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Generic scalar-tensor theories of gravity predict deviations from Newtonian physics inside astrophysical
bodies. In this paper, we point out that low mass stellar objects, red and brown dwarf stars, are excellent
probes of these theories. We calculate two important and potentially observable quantities: the radius of
brown dwarfs and the minimum mass for hydrogen burning in red dwarfs. The brown dwarf radius can
differ significantly from the general relativity prediction, and upcoming surveys that probe the mass-radius
relation for stars with masses< Oð0.1M⊙Þ have the potential to place new constraints. The minimum mass
for hydrogen burning can be larger than several presently observed red dwarf stars. This places a new and
extremely stringent constraint on the parameters that appear in the effective field theory of dark energy and
rules out several well-studied dark energy models.
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I. INTRODUCTION

Dark energy and the cosmological constant problem have
been driving the study of alternative theories of gravity for
more than a decade (see [1,2] for recent reviews). Theories
that are able to drive the acceleration of the cosmic
expansion typically invoke screening mechanisms in order
to remain compatible with local tests of gravity. These use
nonlinear features to decouple solar system and cosmologi-
cal scales such that the theory behaves like general relativity
(GR) in the solar system while exhibiting novel cosmolo-
gies. This has prompted a large theoretical effort toward
finding novel small scale probes of these mechanisms, and
astrophysical probes, in particular stellar structure tests,
have emerged as promising candidates [3–11].
The Vainshtein mechanism [12] is very efficient at hiding

deviations from GR locally and is exhibited in a wide
variety of alternative gravity theories [13–15]. Recently, the
authors of [16] have shown that the mechanism is partially
broken inside astrophysical bodies in a wide class of
interesting theories (the beyond Horndeski class [17,18]).
Using this result, the authors of [11] have derived the
modifications to the stellar structure equations,1 which
manifest as a modification of the hydrostatic equilibrium
equation. This was applied to polytropic models to derive
the new Lane-Emden equation, which was used to predict
the properties of main-sequence stars. The breaking of the
mechanism can result in weaker gravity inside extended
objects, and this results in stars that are dimmer and cooler at
fixed mass.2 Polytropic models are an incomplete model of
main-sequence stars and lack a description of nuclear
burning and metallicity effects. As such, the authors of

[11] identified several degeneracies that may make the
predicted novel effects difficult to observe in practice.
In this paper, we point out that low mass stellar objects,

red and brown dwarf stars, are perfect probes of these
theories precisely because they are well described by
polytropic models. They are chemically homogeneous
except for the photosphere, and their observational proper-
ties are only weak functions of their opacity. Furthermore,
the lack of chemical evolution (except during their very
early phases) allows us to treat them as static.
Low mass brown dwarfs have a radius that is almost

independent of their mass over a large range of masses.
Polytropic models based on GR predict that this is 0.1R⊙,
which is close to the observed value. In this work, we find that
this can be arbitrarily large when gravity is weaker, and as
small as 0.039R⊙ when it is stronger. Measuring the mass-
radius relation of objects with mass M ≲Oð0.1M⊙Þ can
thereforeplace anewconstraintonalternativegravity theories.
Higher mass objects obey a different mass-radius rela-

tion whereby they are more compact at higher masses.
Objects that are massive enough have sufficiently high core
temperatures and densities to burn hydrogen. Thus, only
stars that are sufficiently massive can burn on the main
sequence; lower mass objects remain inert and eventually
cool. GR predicts that the minimum mass for hydrogen
burning (MMHB) is around 0.08M⊙, which is again very
close to what is observed. Here, we find that alternative
gravity models predict values that can be arbitrarily large
when gravity is weaker.3 The observation of several hydro-
gen burning stars with masses in the range 0.08 − 0.1M⊙
then allows us to constrain the new parameterϒ≲ 0.027. In
terms of the effective field theory of dark energy, this places
an independent constraint on the parameters

*jeremy.sakstein@port.ac.uk
1See also [19].
2There is a small region of parameter space where the converse

is true [19]. We will discuss this later.

3We will not consider the case where gravity is stronger
because this is always consistent with observations of the lowest
mass hydrogen burning objects.
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α2H
αH − αT − αBð1þ αTÞ

≲ 0.0068: ð1Þ

This constraint was presented in a recent article [20]. Here,
we expand the calculation and discuss it in detail.
This paper is organized as follows: In Sec. II we provide

an introduction to the Vainshtein mechanism for readers
unfamiliar with screening mechanisms and alternative
theories of gravity. We also present the modification of
the hydrostatic equilibrium equation and apply it to poly-
tropic models to derive the new Lane-Emden equation.
The connection with the effective field theory of dark
energy is also presented. In Sec. III we provide a brief
review of the salient features of dwarf stars for the benefit
of readers well versed in alternative gravity theories who
may be unfamiliar with stellar astrophysics. In Sec. IV we
apply the modified Lane-Emden equation to dwarf star
models in order to calculate the alternative gravity theory
predictions for their observable properties. We conclude
in Sec. V.

