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The paper gives full details of the computation within the canonical formalism of Arnowitt, Deser, and
Misner of the local-in-time part of the fourth post-Newtonian, i.e. of power eight in one over speed of light,
conservative Hamiltonian of spinless compact binary systems. The Hamiltonian depends only on the
bodies’ positions and momenta. Dirac delta distributions are taken as source functions. Their full control is
furnished by dimensional continuation, by means of which the occurring ultraviolet (UV) divergences are
uniquely regularized. The applied near-zone expansion of the time-symmetric Green function leads to
infrared (IR) divergences. Their analytic regularization results in one single ambiguity parameter. Unique
fixation of it was successfully performed in T. Damour, P. Jaranowski, and G. Schifer, Phys. Rev. D 89,
064058 (2014) through far-zone matching. Technically as well as conceptually (backscatter binding
energy), the level of the Lamb shift in quantum electrodynamics is reached. In a first run a computation of
all terms is performed in three-dimensional space using analytic Riesz-Hadamard regularization
techniques. Then divergences are treated locally (i.e., around particles’ positions for UV and in the
vicinity of spatial infinity for IR divergences) by means of combined dimensional and analytic
regularization. Various evolved analytic expressions are presented for the first time. The breakdown of
the Leibniz rule for distributional derivatives is addressed as well as the in general nondistributive law when

regularizing value of products of functions evaluated at their singular point.
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I. INTRODUCTION

In the early days of Einstein’s theory of gravity, the
theory of general relativity as Einstein coined it, the weak-
field and slow-motion expansion of the field equations,
nowadays known as post-Newtonian (PN) expansion,
played a crucial role already. The first post-Newtonian
(1PN) approximation revealed a convincing understanding
of the perihelion advance of Mercury [1]. Later on, in 1919,
the light bending at the limb of the Sun was measured in
agreement with the 1PN prediction of Einstein’s theory
[2,3]. A rich 1PN scenario came up with the discovery of
the Hulse-Taylor binary pulsar PSR B1913 + 16 in 1974,
where after four years of observation even the dissipative
two-and-a-half post-Newtonian (2.5PN) effect could be
measured in agreement with general relativity in the form
of energy loss through gravitational radiation damping [4].
Also the precession of the proper angular momentum (spin)
of the pulsar PSR B1913 + 16 from spin-orbit coupling, a
1PN or 1.5PN effect according to the counting of the spin
as of OPN or 0.5PN order, respectively, could be seen [5].
The discovery of the double pulsar system JO737 — 3039 in
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2003 allowed measurements of even more 1PN effects than
with the Hulse-Taylor binary pulsar [6]. Also in the solar
system and in the gravitational field of the Earth the 1PN
approximation is crucial [7,8]. In the observation of the
Hulse-Taylor pulsar, even 2PN measurement accuracy has
been achieved in the periastron advance [9], deduced for
the first time in [10] with full details given in [11]. In the
long-term run, the observation of the double pulsar system is
likely to allow detailed measurements of conservative
2PN and dissipative 3.5PN effects [6,12—14]. On the other
side, in the coming years gravitational-wave astronomy will
come to operation through advanced (or second-generation)
LIGO and Virgo observatories [15,16] and the cryogenic
KAGRA detector (formerly known as LCGT) [17]. Even
more sensitive third-generation detectors, like ET [18], are
already under consideration. Then still higher-order PN
effects will become important. Great efforts have already
been undertaken in the precise data analysis of possible
wave forms (see, e.g., [19-22]), and as well as in the
computation of the orbital and spin dynamics through higher
PN orders including the gravitational wave emission (see,
e.g., [23-30]).

The complete conservative third post-Newtonian (3PN)
binary dynamics has been fully achieved for the first time in
2001 [31], based on earlier work [32-35], rooted in the
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canonical formalism of Arnowitt, Deser, and Misner
(ADM) with application of a coordinate system of maximal
isotropy in three-dimensional space [36]. Around 2004 and
later in 2011 the final results of [31-35] became fully
confirmed [37-40], in using completely different tech-
niques but yet all with the employment of harmonic
coordinate conditions. Let us stress that the rather tedious
(but much easier than reported in the present paper)
calculations performed in [31-35] were not just a matter
of straightforward computational efforts. The standard
regularization Hadamard “partie-finie” technique together
with the Hadamard “partie-finie” based Riesz analytic
continuation supplemented by the Schwartz distribution
theory in (3 + 1)-dimensional space-time resulted in ambi-
guities [32,33], which yet could be parametrized by two
variables only, w, and w [34] (for a detailed presentation of
the mentioned techniques, see [41] and Appendix A of the
present paper). Matching to the Brill-Lindquist initial value
solution for a two-black-hole system [42], a solution which
was shown derivable from “fictitious” point-mass sources
of Dirac J-function type (one for each black hole) [43],
brought out (by the very definition of w,) w, = 0 [33,34],
and implementation of Lorentz invariance in the form of
fulfillment of the Poincaré algebra resulted in w, = 41/24
(see [35] and Sec. IX of the present paper). Another
procedure to obtain w, = 0 could have been to insist on
the “tweedling of products” structure in the course of
computation of regularized value of the product of singular
functions (see [33,44] and Appendix A4 of the current
paper) or, connected herewith, by taking just the finite
terms (without limiting procedure) in the two-body restric-
tion of the many-body static potential derived in [45]. Only
by making use of the technique of dimensional regulariza-
tion a uniform treatment was achieved in Ref. [31], with
confirmation of the numerical values for w, and w, found
earlier (a summary of the applied dimensional-regularization
techniques is presented in [46] and in Appendix A below).
For extensive application of the dimensional regularization
in the generalized ADM formalism for spinning compact
binaries the reader may consult [28].

