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We carry out numerical experiments in the critical collapse of a spherically symmetric massless scalar
field in 2þ 1 spacetime dimensions in the presence of a negative cosmological constant and compare them
against a new theoretical model. We approximate the true critical solution as the n ¼ 4 Garfinkle solution,
matched at the light cone to a Vaidya-like solution, and corrected to leading order for the effect of Λ < 0.
This approximation is only C3 at the light cone and has three growing modes. We conjecture that pointwise
it is a good approximation to a yet unknown true critical solution that is analytic with only one growing
mode (itself approximated by the top mode of our amended Garfinkle solution). With this conjecture, we
predict a Ricci-scaling exponent of γ ¼ 8=7 and a mass-scaling exponent of δ ¼ 16=23, compatible with
our numerical experiments.
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I. INTRODUCTION

A. Critical collapse

Starting with Choptuik’s investigation of scalar field
collapse [1], and since then generalized to many other
systems [2], critical collapse is concerned with the thresh-
old of black hole formation in the space of initial data. A
practical way of investigating this threshold is to pick any
one-parameter family of asymptotically flat initial data,
with parameter p, such that for p > p� the data form a
black hole, and for p < p� they do not.
More specifically, “type II” critical collapse is concerned

with the case where the black hole mass can be made
arbitrarily small at the threshold. A necessary condition for
this to happen is that the system of Einstein equations and
matter evolution equations is scale invariant, or effectively
scale invariant on sufficiently small length scales. As far as
we know, exact scale invariance is also sufficient for the
existence of type II critical collapse.
In type II critical collapse in dþ 1 spacetime dimen-

sions, for p < p� (“subcritical” data), the maximum value
of curvature (say the Ricci scalar) achieved on the space-
time scales as

jRjmax ∼ ðp� − pÞ−2γ ð1Þ
and for p > p� (“supercritical” data), the black hole mass
scales as

MBH ∼ ðp − p�Þδ ð2Þ
where in d ≥ 3

δ ¼ γðd − 2Þ: ð3Þ

The relation (3) follows essentially from dimensional
analysis, with d − 2 being the dimension (in gravitational
units c ¼ G ¼ 1) of mass (or energy). The exponent γ
depends on the type of matter and spacetime dimension, but
is universal for all one-parameter families of initial data.
In a small spacetime region just before the point of

maximum curvature, or just before the formation of an
apparent horizon (AH), the spacetime and matter field are
approximated by a “critical solution” which is again uni-
versal for a given system and spacetime dimension. The
critical solution has three defining properties: it is regular,
scale invariant [continuously self-similar (CSS)] or scale
periodic [discretely self-similar (DSS)], and it has precisely
one unstable mode. Continuous self-similarity means that
there is a conformal Killing vector field K such that
LKgab ¼ −2gab. In coordinates (x, T) adapted to CSS
and spherical symmetry (but otherwise general), such that
K ¼ ∂=∂T, this means that the metric takes the form

ds2 ¼ l2e−2T ½AðxÞdT2 þ 2BðxÞdTdxþ CðxÞdx2
þ R2ðxÞdΩ2

d−1�; ð4Þ

where l is an arbitrary length scale. This functional form of
the metric is invariant under gauge transformations of the
form

x → FðxÞ; T → T þ GðxÞ: ð5Þ
[In DSS, in adapted coordinates, the metric takes the same
form, with A, B, C, R (and F, G) now depending
periodically on T with some scale-echoing period Δ.]*joanna.jalmuzna@uj.edu.pl
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The most general ansatz for a massless scalar field that is
compatible, via the Einstein equations with Λ ¼ 0, with
continuous self-similarity of the metric is the Christodoulou
ansatz [3]

ϕðx; TÞ ¼ cT þ fðxÞ ð6Þ
for some constant c. [For DSS, f ¼ fðx; TÞ depends also
on T with period Δ.] The constant c does not depend on the
choice of similarity coordinates. The spherical scalar field
critical solution in higher dimensions is DSS with c ¼ 0
but, as we see later, in 2þ 1 dimensions it seems to be CSS
with c ≠ 0.
In a spherically symmetric critical solution, the regular

center corresponds to one value of x. T ¼ ∞ (for all x)
represents a single spacetime point at the center, the
accumulation point, where the curvature blows up.
Another value of x corresponds to the past light cone
(or sound cone, for fluid matter) of the accumulation point,
where the critical solution must also be regular. The critical
solution can be continued in x to the future light cone of
the accumulation point. Beyond the future light cone, there
is no unique continuation, but that part of the critical
solution is not relevant for critical collapse.
If we choose T to be timelike or null, we can interpret it

both as a time coordinate on spacetime and as the logarithm
of scale in renormalization group theory. From self-similarity
and the existence of precisely one unstable mode, using a
little dynamical systems theory and dimensional analysis,
one can then derive both universality and the above scaling
relations. γ turns out to be the inverse Lyapunov exponent of
the one unstable mode.
This scaling argument [2,4] goes roughly as follows: the

closer p is to p�, and the smaller the initial value of the one
growing mode, the longer (larger T) the spacetime stays
close to the critical solution. But larger T also means scalar
field variation on smaller length scales, and hence larger
curvature, before the solution either starts dispersing or
forms an apparent horizon.
For a spherically symmetric massless scalar field in the

presence of a negative cosmological constant, critical
collapse has been investigated in 3þ 1 dimensions [5].
In higher dimensions, critical collapse has been investi-
gated in [6] for Λ ¼ 0, and in [7] for Λ < 0. A cosmological
constant (of either sign) obviously breaks scale invariance,
but one would expect it to become negligible in regions of
sufficiently large curvature, and hence in the regime where
type II critical phenomena are seen. Indeed this seems to be
the case in 3þ 1 and higher dimensions. A further effect of
a negative cosmological constant is to replace asymptotic
flatness with asymptotically anti–de Sitter (adS) boundary
conditions. The only boundary conditions for a massless
scalar field compatible with the Einstein equations are
totally reflecting. As a consequence, it appears that arbi-
trarily weak generic initial data collapse after sufficiently
many reflections off the boundary. (See [8] for exceptions

to this.) However, at the thresholds p�0, p�1, p�2 for black
hole formation after zero, one, two, and so on, reflections
of the same type II critical phenomena are seen as in
asymptotically flat spacetime. Because of the reflecting
boundaries, all the mass must fall into the black hole
eventually, but the mass of the apparent horizon when it
first forms does scale with the same γ as the black hole mass
in asymptotically flat spacetime.

B. 2þ 1 dimensions

The situation is quite different in 2þ 1 dimensions. First,
this is the critical dimension for the wave equation,
meaning that the scalar field energy (j∇ϕj2 integrated over
d space dimensions) is dimensionless. Similarly, for gravity
the black hole mass and the 2þ 1-dimensional equivalent
of the Hawking mass are dimensionless. This already
indicates that any mass scaling cannot be derived using
the standard dimensional analysis argument. Secondly, in
the absence of a cosmological constant there are no black
hole solutions, and finite mass regular initial data cannot
form an apparent horizon dynamically.
Standard gauge choices in spherical symmetry in 2þ 1

spacetime dimensions are polar-radial coordinates (r̄, t̄),

ds2 ¼ e2αð−e2βdt̄2 þ dr̄2Þ þ r̄2dθ2; ð7Þ
where the area radius r̄ is a coordinate, and double null
coordinates (u, v),

ds2 ¼ −e2Adudvþ r̄2dθ2; ð8Þ
where r̄ is a metric coefficient. With u ≕ t − r and
v ≕ tþ r, this can also be written as

ds2 ¼ e2Að−dt2 þ dr2Þ þ r̄2dθ2: ð9Þ
[In dþ 1 dimensions, the same coordinate choices exist,
with dθ2 replaced by the line element on the unit (d − 1)-
sphere.]
In 2þ 1 dimensions, the field equations

Gab þ Λgab ¼ κ

�
∇aϕ∇bϕ −

1

2
gabð∇ϕÞ2

�
; ∇2ϕ ¼ 0

ð10Þ

for the metric (8) are

2r̄ϕ;uv þ r̄;uϕ;v þ r̄;vϕ;u ¼ 0; ð11Þ

−4A;uv − 2κϕ;uϕ;v þ ΛeA ¼ 0; ð12Þ

−2r̄;uv þ ΛeAr̄ ¼ 0; ð13Þ

r̄;uu − 2A;ur̄;u þ κr̄ϕ2
;u ¼ 0; ð14Þ

r̄;vv − 2A;vr̄;v þ κr̄ϕ2
;v ¼ 0: ð15Þ
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These are the field equations that we use in the theory
section III below.
In 2þ 1 dimensions, if Λ ¼ 0, then from (13) r̄;uv ¼ 0.

In a region containing a regular center, one can then make
the same gauge choice r̄ ¼ ðv − uÞ=2 as in flat spacetime.
But, always in 2þ 1 dimensions, the coefficients of the
spherical wave equation (11) depend only on r̄, not on A,
and so the matter evolution equation is not modified by
curvature. This is one intuitive way of seeing why gravi-
tational collapse cannot occur in 2þ 1 with Λ ¼ 0.
However, in the presence of a negative cosmological

constantΛ ≕ −1=l2 black holes do exist in 2þ 1 spacetime
dimensions, and can be formed from regular data. These
black holes are the Bañados-Teitelboim-Zanelli (BTZ)
solutions [9], which in polar-radial coordinates are given by

ds2 ¼ −
�
r̄2

l2
−M

�
dt̄2 þ

�
r̄2

l2
−M

�−1
dr̄2 þ r̄2dθ2: ð16Þ

Although this looks similar to the Schwarzschild-adS
solution in higher dimensions, it is locally flat. This is
because in 2þ 1 dimensions the Ricci tensor determines the
Weyl tensor, and so a vacuum region is not only
Ricci-flat but flat. The BTZ solution with M ¼ −1 is the
2þ 1-dimensional adS spacetime. All other BTZ solutions
withM < 0 have a naked conical singularity, while the BTZ
solutions with M > 0 are black hole solutions. This mass
gap between the ground state and the smallest black hole is
another feature of 2þ 1 dimensions. Regular initial data
with −1 < M < 0 cannot form a black hole (although they
can develop arbitrarily large curvature [10]).
There seems to be a dilemma for type II critical collapse:

in order to form a black hole at all, a cosmological constant
is needed, but for curvature and mass scaling to occur, it
must be dynamically negligible.
It is convenient to introduce the local mass function

Mðu; vÞ defined by

M ≕
r̄2

l2
− ð∇r̄Þ2: ð17Þ

This is the 2þ 1-dimensional equivalent of the Hawking
mass for spherical symmetry in 3þ 1 dimensions, and has
similar properties: it is constant in vacuum, while in the
presence of matter it increases with r̄ on any spacelike
surface in regions where ð∇r̄Þ2 > 0. A spherically sym-
metric marginally outer-trapped surface (MOTS) is given
by r̄;v ¼ 0, and so its mass is given by r̄2=l2, as is the mass
of the BTZ horizon.

C. Previous work

The first numerical simulations of critical collapse of a
spherically symmmetric scalar field in 2þ 1 dimensions
with a negative cosmological constant were carried out by
Pretorius and Choptuik [11] and Husain and Olivier [12].

In order to avoid the complications associated with the
reflecting boundary conditions, Pretorius and Choptuik,
like others in 3þ 1 and higher dimensions after them,
focused on the scaling of maximum curvature and the mass
of the apparent horizon when it first appears. They found
that for each of several one-parameter families of initial
data they examined, there was a p� such that the maximum
of the Ricci curvature scaled as (1) where γ ≃ 1.2� 0.05.
They also gave evidence for a universal CSS critical
solution. They claimed also that the apparent horizon mass
at first appearance scales as

MFMOTS ∼ ðp − p�Þδ ð18Þ
with δ ¼ 2γ, although their Figs. 4–5 correctly suggest a
mass-scaling exponent somewhere between 0 and 1. [We
use the terminology “first marginally outer-trapped sur-
face” (FMOTS), as the terminology “apparent horizon
mass” is ambiguous in this context; see Sec. II B 2 below.]
Their theoretical argument for δ ¼ 2γ is that the dimen-
sionless mass M and area radius r̄ of an apparent horizon
are related by MAH ¼ r̄2AH=l

2, and rAH should scale as
suggested by its dimension. We correct this argument in
Sec. III K. Husain and Olivier found apparent horizon mass
scaling with δ≃ 0.81, consistent with our results, but their
data are fairly far from criticality.
On the grounds that Λ should be dynamically negligible

in critical collapse, Garfinkle [13] looked for exactly CSS
solutions for Λ ¼ 0 that are analytic between the two values
of x corresponding to the center and to the past light cone of
the accumulation point (the standard procedure in higher
dimensions). As we review in Sec. III A, he found a family
of these parametrized by n ¼ 1; 2; 3;…. The n ¼ 1 solution
is the Friedmann-Robertson-Walker solution. In hindsight
it is surprising that these solutions exist, as we have seen
that with Λ ¼ 0 gravity does not affect the scalar field and
so cannot regularize it, something that is essential for the
existence of regular CSS solutions in higher dimensions.
The Garfinkle solution is also in closed form, whereas
critical solutions for spherical massless scalar field collapse
in higher dimensions can only be constructed numerically
(but see [14] for an existence proof of the Choptuik critical
solution in 3þ 1 dimensions).
Garfinkle [13] noted that the n ¼ 4 solution showed

good agreement with the numerical data of Pretorius and
Choptuik inside the light cone. However, the light cone is
also an apparent horizon, whereas the critical solution in
higher dimensions has no trapped surfaces. Furthermore,
the analytic continuation of the Garfinkle solution through
the light cone has a spacelike central curvature singularity,
for all n. This means that it is the CSS equivalent of a black
hole, rather than a critical solution. (We fix these problems
in Secs. III B, III H–III I and III L below.)
Ignoring these obvious problems of the Garfinkle sol-

ution, Garfinkle and Gundlach [15] computed its pertur-
bation spectrum by making the standard requirement that
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perturbations be analytic at both the center and light cone.
As we review in Sec. III E, they found that the Garfinkle
solution with parameter n has n − 1 unstable modes. This
then raised the problem that the n ¼ 2 Garfinkle solution
does not fit the numerical data, while the n ¼ 4 Garfinkle
solution, which does, has three growing modes. We have no
theoretical solution for this problem, but we show numeri-
cally in Sec. II C that our modified n ¼ 4Garfinkle solution
appears to have only one growing mode when evolved
with Λ < 0.

