3.9g) equations. Moreover, it is possible

to construct the following linear first-order differential
equation, from Eqs. (3.9a) and (3.9e):

δF 0 þ
�
f̄0

f̄
þ h̄0

2h̄
þ 1

r

�
δF

¼ rĀ0Ā0
0

2γ̄
δH0 þ rĀ0

2γ̄2

�
q2Ā0

ffiffiffī
h

p
ψ̄2

r2
þ γ̄Ā0

0
2

Ā0

þ f̄Ā0
0h̄

0

2
ffiffiffī
h

p
�
δH:

ð3:12Þ

The above equation is integrable, with the solution

δF ¼ rĀ0Ā0
0

2γ̄
δH ð3:13Þ

up to an overall constant. We can use this relation to
eliminate δH from the perturbed field equations.
To find the equations for the matter perturbations, we

begin with Eq. (3.9a), obtaining the following equation
once the metric perturbations have been eliminated:

0¼ δẅ− γ̄2δw00 þ
�
−γ̄γ̄0 þq2ψ̄2Ā0

r2Ā0
0

A
�
δw0 þ

�
−q2Ā2

0þ
f̄ h̄
r2

−
γ̄2

r2
−
f̄Ā0

0
2

2
−
q2Ā0ψ̄ ψ̄

0

r2Ā0
0

A
�
δw

þqĀ0

�
−2þ ψ̄2

r2
−
ψ̄ ψ̄ 0

r

�
δuþqĀ0ψ̄

Ā0
0

δA0
0−qψ̄δA0−

rγ̄2

qĀ0ψ̄
δF 0 þ

�
−

f̄ h̄
qĀ0ψ̄

−
f̄r2Ā0

0
2

2qĀ0ψ̄
þ rf̄Ā0

0

qψ̄Ā2
0

Aþ qψ̄
rĀ0

0

A
�
δF ; ð3:14Þ

where

A≡ f̄ h̄þrĀ0Ā0
0: ð3:15Þ

The imaginary part of scalar field equation (3.9g) can be integrated once with respect to time to give

0 ¼ δẅ − γ̄2δw00 þ
�
−γ̄γ̄0 þ q2ψ̄2Ā0

r2Ā0
0

A
�
δw0 þ

�
−q2Ā2

0 −
q2Ā0ψ̄ ψ̄

0

r2Ā0
0

Aþ γ̄γ̄0

r

�
δw

þ qĀ0

�
−2þ ψ̄2

r2
−
ψ̄ ψ̄ 0

r

�
δuþ qĀ0ψ̄

Ā0
0

δA0
0 − qψ̄δA0 þ δGðrÞ; ð3:16Þ

where δGðrÞ is an arbitrary function of the radial coordinate
r. We next compare the two equations (3.14) and (3.16).
This gives another linear first-order equation, this time for
δF and δG:

0 ¼ δF 0 þ
�
r

�
ψ̄

r

�02
−
Ā00
0

Ā0
0

−
Ā0
0

Ā0

−
1

r
þ f̄0

f̄

�
δF þ qĀ0ψ̄

rγ̄2
δG:

ð3:17Þ

We will return to Eq. (3.17) in the next section where we
eliminate the unknown functions δF ðrÞ and δGðrÞ. For the
last step in our derivation of the linearized perturbation
equations, we use Eqs. (3.9b) and (3.9c) to eliminate δẅ
and δA00

0 from the real part of the Klein-Gordon equa-
tion (3.9g).
Following these steps, we may obtain three equations

governing three perturbations: δu, δw and δA0. The first
equation is derived from the real part of the Klein-Gordon
equation (3.9g) and takes the form
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0 ¼ δü − γ̄2δu00 − γ̄γ̄0δu0 þ
�
3q2Ā2