It might be worth comparing the derivation of the 3PN
ADM Hamiltonian in [31-35] with the history of the
harmonic-coordinate-based calculations, which led to the
results achieved in [39], where finally also dimensional
regularization played the crucial role. In the papers [47,48]
a manifest Lorentz-invariant “extended” Hadamard regu-
larization procedure was developed, which allowed the
calculation of the 3PN binary dynamics with only one
ambiguity parameter A. The comparison, for circular
motion, of energy in terms of orbital angular frequency
(which is a coordinate-invariant or gauge-invariant relation)
revealed the relation 1= —3w,/11 —1987/3080 [49].
Evidently, the application of the Poincaré algebra in [35]
is the equivalent of the manifest Lorentz invariance in
[47,48]. However, as shown in [39], the extended
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Hadamard regularization procedure, being incompatible
with Schwartz distribution theory [see, e.g., Egs. (7.17)
and (8.34) in [47], which should be compared with
Eqgs. (A90b) and (A92b), respectively, of our paper], could
not be made compatible with dimensional regularization
[see, e.g., Sec. IIID in [39]]. Therefore all terms of the
extended Hadamard procedure different from the standard
Hadamard (“pure Hadamard-Schwartz” in [39]) ones, had
to be traced back to their origins and eliminated [see, e.g.,
Eq. (3.55) in [39]] before dimensional generalization and
regularization could be employed. There exists another
derivation of the 3PN binary dynamics in harmonic
coordinates made in [40], using an effective field theory
approach with space-Fourier transformed fields, which was
from the very beginning put on a (d + 1)-dimensional
space-time footing with dimensional regularization.

It is interesting to note that the still other derivation of the
3PN binary dynamics in [37,38], based on the Finstein-
Infeld-Hoffmann surface integral technique [50], is a purely
(3 + 1)-dimensional one. The used surface-integral tech-
nique allowed a manifest Lorentz-invariant calculation with
surface integrals defined in the smooth vacuum regime.
Divergent integrals entered only on technical reasons in
simplifying computations. (In the paper by Einstein, Infeld,
and Hoffmann [50] the field singularities were already seen
in correspondence with Dirac d-functions, though their
treatment as full field sources had had to await for later
developments in the form of Infeld’s “good J-functions,” see,
e.g., the book by Infeld and Plebanski [44].) Remarkably, the
Brill-Lindquist initial value solution in (3 + 1)-dimensional
space-time mentioned above has originally been obtained
from the pure vacuum Einstein field equations without facing
any physical or geometrical divergences [42].

The fourth post-Newtonian (4PN) conservative dynamics
of two-point-mass systems has been completed only quite
recently [51], based on previous calculations [52,53]. The
results of Refs. [51-53] were in part confirmed by [54-57]
(see also [58,59]). The present paper, announced in [51],
delivers the details of the involved computations of the 4PN
conservative two-point-mass ADM Hamiltonian, where
ultraviolet (UV) and infrared (IR) divergences have to be
tackled simultaneously and where a mixed dimensional-
analytic regularization treatment is needed to be applied (like
in [60]). Pure dimensional regularization allows one to
control UV divergences only and Refs. [52,53] have uniquely
regularized all UV divergences. Regularization of IR diver-
gences turned out to be ambiguous (what is discussed in the
present paper) and this ambiguity was resolved in Ref. [51]
by taking into account the breakdown of a usual PN scheme
(based on a formal near-zone expansion) due to infinite-range
tail-transported temporal correlations found in Ref. [61].
Reference [51] showed that the total 4PN conservative
Hamiltonian is the sum of instantaneous (local-in-time)
near-zone Hamiltonian and time-symmetric but nonlocal-
in-time tail Hamiltonian. The present paper is devoted to
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details of computation of the 4PN near-zone local-in-time
Hamiltonian. A rather nontrivial application of Ref. [51] to
4PN-accurate generalization of effective-one-body approach
to compact binary dynamics has been worked out in Ref. [62]
already.

Since the seminal work by ’t Hooft and Veltman [63],
dimensional regularization (for history see [64]) has
become very popular in quantum field theory (see, e.g.,
[65]). Even the famous Lamb shift with simultaneously
occurring UV and IR divergences found its elegant com-
putation by applying dimensional regularization [66].
However, whereas UV divergences are nicely controlled
by dimensional regularization, IR divergences can pose
problems (see, e.g., Refs. [67,68]). This also happens in
our approach with the final solution indicated above. It is
worth pointing out that also the Lamb shift calculation of
Ref. [66] shows up an undefined constant in the IR sector,
which gets fixed by some dimensional matching.

A short overview of the various sections will give the
reader some help in orientation. Section II presents the
ADM formalism for two-point-mass systems developed in
(d + 1)-dimensional space-time. It also gives the transition
to the Routhian functional which is crucial for the obtention
of Hamiltonian which depends on matter variables only.
Section III expands the nonpropagating part of the ADM
structure for two-point-mass systems through 4PN order. It
ends with the formulas for the 4PN-accurate reduced
Hamiltonian. Section IV is concerned with the derivation
of field equations for the propagating degrees of freedom
valid to the next-to-leading order (which is enough for our
purposes). It also includes the formal near-zone (and thus
PN) expansion of the time-symmetric solution of field
equations. Section V develops the 4PN-accurate Routhian
functional, without expanding propagating degrees of
freedom into the PN series. Section VI presents the
4PN-accurate conservative Hamiltonian dependent on
matter variables only, with still non-PN-expanded propa-
gating degrees of freedom. Section VII gives the 4PN-exact
near-zone conservative matter Hamiltonian with fully PN-
expanded propagating degrees of freedom. Section VIII
delivers some details of the computation and regularization
of integrals, taking into account the various appendices,
and presents the fully explicit result for the total 4PN-
accurate matter conservative Hamiltonian. Section IX is
devoted to checks with the aid of the Poincaré algebra. All
technical calculational details are shifted to three appen-
dices. Appendix A is devoted to all regularization proce-
dures used. Appendix B gives a variety of needed inverse
Laplacians. Finally, Appendix C presents field functions in
fully explicit forms.