II. NUMERICAL RESULTS

A. Numerical method

We experimented with a time evolution code using
polar-radial coordinates, the standard coordinate choice
for critical collapse in higher dimensions. However, as we
want to continue the evolution after the time slicing
crosses the apparent horizon, we have changed over to
the numerical method of Pretorius and Chopuik [11].
The metric ansatz is essentially (9), but reparametrized as

ds2 ¼ cos−2
�
r
l

�
e2Að−dt2 þ dr2Þ þ l2tan2

�
r
l

�
e2Bdθ2;

ð19Þ
so that

A ¼ A − ln½cosðr=lÞ�; r̄ ¼ l tanðr=lÞ expB: ð20Þ
This brings the timelike infinity of asymptotically anti–de
Sitter spacetimes to r ¼ lπ=2 and the center r̄ ¼ 0 to r ¼ 0.
Note that the adS spacetime is given by A ¼ B ¼ 0. We refer
the reader to [11] for the field equations in these coordinates.
The metric effectively represents the metric in double-

null coordinates u ≔ t − r and v ≔ tþ r (which go
through apparent or event horizons), but the numerical
algorithm evolves it on a grid in t and r, time stepping in t.
Both A and B obey wave equations and are evolved from

initial data at t ¼ 0. The residual gauge freedom is u →
u0ðuÞ and v → v0ðvÞ. We fix this in part by setting the initial
data B ¼ B;t ¼ 0 at t ¼ 0. With ϕ and ϕ;t also set freely, the
initial data for A and A;t are then determined by the
Hamiltonian and momentum constraints. During the evo-
lution, we impose the gauge fixing boundary conditions
A ¼ B;r ¼ 0 at the adS timelike infinity r ¼ 1, and the
regularity boundary conditions A ¼ B and A;r ¼ B;r ¼ 0 at
the center r ¼ 0.
The Hamiltonian and momentum constraints become

singular on any time slice that contains a trapped surface,
but we solve them only on the initial slice. The evolution
equations remain regular at a trapped surface.
We choose units such that G ¼ 2 and l ¼ π=2, so that

r ¼ 0 represents the regular center and r ¼ 1 the adS
boundary. We choose Δt=Δr ¼ 1=64, and typically 4096
equally spaced grid points in r.

For a geometric analysis of the results, and in particular
to look for self-similarity near the center, more geometric
coordinates fixed at the center are helpful. This is discussed
in Sec. II B 4 below.

B. Evolution of fine-tuned generic initial data

In scalar field critical collapse in 3þ 1 and higher
dimensions there is a clear distinction between two out-
comes. Either the scalar field forms a black hole, and the
remaining scalar field escapes to infinity, or the scalar field
disperses, leaving behind flat spacetime. With a negative
cosmological constant, there are the twin complications
that a scalar wave that disperses initially can collapse after
one or more reflections at the outer boundary, and that more
scalar field can fall into an initially small black hole after
reflection. However, locally in space and time there are still
two distinct outcomes, at least as long as the initial data are
on scales much smaller than the scale l set by Λ ¼ −1=l2.
From now on, the previously arbitrary length scale l in (4)
is set by the cosmological constant for definiteness. Hence
T > 0, from (4), indicates spacetime scales smaller than l.
In 2þ 1 dimensions, the situation appears initially more

confusing. The Ricci scalar at the center either blows up
while increasing monotonically or it goes through one or
more extrema before blowing up a short time later.
Similarly, the mass of the first MOTS appearing anywhere
on a time slice (what [11] calls the apparent horizon mass)
behaves in a nonmonotonic way with p.
We adopt the working definition of p� that for p > p�,

jRð0; tÞj monotically increases and blows up at finite t,
while for p < p� it goes through at least one maximum and
minimum before blowup. We see that with this definition
jp − p�j controls all scaling phenomena. This is in itself an
important observation, as it strongly indicates that the
scaling is controlled by a single growing mode of a self-
similar critical solution.
For the scalar field initial data we choose approximately

ingoing (that is ϕ;t ¼ ϕ;r) Gaussian or kink profiles located
at r0 ¼ 0.2with width σ ¼ 0.05. Their amplitude p is a free
parameter used for fine-tuning the initial data to the black
hole threshold. Note that both chosen families of initial
data are the same as considered in [11], which allows us
to compare results. We find that Mtotðp�Þ≃ 0.003 for both
of these two families. All plots and numbers presented
in the current Sec. II B use the Gaussian family, but we
have checked that we obtain the same results for the
kink data.
The absolute value of p� for any given one-paramter

family is irrelevant and depends on the parametrization.
However, with p� of order one, p − p� is a meaningful
measure of the amount of fine-tuning. For simplicity, we
use the terminology “sub10” for initial data with p≃ p� −
expð−10Þ and “super10” for p≃ p� þ expð−10Þ. The best
fine-tuning we have achieved is of the order of expð−26Þ.
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1. Ricci scaling at the center

As stated above, we define p� so that for p > p�, jRð0; tÞj
monotically increases until blowup, while for p < p� there
is at least one maximum and minimum before blowup. For
subcritical data further away from criticality than approx-
imately sub15, the Ricci scalar at the center goes through a
second maximum and minimum before blowup. Figure 1
illustrates this for representative values of p. Going further
away from criticality, the second minimum and eventual
blowup moves to larger values of t. For about sub8, the
blowup moves to a time t≃ 2.3 that indicates one reflection
from the outer boundary; see Sec. II B 3 below. Decreasing
the amplitude further, below about sub7 we obtain initial
data with mass below the threshold Mtot ¼ 0 for black hole
formation and these data cannot form a black hole. (While
we therefore cannot observe mass scaling for these data, we
still observe Ricci scaling.)
The scaling of the maxima and minima of the value of

the Ricci scalar at the center is shown in Fig. 2. For
subcritical data, the first local maximum of jRð0; tÞj scales
as in (1) with γ ≃ 1.23ð4Þ, the same value, to within our
numerical precision, as found by [11]. We determine p� to
high precision by fitting to the Ricci-scaling law (1). The
critical value p� defined in this way is consistent with the
definition we have given before, but can be determined
more accurately in practice.
The first minimum also scales, with γ ≃ 1.4ð7Þ. Further

away from criticality than approximately sub10, the first
minimum reaches a floor set by the cosmological constant,

R≃ 6Λ. Extrapolating beyond the limit of our fine-tuning,
the scaling of the first maximum and first minimum would
suggest that they merge at sub38. However, this extrapo-
lation is probably incorrect, as by definition we would
expect them to merge precisely at p ¼ p�.
The value of the second maximum scales with

γ ≃ 1.17ð8Þ, similar to the first maximum, and the second
minimum with γ ≃ 1.48ð9Þ. At approximately sub15 its
value agrees with the second maximum, and at this point
the second maximum and minimum merge and disappear.
The second minimum reaches the same floor as the first
maximum, but only at sub2 and then at large r, which is out
of the range of critical phenomena at first implosion.
Figure 3 shows the scaling of the locations, in proper

time at the center t0, of the first minimum, second
maximum, and second minimum, all with respect to the
first maximum, as well as the location of the first maximum
with respect to the accumulation point t0 ¼ t0�. The scaling
exponents are 1.2(2), 1.12(7), 1.2(8) and 1.4(3) respec-
tively; see Fig. 3. (The reason that we do not use the
accumulation point as our primary reference point is that its
location t0� is obtained by curve fitting, and is therefore less
accurate than the location of the extrema with respect to
each other.)
Checking pointwise convergence in (r, t) of our time

evolutions is difficult in the critical regime because of the
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are independently normally distributed, and so does not take into
account systematic error, which is clearly larger. However, we
note that the deviation from the theoretical value of 8=7 is
12σ or 8%.
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sensitive dependence on initial data. At best we can
compare scalar quantities such as Mðx; TÞ at fine-tuning
“subn” for the same n at different numerical resolutions.
(Note that p� itself is resolution dependent). This works for
M and r̄, but not for f and R. However, physical results
such as Ricci and mass scaling should converge with
resolution. In Fig. 4 we demonstrate that the first maximum
of the Ricci scalar as a function of lnðp − p�Þ converges
with resolution to better than fourth order from sub3
to sub22.

2. Apparent horizon mass scaling

The scaling argument [2] only determines the size and
hence mass of the black hole when it first forms, in a regime
where the transition from the critical solution to black hole
formation is still universal up to an overall scale. However,
in asymptotically flat spacetimes and for massless scalar
field matter, little additional mass falls in later (when the
scaling argument no longer holds), so one effectively has a
scaling law for the asymptotic black hole mass. (In a
cosmological context, there may be significant infall [16].)
In 2þ 1 dimensions, the cosmological constant can never
be neglected where collapse takes place, and so the local
scaling argument breaks down already. Furthermore, for
Λ < 0 in any dimension all the mass eventually falls into
the black hole because of reflecting boundary conditions.
Therefore Pretorius and Choptuik focused on the mass at
the first appearance (with respect to a given time slicing) of
a MOTS, which they call the apparent horizon mass. To
explain the phenomenology we observe, we need to use a
more explicit terminology, as follows.
We assume spherical symmetry. We use the term MOTS

to denote any point (r, t) where r̄;v ¼ 0. We call the union

of all MOTSs the AH, parametrized in coordinates as a
curve t ¼ tAHðrÞ. It bounds the region of outer-trapped
spherically symmetric (d − 1) surfaces (circles in 2þ 1). It
is easy to see using the field equations that the AH r̄;v ¼ 0
is spacelike for ϕ;v ≠ 0 (meaning that energy crosses the
horizon) and outgoing null for ϕ;v ¼ 0. What Pretorius and
Choptuik denoted by apparent horizon mass MAH is the
mass M ¼ r̄2=l2 of the first appearance of a MOTS for a
given time slicing, that is the absolute minimum of the AH
curve t ¼ tAHðrÞ with respect to the time coordinate t. For
clarity, we call this the FMOTS.
For the ingoing Gaussian data, the plot of MFMOTSðpÞ

shows power-law scaling down to a very small value of M
at p ¼ p1 > p�, but then M jumps to a larger value and
varies only slowly with p. This is shown in the upper plot of
Fig. 6. This apparent jump is explained simply by the AH
curve having two local minima for the range p� < p < p2,
which includes p1; see the lower plot. We refer to such a
local minimum of tAHðrÞ as an earliest MOTS (EMOTS). It
is helpful to consider the tracks of both EMOTS in the (r, t)
plane (Fig. 5), together with a plot of their masses against
p (Fig. 6).
At some very large value p0 ≃ 200 of p (compare this to

p� ≃ 0.133059) there is only one EMOTS, and it is located
on the initial slice t ¼ 0 at some large r and M. As p is
decreased from p0, the EMOTS moves to smaller r (on a
track that is approximately null) and smaller r̄ and henceM.
At p ¼ p2 (approximately sub19) the single EMOTS splits
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maxima of Ricci in proper time at the center t0. A least-squares fit
of the proper time between the first maximum and first minimum
to a straight line on the fitting interval ½−5;−26� gives
γ ¼ 1.2410� 0.0067. The fitted value differs from our theoreti-
cal value γ ¼ 8=7≃ 1.1429 by 15σ, or 9%.
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R1k, R2k and R4k stand for the value of the first maximum of the
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resolution curve lies on or above the higher resolution curve
when shifted down by C ¼ ln½ð44 − 1Þ=ð24 − 1Þ� demonstrates
fourth order convergence with resolution. The value of the
curves gives an estimate of ln of the numerical error in ln R.
The linear dependence on lnðp − p�Þ is not related to the
underlying scaling law, but shows that the relative error in Ricci
increases with fine-tuning.