II. ALTERNATIVE GRAVITY THEORIES AND
THE VAINSHTEIN MECHANISM

A. The Vainshtein mechanism

The Newtonian limit of GR results in a scalar theory of
gravity where the gravitational field is described by the
Newtonian potential ΦN, which results in a force (per unit
mass) FN ¼ −∇ΦN. The gravitational field is sourced by
the local density ρ through the Poisson equation

∇2ΦN ¼ 4πGρ: ð2Þ

Scalar-tensor alternatives to GR include an additional field
ϕ, which results in a fifth force

F5 ¼ −β∇ϕ ð3Þ

parametrized by a dimensionless coupling β ∼Oð1Þ. The
simplest scalar-tensor theories generically predict that the
local field is sourced by the density in the exact same
manner as the Newtonian potential [21],

∇2ϕ ¼ 8πβGρ; ð4Þ

so that one has ϕ ¼ 2βΦN. The total force is then
F ¼ ð1þ 2β2ÞFN, and one must typically tune β ≲ 10−3

to satisfy solar system bounds [21]. Importantly, one then
has β ≪ 1 on all scales, which makes it difficult for ϕ to
have any nontrivial influence on the cosmology.
The Vainshtein mechanism circumvents this by intro-

ducing new derivative interactions that manifest as new
differential operators on the left hand side of (4). This
results in solutions for ϕ that differ significantly from ΦN.
One of the simplest examples of this is the cubic Galileon

model [22], which, imposing spherical symmetry, results in
the following equation:

1

r2
d
dr

�
r2
dϕ
dr

�
þ 1

r2
d
dr

�
r

�
dϕ
dr

�
2
�
¼ 8πβGρ: ð5Þ

The first term can be recognized as ∇2ϕ; the second is the
new term arising from the new interaction. Integrating
once, we obtain an algebraic relation for the ratio of the
fifth to Newtonian force x≡ F5=FN,

xþ
�
rV
r

�
3 x2

2β2
¼ 2β2; where r3V ≡GM

Λ2
ð6Þ

is the Vainshtein radius and Λ is a new mass scale that
appears in the underlying theory. Far outside the Vainshtein
radius, we have x ≈ 2β2 and so F5 ¼ 2β2FN, the fifth force
is a factor of 2β2 larger than the Newtonian one. This is the
unscreened regime. When r ≪ r V we instead have

F5

FN
¼ 2β2

�
r
rV

�3
2

; ð7Þ

and the fifth force is suppressed by a factor of ðr=rVÞ3=2.
This is the screened regime. The Vainshtein radius of the
Sun is OðpcÞ [23], and so one does not need to tune β ≪ 1
in order to satisfy solar system tests.

B. Breaking of the Vainshtein mechanism
and stellar structure

The cubic Galileon is the simplest example of a theory
that exhibits the Vainshtein mechanism. The authors of [16]
have shown that the mechanism is partially broken inside
objects of finite extent in more generic theories.
Specifically, outside objects the mechanism works as above
but their internal structure is governed by the modified
hydrostatic equilibrium equation [11,19]

dP
dr

¼ −
GMρ

r2
−
ϒ
4
Gρ

d2M
dr2

: ð8Þ

Here, ϒ is a dimensionless parameter that characterizes the
strength of themodifications of gravity; it is a combination of
the new mass scales appearing in the Lagrangian for the
theory and the time derivative of the cosmological field.Note
that since the mass is more concentrated toward the center of
stars, the new term corresponds to a weakening of gravity if
ϒ > 0 and a strengthening when the converse is true.
In terms of the parameters appearing in the effective field

theory (EFT) of dark energy [18,24], one has4 [19]

α2H
αH − αT − αBð1þ αTÞ

≲ 0.0068: ð9Þ

4In general, there are two additional parameters, αK and M�.
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The EFT describes the cosmology of beyond Horndeski
theories, a very general scalar-tensor theory5 where the
equations of motion are second order [18], on linear scales.
The parameters therefore govern deviations from GR on
these scales, and upcoming surveys aimed at testing gravity
will focus on them. Any independent constraint from small
scales is therefore complementary to these searches.
Furthermore, several viable competitors to ΛCDM, for
example, the covariant quartic Galileon, which has
ϒ ¼ 1=3, predict ϒ ∼Oð1Þ precisely because the dynam-
ics of the theory differ greatly from GR. The constraint we
will obtain from the MMHB is strong enough to rule these
out. Note that ϒ ∝ α2H, which is only nonzero when the
beyond Horndeski terms are present. This reflects the fact
that the Vainshtein mechanism works flawlessly when the
theory is pure Horndeski and so only those theories that
contain some beyond Horndeski terms are probed. Since
there are no symmetries protecting the general action, one
would expect quantum corrections to generate such terms
in generic modified gravity theories. Finally, we note that
there is no upper limit on ϒ, but the authors of [19] have
shown that theories where ϒ < −2=3 do not give stable
stellar configurations. For this reason, we restrict our
attention to the region −2=3 < ϒ < ∞.
Awide variety of stellar systems can be described using a

polytropic equation of state (EOS)