0 þ
γ̄γ̄0

r
− f̄ h̄

�
ψ̄

r

�02
þ f̄Ā0

0
2

2

��
ψ̄

r

�
2

þ ψ̄ 02
�
−
f̄ ψ̄ ψ̄ 0Ā0

0
2

r

�
δuþ 2qĀ0γ̄

2δw00

þ qf̄Ā0

�
2

ffiffiffī
h

p
γ̄0 þ

�
−
Ā0
0

Ā0

Aþ h̄
r
þ rĀ0

0
2

2

��
ψ̄

r

�0
ψ̄

�
δw0 þ qĀ0

�
2q2Ā2

0 −
2γ̄γ̄0

r
þ γ̄ψ̄ 0

�
ψ̄

r

�0�γ̄Ā0
0

Ā0

− γ̄0 −
γ̄

r

��
δw

þ 2rγ̄2

ψ̄
δF 0 þ γ̄

��
ψ̄

r

�0
þ 2

ψ̄

��
ðrγ̄Þ0 − rγ̄Ā0

0

Ā0

�
δF : ð3:18aÞ

The second equation is obtained from Eq. (3.16), after the application of Eq. (3.17),

0 ¼ δẅ − γ̄2δw00 þ
�
−γ̄γ̄0 þ q2Ā0ψ̄

2

r2Ā0
0

A
�
δw0 þ

�
−q2Ā2

0 −
q2Ā0ψ̄ ψ̄

0

r2Ā0
0

Aþ γ̄γ̄0

r

�
δw − qĀ0

�
2þ r

�
ψ̄

r

��
ψ̄

r

�0�
δu

þ qĀ0ψ̄

Ā0
0

δA0
0 − qψ̄δA0 −

rγ̄2

qĀ0ψ̄
δF 0 þ rγ̄2

qĀ0ψ̄

�
1

r
−
f̄0

f̄
þ Ā0

0

Ā0

þ Ā00
0

Ā0
0

− r

�
ψ̄

r

�02�
δF : ð3:18bÞ

The third equation comes from the Einstein field equation (3.9c)

0 ¼ qψ̄
Ā0
0r

2
Aδw00 þ qψ̄ Ā0

r2

�
γ̄0

Ā0Ā0
0γ̄

A −
q2ψ̄2h̄
r2Ā0

0
2

�
δw0 þ qψ̄Ā0

r2

�
A

rĀ0Ā0
0γ̄

�
−γ̄0 þ rq2Ā2

0

γ̄

�
þ q2h̄ ψ̄ ψ̄ 0

r2Ā0
0
2

�
δw

−
�
ψ̄

r

�0
δu0 −

��
ψ̄

r

�00
þ
�
1

r
þ γ̄0

γ̄

��
ψ̄

r

�0�
δuþ

�
δA0

0

Ā0
0

�0
þ
�

A
rĀ0Ā0

0

δF
�0
−
�
−

1

rf̄
þ Ā0

0

Ā0

þ rĀ0
0
2

2f̄ h̄

�
δF : ð3:18cÞ

To summarize, we have obtained two dynamical equa-
tions (3.18a) and (3.18b) which involve time derivatives,
and one constraint equation (3.18c) which contains only
derivatives with respect to r. Note that that all these
equations (3.18a)–(3.18c) only contain radial derivatives
of the electric potential perturbation δA0, and not time
derivatives. Essentially, this is due to residual gauge freedom
(as discussed in Sec. III A), which means that an arbitrary
global function of time can be added to δA0without changing
physical quantities such as the electromagnetic field.

C. Boundary conditions

We now consider the boundary conditions for the
perturbed field variables at two boundaries, i.e. at the
black hole horizon (r ¼ rh) and at the mirror (r ¼ rm).
Near the horizon, we impose ingoing boundary conditions

δuðt; rÞ ¼ Re½e−iσðtþr�Þ ~uðrÞ�;
δwðt; rÞ ¼ Re½e−iσðtþr�Þ ~wðrÞ�;
δA0ðt; rÞ ¼ Re½e−iσðtþr�Þ ~A0ðrÞ�; ð3:19Þ

where r� is the tortoise coordinate defined by

dr�
dr

¼ γ̄: ð3:20Þ

Here, ~u, ~w and ~A0 are complex functions which depend
only on the radial coordinate r and have Taylor series
expansions near the horizon of the form