We employ the following notation: x = (x') (i=1,...,d)
denotes a point in the d-dimensional Euclidean space R¢
endowed with a standard Euclidean metric and a scalar
product (denoted by a dot). Spatial latin indices run through
1,...,d, and space-time greek indices vary from 0 to d.
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Letters a and b (a,b =1, 2) are particle labels, so x, =
(xi) € R? denotes the position of the ath point mass. We also
define r, == x — x,, r, = |r,|, n, :==r1,/r,; and for a # b,
, Mgy i=Typ/Faps | - | stands here
for the Euclidean length of a vector. The linear momentum
vector of the ath particle is denoted by p, = (p,;), and m,,
denotes its mass parameter. An overdot, as in X,, means
differentiation with respect to time coordinate ¢. The partial
differentiation with respect to x' is denoted by 9; or by a
comma, i.e., 9;¢p = ¢;, and the partial differentiation with
respect to x/, is denoted by 0,;. We abbreviate Dirac delta
distribution 6(x — x,,) by &, (both in d and in 3 dimensions);
it fulfills the condition [ d?x6, = 1. Flat d-dimensional
Laplacian is denoted by A, whereas A (without any sub-
script) is reserved for Laplacian in d =3 dimensions.
Extensive use has been made of the computer algebra system
Mathematica.

Fop = Xg — Xp, Tgp 3= |rab

II. THE ADM CANONICAL FORMALISM
IN d SPACE DIMENSIONS

We consider here a system of two point masses, i.e.
monopolar, pointlike bodies, which interact gravitationally
according to general relativity theory. We model point
masses by means of Dirac delta distributions §,. Let D :=
d + 1 denote the (analytically continued) spacetime dimen-
sion. The ADM canonical approach [36] uses a d + 1 split
of the coupled gravity-plus-matter dynamics and works
with the pairs of the canonical variables: positions x, and
momenta p, of point masses, and for the gravitational field
the space metric y;; = g;; induced by the full space-time
metric g, on the hypersurface ¢ = const, and its conjugate
momentum 7/ = 7/,

The full Einstein field equations in D dimensions in an
asymptotically flat space-time and in an asymptotically
Minkowskian coordinate system, written in the canonical
variables introduced above, are derivable from the
Hamiltonian [69] (in units where 162Gp = ¢ = 1, with
Gp denoting the generalized Newtonian gravitational con-
stant and ¢ the speed of light)

H= / d‘x(NH — N'H,)

+]{Odd_lsiaj(7ij =8V kk) (2.1)

where N and N’ are called lapse and shift functions and the
super-Hamiltonian H and super-momentum H; are defined
as follows:

H(Xyo Pas 7ijo 1) 2= /FN?(T® — 2G%),

Hi(xav Pa> yij9 ﬂij) = \/77N(T(z) - ZG?)

(2.2a)

(2.2b)

Here 7 and G** denote the energy-momentum and the
Einstein tensor, respectively, and y is the determinant
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of the d-dimensional matrix (y;;). In the surface integral in
(2.1) i denotes spacelike infinity and d*='S; is the (d — 1)-
dimensional out-pointing surface element there. In terms of
lapse and shift functions, the space-time line element reads
(we employ signature d — 1, x = ¢)

ds* = Gy dx#dx”

= —N?(dx")? +y;;(dx’ + N'dx?) (dx’/ + N/dx°).  (2.3)

The lapse and shift functions are Lagrangian multipliers
only and deliver the famous Hamiltonian and momentum
constraint equations of the Einstein theory,

H=0, H;=0. (2.4)

The fulfillment of the constraint equations together with
d + 1 additional (independent) coordinate conditions, see
Egs. (2.6) below, reduces the total Hamiltonian of Eq. (2.1)
to the reduced one, H .4, which obviously is a pure surface
expression. This is the ADM Hamiltonian which evolves
the independent dynamical degrees of freedom of the total
system. Here the lapse and shift functions are not involved
at all, only the space-asymptotic numerical value 1 of the
lapse function enters. The lapse and shift functions are to be
calculated by making use of the coordinate conditions
within the remaining set of the Einstein field equations.

The dimensionally continued constraint equations (2.4)
written for the two-point-mass system read

1 . 1 .
VYR = W (Vik)’jf” ink — -1 (Vijﬂj)2>
+ ) (M2 4 vd paipaj)ba (2.5a)
—2D7il = Zya Pajda (2.5b)

Here R denotes the space curvature of the hypersurface
t = const, 74 = yig(X,) is the finite part of the inverse
metric y"/ (yVy; = &}) evaluated at the particle position
(which can be perturbatively and unambiguously defined,
see Appendix A4 of the current paper), and D; is the d-
dimensional covariant derivative (acting on a tensor density
of weight one). Let us note that the source terms of both
constraint equations are proportional to Dirac é-functions.

We employ the following ADM transverse-traceless
(TT) coordinate conditions, resulting in irreducible canoni-
cal field variables,

d=2 -2 y
Yij (1+4 ¢> i+ hit,  a"=0,

=T (2.6)

where the metric function A;;" is a symmetric TT quantity, i.e.

KT=0, 9T =0, (2.7)

PHYSICAL REVIEW D 92, 124043 (2015)
and the field momentum 7%/ is split into its longitudinal and
TT parts, respectively

7t = 7l 4zl (2.8)
The longitudinal part of the field momentum can be
expressed in terms of a vectorial function V',

N , ;2
7 — 9.V —1—51'\/' _Eéuakvk7 (2.9)

and the TT part satisfies conditions analogous to (2.7),

Ay =0, 9 =0. (2.10)

After solving [with the usage of the coordinate con-
ditions (2.6) and by a perturbative expansion] the con-
straints (2.5) with respect to the longitudinal variables ¢
and 77/, we plug these solutions (expressed in terms of x,,,
p, and A[T, 7}) into the right-hand side of Eq. (2.1). This
way we get the reduced ADM Hamiltonian of the total
matter-plus-field system, which can be written in the form

T _iJ
Heq [Xaa Pa, h,/ > ﬂTT]

) KL T ARCATY

This Hamiltonian describes the evolution of the matter and
independent gravitational field variables. The equations of
motion of the bodies read

. aI{red -
Xa - apa ’ pa -

aI_Ired
ox, '

(2.12)

and the field equations for the independent degrees of
freedom have the form

0 oH 0 iiOH,
hTT _ 5TTk1 red . z] _ _sTTij red i 213
ori O gkl 9T T O T (2.13)

where the d-dimensional TT-projection operator is defined
by

trij | 1
51 J::§(5ik5jl+5i15jk) e 15 Okl
1
_5(6ikajl+5jlaik+5ilajk+6jkail)A :
d-2
+ﬂ(6ijakl+5klaij)A_l+ﬂaijk1A;2- (2.14)