P ¼ Kρ
nþ1
n ; ð10Þ

where K is a constant that depends on the composition of
the fluid and n is known as the polytropic index. In GR, the
equations of stellar structure are scale invariant, and this
allows one to reformulate them in terms of dimensionless
quantities. This symmetry is preserved by Eq. (8), and so
we write r ¼ rcξ, ρ ¼ ρcθðξÞn, and P ¼ PcθðξÞnþ1, where
Pc and ρc are the central pressures and densities and

rc2 ≡ ðnþ 1ÞPc

4πGNρc
2
: ð11Þ

Using the continuity equation, one has

dM
dr

¼ 4πr2ρðrÞ; ð12Þ

which implies

d2M
dr2

¼ 8πrρþ 4πr2
dρ
dr

: ð13Þ

Using these in conjunction with Eq. (8), one is led to the
modified Lane-Emden equation [11]

1

ξ2
d
dξ

�
ð1þ nϒξ2θn−1Þξ2 dθ

dξ
þϒ

2
ξ3θn

�
¼ −θn; ð14Þ

which is subject to the boundary conditions θð0Þ ¼ 1
[Pð0Þ ¼ Pc, ρð0Þ ¼ ρc] and θ0ð0Þ ¼ 0 [dP=drð0Þ ¼ 0

6].
The radius R of the star is defined by PðRÞ ¼ 0, which
defines ξR such that θðξRÞ ¼ 0.
In GR, ϒ ¼ 0 and (14) reduces to the Lane-Emden

equation. In this case, each polytropic index n has a unique
solution. In alternative theories, this is no longer the case,
and the solution varies withϒ. It was shown in [11] that the
solution near the origin is given by

θðξÞ ¼ 1 − αξ2; with α ¼ 1

6
þϒ

4
: ð15Þ

Three important dimensionless quantities are

ωn ≡ −ξ2
dθ
dξ

����
ξ¼ξR

; ð16Þ

γn ≡ ð4πÞ 1
n−3ðnþ 1Þ n

3−nω
n−1
3−n
n ξR; and ð17Þ

δn ≡ −
ξR

3dθ=dξjξ¼ξR

; ð18Þ

which appear in the formula for the mass

M ¼ 4πrc3ρcωn; ð19Þ

the mass-radius relation

R ¼ γn

�
K
G

� n
3−n
M

n−1
n−3; ð20Þ

and the central density

ρc ¼ δn

�
3M
4πR3

�
: ð21Þ

III. DWARF STARS

In this section, we provide a brief overview of the salient
features of brown dwarf theory necessary for the calcu-
lations presented later on. The reader is referred to [28] and
references therein for a more detailed account.
The brown dwarf branch occupies the region between

Jupiter-like gas planets (MJ ¼ 10−3M⊙) and main-
sequence stars (M ≳ 0.08M⊙). They are composed of
molecular hydrogen and helium in the liquid metallic
phase, except in a very thin layer near the surface where
the density is too low and the fluid exists as a weakly5Note that the beyond Horndeski class encompasses a wide

variety of healthy scalar-tensor extensions of GR, but it is by no
means the most general [25–27] theory. 6This is a consequence of spherical symmetry.
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coupled plasma that satisfies the ideal gas law. They are
fully convective and contract along the Hayashi track and
therefore have a polytropic EOS with n ¼ 1.5 [29]. High-
mass brown dwarfs are supported by electron degeneracy
pressure, but classical Coulomb corrections shift the EOS
of low mass stars (M ≲ 4MJ) toward n ¼ 1 [30,31].
Equation (20) reveals that, when this is the case, the radius
is independent of the mass and is fixed by the EOS and the
solution of the Lane-Emden equation alone. In GR, one
finds7 γ1 ¼

ffiffiffiffiffiffiffiffi
π=2

p
≈ 1.253 and R ≈ 0.1R⊙. We will return

to calculate this for alternative theories later in Sec. IV.
When the star is first formed, it contracts under its own