JOANNA JAŁMUŻNA, CARSTEN GUNDLACH, and TADEUSZ CHMAJ PHYSICAL REVIEW D 92, 124044 (2015)

124044-6



into two. To the limit of our fine-tuning of the initial data,
the inner EMOTS approaches zero r and M as p → p�.
For p < p�, there is no inner EMOTS, and the outer

EMOTS, whose mass does not scale, moves to larger r and
t with decreasing p on an approximately null track, until at
sub10 it approaches the outer boundary. Presumably it will
then move back in, but we have not followed this further.
For p� < p < p1ð< p2Þ the outer EMOTS appears first, so
if one looks only for the first appearance of a MOTS, for
any r, its mass appears to jump at p ¼ p1 from the mass of
the inner EMOTS to that of the outer EMOTS.
As far as our fine-tuning reaches, the mass of the inner

EMOTS scales as (18) with δ≃ 0.68ð4Þ; see Fig. 7. This
value is roughly similar to the value δ≃ 0.81 of [12] (but
different from the δ ¼ 2γ ≃ 2.50 of [11]).
As p� is the same for both Ricci and mass scaling, to

within our accuracy of fine-tuning (sub26 and super26), the
exponents γ and δ must also be related. As we do not have
the exact critical solution, we cannot give a complete
derivation of this relation, but a tentative derivation of δ and
γ based on an amended Garfinkle solution and approximate
single growing mode is given below in Secs. III J–III K.

3. Second criticality

Decreasing p further, we again find critical phenomena
after reflection at the outer boundary. This means that we
fine-tune the amplitude such that the initially ingoing
Gaussian reflects off the center, moves towards the outer
boundary, reflects off it and collapses while approaching
the center for the second time. The bisection is again based
on the behavior of the Ricci scalar at the center. We find that
there is a second critical amplitude p�1 ≃ p�0 − expð−8Þ
such that the maxima and minima of the Ricci scalar for
subcritical evolutions scale according to (1). This is
demonstrated in Fig. 9. (We use p�n to denote the critical
amplitude after n reflections, with our original p� ≕ p�0.)
Note that p�1 is itself only sub8 with respect to p�0, so

that scaling maxima and minima are covered up by the
initially ingoing part of the initial data. Wewere also unable
to fine-tune as accurately as for the first criticality. At about
sub20 relative to p�1, the Ricci scalar still has maxima and
minima, but their values fail to scale. We believe this is due
to loss of numerical accuracy.
The accumulation point for immediate critical collapse,

for the Gaussian initial data, was located at t� ≃ 0.34 in
coordinate time and t0� ≃ 0.2374 in proper time at the
center. For critical phenomena after one reflection, for the
same family of initial data, the corresponding values are
t�1 ≃ 2.24 and t0�1 ≃ 0.293. Note that the two accumu-
lation points are separated by Δt≃ 2, consistent with the
intuitive picture of reflection at the outer boundary, but that
they are separated in proper time only by Δt0 ≃ 0.05. This
is due to the fact that A and B jump down across the future
light cone of the first accumulation point to A ∼ B ∼ −6 and
then remain small. Hence after first near criticality, r and t
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FIG. 5 (color online). Both plots show the track
½rEMOTSðpÞ; tEMOTSðpÞ� of the inner and outer EMOTS. The
lower plot is a closeup. Blue diamonds (p > p2) is the regime
where the AH curve tAHðrÞ has only one local minimum
(EMOTS), green upside-down triangles (p1 < p < p2) the re-
gime where there are two EMOTS but the inner one, which
scales, appears first (i.e. at smaller t) and so may be considered as
the FMOTS, and orange squares (p� < p < p1) the regimewhere
the outer EMOTS appears first. The transition between the last
two regimes causes the jump in the FMOTS mass at p ¼ p1 in
Fig. 6. Note that r and t are drawn to the same scale, and so radial
null rays are at 45 degrees. The top right end of the subcritical
(red circles) track is approximately at sub10 (corresponding also
to the left edge of the upper plot in Fig. 6), but the curve does not
end there.
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correspond to much smaller physical scales than before, but
by definition r ¼ 1 is still the outer boundary and the light-
crossing time is therefore stillΔt ¼ 2. See also Fig. 8 for an
illustration of this memory effect in the sub10 evolution.
As a consequence of this separation of scales, the wave

going back out in (first) near-subcritical evolutions comes
back in what is a very short time at the center and interacts
with the aftermath of first criticality. First and second
criticality therefore overlap in time, and this may explain
why they are also close in p, in the sense that the scaling
regimes overlap.
Furthermore, if we we compare the constant factors in

front of the two Ricci-scaling laws jRjmax≃C0ðp−p�0Þ−2γ
and jRjmax ≃ C1ðp − p�1Þ−2γ, we find that C1 ≃ 10−6C0.
This may also be a consequence of the jump down in
A and B.
For second-supercritical data we also looked for evi-

dence of mass scaling. The supercritical data with respect to
p�1 can also be supercritical with respect to p�0, and
therefore to see second mass scaling one has to look at the
proper range of amplitudes. We find some evidence that for

second supercritical data the mass of an apparent horizon
roughly behaves according to (2), but with a critical
exponent δ≃ 0.23, significantly different from the δ≃
0.68ð4Þ found in first criticality. The evidence is presented
in Fig. 10. We have no theoretical explanation of the
discrepancy in the mass-scaling exponent, but as the
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FIG. 6 (color online). The top plot shows the behavior of
MFMOTSðpÞ. At p ¼ p1, MFMOTSðpÞ appears to jump to a larger
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FIG. 8 (color online). Spacetime diagram of the sub10 evolu-
tion: contours of − lnð− ~vÞ for ~v < 0 (red, solid lines) and of
− ln ~v for ~v > 0 (green, solid lines), both from 9 to 13 in steps of
1, contours of − ln r̄ from 4 to 8 (blue, dash-dotted lines) and from
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lines, shown only for v > 0.4 for clarity). This figure illustrates
several things: the automatic zoom we get in our numerical
coordinates, r and t corresponding to much smaller physical
scales everywhere to the future of the accumulation point, and
the transition of r̄ from spacelike to “almost null” and back to
spacelike.
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scaling appears to be very noisy anyway, the discrepancy
may be just numerical error due to loss of resolution.

4. Self-similarity inside the light cone

We now examine the claim that a CSS critical solution is
observed [11], and that inside the light cone it agrees with
the n ¼ 4 Garfinkle solution [13].
Recall that we denote by t0 the proper time at the center,

starting with t0 ¼ 0 at t ¼ 0. In a half diamond bounded on
the left by r ¼ 0, we can rescale u and v to new double null
coordinates ( ~u, ~v), so that both correspond to t0 − t0� on the
central worldline r̄ ¼ 0, which by ansatz is at u ¼ v and so

is also at ~u ¼ ~v, and where t0� denotes the accumulation
point in central proper time. A plot of the contour lines of
ln ~u and ln ~v in a near-critical evolution, see Fig. 8 for
sub10, shows that our numerical algorithm provides some
automatic zooming in, which means we can resolve self-
similarity over many e-foldings in scale without mesh
refinement—to optimally resolve self-similarity, these lines
should be equally spaced.
The first task is to find the accumulation point. With the

scalar field at the center in the Garfinkle solution given by
ϕð0; TÞ ¼ c lnðt0� − t0Þ þ const, we make a linear fit

�
dϕ
dt0

�
−1

¼ t0 − t0�
c

ð21Þ

for c and t0�. We can then compute

~uðuÞ ¼ t0ðuÞ − t0�; ~vðvÞ ¼ t0ðvÞ − t0� ð22Þ

from t0ðtÞ and t0�. To see CSS, this needs to be done
separately for each p, but t0� and c depend only weakly on
p and have a limit as p → p�. We have fitted cðpÞ by the
quadratic function cðpÞ¼ c� þc1ðp�−pÞþc2ðp�−pÞ2.
For subcritical evolutions of our Gaussian initial data,
a least-squares fit gives c� ¼ 0.26381� 0.00018, c1 ¼
127.531, c2 ¼ −159484 for the fitting interval ½sub8; p��.
This range of c is equivalent to n ¼ 3.986� 0.038. Hence
we can strongly rule out any n other than 4.
In the following, we denote by ~A the value of A in the

preferred double-null coordinates ( ~u, ~v). It is given in terms
of the numerically evolved metric coefficient A as

~A ¼ Aðr; tÞ − 1

2
½Að0; t − rÞ þ Að0; tþ rÞ� − ln½cosðr=lÞ�:

ð23Þ

Following [15], we then define similarity coordinates
(x, T) by

x ≔
�
~v
~u

� 1
2n

; T ≔ − ln

�
−
~u
l

�
; ð24Þ

for n a positive integer. Hence the regular center is given by
x ¼ 1 and the light cone by x ¼ 0. We also define

Rðx; TÞ ≔ l−1eTr̄; ð25Þ

fðx; TÞ ≔ c−1ϕ − T − d; ð26Þ

where d is a family-dependent, dynamically irrelevant
constant. The solution is then CSS if and only if ~A, M,
R, f and λ are functions of x only. These functions for the
countable family of Garfinkle solution are reviewed in
Sec. III A.
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Finally, we define

λ ≔ −
s
~u
; ð27Þ

where s is the affine parameter along outgoing null geo-
desics, measured away from the center, and normalized so
that the inner product of ∂=∂s with the 4-velocity of the
central observer is −1. With the center at v ¼ u, this gives

s;vðu; vÞ ¼
1

2
e2Aðu;vÞ−Aðu;uÞ; ð28Þ

which we integrate along each line of constant u. In
particular,

s; ~vð ~u; ~vÞ ¼
1

2
e2 ~Að ~u; ~vÞ: ð29Þ

The rescaled

λ̄ðxÞ ≔ λðxÞ=λð0Þ ð30Þ

is a function of x only in CSS, and having tested this, we
later use it as the similarity coordinate in place of x.
Figure 11 shows a comparison of the mass functionM ¼

MGðxÞ of the Garfinkle solution with n ¼ 4 against
M½xðr; tÞ; Tðr; tÞ� of the sub25 evolution. There is good
agreement everywhere between the regular center and the
light cone (0 ≤ x ≤ 1), over the range 6 ≤ T ≤ 14, which
means that the solution is CSS inside the light cone over

eight e-foldings of scale, all of which are much smaller
than the scale l set by the cosmological constant. Figure 12
shows a similar comparison of fGðxÞ, against f½xðr; tÞ;
Tðr; tÞ�, where the constant d depends on the family of
initial data (but not on p) and has been determined by
fitting. Figures 13–14 show the corresponding tests for
R and λ̄.
Even though there is good numerical evidence that the

critical solution inside the light cone is the n ¼ 4 Garfinkle
solution (up to small corrections in powers ofΛ), we keep n
generic in the following for clarity of presentation.

5. Outside the light cone

Garfinkle [13] compared his exact solution with the
numerical evolutions of [11] only inside the light cone.
Here we go significantly beyond the light cone. We see that
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numerical data are plotted for T ¼ 6.01 (red), T ¼ 8.02 (blue),
T ¼ 10.02 (magenta), T ¼ 12.05 (gray) and T ¼ 14.05 (orange).
The Garfinkle solution is denoted by a dotted black line. The l2

norm of the difference between numerical results and the
Garfinkle solution for n ¼ 4 calculated for T ¼ 10.02 is
0.013. This norm is around 60 times larger for n ¼ 3, 5 and
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the analytic continuation of the Garfinkle solution is
definitely ruled out, but that a different, C3, continuation
proposed in Sec. III B below, which we call the null
continuation, appears to be at least a rough approximation
to the true critical solution.
The best choice of data for this comparison would appear

to be an evolution with the best available fine-tuning, as
there we expect to see the critical solution most clearly.
However, in near-critical evolutions, even subcritical ones,
the evolution ends in a central singularity very soon after
the accumulation point of the CSS regime. This is different
from critical collapse in 3þ 1 and higher dimensions,
where subcritical evolutions go to essentially vacuum after
the CSS regime (in the case Λ < 0, at least until the next
reflection at the outer boundary). Hence we also consider
the sub10 evolution, which corresponds to the closest we
can get to critical initial data while still having a significant
evolution in t after the accumulation point of the CSS
region. In sub10, we have access to large positive values of
v ¼ t − r, but because A and B are very negative in this
regime, this does not correspond to large values of the
proper retarded time ~v or area radius r̄, and so we are not far
away in this sense from the accumulation point. See again
Fig. 8 in this context.
Recall that ~v is normalized to proper time at the regular

center, so it is not defined outside the past of blowup at the
center. Moreover, even in subcritical evolutions, where
blowup occurs significantly after the accumulation point,
spacetime at the center after the accumulation point is not
expected to be self-similar. Hence we cannot use the
similarity coordinate x based on ~v and ~u outside the light
cone of the critical solution. We use λ̄ instead. It is given in
terms of x for both the Garfinkle solution and its null
continuation in Sec. III C below.
Figure 15 shows contour lines of T, λ̄ and x in the

(r, t) plane for the sub25 evolution with singularity
excision. Near the center the contour lines of x and λ

are approximately parallel, as one would expect in a CSS
spacetime. Near the light cone, they are not even approx-
imately parallel, and the contour line λ̄ ¼ 0 is not particu-
larly close to the past light cone of the accumulation point.
(The contour line x ¼ 0 is precisely the past light cone of
the accumulation point by definition.) This disagreement is
already visible in Fig. 14, but appears more clearly here
because both x and λ̄ vary very slowly with respect to t and
r near the light cone. We believe that the origin of the
discrepancy is that the true critical solution has a symmetry
that is approximately CSS only inside the light cone, but
changes over to a different symmetry outside the light cone
in an analytic manner; see Sec. III L below. Hence we
expect some deviation from CSS already as we approach
the light cone from the inside.
Figure 19 shows contour lines of T, λ̄ and x for the sub10

evolution. The discrepancy between x and λ is visible here,
too. Sub25 gives us the larger range of T (better fine-
tuning), while sub10 gives us the larger range of λ̄ (larger t
before the simulation stops). Overlaying the two sets of T
and λ̄ contour lines in Fig. 20 shows that the T contours are
essentially the same, while the λ̄ contours differ signifi-
cantly for T ≳ 6, as does the coordinate location of the
accumulation point. Yet when we plot M, R and f against
(λ̄, T), the two evolutions agree perfectly with the Garfinkle
solution, and therefore each other, inside the light cone.
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Fig. 14 based on the same data. Note that while λ̄ ¼ 1 is
approximately null for 6 < T < 14, it is significant to the future
of the past light cone x ¼ 0 of the accumulation point.
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By comparing M, f and R with the null-continued
Garfinkle solution, Figs. 16–18 for sub25 and Figs. 21–23
for sub10 also demonstrate that the analytic continuation is
clearly ruled out, while the null continuation appears more
plausible. In sub10, the strongest indication of this is that
M ≃ 0 outside the light cone, while the evidence from R and
f is somewhat less clear.
Our plots of M, R and f against λ̄ or x, at a range of

fixed values of T, show that inside the light cone the
deviations from the n ¼ 4 Garfinkle solution are very
small. Such deviations are expected from a number of
sources. In Sec. III H below we compute perturbative
corrections to the Garfinkle solution for a nonvanishing
Λ < 0. These are of order Λ ~u2 ¼ exp−2T and hence very
small. We also expect one growing perturbation, which is
small by virtue of fine-tuning, infinitely many decaying
perturbations, small by virtue of large T, and numerical
error. As these deviations from the Garfinkle solution are
unlikely to cancel systematically, our plots indicate that
they are all separately small.