In the current paper we are interested only in
conservative dynamics of the matter-plus-field system
and we want to describe this dynamics in terms of only
matter variables x, and p,. An autonomous (thus
conservative) matter Hamiltonian can be obtained through
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the transition to a Routhian description. By means of the first

field equation (2.13) one expresses the TT part ﬂ’T’T of the
field momentum as a function of matter variables x,, p, and

field variables hl-TjT, h,TjT Then the Routhian is defined as

R[Xa’Pa»h,TJTﬁTT] _Hred[xa,th,TjT’”TT] /ddx”TThTT-
(2.15)

Finally the matter Hamiltonian reads

H(X4 Pa) = R[X, Pas B (Xas Pa)s 1l (X0 PG)] (2.16)

where the field variables h,TjT, hTT arereplaced by solutions of
field equations, i.e. they are expressed in terms of the matter
variables and eventually their time derivatives, which are in
turn eliminated through lower-order equations of motion
(this procedure is equivalent to performing a higher-order
contact transformation [70,71]).

The dependence in the right-hand side of Eq. (2.16) of the
field functions on the same position and momentum variables
as those being located outside the field expressions vitiates
dissipation. For dissipation (radiation damping) to be
obtained, another set of (primed, say) variables has to be

PHYSICAL REVIEW D 92, 124043 (2015)

half-retarded plus half-advanced Green function (see Sec. [V
below), which from the very beginning excludes dissipation.

III. THE 4PN-ACCURATE
REDUCED HAMILTONIAN

To compute the 4PN-accurate reduced Hamiltonian
given by Eq. (2.11) we have to perturbatively solve the
constraint equations (2.5) through 4PN order. To do this we
expand these equations into the PN series, i.e., into series in
powers in the inverse velocity of light, ¢ := 1/c. We take
into account that

m,~0(€),  p,~O(),
p~0(e), A ~O(e),
7'l ~O(e), JrTTNC’)( o). (3.1)

To compute the 4PN-accurate Hamiltonian we need to
expand the Hamiltonian constraint equation (2.5a) up to
the order €'2. It is convenient to put this equation in the form
solved for the (flat) Laplacian of the metric function ¢. After
long calculation we obtain (from here the numbers written in
subscripts within parentheses denote the formal orders in ¢€)

6
Agp = By + O™,

used in the field expressions, cf. [14]. Because of our (3.2)
restriction to the conservative dynamics, we can iteratively n=1
solve the field equations by means of the time-symmetric ~ where ®(,), ..., ®(15) are given by
|
(I)(z) = —Zmaéa, (338.)
2
P; d—-2
Dy =— Oy — ——<PALP, 3.3b
(‘” sz «aa=1) PR (3.3b)
(p2) p: d-2
) =Z<8m3 3= ym, ? )0~ R L (3.3¢)
(2)®  (p2)? (d+2)p; 4-d
P _ _ a) a _ a 2 S ¢ ij\2
®) Z( 16m3 4(d—1)m3¢ 16(d—1)2ma¢ a 2(d—1)‘/’(” )
+ Zp“"p‘”'a __d=2 ((6—d)pp ;43¢ b ;) P hTT+ 3(hTT) ——hTT T+ WIT A W TT =27 (3.3d)
— 2m, “ 4(d-1)? Y A ij ij.k ijk" ik, j d'ij T :
5(p2)* 3(pa)’ (d+6)(p2)’ (d+2)dp _(10-3d)(4-4a)
o _ a a a 2 a_ 43 2 2
(10 Za:<128m;+ 16(d — 1)m5¢+32(d 1)2m3¢ 96(d — 1)°m 0 16(d—1)? »(7)
2
Pa d 2) (d—2)(6 d) ., k=g | 1T
_ 5, RSt St Fikzik LpT
+{Z( aml )pa,pu, T a1 M gy b~ R
5-d -3 W TT 8—d 4—-d
_ hTThTT hTThTT
4(d - )< aP) (hi; - 1¢u 20d= 1)¢k ,,k+ 1¢k ik.j
_ 6-d ¢ E(hTT) _lhTThTT ]’lTTA h'IT _ ¢~1] ij _( ij )2 (33)
2d-1)"\4 ijk ij ik i Aah; rr)”s o€
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7(p2) 5(pa)* 3(d+10)

a)’

(d+6)(d+2)(p )

PHYSICAL REVIEW D 92, 124043 (2015)

_ (p (d+2)d(3d-2)p; ,
(I)“”_Za:(_zsma 32(d - 1)m7¢_128(d 1)2m ‘/’2 192(d—1)%m »- 1536(d—1)*m, ¢>5“
(d=3)(10-3d)(4=d) .., 3(p2) 3p2 d+6 d=2 .-,
48(d—1)3 () +{Z(16mg T ata=nm s em,? )p“fp“15“+d—1¢”k”k
& - (5—d)(10—d) 7-d
s (503000 ) T+ (S 00+ ) 0

aiPa d-3 1
+{ sznffa 51y <3¢¢ +5(10- d)¢¢,j>}h3}h}g

a

10—d 1 L (6-d)(10-d) 1
+ T )2¢¢khT-T< (8—d)hj — (4~ d)h,TkT,> Wfﬁz (h,T,Tk) h;STkh};ch hiT AR
1 3 3
T (AT - Zh,?lhfz AT, = ST, ) = T A0 + TR R = R
(10-3d)(4=d) ., ok A=d
—Wﬁbz Imiy —4n"*hi ey — 20d- 1)¢( i), (3.3f)

We also need to expand the momentum constraint equation (2.5b) up to the order €°. This expansion reads

. —TT
m ;=11

(5)

where H’(3),

1
My = =3 Y p
. 1 1 i
6" 4-1 §¢Zpai5a — ¢,z |,

,HEQ) are equal to

d+2

; d—
H(7) = 16( 1)2 ¢22pa15 + ( )2¢¢] ]+ hTTpr5 +ﬂjk( h?l?z _h};Tk> -

. (d+2)d (d-2)?
H(g) —7>3¢3Z ai a_16( )