~u ¼ ~u0 þ ~u1ðr − rhÞ þOðr − rhÞ2;
~w ¼ ~w0 þ ~w1ðr − rhÞ þOðr − rhÞ2;
~A0 ¼ ~A1ðr − rhÞ þ ~A2ðr − rhÞ2 þOðr − rhÞ3: ð3:21Þ

Before we proceed further, we noted earlier that adding
an arbitrary function of r to δw makes no difference to the
scalar field perturbation δψ . This freedom allows us to set
δG ¼ 0 in Eq. (3.16). Hence, Eq. (3.17) is solvable using
the conventional integrating factor method and the solution
is given by

δF ¼ K
rĀ0Ā0

0

f̄
exp

�
−
Z

r

rh

r

�
ψ̄

r

�02
dr

�
; ð3:22Þ

where K is a constant of integration. As ingoing boundary
conditions are required for all perturbations, including the
metric variables δf, δh (and thus δγ), it must be the case
from Eq. (3.11a) that δF ¼ 0 at r ¼ rh. Therefore we must
set K ¼ 0 in Eq. (3.22), and so δF vanishes identically.
Thus δF 0 and δF are eliminated from the perturbation
equations (3.18a)–(3.18c) by our choice of boundary
conditions.
By inserting Eqs. (3.19) and (3.21) into the perturbation

equations (3.18a)–(3.18c), we find that ~u1, ~w1, ~A1 and ~A2

can be expressed in terms of ~u0, ~w0 and σ. The simpler of
these expressions are
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~A1 ¼ −
iqσϕhð2þ r2hE

2
hÞ

rhð−2þ 2irhσ þ r2hE
2
hÞ

~w0;

~u1 ¼
−8qEhσ

2r3h ~w0 þ ð−2þ r2hE
2
hÞ2 ~u0

rhð−2þ r2hE
2
hÞð−2þ 4irhσ þ r2hE

2
hÞ
; ð3:23Þ

while the expressions for ~w1 and ~A2 are sufficiently
complicated to be omitted here. Thus with given values
for the background parameters q, ϕh and Eh, the boundary
conditions (3.19) depend on three additional parameters,
namely ~u0, ~w0 and σ. We emphasize that the parameters ~u0,
~w0 and σ are all complex. The physical perturbations arise
from taking the real part in Eq. (3.19).
At the mirror r ¼ rm, the scalar field perturbation δψ

(like the background scalar field ψ̄) must vanish. The
perturbations of the metric functions and electric potential
are unconstrained there. Since the real and imaginary parts
of the scalar field perturbation (3.10) take the form (3.19),
at the mirror the functions ~uðrÞ and ~wðrÞ must satisfy

~uðrmÞ ¼ 0 ¼ ~wðrmÞ: ð3:24Þ

We require both the real and imaginary parts of ~uðrÞ and
~wðrÞ to vanish at the mirror so that the real and imaginary
parts of the scalar field perturbation [given by Eq. (3.19)]
vanish for all time t, when the real part in Eq. (3.19)
is taken.
In summary, using the form (3.19) for the matter

perturbations, we now have three ordinary differential
equations (3.18a)–(3.18c) for three unknown functions
of r, namely: ~u, ~w and ~A0. Together with the boundary
conditions (3.19) and (3.24), we now have a system which
can be solved numerically.

D. Method and results

We implement a shooting method to numerically solve
the boundary value problem (3.18a)–(3.18c), (3.19), and
(3.24). Since both the perturbation equations and boundary
conditions are linear, we set the overall scale of the

perturbations so that ~w0 is fixed to be unity. This leaves
two free parameters, ~u0 and σ, which we use as shooting
parameters. The process of numerical integration is as
follows. First, we specify the background parameters q, ϕh
and Eh, then integrate the static field equations. We obtain
the numerical hairy black hole solution and find the
location of the first zero of the equilibrium scalar field,
setting this to be the mirror location rm. Second, the three
coupled perturbation equations (3.18a)–(3.18c) are solved
by searching for values of ~u0 and σ such that the boundary
conditions (3.19) and (3.24) are satisfied. We are particu-
larly interested in the sign of the imaginary part of the
frequency, ImðσÞ. Perturbations for which ImðσÞ < 0 are
stable and decay exponentially in time, whereas perturba-
tions for which ImðσÞ > 0 are unstable, growing exponen-
tially in time.
As an example, we plot in Fig. 5 the behavior of ~u, ~w and