Outside the light cone, the deviations from our proposed
null continuation of the n ¼ 4 Garfinkle solution are larger
than inside the light cone. It is clear that they cannot be
mainly Λ corrections, as they increase with T, rather than
depending on T as exp−2T. Rather, we believe that these
deviations depend on the initial data in a manner that does
not vanish in the fine-tuning limit. Mathematically, this
may reflect that the discrete perturbation modes of the
critical solution are not complete, or that a sum over those
modes does not converge outside the light cone. The latter
could happen because individual modes that decay more
rapidly with T grow more rapidly as functions of x outside
the light cone. (While we formally construct the discrete
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FIG. 17 (color online). fðλ̄; TÞ in the sub25 evolution with
excision for five values of T.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2

R

–
λ

T=6.01
T=8.02

T=10.02
T=12.05
T=14.05

RG

FIG. 18 (color online). Rðλ̄; TÞ for 6 < T < 14 in the sub25
evolution with excision for five values of T.
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FIG. 19 (color online). Contour lines of T from 4 to 8 (red,
solid) in steps of 1, and contour lines of λ̄ from 0 to 1 (green,
dash-dotted) and from 1.1 to 2 (blue, dotted) in steps of 0.1, in the
sub10 evolution. The code stops much later than in the sub25
evolution, allowing us to access a much larger range of λ̄. The
inset shows again contour lines of λ̄ (colours and lines as in the
main plot), and contour lines of x for 0 ≤ x < 1 (magenta, solid).
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mode spectrum in Sec. III E below, we have only explicitly
calculated the growing modes as functions of x.) Yet
another way of looking at this is to note that while
demanding CSS and analyticity at the center and the light
cone uniquely defines the countable family of Garfinkle
solutions, the null data on the light cone define a unique
analytic continuation only if we demand CSS everywhere.
In Sec. III L below, we find an ordinary differential

equation (ODE) system whose solution is an exact solution
of the full field equations for finite Λ < 0 outside the light
cone, and which can be matched at the light cone to the
Garfinkle solution and its first Λ corrections as smoothly as

the null continuation itself, namely C3. Hence, this is better
than the null continuation plus Λ corrections, but one may
wonder how the two are related. As discussed in Sec. III B
below, the bare null continuation has a null translation
invariance in addition to spherical symmetry and CSS. Our
exact outer solution has only one continuous symmetry of a
hitherto unknown type: it acts as an isometry on the (r, t)
plane but a CSS on the orbits of spherical symmetry.
However, if we expand this solution into a series in powers
of exp−2T, we obtain term by term the null continuation
and its perturbative Λ corrections, so we can also think of it
as an approximate CSS symmetry. (Recall that with finite
Λ, exact CSS is impossible.) In the regime where we have
plotted near-critical solutions, even the first-order Λ cor-
rections are very small compared to the zeroth-order null
continuation, so the deviations from the null continuation
that we see cannot be caused mainly by these. For the same
reason, we cannot distinguish the null continuation plus
first Λ correction from the exact solution of which it is the
expansion.
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FIG. 20 (color online). Overlay of Figs. 15 (sub25) and 19
(sub10), but without the contour lines of x. The T contour lines
(from 6 to 14 for sub25 and 4 to 8 for sub10) essentially agree.
The λ̄ contour lines agree for T ≲ 6. The coordinate time value t�
of the accumulation point differs significantly between the
two evolutions (0.31 and 0.34). (The proper time value t�0 is
essentially the same.)
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FIG. 21 (color online). Mðλ̄; TÞ for the sub10 evolution. In the
analytic null continuation of the Garfinkle solution,
Mð1 − λ̄Þ ¼ −Mðλ̄Þ, whereas in the null continuation Mðλ̄Þ ¼
0 for λ̄ > 1. Clearly the latter fits the plot and the former does not.
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FIG. 22 (color online). fðλ̄; TÞ for the sub10 evolution.
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FIG. 23 (color online). Rðλ̄; TÞ for the sub10 evolution. In the
analytic null continuation of the Garfinkle solution,
Rð1 − λ̄Þ ¼ Rðλ̄Þ, whereas in the null continuation Rðλ̄Þ ¼ 1=2
for λ̄ > 1. Clearly the latter fits the plot better than the former.
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C. Evolving initial data for our amended
Garfinkle solution

1. Motivation and overview

Our working hypothesis, compatible with the numerical
results presented so far, is that there is a true critical
solution, which is asymptotically CSS, and which has one
growing mode with λ0 ≃ 7=8. We have given strong
numerical evidence that this critical solution is very well
approximated by the n ¼ 4 Garfinkle solution inside the
light cone. We have also given somewhat weaker numerical
evidence that outside the light cone it is approximated not
by the analytic continuation of the Garfinkle solution, but
by what we have called its null extension.
The Λ ¼ 0 Garfinkle solution has a MOTS on its light

cone, and the Λ ¼ 0 null extension has a MOTS at every
point. Therefore, on theoretical grounds, we need to add a
Λ correction to both, which removes the MOTSs. (These
corrections are de facto so small, at least inside the light
cone, that we would have no reason to add them only to
improve agreement with our numerical data.) We call this
null-continued, Λ-corrected n ¼ 4 Garfinkle solution the
“amended Garfinkle solution.”
Our amended Garfinkle solution still has two obvious

shortcomings, namely that both it and its linear perturba-
tions are not analytic but only C3 at the light cone, and that
it has three growing modes. Analyticity at the light cone is a
natural requirement if the critical solution is required to
arise from the evolution of generic initial data. Hence the
nonanalyticity is not a mere technical shortcoming, and
may well be related to the incorrect number of growing
modes. Similarly, any universal critical solution can only
have one growing mode.
In this section we give numerical evidence that, in some

way that we do not yet understand theoretically, these twin
problems seem to cancel each other out. We evolve initial
data for our amended Garfinkle solution, matched outside
its light cone to asymptotically adS data, and add pertur-
bations from one of five families: two that we consider as
generic, and the three growing perturbation modes of the
null-continued n ¼ 4 Garfinkle solution. We find that these
data evolve in the expected CSS way, and that our amended
Garfinkle solution with (approximately) zero perturbation
is critical in all of these five families, showing scaling with
γ ≃ 8=7 and δ≃ 16=23 in each case, with no indication of
any other growing mode. Hence we conclude that analy-
ticity and the presence of the cosmological constant
together somehow suppress the λ ¼ 2=8 and 3=8 growing
modes, while the top 7=8 mode survives.

2. Data and results

The technical details of how we construct the initial data
at t ¼ 0 for our amended Garfinkle solution are given in
Sec. III M below. Here we need to say only that they are
parametrized by T initial, the value of T at (r ¼ 0, t ¼ 0),

which governs the magnitude of the Λ corrections, the
value rlightcone of r where the light cone of the Garfinkle
solution intersects t ¼ 0, and the location r0 and width Δr
of the switchover from Garfinkle data to vacuum.
We have chosen T initial ¼ 10.0 in order to make the Λ

correction small throughout the initial data, and
rlightcone ¼ 0.3, r0 ¼ 0.6 andΔr ¼ 0.3 in order to minimize
spurious mass generated by the switching. With these
parameters the total mass is 0.00635. The Λ correction
to the initial data is small enough not to be visible in plots,
and is of course expected to decay further as expð−2TÞ.
Hence we can expect to compare the time evolution of these
data against the null-continued Λ ¼ 0 Garfinkle solution
within our plotting accuracy.
In the first one-parameter family of deformations of these

data, we multiply ϕðr; 0Þ and ϕ;tðr; 0Þ by a factor of 1þ p.
We find that the critical value is p� ≃ 6.68 × 10−7. As
expected, this is small. Moreover, we find good agreement
with the n ¼ 4Garfinkle solution inside the light cone from
t ¼ 0 onwards, as there is no transition from generic initial
data to the Garfinkle solution.
We find that M ≃ 0, f ≃ 2 ln 2 and R≃ 1=2 outside the

light cone, as they would be in the null continuation. This is
demonstrated for the sub8 evolution in Figs. 24–26. (We do
not know why the deviation in f is relatively much larger.)
We have chosen sub8 because it is in the middle of the
range of lnðp� − pÞ where we see convergence of the Ricci
scaling, and hence trust our evolution.
With the same fitting procedure we used above for

Gaussian initial data, a fit of cðpÞ for subcritical ð1þ pÞ-
times-Garfinkle data gives c� ¼ −0.263871� 1.7 × 10−10,
c1 ¼ −0.263861 and c2 ¼ 5.502 × 10−5 for the fitting
interval ½sub3; p��. This is equivalent to n ¼ 3.999036�
3.7 × 10−8. The values of constants c1 and c2 are much
smaller than for Gaussian initial data, meaning that c
depends only very weakly on p. Clearly, the formal fitting

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  0.5  1  1.5  2  2.5  3  3.5  4

M

–λ

T=10.01
T=12.01
T=14.0
T=16.0
T=18.0

MG

FIG. 24 (color online). Mðλ; TÞ for evolution of sub8 Garfinkle
initial data for five chosen moments of T ¼ const., where the
scalar field is multiplied by the factor 1þ p.

JOANNA JAŁMUŻNA, CARSTEN GUNDLACH, and TADEUSZ CHMAJ PHYSICAL REVIEW D 92, 124044 (2015)

124044-14



error is an overoptimistic estimate of the error in n, but
the evidence strongly suggests n ¼ 4 again.
In a second one-parameter family of initial data, we take

our best approximation to the critical point of the first
family and add a Gaussian (center 0.2 and width 0.05) in ϕ
and ϕ;t with overall amplitude p. The critical value for this
family is p� ≃ 5.5 × 10−10. We would expect this to be
very small, as the p ¼ 0 element of this family is already
our best approximation to the critical point of the first
family.
We have created three other one-parameter families

of initial data by adding one of the m ¼ 7, m ¼ 3, and
m ¼ 2 growing perturbations of the null-extended
Garfinkle solutions to the best fine-tuned data of the first
family. We add the perturbations for both ϕ and B and their
derivatives, with c2 ¼ p, and then solve the (nonlinear)
constraints for A and A;t. The critical values are
p� ¼ 5.5 × 10−9, 5.5 × 10−12 and 5.5 × 10−14.
All five families show similar subcritical power-law

scaling of the values and proper time locations of the
extrema of the Ricci scalar at the center. This is demon-
strated in Figs. 27–29 for the first family. The value of γ

obtained for this family is compatible, within our numerical
accuracy, with the theoretical value γ ¼ 8=7 and slightly
different from the result obtained for Gaussian initial data.
However, the discrepancy is not significant if we take into
account that the actual deviation of our data from a straight
line is not random but smooth (i.e. systematic). By eye, a
straight line with slope 8=7 seems to be as good a fit as the
least-squares straight line. That the deviation from 8=7 is
smaller than for the Gaussian initial data might be
explained by the fact that for our approximate critical
solution we start much closer to the true critical solution,
and less fine-tuning is needed to observe the scaling.
We have also looked at mass scaling for the supercritical

evolutions. At low fine-tuning, for example from super5 to
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FIG. 25 (color online). The same for fðλ; TÞ.
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FIG. 26 (color online). The same for Rðλ; TÞ.
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solution initial data, with the scalar field initial data scaled by
1þ p. From a fit on the interval ½−11;−4� to the first maximum
we find γ ¼ 1.1441� 0.0022, compatible with γ ¼ 8=7.
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initial data. From the fit in the same interval as for the figure
above, we have γ ¼ 1.1432� 0.0073, which is again compatible
with theoretical value γ ¼ 8=7.
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super15 for the m ¼ 7 family of initial data, we find a
MOTS present already in the initial data. (To be precise, our
initial data constraint solver fudges the MOTS, but it then
appears on the first time step.) At larger fine-tuning, say for
super17 to super27 for this family, the EMOTS occurs at
some t > 0. We find that the mass of the MOTS in the
initial data, or the EMOTS forming later, lies on a single
curve with δ ¼ 16=23. In Sec. III K, where we derive δ, we
explain why it also applies for the MOTS in the initial data
in this case. The mass scaling for the Garfinkle family of
initial data is presented in Fig. 30.
The ð1þ pÞ-times-Garfinkle family of initial data shows

first-order convergence in the intervals [sub4, sub14] (see
Fig. 29) and [super3, super14]. For fine-tuned Garfinkle
initial data plus a Gaussian perturbation we also see first-
order convergence in the intervals [sub5, sub22] and
[super5, super19]. For subcritical evolutions of m ¼ 2
perturbations of the Garfinkle data we observe second-
order convergence in the interval [sub5, sub22] and first
order-convergence for supercritical data in the interval

[super3, super19]. For m ¼ 3 perturbations we again have
first-order convergence in the intervals [sub6, sub21] and
[super2, super20]. m ¼ 7 perturbations show second-order
convergence for subcritical evolutions in the interval [sub7,
sub15] followed by first-order convergence in [sub15,
sub25], while for supercritical evolutions the convergence
is first order in the interval [super3,super25]. The results
obtained in fitting γ and δ to the power laws for all families
of initial data studied are given in Table I.