self-gravity, which leads to a rise in its central temperature
and density. The contraction stops at the onset of either
electron degeneracy or thermonuclear fusion depending on
the mass; this defines brown dwarf and red dwarf stars,
respectively. Only objects that are sufficiently heavy can
reach central conditions capable of thermonuclear ignition
before the fluid becomes degenerate. Thus, there is a
minimum mass for hydrogen burning, which is typically
around 0.08M⊙ if the theory is GR. We will calculate this
mass in alternative theories in Sec. IV. If the star cannot
achieve thermonuclear ignition before degeneracy sets in, it
will become a brown dwarf. Degenerate gases have
equations of state where the pressure is almost independent
of the temperature, and so radiation from the surface does
not lead to further contraction. Instead, the brown dwarf
cools over time [33–35].
Typically, the central temperature and density of brown

dwarfs are of order 106 K and 103 g=cm3, respectively.
These conditions are not sufficient to overcome the
Coulomb barrier for 3He-3He and 3He-4He reactions,
and so burning cannot proceed via the Proton-Proton
(PP) chains. Instead, the star consumes deuterium in the
following reactions:

pþ p → dþ eþ þ νe;

pþ d → 3Heþ γ:

The second reaction is a strong interaction and therefore
proceeds quickly, consuming primordial deuterium. The
first is a weak process creating a new source of deuterium
and is therefore the rate-limiting, bottle-neck, reaction. The
energy generation rate per unit mass at brown dwarf
temperatures and densities follows the approximate
power-law form

ϵpp ¼ ϵc

�
T
Tc

�
s
�
ρ

ρc

�
u−1

; ð22Þ

with s ≈ 6.31 and u ≈ 2.28. ϵc is given by (see [28,36,37])

ϵc ¼ ϵ0X2Tc
sρc

u−1 exp

�
0.147
μ0.43e

�
; ð23Þ

where X is the hydrogen mass fraction and
ϵ0 ¼ 5.2 × 10−9 ergs=g=s.

IV. DWARF STARS IN ALTERNATIVE
GRAVITY THEORIES

This section constitutes the main original results of this
paper. The derivations will closely follow the semianalytic
model of Burrows and Liebert [28].

A. Brown dwarfs: The radius plateau

As remarked in Sec. III, low mass brown dwarfs
(M ≲ 4MJ) are well modeled by n ¼ 1 polytropes and
hence have radii given by

R ¼ γ1

�
K
G

�1
2

; ð24Þ

which is ≈0.1R⊙ when ϒ ¼ 0, i.e. in GR.8 Since K is
independent of the theory of gravity, the radius of low mass
brown dwarfs in alternative theories of gravity is given by

RðϒÞ ¼ 0.1
γ1ðϒÞ

γ1ðϒ ¼ 0ÞR⊙: ð25Þ

This is plotted as a function of ϒ in Fig. 1. When ϒ > 0,
gravity is weaker and the radius is larger than the GR
prediction. When ϒ < 0, gravity is stronger, and hence the
radius is lower, up to the limiting value of ϒ ¼ −2=3,
which predicts R ¼ 0.039R⊙. The authors of [11] have
investigated the changes in main-sequence and red giant
branch stars these theories predict and have found that they
are ≲1% when ϒ≲Oð10−1Þ. This is the first example
showing that the changes to the structure of brown dwarfs
can still be significant in this range and that these stars are
better probes of alternative theories of gravity.
Unfortunately, measurements of the mass-radius relation
for low mass objects are sparse (see [38,39], Fig. 2) and so
we will not attempt to constrain ϒ using this effect. Future
data releases from surveys targeted at low mass objects
such as GAIA [40,41] will improve the empirically
measured mass-radius relation and therefore have the
potential to place new constraints on alternative gravity
theories.

7Note that the Lane-Emden equation has the exact solution
θðξÞ ¼ sincðξÞ when ϒ ¼ 0 (i.e. GR) [32], whose first zero
occurs when ξ ¼ π. Putting this into Eq. (17) gives γ1 ¼

ffiffiffiffiffiffiffiffi
π=2

p
.

8The constant K ≈ 2.7 × 105 m5=kg=s2, which is a fit to a
more precise EOS [30,31].
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B. High mass brown dwarfs: The minimum mass
for hydrogen burning

Higher mass brown dwarfs are supported by degeneracy
pressure. A good measure of the degree of degeneracy is

η≡ μF
kBT

¼ ð3π2Þ23ℏ2

2mem
2
3

HkB

ρ
2
3

μ
2
3
eT

; ð26Þ

where μF is the Fermi energy, mH is the mass of atomic
hydrogen, and μe is the number of baryons per electron.
Note that ρ1=n=T is a constant for polytropic gases [42] and
so η is a constant. For a metal poor gas with Z ¼ 0 (i.e. zero
metallicity), which is appropriate for brown dwarfs, one has