~A0 for scalar charge q ¼ 0.1, with horizon values for the
electric field Eh ¼ 0.8 and scalar field ϕh ¼ 1.2. The values
of the two shooting parameters are σ ¼ 0.1731 − 0.0038i
and ~u0 ¼ 0.4397þ 0.0231i. This figure clearly demon-
strates that both the real and imaginary parts of the field
variables ~u and ~w vanish at the location of the mirror. By
contrast, the perturbation of the electric potential ~A0 does
not vanish on the mirror. This particular perturbation mode
decays exponentially with time since the frequency σ
satisfies ImðσÞ < 0.
The key question we explore in this section is whether

the perturbation mode shown in Fig. 5 is typical in having
ImðσÞ < 0. As illustrated by Fig. 4, we have a three-
dimensional parameter space of equilibrium solutions,
governed by the parameters q (the scalar-field charge),
ϕh (the value of the scalar field on the horizon) and Eh (the
electric field on the horizon). It is clearly impractical to test
every possible solution in this phase space, and therefore in
this section we present a selection of results probing various
parts of the phase space.
With the mirror at the first zero of the equilibrium scalar

field, for fixed values of the parameters q, ϕh and Eh, we

5 10 15 20 25
0.5

0.0

0.5

1.0

1.5

Radius

u
r

5 10 15 20 25

5

0

5

10

15

Radius

w
r

5 10 15 20 25
0.8

0.6

0.4

0.2

0.0

0.2

0.4

Radius

A
0

r

FIG. 5 (color online). An example plot of the three perturbation functions, ~u, ~w and ~A0 satisfying the perturbation equations (3.18a)–
(3.18c) and boundary conditions (3.19) and (3.24). The equilibrium solution parameters are: scalar-field charge q ¼ 0.1, electric field on
the horizon Eh ¼ 0.8 and scalar field on the horizon ϕh ¼ 1.2. The corresponding eigenvalue σ is 0.1731 − 0.0038i and
~u0 ¼ 0.4397þ 0.0231i. The horizontal and vertical lines are included to help visualize where the perturbation functions vanish
and the location of the mirror. For this example the mirror is situated at rm ≈ 24, which is the first zero of the equilibrium scalar field.
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search for perturbations solving the equations (3.18a)–
(3.18c), subject to the boundary conditions (3.19) and
(3.24). For each fixed equilibrium solution we found a
single value of σ (together with one value of the other
shooting parameter ~u0) such that the corresponding sol-
ution of the perturbation equations satisfies the boundary
conditions. In all cases examined with the mirror at the first
node, we found that ImðσÞ < 0, implying that the pertur-
bations exponentially decay in time, suggesting the equi-
librium solutions are stable.
We now present a selection of numerical results. In

Figs. 6–10 we fix two of the parameters q, ϕh and Eh and
vary the third.
Figure 6 shows the real (left) and imaginary (right) parts

of the frequency σ as a function of mirror radius rm (top
row) and the value of the equilibrium scalar field ϕh
(bottom row) for fixed q ¼ 0.1. In each plot, three different
curves represent three distinct values of Eh, and on each
curve ϕh varies from 0.1 to 1.4. Our numerical method
breaks down when ϕh is very small and the mirror location
is far from the black hole event horizon. When ϕh is greater
than ∼1.4, no static black hole solutions exist with non-
trivial scalar field hair (see Fig. 4); in the case where