96(d 097

*a

We use the ADM canonical approach in an asymptoti-
cally flat space-time and we employ asymptotically
Minkowskian coordinates. Therefore we have to assume
that the functions which enter the formalism have the
following asymptotic behavior for r — oo (see [69] for
discussion of asymptotics in the d = 3 case):

1 . ij

T,
P~ —, Al~—, & .
a2 ij ~ a2 R s M

(3.6)

Making use of the above asymptotics and the expansion
(3.2)-(3.3) of the Laplacian Ag¢p, after dropping
many total divergences which decay fast enough

+1I

1 ~ jk TT TT 1TT d-2
_]ﬂ’ {¢.khij +¢<hz/k_2h/kz +m

() + Mg + O(e™), (3.4)
(3.5a)
(3.5b)
¢JﬂTT, (3.5¢)
7¢h zpa]
i (1
2wt + (50 = WL ). (3.5)

[

at spatial infinity (so they do not contribute to the
Hamiltonian), the 4PN-accurate reduced Hamiltonian
can be written as

red T _iJ
H§4PN[Xa’pa’hzj , 7]

6
= [ (St S xi EF ))
a n=2
(3.7)

: : 143 red red red
whzre the Hamiltonian densities h(4), h(6), e h(12)
rea
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nEl = Z 2“ )¢Ad¢ (3.8a)
2)\2 2

ey = Z(‘ (gm)* T2 i)al)ma 4’)5“ ath (3.85)

red (p3>3 (pa) (d+2)pa 2 4-d ~ij\2

h<8§_2<16m5+4(d 0 T T6(d=1)2m ¢>5 T aa—n )

( Zpazpt115 + d4(3)(d) 3)¢ ¢ )h;l"]T i(h;l;rk) , (380)
red _ 52" 3(pa)’ (d+6)(Pa) ., (d+2)dpa L 10=3d)(4—d)
h“%>_;<_128m7_16(d—1)m2¢ 32(d—1)*m ¢ 96(d — 1)°m ¢3> 16(d —1)? Py

+{Z< FEI ¢>pa,»pa,-5a——(d4(§)(d) Y010, + 2800

T AT+ 31 b = G2 G TR + = i + () (3.80)
wa N~ (702)°  5(p)* 3(d+10)(pa)” (d+6)(d+2)(pa) (d+2)d(3d-2)p;
h“%_;(zssnfﬁJr 32(d—1)m 7¢+128(d 1)>m ¢ 192(d—1)°m e 1536(d—1)*m, ¢4>5“

(d=3)(10-3d)(4=d) .. 3(p§)2 3p2 d+6

T 48(d-1) a )2+{Za:<_ 16m3  4(d—1) *¢_8(d—1)2ma¢2>”“"”“/5“
(d+2)(d=2)(d-3) , d=2 i\ (d=3)(0-4d) _ 4-d 2\ (T
oy X k}h ( o7 g ) )(h,;,»
wilaj . 3(A+4d— 6—d)(10—d e (6=d)(10=d) o o
+ (Z” T (16( g g0, +(16<2f_1)2)¢¢.i,->h,»k ; +(64(ff_))¢2(h,,k>
lhTT(WEz(h,TEﬁhﬂk)+1h{zT,hET,>+4ﬂ"‘hTT ’T+—“°;(Zd_)(f;5 d)¢zﬁijﬂ¥T+2?d__CZl)¢(ﬂ¥&)2- (3.8¢)

In the next step we perform the PN expansion of the field
functions ¢ and 7/. From Egs. (3.8) it follows that to get
the 4PN-accurate Hamiltonian we need to expand the
function ¢ up to O(e'?) and the function 7%/ up to O(€°),

¢ =bo)+du +de) + i)+ Paoy + O(€'?),  (3.9a)
#i =7 4R 4R 4+ 7D+ o). (3.9b)
Equations (3.3) imply that the functions ¢, and ?(4)

depend only on matter variables X, p,, the function ¢ )
ij » Whereas the
and gb 10) depend both on x,, p, and on

depends on matter variables and on AT
functions qb 8)
ij
hlj > 7T
functions 7

The leading-order and next-to-leading-order
i
@)
the functions n( 7) and n'

and ”(j 5) depend on matter variables only;
depend on both matter and TT
field variables. The overbar in the functions d) , (,b (8)> ¢(10),

7:er7) and %Ej g) means that they depend on the non-PN-

expanded TT variables 71! i ”Tr

To obtain the equations fulfilled by the functions ¢, up
to ¢y we substitute Egs. (3.9) into Egs. (3.3) and
reexpand them with respect to ¢. This way we first obtain

the Poisson equations for the functions ¢,y and ¢ 4), which
read
Aoy == Mub,. (3.10a)

Pz
2my,

+

Aypay = Z <—

a

%4)(2)) 5, (3.10b)

where in the right-hand side of (3.10b) we have used
(3.102). We have found it useful to split the function ¢4,
into two pieces,
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1 d-2 Laplacians A ¢,y and A ¢4 were eliminated by means of
=-S5 Sz 3.11 @ v
b 7 2@ + 4(d—-1) (4)2 (3.11) Eqgs. (3.10)]
where S4); and S(4), fulfill the following Poisson equations
A0S S ¢ ! My =S (@2 42w (@=Dm
s 4ren 8m3  8(d—1)m, @~ 8(d—1)
Py “ “
AyS s, :Zm_éa’ AySu) Zm 54 (3.12) -2 ~4i \3
a 4 X <S(4)1 +m(¢(2) —5(4)2)> }5a - (”({%)) ,
In the case of the function (}5(6) itis also convenient to split it (3.14a)
into two pieces,
&(6)[ a’pmh;l;T] ¢(6) (X Xavpu) +¢ [X Xll’hl_] } - d-2
A = s 3.14b
(3.13) e = 1 )i ( )

where the first piece ¢ ); depends only on matter variables

X,, P4» Whereas the second piece (25(6)2 depends on x, and
(functionally) on Aj". The Poisson equation for the

functions ¢ ), and g;ﬁ((,)z read [in their source terms the

2

(p3)’ (p2)? P

d+2

The Poisson equations fulfilled by the functions (,7)(8) and
$0) we present in the form where the lower-order
Laplacians Ag¢(2), Ay, and Ay are not replaced
by their source terms. The equations read