1

μe
¼ X þ Y

2
¼ X þ 1

2
; ð27Þ

with X and Y being the hydrogen and helium mass
fractions, respectively. In this work we will not fix μe in

order to show the dependency of important quantities;
however, we note that for a hydrogen-helium fluid with
X ¼ 0.75, Y ¼ 0.25, which is typical for a brown dwarf,
one finds μe ¼ 1.143, which wewill take when we compute
any numerical values.
When the gas is fully degenerate, the pressure can be

found by integrating over the Fermi-Dirac distribution to
find

Pdeg ¼
ð3π2Þ23ℏ2

5mem
5
3

H

ρ
5
3

μ
5
3
e

: ð28Þ

In the other extreme, when the pressure support is due to
the internal motion of the gas, the EOS is given by the idea
gas law

Pgas ¼
ρkBT
μmH

; ð29Þ

where μ is the mean molecular mass given by

1

μ
¼ 2X þ 3Y

4
: ð30Þ

Again, we will not fix the value of μ in order to show the
dependency of intermediate expressions, but we note that
μ ¼ 0.593 for X ¼ 0.75, Y ¼ 0.25. We will use this value
when evaluating any expressions numerically. Using
Eq. (26), one has Pgas ¼ αPdeg=η, with

α≡ 5μe
2μ

≈ 4.82: ð31Þ

In general, a good approximation for the EOS between the
two regimes is

P ¼ ð3π2Þ23ℏ2

5mem
5
3

H

�
1þ α

η

�
ρ

5
3

μ
5
3
e

; ð32Þ

and so one can see that the equation of state is polytropic
with index n ¼ 3=2 and polytropic constant

K ¼ ð3π2Þ23ℏ2

5mem
5
3

Hμ
5
3
e

�
1þ α

η

�
: ð33Þ

Equation (33) can then be used in Eq. (20) to find the
stellar radius

R ¼ ð3π2Þ23
5Gmem

5
3

Hμ
5
3
e

γ3=2M−1
3

�
1þ α

η

�
; ð34Þ

which can be substituted into Eq. (21) to find the core
density

FIG. 1 (color online). The radius of low mass brown dwarf stars
in alternative theories of gravity as a function of ϒ.

FIG. 2 (color online). The MMHB as a function of ϒ.
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ρc ¼
125G3m3

em5
Hμ

5
e

12π5ℏ6

δ3=2
γ33=2

M2

�
1þ α

η

�
−3
: ð35Þ

The core temperature can be found using Eq. (26),

Tc ¼
25G2mem

8
3

Hμ
8
3
e

2
7
3π2kBℏ2

δ
2
3

3=2

γ23=2

η

ðαþ ηÞ2M
4
3: ð36Þ

In order to find the luminosity LHB from hydrogen burning,
we must integrate the energy generation rate (22) over the
volume of the star. Since η is constant, we have T=Tc ¼
ðρ=ρcÞ23 from Eq. (26), which implies

LHB ¼ 4πrc3ρcϵc

Z
ξR

0

ξ2θnðuþ2
3
sÞdξ: ð37Þ

Using Eq. (15), we have

θðξÞ ≈ 1 −
�
1þ 3ϒ

2

�
ξ2

6
≈ exp

�
−
�
1þ 3ϒ

2

ξ2

6

��
: ð38Þ

One can then perform the integral (37) and use Eq. (19) to
find9

LHB ¼ 3
ffiffiffiffiffiffi
3π

p
ffiffiffi
2

p
ω3=2½ð1þ 3ϒ

2
Þð3

2
uþ sÞ�32 ϵcM: ð39Þ

Using u ¼ 2.28, s ¼ 6.31, and Eqs. (23), (35), and (36) and
inserting the numerical values for the constants, one finds

LHB

5.2 × 106L⊙
¼ δ5.4873=2

ω3=2γ
16.46
3=2 ð1þ 3ϒ

2
Þ32 M

11.973
−1

η10.15

ðηþ αÞ16.46 ;

ð40Þ
where M−1 ¼ M=0.1M⊙.
Our next task is to compute the luminosity at the

photosphere.10 This is the radius where the optical depth,
defined as

τðrÞ ¼
Z

∞

r
κRρdr; ð41Þ

where κR is the Rosseland mean opacity, is equal to 2=3. It
is the photosphere that observations of quantities such as

the luminosity and temperature probe and not the stellar
surface. The photosphere typically lies very close to the
stellar radius, and so the fluid is in the gas phase rather than
the metallic one. In GR, one finds the pressure at the optical
depth by treating the surface gravity

g≡ GMðrÞ
r2

≈
GMðRÞ

R2
ð42Þ

as a constant throughout the photosphere and integrating
the hydrostatic equilibrium equation.11 In alternative the-
ories, we have the additional complication coming from the
additional term in Eq. (8). We will deal with this using
approximations consistent with those made in GR. In par-
ticular, setting g to be constant implies dðM=r2Þ=dr ¼ 0,
and so we have

dM
dr

¼ 2
M
r
; ð43Þ

which can be differentiated again to find

d2M
dr2

¼ 2
M
r2

: ð44Þ

Equation (8) is then

dPe

dr
¼ −gρ

�
1þϒ

2

�
; ð45Þ

which can be integrated from the photosphere to find

Pe ¼
2

3κR

�
1þϒ

2

�
g; ð46Þ

where Eq. (41) has been used. Note that modified gravity is
then partly degenerate with reducing the opacity.12 Indeed,
one can define an effective opacity