Eh ¼ 0.8, static hairy black holes cannot be found for ϕh
larger than ∼1.2. As can be clearly seen in the ImðσÞ plots,
all black hole solutions examined appear to be linearly
stable against spherically symmetric perturbations.
Figure 6 shows how ImðσÞ decreases (so that the

perturbations decay more rapidly) and ReðσÞ increases
as ϕh is increased, and the mirror moves closer to the black
hole horizon. For the values of Eh shown in this figure,
ImðσÞ also decreases as Eh increases for fixed ϕh.
Figure 7 illustrates the real (left) and imaginary (right) part

of the frequency σ against the electric field at the horizonEh
for three distinct values of ϕh. It remains the case that
ImðσÞ < 0; as it can take a small value, we plot the logarithm
of the modulus of ImðσÞ. As the electric field on the horizon,
Eh, increases for fixed ϕh, then ReðσÞ increases and ImðσÞ
decreases. Furthermore, as ϕh increases, ReðσÞ increases
and ImðσÞ decreases.
Let us now explore the effect of changing the scalar-field

charge q. We may fix the values of ϕh and Eh, and vary q.
Figure 8 shows ReðσÞ (left) and ImðσÞ (right) as functions
of the charge of the scalar field q. Once again, we find only
stable modes with ImðσÞ < 0. As the scalar-field charge q
increases, we see that ReðσÞ increases and ImðσÞ decreases.
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FIG. 6 (color online). The real (left) and imaginary (right) part of the mode frequency σ is plotted as a function of (top row) the mirror
radius rm and (bottom row) the equilibrium scalar field on the horizon ϕh, for q ¼ 0.1, ϕh ∈ ð0.1; 1.4Þ and various values of Eh. The
mirror is located at the first zero of the equilibrium scalar field. In all these plots, ImðσÞ < 0, and the perturbations decay
exponentially in time.
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FIG. 7 (color online). The real (left) and imaginary (right) part of the mode frequency σ is plotted as a function of the electric field at
the horizon Eh, for q ¼ 0.1 and various values of ϕh. The mirror is located at the first zero of the equilibrium scalar field. In the right-
hand plot, ImðσÞ < 0 and we have plotted the logarithm of the modulus of ImðσÞ.
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FIG. 8 (color online). The real (left) and imaginary (right) part of the mode frequency σ is plotted as a function of the scalar charge q,
for various values of ϕh and Eh. The mirror is located at the first zero of the equilibrium scalar field. All values of ImðσÞ shown in the
right-hand plot are negative.
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FIG. 9 (color online). The real (left) and imaginary (right) part of the mode frequency σ is plotted as a function of the electric field at
the horizon Eh, for fixed ϕh ¼ 0.2 and various values of q. The mirror is located at the first zero of the equilibrium scalar field. All values
of ImðσÞ shown in the right-hand plot are negative; we have plotted the logarithm of the modulus of ImðσÞ.
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In Fig. 9, four different scalar-field charges are chosen,
and the value of the equilibrium scalar field on the horizon
is fixed to be ϕh ¼ 0.2, with Eh varying. Notice that as q
increases the real part of the frequency σ increases and the
imaginary part decreases [we plot the magnitude of ImðσÞ
on a logarithmic scale as it is small]. Moreover, from Fig. 9,
we observe that as q decreases, the curves for ReðσÞ and
ImðσÞ cover a greater range of Eh values. This is due to the
fact that as q becomes smaller the two-dimensional phase
space of static solutions expands (see Fig. 4).
Finally, in Fig. 10 we display the real (left) and

imaginary (right) part of the frequency σ as a function
of mirror radius rm (top row) and the value of the
equilibrium scalar field on the horizon ϕh (bottom row)
for fixed scalar charge q ¼ 0.2. This should be compared
with the corresponding plot in Fig. 6 for q ¼ 0.1. We see in
Fig. 10 that as Eh increases the range of values of ϕh also
increases. This can be understood from the phase-space
plot of the static solutions (upper right-hand plot in Fig. 4).
Again, ImðσÞ remains negative. As in previous figures, with
fixed Eh, increasing ϕh increases ReðσÞ and decreases
ImðσÞ, while increasing Eh for fixed ϕh decreases ImðσÞ.