III. THEORY

A. The Garfinkle solution

This section is based on [13] and is included here for
completeness. In the metric coefficients ~A and R and
coordinates (x, T) defined in (23)–(25), the general metric
becomes

ds2 ¼ l2e−2T
�
e2Ā

�
dx −

x
2n

dT

�
dT þ R2dθ2

�
; ð31Þ

where we have defined the shorthand Ā by
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FIG. 29 (color online). Convergence of the first maximum of
Ricci as a function of p − p�, similar to Fig. 4 but now for the
(null-continued, Λ-corrected) Garfinkle data, fine-tuned by re-
scaling the scalar field initial data by an overall factor of ð1þ pÞ.
In contrast the fine-tuned Gaussian data in Fig. 4, here
C ¼ ln½ð41 − 1Þ=ð21 − 1Þ�, demonstrating first-order order con-
vergence with resolution.

-21

-20

-19

-18

-17

-16

-15

-14

-13

-12

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2

ln
 M

E
M

O
T

S

ln|p-p*|

FIG. 30 (color online). Scaling of the EMOTS mass for
supercritical evolutions of ð1þ pÞ-times-Garfinkle initial data.
The fit in the interval ½−14;−4� gives δ ¼ 0.6684� 0.0017,
which is 16σ or 4% below the theoretical value 16=23.

TABLE I. Values of γ and δ obtained in fitting power laws to the maximum of Ricci and mass of the (inner)
EMOTS together with error bars and fitting intervals (in ln jp − p�j). Some fitting intervals were chosen not
according to the convergence results, but were modified due to the fact that scaling started for more critical data.

Family of initial data γ Fitting interval δ Fitting interval

Gaussian 1.2345� 0.0076 ½−26;−5� 0.684� 0.023 ½−26;−17�
ð1þ pÞGarfinkle 1.1441� 0.0022 ½−11;−4� 0.6684� 0.0017 ½−14;−3�
ð1þ p�ÞGarfinkleþ Gaussian perturbation 1.1402� 0.0056 ½−18;−10� 0.6765� 0.0018 ½−19;−9�
ð1þ p�ÞGarfinkleþm ¼ 2 perturbation 1.1234� 0.0031 ½−18;−10� 0.6894� 0.0076 ½−19;−8�
ð1þ p�ÞGarfinkleþm ¼ 3 perturbation 1.1442� 0.0084 ½−20;−10� 0.6730� 0.0021 ½−20;−11�
ð1þ p�ÞGarfinkleþm ¼ 7 perturbation 1.14290� 0.00044 ½−25;−13� 0.6991� 0.0033 ½−25;−10�
Theoretical values 8=7≃ 1.1429 16=23≃ 0.6957
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e2Ā ≔ 2nx2n−1e2 ~A: ð32Þ

In order to eliminate κ from the field equations (10), we
define the positive dimensionless parameter ~c from the
dimensionful parameter c by

~c ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGc2

p
: ð33Þ

The Garfinkle solution [13] of the field equations (10) with
Λ ¼ 0, denoted by the subscript 0, is then given by

e2 ~A0 ¼
�
1þ xn

2

�
4~c2

x−2n~c
2

; ð34Þ

R0 ¼
1 − x2n

2
; ð35Þ

ϕ0 ¼ c
�
T − 2 ln

�
1þ xn

2

��
: ð36Þ

The mass function is given by

M0 ¼ −
�
1þ xn

2

�
−4~c2

x2n−1; ð37Þ

which takes value M ¼ −1 at the center, as necessary for
regularity, and M ¼ 0 at the light cone.
So far, the Garfinkle solution is analytic at the center

x ¼ 1 for any ~c and any positive integer n, but it is
generically singular at the light cone x ¼ 0, because
exp 2Ā0 is either zero or infinite there. However, with

~c2 ¼ 1 −
1

2n
; ð38Þ

the overall power of x in exp 2Ā cancels and the solution is
also analytic at the light cone x ¼ 0, with

e2Ā0 ¼ 2n

�
1þ xn

2

�
4~c2

: ð39Þ

Hence, the Garfinkle solution is analytic at the center and
light cone if and only if n ¼ 1; 2;…, thus restricting the
possible values of c.
In order to give an analytic form of the metric also in

double-null coordinates, we rescale ~v to something that is
proportional to x, namely [13]

v̂ ≔ −l
�
−
~v
l

� 1
2n

⇒ x ¼
�
−
v̂
l

��
−
~u
l

�
− 1
2n

: ð40Þ

The metric then becomes

ds2 ¼ −
�
−
~u
l

�
1− 1

2n

e2Ād ~udv̂þ ð− ~uÞ2R2dθ2: ð41Þ

Rescaling also ~u,

û ¼ −l
�
−
~u
l

� 1
2n

⇒ x ¼ v̂
û
; T ¼ −2n ln

�
−
û
l

�
;

ð42Þ

the metric becomes

ds2 ¼ −e2Âdûdv̂þ l2

�
−
û
l

�
4n
R2dθ2; ð43Þ

where

e2Â ≔ 4n2e2 ~A

�
~u ~v
l2

�
1− 1

2n ¼ 2ne2Ā
�
−
~u
l

�
2ð1− 1

2nÞ
: ð44Þ

The Garfinkle solution then takes the more symmetric
form [17]

e2Â0 ¼ 4n2
�ð− û

lÞn þ ð− v̂
lÞn

2

�4~c2

; ð45Þ

r̄0 ¼ l
ð− û

lÞ2n − ð− v̂
lÞ2n

2
; ð46Þ

ϕ0 ¼ −2c ln
�ð− û

lÞn þ ð− v̂
lÞn

2

�
: ð47Þ

This is again analytic at both the center and light cone (and
of course everywhere in between) for n ¼ 1; 2;….

B. Continuation beyond the light cone

As for integer n the Garfinkle metric and scalar field are
analytic in x; they can be analytically extended to negative x
simply by considering values of x in the range −1 < x ≤ 1.
For both even and odd n, every centered ring in the the

region −1 < x < 0 is an outer-trapped surface, and x ¼ −1
is a future spacelike central curvature singularity (with
M ¼ 1 at r̄ ¼ 0), where the Ricci scalar blows up. In this
sense, the analytically extended Garfinkle solution could be
described as a black hole that is CSS rather than stationary.
Our numerical evidence rules out the analytic continu-

ation, but seems to be compatible with an alternative
continuation, where everything depends only on retarded
time (assuming that Λ ¼ 0, as we did in the Garfinkle
solution). We call this the null continuation of the Garfinkle
solution, and also denote it by the suffix 0.
At v̂ ¼ 0, the Garfinkle solution (45)–(47) can be

matched to
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e2Â0 ¼ 4n2
�ð− û

lÞn
2

�4~c2

; ð48Þ

r̄0 ¼ l
ð− û

lÞ2n
2

; ð49Þ

ϕ0 ¼ −2c ln
�ð− û

lÞn
2

�
: ð50Þ

As the power v̂n is unmatched, the matching is Cn−1.
Equivalently, in terms of the similarity coordinates (x, T)
and the similarity variablesR and Ā, we can match (35)–(37)
and (39) to

e2Ā0 ¼ 2−4~c
2

; ð51Þ

R0 ¼
1

2
; ð52Þ

ϕ0 ¼ cðT þ 2 ln 2Þ; ð53Þ

M ¼ 0: ð54Þ

As the power xn is unmatched, the matching is again Cn−1.
From these two forms of the metric we see that the null

continuation has a translation invariance in v̂, in addition to
circular symmetry and CSS. It can be thought of as an
outgoing Vaidya metric. If we think of an event horizon in
spherical symmetry as an outgoing null surface of constant
area radius r̄, then the null continuation is an onion with
each layer representing an event horizon, and a null
singularity at its center.

C. The similarity coordinate λ̄ðxÞ
We can rewrite (29) in generality as

s;xðx; TÞ ¼ −
1

2
le−Tþ2Āðx;TÞ: ð55Þ

Hence in the Garfinkle solution, λ ≔ s=ð− ~uÞ is given by
[13]

λnðxÞ ¼ n
Z

1

x

�
1þ xn

2

�
4~c2

dx ð56Þ

¼ 4
1
n−2n

�
F2
1

�
2

n
− 4;

1

n
;
1

n
þ 1;−1

�
− xF2

1ð…;−xnÞ
�
:

ð57Þ

This is a well-behaved function of x, with λ4ð0Þ≃ 0.8377
and λ04ð0Þ≃ −0.3536. (Recall the center is at x ¼ 1 and the
light cone at x ¼ 0.) For even n, λ is an odd function of x. In
our plots we use λ̄ ≔ λ=λ4ð0Þ, so that the light cone of the
n ¼ 4 Garfinkle solution is at λ̄ ¼ 1, and the analytically

extended n ¼ 4 Garfinkle solution is covered by the
range 0 ≤ λ̄ < 2, with f and R even about λ̄ ¼ 1 and M
odd. In the null-extended Garfinkle solution λðxÞ is
given by

λ ¼
�
λnðxÞ; x > 0;
λnð0Þ þ λn

0ð0Þx; x < 0;
ð58Þ

where we have imposed continuity of s and s;v̂ at v̂ ¼ 0,
and hence of λ and λ;x at x ¼ 0.

D. Boundary conditions and gauge conditions

To fix the residual gauge freedom in double-null coor-
dinates, we need two gauge conditions. One of these is
always taken to be r̄ ¼ 0 at u ¼ v in [13,15,17], that is, the
center is at r ¼ 0, which also corresponds to x ¼ 1.
In the Garfinkle solution [13] and in its Λ corrections

[17], the second gauge condition is chosen to be ~A ¼ 0 at
r ¼ 0. This means that ~u and ~v are proper time at the center.
However, Garfinkle and Gundlach [15] deviate from this

last gauge condition for the growing perturbations because in
the similarity coordinates (x, T) these can be made regular
only for a different gauge choice. [The gauge in which each
growing perturbation is regular is linked to the gauge in
which A ¼ 0 at r ¼ 0 by the infinitesimal gauge trans-
formation generated by the vector field ξ given in (68) below,
for a specific value of c1 chosen to cancel a singularity
at x ¼ 0.]
With the gauge choice r̄ð0; tÞ ¼ 0, the absence of a

conical singularity in the metric requires that r̄ ¼
r expAþOðr3Þ, or equivalently r̄;r ¼ expA at r ¼ 0.
For consistency, this requires also ϕ;r ¼ 0 and A;r ¼ 0
at r ¼ 0. Hence we have three regularity conditions to
impose at x ¼ 1.
By the definition of x, the light cone is at x ¼ 0, which

corresponds to ~v ¼ 0. The solution is analytic there if Ā, r̄
or equivalently R, and f are analytic in (x, T) at x ¼ 0.