4—-d

A 2 _ S ij \2
o = Z{w S o (R ) [ =Pl
~l ~1 PaiPaj d—-2 d-2
] ] { L5 a—4(d_1)2(345(2),1'47(2)]+(6—d)¢(2)¢<) ij) + . 14)() }hTT
31T TT JTT TIA TT _ nzil i d-2 - _
Z(hz]k) _Ehljkhlk]+h Aghjj =275 77y = m(¢(2)Ad¢(6)+¢(4)Ad¢(4)+¢(6)Ad¢(2))’ (3.152)
; 5P, 3(pa)’ (p2) d+6
A — a a a 2 _
ab(0) Za:{lzsm; 16(d = )m3 7@ T aa = 1w \Ba=1) % ~ P
2
p d+2)d .,  d+2 _
— o)
+2(d—1) <48( )2¢ ( _1)¢(2>¢(4)+¢(6) a
4—d (10-3d e s
o (s (R + b R )P+ iy ) = Ry = 280 7
2
PaiPaj Pa 1 d-2 3 1
+ {—Z m, ’ <4m2 +m¢<z)>5a +to <4(d— i \a= 1202090 = P@.iba.; — ¢e).iba.i

6—-d 1 .

* 4(d-1) <2(d -1) 4’%2)9[’(2) i ~ .~ ¢(2)¢(4),ij> + (6>,l~,~> - 277,'(]:;)7[{3) }hiTjT
S=d d-3 4-d

Tad >(Ad¢ 2O = G b =5~ > k?f Tt oy b,

6—d T T _ 3 TT ) T N,, i\ ij T
" 2(d-1) Yo h” ik _Z(h”k ~hy Adh ) T 275 | — (771)

d-2 ] o )
T4d-1) (D) Buad) + ayBadis) + P6)Daba) + P3)Dad(2))- (3.15b)

ij

The equations satisfied by the longitudinal field momenta ﬁg), 7?(5),

zij
g0

,and 7:1219) we obtain by substituting expansions (3.9)

into Egs. (3.4)—(3.5) and reexpanding them with respect to €. The result is
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. me » (3.16a)
Hi = - 7/ 3.16b
255 = =57 9i(b@7G). (3.16b)
#o—od- g 7+ gl + doyry) - 0-d gl — & T+ VBT (3.16¢)
(M. — 7J d—1 4) TT 8( ) ik (3) Vjk,i .
. 1 . 6-d i (4= d)(6 d) ~
lj lj l/ 3 U
6—d 2 (= 1 ;rik HIT k pTT _ hTTﬂJk
TSd=1) )2¢ ( +”TT)+H¢(2) 3 ic T Visyljci = hic 71
1 1 :
— o @yl + (d = Vi)l + 5 Wy, (3.16d)

By making use of Egs. (3.10)—(3.16) and performing
very many integrations by parts in space, it is possible to
rewrite the 4PN-accurate reduced Hamiltonian (3.7) in the
form in which its density depends on momenta Pu and on
the followmg functions: ¢2), Sy, Sy a2 V (;5

thJT, erT [for convenience we also use 77.'( 3 and 71'( 5)° Wthh

can be expressed by V and V (5)° respectively, by means
of Eq. (2.9)]. We w111 dlsplay now this form. The 4PN-
accurate Hamiltonian is the sum of pieces related with
different PN orders,

|

where the Newtonian %) and the 1PN A densities
depend only on matter variables x,, p, only, the 2PN
densitity /g depends on matter variables and on h,j ,

whereas the 3PN 7o) and 4PN h(;,) densities depend on
matter variables and on field variables i, mi;. The
dependence of ;5 on hTT is both pointwise and functional

and this is why we have used square brackets for arguments
of f(13). The explicit forms of the Newtonian /4 and the
IPN-level h densities are as follows:

2
red T _ij Py (d_z)ma
HEpn[Xa Pas b 7] hay(X:X,4.Pa) :Z<2ma_4(d—1)¢(2) 5. (3.19a)
- / AXh S [X; X, P KT ], (3.17)
where (p2)? (d—|—2)p
h(s)(X;XmPa)ZZ(— s " 8(d=1)m %
Jred [X'X KT ij ] a a
I (d=2)m d-2
a _ _ 42
= Zmaéa+h(4) X; X4, Pa) + 8(d—1) <S(4>1 2(d—1)<S(4)2 ¢(2)>>
+ he) (X3 X4 Pa) + gy (X5 X s P 1) +Vi, )pa,> o (3.19b)
+ h(lO)(X;Xa’ Pa> h;'l;'T’ﬂfllT) . . .
. T i For displaying the 2PN-level density h () we define two
+ hay) [X; %4> Pas hi; 77 (3.18) auxiliary functions which depend on matter variables only,
|
(pa)’  @+2)®a) ,  (d+2)pa ( d-2
N aPa) = N /ra S _75‘
) (X Xa: Pa) za:{lmg 16— 1)md P00 F 6@ = 1)m, \ P TS T gy S
(d=2)°m, (d=2 , 3(d-2) ~ij \2
“32(d-17 \d= [P + 38wy —ms(m by (0a — D) (73))7 (3.20a)
PaiPaj d—2
Sa)ij(XsXg, Pg) = —Z L5, — 2d= )¢(2),i¢(2 (3.20b)

By means of these functions the density /g can be written as
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1 1
h(S)(X;Xw pa’h;r/T) = }{(8)(X;Xm pu) +§S(4)ij(X;Xm pu)h;l;T (h};Tk) . (321)

To display the 3PN density /(o) we define another two auxiliary functions

, _ 52)* _ (d+4)(p2)’
}{(1())(X,Xa, pa) = ;{ 128mzl 32(d _ l)mg ¢(2)

(p2)? ((d +6)d

dld-=2
Py + (d +4)S(ay = ( )5(4)2>

C32(d - 1)m3 \2(d - 1) d—1
d+2 d(3d -4 3d—4)(d -2
- 16((6; ))Iz)ma< (( 154’5(2) +dSu —%S(m)%ﬁ(z)