In all the figures considered so far in this section, the
mirror was located at the first zero of the equilibrium scalar
field. We have found a consistent picture: for each static
hairy black hole, we can only find perturbations which
decay exponentially in time. We conclude that the static
hairy black holes with the mirror at the first zero of the
equilibrium scalar field appear to be stable.
We close this section by considering some results when

the mirror is located at the second zero of the equilibrium
scalar field, providing an example plot in Fig. 11. The real
(left) and imaginary (right) part of the frequency σ are
plotted against mirror radius rm (top row) and the value of
the scalar field on the horizon ϕh (bottom row) for fixed
q ¼ 0.1. In contrast to the first-zero case, we now find
perturbations with ImðσÞ > 0 for all the static black hole
solutions considered in Fig. 11, so that the perturbations
grow exponentially in time. We conclude that static hairy
black holes with the mirror at the second zero of the
equilibrium scalar field are unstable. We conjecture that if
the mirror was located at a node after the second zero of the
equilibrium scalar field, then the hairy black holes would
remain unstable.
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FIG. 10 (color online). The real (left) and imaginary (right) part of the mode frequency σ is plotted as a function of (top row) the mirror
radius rm and (bottom row) the equilibrium scalar field on the horizon ϕh, for q ¼ 0.2, ϕh ∈ ð0.1; 1.3Þ and various values of Eh. The
mirror is located at the first zero of the equilibrium scalar field. In the right-hand plots, we plot the logarithm of the modulus of ImðσÞ;
note however that all values of ImðσÞ shown are negative.
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IV. CONCLUSIONS

When a charged scalar field interacts with an electrically
charged Reissner-Nordström black hole surrounded by a
reflecting mirror, superradiantly unstable modes exist
[45,46]. A natural question arises: what is the end point
of this instability? This question has been the focus of our
work in this paper.
Working in the frequency domain, we have confirmed

the time-domain results of Ref. [46], namely that the
charged scalar field, linearized around the Φ ¼ 0 back-
ground, has spherically symmetric unstable modes, if the
mirror is sufficiently far from the black hole horizon. This
led us to consider nonlinear spherically symmetric solu-
tions of the fully coupled Einstein-charged scalar field
theory as possible end points of this superradiant instability.
In the “scalar electrodynamics” model, a charged complex
scalar field is coupled to an electromagnetic field and the
usual Einstein-Hilbert gravitational Lagrangian. Solving
the equilibrium field equations, we found black hole
solutions with a nontrivial scalar field which oscillates
about zero. We may place a reflecting mirror at any one of

the nodes of the scalar field, to obtain a black hole in a
cavity. It is important to note that the solutions we find do
not contradict the no-hair theorem of Bekenstein [31]
which applies in the absence of a mirror-like boundary.
To investigate whether these hairy black holes could be

possible end points of the superradiant instability, we have
considered spherically symmetric perturbations of the hairy
black hole solutions. These perturbations satisfy ingoing
boundary conditions on the horizon. Furthermore, the per-
turbations of the charged scalar field vanish on themirror. The
resulting perturbation equations, though linear, are highly
coupled and can (we believe) only be solved numerically.
With the mirror placed at the first zero of the equilibrium

scalar field, we find no evidence of any instabilities: all
such equilibrium solutions appear to be stable under small
perturbations. On the other hand, if the mirror is placed at
the second zero of the equilibrium scalar field, we find
unstable perturbations which grow with time. We conjec-
ture that the same result would hold if the mirror were
situated at the third or subsequent zeros of the equilibrium
scalar field.
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FIG. 11 (color online). Instability of perturbations when the mirror is placed at the second zero of the static scalar field. The real (left)
and imaginary (right) part of the mode frequency σ is plotted as a function of (top row) the mirror radius rm and (bottom row) the
equilibrium scalar field on the horizon ϕh, for q ¼ 0.1, ϕh ∈ ð0.1; 1.4Þ and various values of Eh. Note that in these plots, unlike the plots
for the first-zero case, the imaginary part of the frequency is positive, implying that the perturbations are exponentially growing in time.
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Let us now consider the implications of these results in a
wider context. It is known that a superradiant instability can
also arise when a charged black hole is embedded in an
asymptotically anti–de Sitter (AdS) spacetime [48,49]. In
such a scenario, the timelike boundary of spacetime itself
acts as the mirror, providing a natural reflecting boundary
condition (or “Dirichlet wall”). In Refs. [50,51] asymp-
totically AdS “hairy” black holes were constructed within
the context of supergravity/higher-dimensional theories.
Two influential ideas underpinning this work can be traced
through Refs. [41,48–51]: (i) “hairy” stationary solutions
are plausible end points of the superradiant instability; and
(ii) in the limit of small field amplitude, the hairy solutions
connect to (perturbed) vacuum solutions endowed with
linear perturbations at the critical superradiant frequency
σc. It is plausible that the stability properties of the four-
dimensional hairy black holes, considered here, may be
shared by their higher-dimensional, nonasymptotically flat
cousins. However, this remains to be investigated.
Our view is that the “scalar electrodynamics”model may