E. Perturbations of the Garfinkle solution

This section is based on [15] and is included here for
completeness. We slightly rewrite the ansatz of [15] as

~A ¼ ~A0ðxÞ þ ekTaðxÞ; ð59Þ

R ¼ R0ðxÞ þ ekTbðxÞ; ð60Þ

ϕ ¼ c½T þ f0ðxÞ þ ekThðxÞ�; ð61Þ

where ~A0, R0, f0 denotes the Garfinkle solution. (The
correspondence of notation is y ¼ xn and H ¼ ch, with a
and b having the same meaning.)
The regularity conditions on ~A, R and ϕ are

a0ð1Þ þ nkað1Þ ¼ 0; ð62Þ
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b0ð1Þ þ n½ðk − 1Þbð1Þ þ að1Þ� ¼ 0; ð63Þ

h0ð1Þ þ nkhð1Þ ¼ 0; ð64Þ

and the gauge conditions are

bð1Þ ¼ 0; ð65Þ

að1Þ ¼ 0: ð66Þ

Note, (66) will be modified below for growing perturba-
tions. The ODEs for b, h and a can be solved in this
sequence, and are second order, second order and first order
respectively.
The general solution of the ODE for b is

bðxÞ ¼ c0 þ c1½1 − x2nð1−kÞ�; ð67Þ

and this is pure gauge. We set c0 ¼ 0 to impose the gauge
condition (65) and keep the center at x ¼ 1, but leave c1
arbitrary. Note that the regularity condition (64) is obeyed
for any c1.
The general infinitesimal gauge transformation that

preserves the double-null form of the metric in (u, v) is
ξ ¼ fðuÞ∂u þ gðvÞ∂v. Preserving the gauge condition that
the center is at r ¼ 0 then requires f ¼ g. If we also require
the gauge transformation to be compatible with the mode
ansatz(59)–(61), it becomes unique up to an overall factor,
which we can choose to be c1:

ξ ¼ −2c1lk

�
ð−uÞ1−k ∂

∂uþ ð−vÞ1−k ∂
∂v

�
ð68Þ

¼ −2c1ekT
� ∂
∂T þ 1

2n
ðx − x1−2nkÞ ∂

∂x
�
: ð69Þ

Hence c1 is also pure gauge, and the remaining gauge
freedom in the mode ansatz is parametrized precisely by c1.
The general solution hðxÞ that is regular at the center

x ¼ 1 is

hðxÞ ¼ c2Fað1 − x2nÞ − 2c1
1þ xnð1−2kÞ

1þ xn
; ð70Þ

where FaðzÞ stands for a hypergeometric function that is
analytic in z for jzj < 1 with Fað0Þ ¼ 1. Hence c2 multi-
plies a regular solution of the homogeneous ODE for hðxÞ.
The other linearly independent homogeneous solution
contains a lnð1 − xÞ term, which is singular at the center,
and is therefore ruled out.
Not only for bðxÞ and hðxÞ here, but also for aðxÞ below,

all terms proportional to c1 arise as gauge transformations
generated by the vector field ξ defined in (68), and all other
terms are proportional to c2. In this sense any perturbation
with c2 ¼ 0 is pure gauge.

For the special case k ¼ 1,

hðxÞ ¼ ðc2 − 2c1Þ
1þ x−n

1þ xn
: ð71Þ

Hence the term parametrized by c2 is also pure gauge. In
this case, ξ ¼ −2c1lð∂=∂tÞ, representing just a time trans-
lation of the Garfinkle solution. This k ¼ 1 time translation
mode arises in the perturbation spectrum of any self-similar
solution of the Einstein equations.
The special case k ¼ 0 corresponds to an infinitesimal

perturbation that takes a CSS solution into a neighboring one.
As we have seen that the Garfinkle solution is locally unique
once the gauge has been fixed and analyticity imposed at the
center and light cone, the k ¼ 0 perturbations must be pure
gauge, and we need not consider them explicitly.
For the special case k ¼ 1=2,

hðxÞ ¼ c2ðsingularÞ − 2c1
2

1þ xn
: ð72Þ

This is singular for any c1, unless c2 ¼ 0, and so is again
pure gauge.
The homogeneous part of hðxÞ can be written in the form

Fað1 − x2nÞ ¼ CbFbðx2nÞ þ Ccxnð1−2kÞFcðx2nÞ; ð73Þ

using formula 15.3.6 of [18]. Here,

Cb ≔
Γð1

2
− kÞffiffiffi

π
p

Γð1 − kÞ ; Cc ≔
Γðk − 1

2
Þffiffiffi

π
p

ΓðkÞ : ð74Þ

However, this does not hold when k ¼ Zþ 1=2. Then
either Cb or Cc is formally infinite, and in fact is replaced
by a ln x term. Both hypergeometric functions are by
definition regular at x ¼ 0. For k ≠ Zþ 1=2, a necessary
condition for the xnð1−2kÞ term, and hence Fa to be regular
at x ¼ 0, is that k ¼ m=2n for m integer. From considering
the three special cases above, we already havem ≠ 0, n, 2n.
Setting k ¼ m=2n from now on, we have

hðxÞ ¼ c2CbFbðx2nÞ þ c2Ccxn−mFcðx2nÞ − 2c1
1þ xn−m

1þ xn
:

ð75Þ

Hence this is a series in xn (or in x2n for c1 ¼ 1), plus xn−m

times another such series. For m < n, every term is regular
separately. For n < m < 2n, there is precisely one singular
power, xn−m, which can be canceled by setting

c1 ¼ c2
Cc

2
: ð76Þ

For m > 2n, there is at least a second singular power,
which cannot be canceled, so this must be ruled out (and
m ¼ 2n was already ruled out).
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Further restrictions on m arise from regularity of aðxÞ at
the light cone. aðxÞ takes the form

aðxÞ ¼ 2c1ð1 − kÞ þ
Z

x

1

a0ðxÞdx; ð77Þ

where a0ðxÞ is known in terms of bðxÞ and hðxÞ and að1Þ is
determined by (62). To check regularity at x ¼ 0, it is
sufficient to check regularity of xa0ðxÞ as x → 0 by
expanding it in powers of x. With k ¼ m=ð2nÞ, these
powers are all integers, so we only need to look for negative
powers. We find that xa0ðxÞ is a regular series in xn, plus
x−m times a regular series in xn.
Consider first 0 < m < n. Then the only singular power

is x−m and it can be canceled by choosing

2c1 ¼
ðm − 2nÞð2n − 1Þ

mðm − 1Þ c2Cc: ð78Þ

However, in the case m ¼ 1 this regularity condition gives
c2 ¼ 0 and hence this regular perturbation is pure gauge.
For n < m < 2n, the power xn−m is also singular. It is

canceled by the same condition (76) that is already required
to make h regular for this range of m. Hence we now have
two regularity conditions on c1, (76) and (78). They are
compatible for precisely m ¼ 2n − 1.
Hence, from regularity of a at x ¼ 0 we have found the

additional restrictions that either m ¼ 2n − 1 or m < n
with m ≠ 0; 1.
We now summarize the union of all regularity condi-

tions: For a given integer n > 0, the perturbation spectrum
is given by k ¼ m=ð2nÞ where either m ¼ 2n − 1,
1 < m < n, or m < 0 with m ≠ nð1 − 2NÞ. In particular
there are n − 1 growing perturbations given by m ¼
2; 3;…; n − 1 and m ¼ 2n − 1.

F. Perturbations of the null continuation

The linear perturbations of the null continuation, with
k ¼ m=ð2nÞ, are

bðxÞ ¼ ðd0 þ d1Þ þ d2x; ð79Þ

hðxÞ ¼ −2ðd0 þ d1Þ þ d4 −
2nd2

1þm − n
xþ d3xn−m; ð80Þ

aðxÞ ¼ −
ð1þm − 4nÞðd0 þ d1Þ þ ð2n − 4Þd4

2n

þ nð2n − 1Þd2
ð1þmÞð1þm − nÞ xþ

ð1 −mÞd1 þ 2nd5
2n

x−m

þ ð1 − 2nÞd3
2n

xn−m; ð81Þ

subject to the condition that either m ¼ 2n − 1 or d2 ¼ 0.
Hence this is a five-parameter family of solutions for
generic m, or six-parameter in the particular case

m ¼ 2n − 1. The parametrization has been chosen such
that the solution with d0 ¼ c0, d1 ¼ c1 and d2 ¼ d3 ¼
d4 ¼ d5 ¼ 0 is pure gauge, generated by the vector field ξ.
(We have not yet set c0 ¼ 0 here, as the reason for doing so
for perturbations of the Garfinkle solutions was only to fix
the center at x ¼ 1.)

G. Matching of perturbations on the light cone

Form < 0, when c1 and c2 can be chosen independently,
the perturbations b and h of the Garfinkle solution take the
following values on the light cone x ¼ 0:

bð0Þ ¼ c1; ð82Þ

hð0Þ ¼ −2c1 þ c2Cc: ð83Þ

For the allowed values ofm > 0, where c1 is linked to c2 for
regularity at the light cone, they take the equivalent values
with c1 given by (78). The value of að0Þ can then be
obtained from the linearization of the r̄;uu field equation (14),
which at x ¼ 0 reduces to the algebraic equation

að0Þ þ
�
k −

1

2n

�
bð0Þ þ

�
1 −

1

2n

�
hð0Þ ¼ 0: ð84Þ

In matching to the perturbations of the null continuation,
continuity of b and h at x ¼ 0 is required by physical
regularity of the spacetime (absence of a thin shell of matter
at the matching surface). This fixes

d1 ¼ c1 − d0; ð85Þ

d4 ¼ c2Cb: ð86Þ

Continuity of a follows because (84) holds on both sides.
We can use the remaining free parameters di to make the

metric in coordinates (x, T) more differentiable at x ¼ 0 by
matching the lowest nonzero powers of x. We begin with
the case m < 0, which implies d2 ¼ 0 and allows c2 and c1
to be chosen independently. We set

d3 ¼ −2c1 þ c2Cc ð87Þ

in order to match the coefficients of xn−m in hðxÞ on both
sides. The same choice of d3 matches the coefficient of
xn−m in aðxÞ, and we can match the coefficient of x−m in
aðxÞ as well by setting

d5 ¼
1 − 2kn

2n
d0 þ c2Cc

ð2k − 1Þð2n − 1Þ
4kn

: ð88Þ

Although we have not formally determined d0, it cancels
out of the resulting expressions for bðxÞ, hðxÞ and aðxÞ, so
that we have specified a unique maximally differentiable
continuation, in the sense that the coefficients of all powers

JOANNA JAŁMUŻNA, CARSTEN GUNDLACH, and TADEUSZ CHMAJ PHYSICAL REVIEW D 92, 124044 (2015)

124044-20



of x on the outer side match those of the expansion in x on
the inner side, and all unmatched powers are higher.
The case 1 < m < n is obtained from the case m < 0 by

imposing the particular gauge choice (78). In particular, the
coefficients of the singular power x−m in aðxÞ then vanish
on both sides.
In the special case m ¼ 2n − 1, we have the additional

parameter d2 on the outer side. We set the other parameters
as before, and d2 ¼ −c1. b, h and a in the outer region are
now all linear functions of x. Once again, this choice is
maximally differentiable in the sense above. [For b, it
happens to be analytic, as the expressions for bðxÞ on both
sides coincide.]
Expressing the perturbations of the null continuation in

terms of the free parameters c1 and c2 only, we have, for
m < 0,

bðxÞ ¼ c1; ð89Þ

hðxÞ ¼ ðc2Cb − 2c1Þ þ ðc2Cc − 2c1Þxn−m; ð90Þ

aðxÞ ¼ −
c2Cbð2n − 1Þ þ c1ðmþ 1 − 4nÞ

2n

þ c2Ccðm − nÞð2n − 1Þ −mðm − 1Þc1
2mn

x−m

þ −
ðc2Cc − 2c1Þð2n − 1Þ

2n
xn−m: ð91Þ

The case 1 < m < n is obtained from the case m < 0 by
imposing the particular gauge choice (78). The case m ¼
2n − 1 is given by

bðxÞ ¼ c2
Cc

2
ð1 − xÞ; ð92Þ

hðxÞ ¼ c2½ðCb − CcÞ þ Ccx�; ð93Þ

aðxÞ ¼ c2

�
Cbð1 − nÞ þ Ccn

2n
þ Ccð1 − 2nÞ

4n
x

�
: ð94Þ

H. Λ corrections of the Garfinkle solution

This section is based on [17], and is included here for
completeness. If the field equations are not scale invariant
but scale invariance holds asymptotically on sufficiently
small scales, the critical solution itself may be approxi-
mated by an expansion in powers of (typical length scale of
the solution)/(length scale set by the field equations). This
was discussed in generality in [19], where it was also
shown formally that the leading order of this expansion
represents a scale-invariant solution, and that the perturba-
tion spectrum is given by the perturbation spectrum of that
leading order. In our current problem, the only length scale
in the field equations is l defined by Λ ¼ −l−2, and so the
required expansion is one in powers of expð−TÞ ¼ − ~u=l.

The leading order of this expansion about the Garfinkle
solution was given in [17]. We slightly rewrite their
ansatz as

~A ¼ ~A0ðxÞ þ
X∞
n¼1

e−2nTAnðxÞ; ð95Þ

R ¼ R0ðxÞ þ
X∞
n¼1

e−2nTRnðxÞ; ð96Þ

ϕ ¼ c

�
T þ f0ðxÞ þ

X∞
n¼1

e−2nTfnðxÞ
�
: ð97Þ

(The correspondence of notation isA1, R1 ¼ F, f1 ¼ H=c,
y ¼ xn as before, and their c is our ~c, with their u and v
being our û and v̂.)
The field equations give five ODEs for R1, f1 and A1,

equivalent to the k ¼ −2 perturbation equations but with
source terms proportional to Λ. We only need to obtain a
particular integral. The general solution is then obtained by
adding the homogenous k ¼ −2 perturbations b, h and a to
R1, f1 and A1. The regularity conditions to first order in
Λ are

A0
1ð1Þ − 2nA1ð1Þ ¼ 0; ð98Þ

R0
1ð1Þ þ n½−3R1ð1Þ þA1ð1Þ� ¼ 0; ð99Þ

f01ð1Þ − 2nf1ð1Þ ¼ 0; ð100Þ

and the gauge conditions are

R1ð1Þ ¼ 0; ð101Þ

A1ð1Þ ¼ 0: ð102Þ

These are equivalent to the regularity and gauge conditions
for k ¼ −2 linear perturbations.
Like b, R1 obeys a linear second-order ODE that can be

solved on its own. The two linearly independent homo-
geneous solutions are known in closed form and are 1 and
x6n; compare to (67). This can be used to write a particular
solution in the form of an integral using variation of
parameters. Alternatively, [17] uses the fact that R1 does
not appear undifferentiated to first solve for R0

1 using an
integrating factor.
With R1ðxÞ determined, f1 obeys a linear second-order

ODE that can be solved on its own. Again the homo-
geneous solution is known, and so a particular integral can
be given as an integral using variation of parameters [17].
The remaining three ODEs, which are of course con-

sistent with each either because of the Bianchi identities,
can be reduced to obtain an algebraic expression for
A1 ¼ A1ðR0

1; R1; f01; f1; xÞ. As for the linear perturbations,
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the first Λ correction of the r̄;uu field equation becomes an
algebraic constraint on the light cone, namely

2nA1ð0Þ þ ð2n − 1Þf1ð0Þ − ð4nþ 1ÞR1ð0Þ ¼ 0: ð103Þ
Either of the integral expressions for R1 gives rise to a

messy expression in terms of hypergeometric functions, and
we have not been able to evaluate any integral expression for
A1 in closed form. Hence these formal solutions are not very
useful for plotting or numerical time evolution. Instead, we
obtain a numerical solution by solving the second-order
ODEs for R1 and f1 with the boundary conditions R0

1ð1Þ ¼
R1ð1Þ ¼ 0 and f01ð1Þ ¼ f1ð1Þ ¼ 0, respectively. We then
solve the A;uv field equation as a second-order ODE for A1

with the boundary conditions A0
1ð1Þ ¼ A1ð1Þ ¼ 0. (This is

numerically more robust than trying to use the algebraic
expression or first-order ODE for A1.) We add a k ¼ −2
linear perturbation with c1 and c2 chosen to set R1ð0Þ ¼
f1ð0Þ ¼ A1ð0Þ ¼ 0.