(d Dm, ((d—-2)° (3d —4)(d-2) (d—2)?
<4( )2 o+ T ad-1) undly - m5(4>2¢%z)

32(d—1)
3d d-2 d-2
+ A8, %&4)15(4)2 +42((d )) Stap )
VigPai ((3d=2)(3d - 4) (3d —4)(d -2)
+ 2d-1) < 8(d—1) ¢%2) + dS _WS@)Z) }5a
3d—4 d o
+ ( Hd-1y ((d =2)Supi — (3d = 2)p2)92).0) —ms(mi) Viay @i, (3.22a)

j k k
Vo t2V5).Y06),

2
. . pupuipuj (d + z)pazpa; i k i
Bi6)ij(X: Xy, P,) = g:( 4} + H(d=)m, D) )0 = 4Vi5) . Vin, —2Visk
4(d-2)

. (d+1)(d=2) (2d —3)(d - 2)?

d VE3)~J' SV 4(d—1)? b).iS@n; — W¢(2)'is(4)z’j
(d—2)(3d—4)
TRa—1p teteite (3.22b)

The 3PN density h;q) then reads

2(2d 3) 5
h(]O)(X;qu Pa» h;l;T’ ﬂTT) _X(IO)(X;X()’ pa) (d )2 (¢(2) (J)) +B( )1J(X;xa’ pa)h;l;r
1 2(d - 2) ~i i 2
+ 2(d — 1) ¢( )hTTAdh =1 (ﬁ(z)ﬂ(g)ﬂT{T -+ (”’IT) s (323)
where, to diminish number of terms, we have introduced the TT projection of the product ¢ ;) ) which, by virtue of
Egs. (C9) and (3.16), can be written as
()l = da)Fh + (d=1FE),. (3.24)

This TT projection should be treated as a function of matter variables only.
To display the very large formula for the 4PN-order density /(;,) we introduce three auxiliary quantities %%12) %12 and
1(312). We first define the function }{212) which depends only on matter variables x,, p,,
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. 702 5(d+6)(pd)*
X (1) (X3 X4, D) = za:{zs@ng * 256(d — 1)m, G

+ 64(6(1"_5)13)”12 [flf : (% (d+10)¢%, — (d - 2)S4 ) (d+6)S, }
e V“is??-@f 3)¢“ gy (002 = R0 s ot
+3 <(d +1)82, - % S Sias + % 554)2> 4 (3d- 2)¢(2)¢(6)1}
S a1 g e (24~ e =S S )
- % (5 Bd-2)5%,, - LTI s+ 2&17:?; 334)2) o
(B2 St =)~ 0= 20500 )| b0 = 5 R
-~ % E (2d =3)¢3,, + % ((3d —2)S(y — % s<4)2) ¢(2>] (7). (3.25)

The function »2,,, depends on matter variables X, p,, and on the field function ATT (it contains terms linear, quadratic, and
(]2) p a pa ij q

cubic in A"). Tt reads

. PaiPaj (3(P2)* , (d+4)p; (d+6)d d+4 d(d-2)
}{(212)(X’X‘“pa’h;l?):={_z 8ma1< 2m4 +<d—1)mg¢(2)+2(d—1)2¢%2)+d_15(4)1_(d—1)25(4)2 04

| d(d=2) d-2 ([2d-3 (d+2
Taa— el eaten gy {[z<d—1>< 7 eld- Z)S”)*

(5d-8)(d-2) d-2
+<3dS( ~—ws(4)2,i P2)P0).j _m (d+3)S(4)l,iS(4)1,j

(2d—1)(d-2) (3d—>5)(d—2)? 2(d-2)
ot SwuSwnt gy SwziSen |+ [VeaVh,

3d-2

S<4)1] b).ibe).;

. . . 2 . )
- V(a),kv‘é.z),k_z‘/(s),kvka J +2 (1 _d> V(s),jvlf3),k] ‘/’( 2) +2Vk (V ‘/’ V(s),k¢(2),/‘)}
Vv

3
o . . 2 . .

_yi J _ i k _yk J _= k i i k TT

3.V 5V 50V euV ). V<3),iV<5>~k+<1 d)(V<3>,kV(s>./+V(3>./V(s>,k>}}h"j

+4(d—1) [V" VES = Vig

PaiPaj 4+8d-3d? (d—2)> 1 o
+< 2 a™ 16(d 1)2 ¢ I¢(2)~J 16(d—1)2(¢(2>¢(2)‘U+S(4>2’U)+4(d_1)S(4)1,lj ik Mg
3p; 20— d> 1 ((d+2)(10—d)
(- et gt e 8 = (e 3
a4 T Lottt TT ,,TT \ 7, TT
_4(d—1)S< 2 i ahiy 4(2h“‘”(h l+hjlk)+hklzhkl])h . (3.20)

The function ”?12) is proportional to the second part 4_5(6)2 of the function g?)(ﬁ). It is a function of matter variables and it

depends on h,-TjT both pointwisely and, through the function &5(6)2, functionally. It equals
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d+6)(pa)°
3 Ik BT = ( a
%(12>[X7Xa’pa’ z/] {;[32(d—1)m2+ 32(d—1)2m

d—2)m, (5(d—2)?
’ +3(2(d—)1)2 (2((d—1)) (S(4)2_¢%2))_(3d_2)5(4)1)]5a

‘43&1:?) (#5)° % <2>,uhiTjT}55<6>z- (3.27)
The 4PN-order Hamiltonian density /(;,) finally equals
h(12)[X: X Pas B 7] = ¢ 1) (X3 %00 Pa) + 3215 (X5 X0 Pas BT) + 5635 [X X, Py B
+ (tl(;(;di)a)éﬁz - 7= 15 - %&4)2) 7y (b7
(Zd - ; P (b h) )TV + 2274 BIT + Vig (2015, — L)) (ﬂ%’% - % (¢(z)7r{’§>)”>
Z ?(15 )(ﬂ%)z + <(9d4_(al,4_)(142_ 9 ¢<2)‘/’(2>,.ivf3) - d;i]SM)l,le@)
W%”%) - 2<Zd__15)¢(2),jvés)>n§!}. (3.28)