κeffR ¼ κR
ð1þ ϒ

2
Þ ; ð47Þ

which brings all of the equations describing the properties
of the photosphere into the same form as GR. Using the
ideal gas law, Eq. (46) becomes

ρkBT
μmH

¼ 2

3κR

�
1þϒ

2

�
g: ð48Þ

Unfortunately, this is all the analytic progress we can make
with the stellar structure equations alone. In order to

9One may worry that the approximation (38) is not accurate
since it extends the domain of integration to∞ and is valid only to
Oðξ2Þ. It is straightforward to verify that the difference between
the integral and our approximation is always smaller than 10−2

over the range 0 ≤ ϒ ≤ 0.05, which is the range we will
investigate below. Physically, the energy generated through
nuclear burning is dominated by the central region of the star
since the density and temperature fall off quickly, and so the
contribution to LHB comes mainly from the region ξ ≪ 1.

10We denote photosphere quantities with the subscript e.

11This is justified because the distance from the photosphere to
the surface is small compared with the stellar radius.

12We use the term partly because there are other places where
modified gravity has effects that cannot be compensated by
changing the opacity.
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calculate the effective temperature, we need to know
more about the metallic phase transition. To this, we use
the approximate analytic fits to the specific entropy
(s ¼ SmH=kB) in the gas phase

sgas ¼ −1.594 ln ηþ 12.43; ð49Þ

taken from [43], and the metallic phase

smetallic ¼ 1.032 ln

�
T

ρ0.42

�
− 2.438; ð50Þ

taken from [44]. Here, T is measured in K and ρ in g=cm3.
The photosphere is the radius where sgas ¼ s metallic, and so
we have

Te ¼ 1.8 × 106
ρ0.42e

η1.545
K: ð51Þ

Using Eq. (20), the surface gravity is

g ¼ 25G3m2
em

10
3

Hμ
10
3
e

ð81π8Þ13ℏ4

M
5
3

γ23=2

�
1þ α

η

�
−2

ð52Þ

¼ 3.15 × 106

γ23=2

�
M

0.01M⊙

�5
3

�
1þ α

η

�
−2

cm=s2: ð53Þ

Using this and the polytropic relation (33) in Eq. (48) we
find

ρe
g=cm3

¼ 5 × 10−5M1.17
−1

�ð1þ ϒ
2
Þ

κ−2

�0.7 η1.09
γ1.413=2

�
1þ α

η

�
−1.41

;

ð54Þ

where κ−2 ¼ κ=10−2 cm2=g. Using this in Eq. (51) we find
the effective temperature

Te

K
¼ 2.9 × 104

M0.49
−1

γ0.593=2 η
1.09

�ð1þ ϒ
2
Þ

κR

�0.296�
1þ α

η

�
−0.59

:

ð55Þ

The stellar luminosity Le is then found by inserting
Eqs. (20) and (55) into the formula Le ¼ 4πR2σT4

e to find

Le ¼ 2.65L⊙
M1.305

−1
γ2.3663=2 η4.351

�ð1þ ϒ
2
Þ

κR

�1.183�
1þ α

η

�
−0.366

:

ð56Þ

The star can burn hydrogen stably when LHB ¼ Le, and
so equating (37) and (56) one has

3.76M−1 ¼
�ð1þ ϒ

2
Þ

κR

�0.11�
1þ 3ϒ

2

�
0.14 γ1.323=2 ω

0.09
3=2

δ0.513=2

IðηÞ;

ð57Þ

with

IðηÞ≡ ðαþ ηÞ1.509
η1.325

: ð58Þ

From here on we set κR ¼ 10−2 cm2=g, which is typical for
high-mass brown dwarfs. The stellar composition does not
vary between different stars by large amounts, and since
Eq. (57) is a weak function of the opacity, the results we
will obtain are largely independent of this choice. The weak
opacity dependence is one of the reasons dwarf stars are
excellent probes of modified gravity. Importantly, the
function IðηÞ has a minimum value of 2.34 when
η ¼ 34.7. This means that if M is too low, there is no
consistent solution to Eq. (57), and hence there is a
minimum mass for hydrogen burning. In GR, one has
γ3=2 ¼ 2.357, δ3=2 ¼ 5.991, and ω3=2 ¼ 2.714, which gives
MGR