I. Λ corrections of the null continuation

The Λ corrections of the null continuation are given by

R1ðxÞ ¼
4

1
nn2

16ð1 − 6nÞ x; ð104Þ

f1ðxÞ ¼ −
4

1
nn3

8ð1 − 5nÞð1 − 6nÞÞ x; ð105Þ

A1ðxÞ ¼
4

1
nn2ð1 − 8nÞ

16ð1 − 5nÞð1 − 6nÞ x: ð106Þ

This is matched to the highest possible order to the
particular Λ correction of the Garfinkle solution specified
above. The Λ corrections of the Garfinkle solution with the
null continuation, in the gauge where they all vanish at
x ¼ 0, are shown in Fig. 31.

J. Derivation of γ

We conjecture that for a yet unknown reason the true
critical solution has only one growing mode with Lyapunov
exponent λ0. Then the scaling of the maxima and minima of
Ricci and their location in proper time (relative to the
accumulation point and relative to each other) can be
calculated by the standard argument based on dimensional
analysis [2,4]. We summarize it here for completeness.
Assume that the first maximum of Ricci is reached when

the solution moves away from the critical solution, and that
this happens when the one growing mode has reached some
Oð1Þ reference amplitude at which the growing perturba-
tion becomes nonlinear and stops growing exponentially in
T. This gives

jp − p�jeλ0Tnonlin ∝ c2;topeλ0Tnonlin ∼ 1: ð107Þ

Then, because all scales are proportional to expð−TÞ and
because the Ricci scalar has dimension of inverse length
squared,

Rmax ∝ e2Tnonlin ∝ jp − p�j−2γ; ð108Þ
where

γ ¼ 1

λ0
¼ 2n

2n − 1
¼ 8

7
≃ 1.1429; ð109Þ

and we have assumed n ¼ 4 in the last equality. After the
growing mode has become nonlinear, the evolution is no
longer CSS, but as we are now on very small scales, the
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FIG. 31 (color online). R1ðxÞ, f1ðxÞ and A1ðxÞ (from top to
bottom) against x for −1 < x < 1. Note that the regular center is
at x ¼ 1 and the light cone at x ¼ 0. In the outer region x < 0,
these are just the linear functions (104)–(106).
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cosmological constant can locally be neglected with respect
to the scalar field gradient (squared) in the stress-energy
tensor. Hence the subsequent local evolution is approx-
imately scale invariant, and its actual overall length scale is
set by the length scale of the interim data at Tnonlin, which is
l expTnonlin. We have found numerically that this universal
subsequent evolution has (at least) two maxima and two
minima before blowup. As the entire solution scales, so will
both the locations in proper time of these extrema (as
jp − p�jγ) and their values.

K. Derivation of δ

The standard argument [2,4] would now continue by
noting that in near-supercritical evolutions the above-
mentioned universal evolution results in a black hole,
and that the linear size of this black hole scales with the
overall length scale, and hence as jp − p�jγ . In dþ 1
spacetime dimensions, the black hole mass has units of
ðlengthÞd−2, and so scales as jp − p�jδ with δ ¼ ðd − 2Þγ.
However, in d ¼ 2 this argument fails because M is
dimensionless. We also know that no black holes can form
from regular data for Λ ¼ 0, and so it is clear that Λ must
play a role, leading to the anomalous scaling exponent. The
following theoretical model appears to be consistent with
our numerical experiments.
Assume that the true critical solution is well approxi-

mated by the n ¼ 4 Garfinkle solution inside the light cone
and its null continuation outside the light cone, plus their
first Λ corrections. (For clarity of presentation only, we
retain the generic n.) Assume further that the true critical
solution has only one growing mode that is well approxi-
mated by the m ¼ 7 (top) perturbation mode, while the
m ¼ 2, 3 modes disappear in the true critical solution.
By definition, a MOTS is given by r̄;v̂ ¼ 0, meaning that

the area radius does not grow on an outgoing null ray.
(We use r̄;v̂ because v̂ is a regular coordinate at the light
cone while ~v is not.) In terms of Rðx; TÞ, this is given by

r̄;v̂ðû; v̂Þ ¼ −eð 1
2n−1ÞTR;xðx; TÞ: ð110Þ

In the null-continued Garfinkle solution without any Λ
corrections, every point in the (r, t) plane outside the light
cone is a MOTS, and so the AH is not well defined.
Therefore we add the first-order Λ corrections. From
Fig. 31 we see that everywhere except close to the center
R0
1ðxÞ < 0 and so this will make R;x more negative.

But close to the center where R0
1ðxÞ > 0, jR0

0ðxÞj ≫
expð−2TÞjR0

1ðxÞj, and so R;x remains negative there, too.
Outside the light cone, R0

0ðxÞ ¼ 0 and R0
1ðxÞ < 0, so R;x is

also negative. Hence the leading Λ correction removes all
MOTSs, as already pointed out for the Garfinkle solution
(inside the light cone) in [17].
Assuming that we have fine-tuned the initial data and

have reached large T, we now add the growing perturbation
mode, but neglect all decaying modes. Given that the Λ

corrections have removed MOTS already in perturbation
theory, we see that the growing perturbation mode will
bring them back for p > p�. We begin with the region
outside the light cone, where

R;xðx; TÞ ¼ e−2TR0
1ðxÞ þ c2;topeλ0Tb0topðxÞ ð111Þ

¼ e−2T
4

1
nn2

16ð1 − 6nÞ − c2;topeλ0T
Cc;top

2
: ð112Þ

Here top denotes the most rapidly growing mode, with
m ¼ 2n − 1, and hence λ0 ¼ 1 − 1

2n. We have assumed that
the other growing modes, with 1 < m < n, of the null-
continued Garfinkle solution are not present in the true
critical solution. [However, from (79) we see that b0ðxÞ ¼ 0
for these modes, so they would not contribute to R;xðx; TÞ
anyway.] Recall also that R0

0ðxÞ ¼ 0 in the outer region, and
so does not contribute to r̄;v̂.
If there is only one growing mode, then its amplitude

must be zero at p ¼ p�, and so must be proportional to
p − p� to leading order. Hence, outside the light cone, an
AH is present for c2 > 0, corresponding by assumption to
p − p� > 0. It is the outgoing null surface T ¼ TAH;0,
given by

r̄;v̂ ¼ 0⇔p − p� ∝ c2;top ∝ e−ð2þλ0ÞTAH;0 ; ð113Þ

where the proportionality signs hide irrelevant constant
factors. But on this null segment of the AH,

MAH;0 ¼
r̄2

l2
¼ R2e−2T ¼ 1

4
e−2TAH;0 ∝ ðp − p�Þδ; ð114Þ

where

δ ¼ 2

2þ λ0
¼ 4n

6n − 1
¼ 16

23
≃ 0.6957; ð115Þ

and we have assumed n ¼ 4 in the last equality. Note that
this is the mass on the null part of the AH outside the light
cone, not yet the mass of the EMOTS. However, inside the
light cone the contribution of R0

0ðxÞ to R;xðx; TÞ dominates
the contributions of the Λ correction and the perturbation
modes except just inside the light cone, where R0

0ðxÞ → 0
as x → 0þ. We conclude without explicit calculation that
the AH must continue as a (probably spacelike) surface
running just inside the light cone. Hence the EMOTS, or
minimum of tAHðrÞ, must occur just inside the light cone of
the critical solution. Hence

MEMOTS ≃MAH;0: ð116Þ

Moreover, while the EMOTS is slicing dependent, the
theoretical AH curve r̄;v̂ ¼ 0 plotted in the regular coor-
dinates (û, v̂) makes a sharp bend from almost ingoing null
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to outgoing null as it crosses the light cone. This shape is
confirmed by plots of the AH in coordinates (t, r) in near-
critical numerical evolutions. Hence almost any time slice
will first intersect the AH at this sharp bend, and so the
location of the EMOTS and its mass depend only weakly
on the slicing.
Numerical data confirm that the EMOTS occurs just

inside the light cone, or

~uEMOTS ≪ ~vEMOTS < 0: ð117Þ

For sub8 to sub20 Gaussian data, ~vEMOTS= ~uEMOTS ∝
ðp − p�Þ0.7. For sub20 to sub26 data, ~vEMOTS is approx-
imately constant. The numerical data also confirm that

MEMOTS ≃ 1

4

�
−
~uEMOTS

l

�
2

: ð118Þ

Consider now the very special initial data consisting of
the critical solution plus a small amplitude p times the
growing mode. For sufficiently large (but still very small)
p, such that T ¼ TAH;0 intersects the initial data surface
t ¼ 0, we expect a MOTS to be present in the initial data.
More precisely, if we evolved these initial data backwards
in time we would find that the EMOTS had formed at some
t < 0, roughly where T ¼ TAH;0 intersects the light cone of
the critical solution. We have argued above that the AH
extends from the EMOTS towards larger r as the curve
T ¼ TAH;0 with constant mass. Hence the MOTS at the
intersection of t ¼ 0 with the AH still has the same mass as
the EMOTS did.
The value of δ ¼ 16=23 derived here compares well with

our numerical value of δ≃ 0.68ð4Þ, but we cannot be sure
that λ0 ¼ 7=8 exactly in the true critical solution. Hence we
note that, with γ ¼ 1=λ0, (115) can be restated more
robustly as

δ ¼ 2γ

2γ þ 1
; ð119Þ

independently of the value of γ. What has gone into this
relation is the assumption that both the Λ correction and the
growing mode make a constant contribution to R;x at
leading order—something we would expect to hold to
leading order in x for smooth functions.

L. An exact continuation of the Garfinkle solution
beyond the light cone with Λ < 0

Three clear observations in near-critical evolutions of
generic initial data were that the critical solution outside the
light cone appears to haveM ≃ 0, R≃ 1=2 and ϕ≃ cT. As
we have seen, these are exact properties of the null
continuation, but the null continuation is a solution only
for Λ ¼ 0. This can be rectified by incorporating the effects
of Λ perturbatively, as we have done in Sec. III I. However,

an exact solution can also be found in which these
qualitative features hold, and which perturbatively reduces
to the null continuation with Λ corrections.
Consider again the metric (31). For general Āðx; TÞ and

Rðx; TÞ, with the scalar field ϕ ¼ c½T þ fðx; TÞ�, this
ansatz is generic, with T ¼ const and x ¼ 0 null by ansatz.
As we saw, for Ā ¼ ĀðxÞ and R ¼ RðxÞ, compatible with
f ¼ fðxÞ, the metric is CSS. Consider now instead

Ā ¼ A
̬
ðx̬ Þ; ð120Þ

R ¼ R
̬
ðx̬ Þ; ð121Þ

f ¼ f
̬
ðx̬ Þ; ð122Þ

where we have defined the “slow x”

x
̬
≔ e−2Tx: ð123Þ

Note that the light cone is at x ¼ x
̬ ¼ 0.

To understand the geometric significance of this ansatz,
we express the metric (31) with (120)–(122) in the
coordinates (x

̬
, T) instead of (x, T). The result is

ds2 ¼ l2

�
e2A

̬
�
dx

̬
−

x
̬

2n
̬ dT

�
dT þ e−2TR

̬
2dθ2

�
; ð124Þ

where we have defined the constant

n
̬
≔

n
1 − 4n

: ð125Þ

The functional form of this metric differs from (31) only by
the absence of the overall factor expð−2TÞ in the metric in
the (x, T) plane. Hence, K ≔ ∂=∂T now acts as a
homothetic vector field only on the metric along the orbits
of the circular symmetry, but as a Killing vector field on its
orthogonal complement. We can also see immediately that
the mass function (17) now takes the form

M ¼ μðx̬ Þe−2T; ð126Þ

and so is exponentially small.
It is straightforward to verify that the ansatz (120)–(122)

transforms the five field equations exactly into ODEs in x
̬
.