also provide insight into the development of superradiant
instabilities in astrophysical systems. However, we should
proceed with an element of caution, for two reasons. First,
in the Kerr black hole case, superradiance is promoted by
angular momentum, rather than charge. Thus, the Kerr
instability does not appear in the spherically symmetric
sector, making any stability analysis considerably more
involved. Second, in the Kerr case, instabilities can arise
spontaneously in bound states of an (ultra-light) massive
bosonic field. By contrast, in the charged case, the com-
petition between gravitational attraction and electrostatic
repulsion means that bound states cannot form in the
superradiant frequency regime; thus the artifice of a mirror
is necessary. These factors suggest that one should be
cautious when attempting to infer from analogy.
This work was motivated, in part, by the recent discovery

of a Kerr-scalar family of (asymptotically flat and four-
dimensional) black hole solutions [39,40]. The discovery
inspired Herdeiro and Radu [52] to propose the following
conjecture: “a (hairless) black hole which is afflicted by the
superradiant instability of a given field must allow hairy
generalizations with that field.” (As noted in Ref. [40], the
given field should also generate a stress-energy with
appropriate Killing symmetries; this excludes, for example,
a real scalar field). Our equilibrium charged-scalar black
hole solutions (Sec. II C) are in accord with Herdeiro and
Radu’s conjecture. One could also envisage a stronger
conjecture: “a (hairless) black hole solution afflicted by a
superradiant instability of a given field may naturally
evolve towards a hairy black hole solution which is stable

under perturbations in that field.” When the mirror is
located at the first zero of the equilibrium scalar field,
our charged-scalar black hole solutions are stable (at least
to time-periodic, linear, spherically symmetric perturba-
tions). We have therefore conjectured that they are possible
end points of the superradiant instability discovered in
Refs. [45,46], in accord with our stronger version of the
Herdeiro/Radu conjecture. We should mention that the
stronger conjecture is somewhat provocative, as it is
apparently in tension with numerical simulations in the
Kerr case which suggest that nonlinear effects lead to
collapse of the field, and a subsequent explosive phenome-
non, known as a “bosenova” [53] (for other perspectives see
Refs. [54–58]).
In order to ascertain whether these hairy charged-scalar

black holes are indeed (i) stable under more generic
perturbations, and (ii) natural end points of the vacuum
superradiant instability, a full nonlinear time-domain
numerical simulation would be required. One could start
with a small perturbation of a Reissner-Nordström black
hole in a cavity, and track the development of the instability
into the nonlinear regime. Such a nonlinear simulation
would be a technical achievement, as (i) the horizon would
be dynamical, and (ii) the growth rate of the superradiantly
unstable modes of the Reissner-Nordström black hole in a
cavity is about 2 orders of magnitude smaller than their
frequency. Here, the methods of numerical relativity may
find a further application [59]. Such simulations could be
greatly simplified by restricting to spherical symmetry,
which is not possible in the Kerr context. Alternatively, as a
starting point, it would be instructive to perform a time-
domain analysis of linear, spherically symmetric perturba-
tions of the equilibrium charged-scalar hairy black holes
presented in this paper, in order to confirm the frequency-
domain stability results presented here. Either approach
would surely lead towards a fuller understanding of the
generic features of superradiant instabilities, and their
relevance (or otherwise) in astrophysics.
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