MMHB ≈ 0.08M⊙. Remarkably, this simple analytic
model makes a prediction that is very close to the results
of more detailed simulations [45,46], which predict a value
of 0.075M⊙. In Fig. 2 we plot the MMHB predicted by our
alternative theory of gravity as a function of ϒ; one can see
that the MMHB is very sensitive to its value. Large values
of ϒ > 0

13 raise the MMHB above the GR prediction. This
is because the reduced gravity ensures that stars of fixed
mass have cores that are cooler and less dense because less
nuclear burning is needed to provide the pressure gradient
that prevents gravitational collapse. Note that, according to
Eq. (56), there is a small effect on the photospheric
properties due to modified gravity. These are largely
subdominant because they are degenerate with changing
the opacity, which effects the MMHB as κ0.11R . Most of the
deviations from GR are due to changes in the core
conditions. Note from Eq. (22) that the rate of hydrogen
burning is a strong function of the core temperature and
pressure, even stronger than the rate for PP chain burning in
main-sequence stars.14 This is one reason why dwarf stars
are more sensitive probes of alternative gravity theories.
There have been several observations of low mass red

dwarf stars in the Milky Way with masses in the range
0.08 − 0.1M⊙ [47–51]. Clearly, large values of ϒ are in
tension with these observations since they predict that these
objects would be brown dwarfs. The lowest mass observed
M-dwarf is Gl 866 C [52]; its measured mass is
0.0930� 0.0008M⊙. Using Eq. (57), consistency with

13As discussed above, we will not consider the caseϒ < 0 here
because this lowers the MMHB and is hence always consistent
with observations of low mass M-dwarfs.

14The energy generation on the PP chains is ϵPP ∝ ρT4.
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this measurement is achieved only when ϒ≲ 0.02665;
values larger than this are excluded. In particular, this
places a new constraint on the parameters appearing in the
EFT,

α2H
αH − αT − αBð1þ αTÞ

≲ 0.0068: ð59Þ

We end this section by discussing the possible astro-
physical degeneracies that could mimic the effects of
modified gravity. These are few. We have already seen
that the theories considered here are partly degenerate with
changing the opacity [see Eq. (47)]. Since the MMHB is
only a weak function of the opacity (∝ κ−0.11R ), any variation
has only a minimal effect and cannot mimic the large
changes induced by modified gravity. The MMHB is also
weakly dependent on the amount of stellar rotation, which
was absent in our model. Rotation acts to increase the
MMHB [53,54] and so can only compound the effect
presented here. In order to make a firm prediction, we had
to assume specific values for the composition parameters μe
and μ. Brown dwarfs show little chemical evolution over
their lifetime (partly because their lifetime is so long), and
so these are always Oð1Þ. Therefore, our prediction is
robust to variations in their values. There are also the effects
of missing physics. Our model ignored the effects of
mixing and other transport processes. We also assumed
an EOS in order to make the problem analytically tractable.
When these effects are included in full numerical models
[45], one finds that the MMHB changes by less than
0.01M⊙, which is far smaller than the changes due to
modified gravity. The missing physics is nongravitational,
and so it is reasonable to expect similar discrepancies if one
were to use full numerical models including the change to
the hydrostatic equilibrium equation. The potential changes
are an order of magnitude smaller than the changes due to
modified gravity, and so the conclusions here should
remain largely unchanged, although one should confirm
this numerically.
Finally, one must be certain that the empirical mass

determination of low mass stars does not implicitly assume
GR. If this is the case, our constraint is not self-consistent.
Fortunately, this is not the case. The theories considered
here do not exhibit deviations from GR outside astrophysi-
cal bodies, and Newtonian physics governs the motion of
binary objects. The masses of some of the above referenced
stars are determined either by using the eclipsing binary
technique or by measuring the motions of their satellites.
These methods both rely on Newtonian mechanics and not
the object’s intrinsic properties. For this reason, the mass
determination is independent of whether the theory is GR
or scalar tensor. If the stars are not in binaries, or do not
have any observable satellites, photometry can be used to
measure the mass using the mass-luminosity relation. One
can see that Eq. (56) implies that this is sensitive to the

theory of gravity. The relation used to infer the photometric
mass is empirical and not theoretically determined. Indeed,
it is calibrated using observations of low mass stars with
known mass found using the eclipsing binary technique
[55]. For this reason, masses found using this method are
insensitive to the theory of gravity.