Moreover, by introducing the auxiliary variables

F
̬
ðxÞ ≔ f

̬ 0ðx̬ Þ; ρ
̬ ðx̬ Þ ≔ R

̬ 0ðx̬ Þ
R
̬
ðx̬ Þ

; ð127Þ

we reduce this system to the pair of first-order ODEs

F
̬ 0 ¼ ðn̬ − 1 − x

̬
ρ
̬ ÞF

̬
− n

̬
ρ
̬

x
̬ ; ð128Þ
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ρ
̬ 0 ¼ −~c2x

̬ ðF
̬
2 þ 2ρ

̬
F
̬
Þ þ ρ

̬ ½x̬ ρ̬ −2n̬ ð1þ ~c2Þ − 1�
x
̬ ; ð129Þ

and the constraint

e2A
̬

¼ ~c2x
̬ ðF

̬
2 þ 2ρ

̬
F
̬
Þ − ρ

̬ ½2x̬ ρ̬ −2n̬ ð2þ ~c2Þ�
n
̬ : ð130Þ

Here the constant ~c is related to the constant c by (33),
and hence to the constant n by (38).
Consider for a moment the parameter n

̬
as unrelated to n.

Locally in x
̬
, the reduced system then has a two-parameter

family of solutions. The solution (A
̬
, R

̬
, f

̬
) follows by

integration, where an additive constant in f
̬
and a constant

factor in R
̬
can be fixed arbitrarily. Moreover, the system

has a scale invariance that reflects an arbitrary overall factor
in the definition of x

̬
, for a third integration constant.

If we want the solution to include a regular light cone
x
̬ ¼ 0, we are forced to choose

n
̬ ¼ −

1

2ð1þ ~c2Þ : ð131Þ

Modulo (38), this is equivalent to (125). The solution with a
regular light cone is then unique, up to the above-men-
tioned three integration constants. ρ

̬ ðxÞ > 0 throughout this
solution, meaning that there are no outer-trapped surfaces.
Choosing furthermore n ¼ 4, the equations become

F
̬ 0 ¼ 4ρ

̬
− F

̬
ð19þ 15x

̬
ρ
̬ Þ

15x
̬ ; ð132Þ

ρ
̬ 0 ¼ −

7F
̬
2

8
−
7F

̬
ρ
̬

4
þ ρ

̬
2; ð133Þ

e2A
̬

¼ −105x
̬
F
̬
2 − 210x

̬
F
̬
ρ
̬ þ8ρ

̬ ð23þ 30x
̬
ρ
̬ Þ

32
: ð134Þ

We can use the three integration constants to match the
regular light cone solution to the Garfinkle solution at the
light cone continuously (but of course not analytically).
In particular, ρ

̬ ð0Þ fixes the overall scale of x
̬
.

To compare our numerical solutions against this exact
solution, we note that, from (55), we have

s;x̬ ðx
̬
; TÞ ¼ −

1

2
leTþ2A

̬
ðx̬ Þ; ð135Þ

and we can use this to define x
̬
from the affine parameter s

along outgoing null curves, with s ¼ 0 on the light cone of
the critical solution, so that sðx̬ ¼ 0Þ ¼ 0. Hence to check
for this symmetry, we should plot Ā, R and f against the
similarity coordinate

λ
̬
≔

s − slightcone
leT

¼ e−2Tðλ̄ − 1Þ; ð136Þ

We compute λ
̬
in the exact solution as

λ
̬
¼ −

1

2

Z
x
̬

0

e2A
̬
ðx̬ Þdx

̬
: ð137Þ

The regular light cone solution blows up at x
̬ ≃ 40

(inside the light cone) with R → 0, meaning that in this
ansatz we cannot have both a regular light cone and a
regular center. This is not surprising, and we do not want to
use this ansatz inside the light cone anyway. It also blows
up at x

̬ ≃ −10 (outside the light cone) with R → ∞ and
s → ∞, so this blowup is likely to be caused only by
infinity being mapped to a finite coordinate value.
Taylor expanding about x

̬ ¼ 0, we obtain

R
̬
ðx̬ Þ ¼ R

̬
ð0Þ þ dR

̬

dx
̬ ð0Þx̬ þOðx̬ 2Þ

¼ R
̬
ð0Þ þ dR

̬

dx
̬ ð0Þe−2TxþOðe−4Tx2Þ

¼ R0ð0Þ þ e−2T
dR1

dx
ð0Þxþ � � �

¼ R0ðxÞ þ e−2TR1ðxÞ þ � � � ð138Þ
[The third equality follows from matching, and the last
equality follows because R0ðxÞ is constant and R1ðxÞ
proportional to x.] Hence to this order we recover the null
continuation and its first Λ correction. We expect that
higher orders in x

̬
correspond to higher Λ corrections

(fixing a suitable gauge at each order in exp−2T).
In our numerical simulations, we only access very small

(negative) values of x
̬
and hence λ

̬
, because expð−2TÞ is

small. This means that we cannot distinguish the exact
solution from its approximation to first order in Λ. In fact,
other deviations from the null continuation (the zeroth
order) from other sources are already larger than the first Λ
correction.
It is possible that there exists an analytic function ξðx; TÞ

such that ξ≃ x for 1 > x > ϵ and ξ≃ x
̬
for x < −ϵ, with a

transition in a boundary layer of width ϵ around the light
cone, and such that making Ā, R and f functions of ξðx; TÞ
only transforms the field equations into ODEs in ξ.
However, if there is no ξ that gives rise to a global ODE
system then it may still be possible to make a simple ad hoc
ansatz for ξ, and expand the corresponding PDE system in
powers of expð−2TÞ on both sides of the light cone at once,
rather than separately, as we have done, thus maintaining
analyticity at the light cone order by order in Λ.

M. Construction of initial data for the amended
Garfinkle solution

To extract the free initial data BðrÞ, B;tðrÞ, ϕðrÞ, ϕ;tðrÞ for
the Cauchy code based on (19), we need to define a time
slice t ¼ 0 through that solution, and a radial coordinate r on
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it, such that both are regular, and t� r are null coordinates.
We choose t ¼ ðv̂þ ûÞ=2þ const and r ¼ ðv̂ − ûÞ=2,
where û and v̂ in turn are related to x and T by (42).
The Garfinkle solution assumes Λ ¼ 0 whereas the form

(19) of the metric has an inbuilt compactification at
timelike infinity that makes sense only if Λ < 0. We
therefore make a smooth switchover from the initial data
discussed above in an interior region to vacuum data ϕ;r ¼
ϕ;t ¼ 0 in the gauge B;r ¼ B;t ¼ 0 in an exterior region. We
then solve the constraint equations (8)–(9) of [11] as
algebraic equations for A;tðr; 0Þ and A;rðr; 0Þ, and then
solve a first-order quasilinear ODE for Aðr; 0Þ. This pair of
algebraic equations becomes singular on MOTS, and so we
must include the first Λ corrections in the data to avoid
MOTS. For the same reason, we do not try to impose the
gauge Bðr; 0Þ ¼ B;tðr; 0Þ ¼ 0 that we have used for evolv-
ing generic initial data.
The resulting initial data are parametrized by T initial, the

value of T at (r ¼ 0, t ¼ 0), which governs the magnitude
of the Λ corrections, the value rlightcone of r where the light
cone of the Garfinkle solution intersects t ¼ 0, and the
location r0 and width Δr of the switchover from Garfinkle
to trivial data. The switched initial data are obtained by
multiplying the initial data for B;r, B;t, ϕ;r and ϕ;t by a
switch-off function χ−ðrÞ that goes smoothly to zero, then
integrating to get initial data for B and ϕ, and finally
solving the constraints to get initial data for A and A;t.
We use the switch-off function χ− defined by

χ−ðrÞ ≔
1 − χðr−r0Δr Þ

2
; ð139Þ

χðxÞ ≔ tanh

�
18

�
1

4
xþ 3

4
x3
��

: ð140Þ

The coefficients of x and x3 in χðxÞ have been chosen so
that when we work in double precision the switching
happens effectively between r0 − Δr and r0 þ Δr, while at
the same time minimizing the first four derivatives of χðxÞ.

IV. CONCLUSIONS

The presence of a negative cosmological constant in
massless scalar field collapse adds reflecting boundary
conditions and breaks scale invariance. However, simula-
tions in 3þ 1 and higher dimensions have shown that there
is a regime in phase space where the outer boundary
conditions are irrelevant and the local dynamical effect of
the cosmological constant is negligible compared to the
scalar field stress-energy tensor. Critical collapse then
proceeds as without a cosmological constant, showing
local discrete self-similarity and scaling of the maximal
curvature (for subcritical data) or initial black hole mass
(for supercritical data). (The word initial had to be inserted
here as the reflecting boundary conditions will lead to
continuing growth of the black hole mass.)

In 2þ 1 dimensions significant differences are clear
a priori: Energy and mass are dimensionless, and hence the
dimensional analysis formula (3) linking Ricci and black
hole mass scaling cannot hold. There is a mass gap, with
empty adS space having a mass of M ¼ −1, while regular
initial data can form a black hole only if they have M > 0.
Finally, black holes cannot form from regular initial data at
all in 2þ 1-dimensional gravity without a negative cos-
mological constant. Hence the effect of the cosmological
constant in critical collapse cannot be just perturbative.
Pretorius and Choptuik [11] fine-tuned four one-

parameter families of circularly symmetric initial data to
the threshold of prompt collapse (before reflection from the
outer boundary) and found universal (CSS), Ricci scaling
and mass scaling. This was confirmed in [12].
Setting Λ ¼ 0 as a heuristic starting point, Garfinkle [13]

found a countable family of analytic CSS solutions and
gave some numerical evidence that the n ¼ 4 member of
the family agrees with the near-critical evolutions of [11], at
least inside the light cone of the accumulation point.
Garfinkle and Gundlach [15] showed that the Garfinkle
solutions have n − 1 growing perturbation modes, thus
apparently ruling out Garfinkle’s n ¼ 4 solution as the
critical one. Cavaglià, Clément and Fabbri [17] showed that
the Garfinkle solution(s) can be perturbatively corrected for
Λ < 0, and that this does not change its perturbation
spectrum. They also noted that when Λ is taken into
account the light cone of the n ¼ 4 Garfinkle solution is
no longer a MOTS—something that would otherwise
independently rule it out as a critical solution.
In the numerical part of our paper, we have repeated the

time evolutions of [11], using essentially the same algo-
rithm (coded independently), and reanalysed the data. In
fine-tuned Gaussian data, we find a Ricci-scaling exponent
of γ ≃ 1.23ð4Þ, compatible with the γ ≃ 1.2� 0.05 of [11],
and a mass-scaling exponent of δ≃ 0.68ð4Þ, roughly
compatible with the value of δ≃ 0.81 given by [12].
(The value δ ¼ 2γ of [11] is incorrect.)
We have also found excellent agreement between the

n ¼ 4 Garfinkle solution and near-critical time evolutions
inside the light cone of the accumulation point. In particu-
lar, we can definitely rule out any other value of n. (Based
on the fact that these have n − 1 growing modes, one might
otherwise have suspected the n ¼ 2 solution to be the
critical one.) However, we can also definitely rule out the
analytic continuation of the n ¼ 4 Garfinkle solution
beyond the light cone as the critical solution there.
Rather, the observed critical solution outside the light

cone seems to be characterized byM ≃ 0, r̄≃ ð− ~uÞ=2, and
ϕ≃ c lnð− ~uÞ þ const, where r̄ is the area radius, ~u retarded
time normalized to proper time at the center and with its
origin suitably adjusted, and ϕ the scalar field.
In the theoretical part of our paper, we have shown that

there is in fact a simple exact solution of this kind for
Λ ¼ 0, which can be matched to the Garfinkle solution at
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the light cone. We call this the null-continued Garfinkle
solution. We have also calculated the leading-order Λ
correction of this solution and its perturbations. As the
adjustment to Λ < 0 is done perturbatively in powers of Λ,
the perturbation spectrum remains unchanged from the
original Garfinkle solution. The Λ corrections remove the
MOTS and thus one obstacle for this being the critical
solution, but the obstacle of three growing modes remains,
and the matching procedure has introduced a new obstacle,
namely a lack of analyticity at the light cone—our solution
and its perturbations are only C3 there. (All other known
critical solutions are analytic at the light cone, and are in
fact defined by this property.)
Switching again to numerical time evolutions, we have

taken this amended Garfinkle solution and five one-
parameter families of initial data through it, including
the addition of its putative three growing modes. We do
not find any evidence for three growing modes. Rather, our
results are compatible with our theoretical predictions of
γ ¼ 8=7 and δ ¼ 16=23, based on a single growing mode
with k ¼ 7=8.
Based on the simple null continuation suggested by

the numerics, we have also constructed an exact solution
for Λ < 0 that gives the null continuation and its first Λ
correction when expanded to first order in Λ, and we expect

that this holds to all orders. This is satisfactory from a
theoretical point of view, but in our numerical evolutions
we do not have enough numerical accuracy to see the
difference between our exact outer solution and its
approximation to first order in Λ, so we have used
only the approximation in the main numerical part of this
paper.
As discussed in Sec. III L above, the missing ingredient

for constructing the exact critical solution is a way of
analytically gluing together the Λ-corrected Garfinkle
solution inside the light cone with the new exact solution
outside the light cone. We conjecture that this analytic
gluing procedure will somehow select n ¼ 4 and remove
two of the three growing modes.
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