V. CONCLUSIONS

In this paper, we have pointed out that low mass stellar
objects, in particular brown and red dwarf stars, are
excellent probes of a new and interesting class of alternative
theories of gravity: the beyond Horndeski class. Unlike
main- and post-main-sequence stars, there are few astro-
physical degeneracies, and these are weak functions of
nongravitational physics. Furthermore, we have seen that
deviations from the GR predictions are non-negligible over
a larger range of ϒ than in objects such as main-sequence
stars and dark matter haloes. For example, main-sequence
stars show negligible deviations when ϒ≲ 0.1; this is not
the case for dwarf stars.
Low-mass brown dwarfs have radii that are largely

independent of their mass. Here, we have presented a
simple analytic model of these objects based on n ¼ 1
polytropes, which make a unique prediction for the radius
in terms of fundamental constants and the solution of the
Lane-Emden equation. We found that this is smaller than
the GR prediction of 0.1R⊙ when ϒ < 0 (stronger gravity)
and can be as small as R ¼ 0.039R⊙, corresponding to the
minimum value ofϒ ¼ −2=3. Whenϒ > 0, the strength of
gravity is reduced and the radius can be arbitrarily large.
These are robust predictions of the theory, and more
realistic models predict that the physics missing in our
model15 cause only small deviations in the radius. This
means that the effects of modified gravity are not degen-
erate with the EOS. We do not claim any firm constraint
here due to the sparse data in the mass range where our
model applies (see [38] and references therein), but we note
that future surveys such as GAIA, which will probe this
mass range, could place new and independent constraints
onϒ and the parameters appearing in the EFT. In particular,
the parameter range −2=3 ≤ ϒ ≤ 0 is not probed by the
MMHB, but makes the unique prediction that the radius
plateau lies at radii 0.039 < R=R⊙ < 0.1.
Turning to higher mass brown dwarfs and the brown-red

dwarf transition, the minimum mass for hydrogen burning
is an extremely sensitive probe of modified gravity.
Hydrogen burning requires sufficiently high core temper-
atures and densities that only sufficiently heavy stars can
achieve. General relativity predicts that the MMHB is
≈0.08M⊙. Here, we have incorporated the effects of
alternative gravity theories into the semianalytic model
of [28] to predict the MMHB as a function of ϒ. We have

15The n ¼ 1 polytropic approximation is incomplete, and a
more realistic EOS is needed.
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found that when ϒ > 0, the MMHB is larger than the GR
prediction due to the weakening of gravity requiring larger
mass stars to achieve the necessary core conditions. Using
the upper bound on the mass of the lightest observed
M-dwarf, we were able to place the new constraint
ϒ≲ 0.02665, which translates into the bound (59) on
the parameters appearing in the effective field theory of
dark energy. It is interesting to note that the beyond
Horndeski covariant quartic Galileon model, which admits
self-accelerating cosmological solutions and is therefore a
competitor to ΛCDM, predicts ϒ ¼ 1=3 and is hence
excluded by this constraint.
The parameters appearing in the EFT completely char-

acterize the cosmology of beyond Horndeski theories, a
very general class of healthy scalar-tensor extensions of
GR, on linear scales. Any noncosmological constraint
restricts the possible deviations on these scales and is
complementary to current and upcoming surveys that will
probe the structure of gravity in this regime.
Finally, we end by discussing the applicability of the new

tests we have presented here to other alternative gravity
theories. The test required deviations from GR in the
Newtonian limit and so cannot be applied to any theories
that fit into the parametrized post-Newtonian framework,
which predicts the inverse-square law. These include
theories such as massless scalars and disformal theories
[9,21,56–58]. Theories such as massive scalars and vectors
as well as screened theories such as chameleons [59] do
predict deviations [60,61]. In principle, one could apply the
tests here to these theories, although in the latter case a
comparison with data would be incredibly difficult because

one requires objects in other galaxies. Only theories that
preserve the scale-invariant nature of the stellar structure
equations will result in a modified Lane-Emden equation;
theories that do not have this property, such as massive
scalars, would require more advanced techniques to extract
the MMHB and radius plateau. One important point to
make is that the MMHB is very constraining for theories
that predict a weakening of the gravitational force but not
for theories that predict an enhancement. In this case, the
MMHB is lower than the GR prediction, and so the
observation of M-dwarfs with masses compatible with
GR do not disagree with these theories. Theories where
gravity is weaker than the GR prediction are rare because
they typically involve extra degrees of freedom such as
scalars that couple directly to matter. Since the fifth force is
proportional to the square of this coupling, it is difficult to
find repulsive forces. Our bound here was obtained using
the MMHB, but ultimately it may prove the case that the
radius plateau is the more versatile of the tests we have
presented here. With upcoming surveys providing better
measurements of the mass-radius relation for low-mass
objects, this new test of gravity provides another avenue to
constrain other modifications of general relativity.
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