IV. FIELD EQUATIONS

Dynamical degrees of freedom of gravitational field
described by the functions A" and i, are solutions of
the field equations (2.13). From the 4PN accurate reduced
Hamiltonian given in Eq. (3.17) one can derive 4PN-
accurate approximate field equations. In the rest of the
paper we will only need to use field equations which follow
from the 3PN-accurate part of the Hamiltonian (3.17). It
reads

HrggpN[xa,pa,thJT,erT] /d xhpn(X; xa,pa,h,TjT,ﬂTT)
(4.1)
where
h§3PN(X;Xa’pavh’¢1;T7ﬂ'IjT>
:Zma5u+h(4) X;Xuvpa)+h(6)(X;Xa’pa)
+h(8)(X;mea’hViI}T)+h(10)(X;Xa’pa’herj‘T’ﬂ'Ij‘;F)' (42)

For this Hamiltonian the field equations (2.13) take the
form

h
QT = 5T1"kla;zle +O(), (4.3a)
on 1T
jrij _ _§TTij 8]153[)[\1 _ ah§3PN
T Lom o \omgl, )
Oh
o) Jroe e
kl.mn/ .mn

|
or, more explicitly,

2(d - 2)
d—1

h;ro = 5;.5Tk1{2727-1}lr1~ - ¢( )~kl } + O( ), (443)
ij TTkl 1 1 TT
Tpp = —6;; 55(4)k1 - EAdhkz + Bo)u

1
2(d—1)

(o) Dahy + Ad(ﬁb(z)hy))} + O(e*).
(4.4b)

By combining these two equations one gets the equation
fulfilled by the function 4" It can be written in the form of
the wave equation,

Dd+lhi =87

iy

(4.5)

where [, is d’Alembertian in (d + 1)-dimensional flat
space-time,
Dd—H = —8% + Ad’ (46)

and where the source term is
STT 5TT“{S @k T 2B(g)u

1
+ 7-1 (¢2) Aghyt + Ad(¢(2)h;£lT))

2(d -2)
d—1

o) O, (@)

After solving field equation (4.5) for /], one can obtain the

TT field momentum ﬂfle from Eq. (4.4a):
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ij _lilTT d-2

= py 5TTkl
”TT 2 17 d 1 (

b)) +O().  (4.8)

In the current paper we are interested only in
conservative dynamics of the matter-plus-field system;
therefore, we use a time-symmetric (half-retarded half-
advanced) formal solution of the wave equation (4.5). We
then expand this solution with respect to the retardation.
This way we obtain the near-zone PN expansion of /" of
the form

thjT = (A + APO? + AP0 + - -)S,-T]-T. (4.9)
By making the expansion (4.9) we exclude from the
4PN-level near-zone metric the nonlocal-in-time contribu-
tion coming from tail effects (what was found in Ref. [61]).
Expansion of h};-T to the order required in our computations
reads

TT — T

(yij ey + O(€®):

(4.10)

we thus omit the non-time-symmetric parts /S, and h ().
After plugging the expansion (4.10) into Eq. (4.5) one
obtains equations fulfilled by the functions A, - and /g, .

The leading-order function h(T4T),-j is the solution of the

Poisson equation

AT = §TT

@i = Sy (4.11)

where the source term S(4);; is defined in Eq. (3.20b). The
next-to-leading-order function A, fulfills equation

Aghly); = St +hi

©)ii T i (4.12)

where the source function S();; equals

1
2Bg)ij + -1 (lﬁ(z)Ad’l(ET)
d—2

+2 -1 az(éb(z);féé)),

S(e)ij = i+ Aa@e)hi;)

(4.13)

and the source function B g),; is defined in Eq. (3.22).

V. 4PN-ACCURATE ROUTHIAN

Introducing Routhian description is an intermediate step
on our route to the Hamiltonian which depends only on
matter variables. The 4PN-accurate Routhian R 4py We
obtain from the 4PN-accurate reduced Hamiltonian H'S{py
of Eq. (3.17) by performing the Legendre transformation
with respect to the field momentum T[ZET [see Eq. (2.15)].
The result is

PHYSICAL REVIEW D 92, 124043 (2015)

W R

RS4PN [Xd’ pa’ i ’ ] hTT

red
H§4PN[Xa’pa9 ij ’”TT]

/ dxh] i,

where on the right-hand side the field momentum ﬂ’TJT is

expressed in terms of th]T, th] , and matter variables. The

Legendre transformation is to leading order realized by
Eq. (4.8). We will show now that this leading-order formula
is enough to get the 4PN-accurate Routhian.

Let us split the field momentum z7; in the following way
[cf. Eq. (4.8)]:

(5.1)

ii 1. d-2 i
ﬂ’I{T = Eh:l;r + m (¢(2)7T(é) )TT + 57TTT, (523.)
=0,  nil, =09 for r - o0. (5.2b)

We will show that the density of the 4PN-accurate Routhian
(5.1) does not depend on 6z+;.. The only part of the density
which could depend on 57r’TJT [see Eq. (3.23)] consists of
three terms,

2(d-2)
d—1
Making use of the splitting (5.2a) and the relation (3.24) we

rewrite the quantity 6t in the form

hTT ij

ot == (n'f[]vr)2 - (]5(2)71'[(}3))7[” 1T

(5.3)

1 .
6r:—Z(h,~TjT)2 —¢ 7 hijt

+ (87L)? +2(d - 2)~’(])5ﬂlTJT

d-2 y o
+ (ﬂ) (¢(2)”(J3))TT((CZ_1)7T(]5)—¢(2)ﬂ(]3)). (5.4)

By virtue of the representation (2.9) we rewrite Eq. (5.4) as

1 d 2 .
_ ~lj TT
or = Z( i)’ = @7 3)hij
< 1> ~”>(4‘5<2>’~T'<’3>)TT
+ (67i)? + O, EDy, (5.5)

with

(d-2)°
d—1

ED3k = VES) (4(d - 2)577:1[{{'1" + 2

Because ED5; decays as 1/r2¢~3 for r — oo [the quantity
Vis) = O(r*=?) when r — oo], it does not contribute to the

Routhian, and because (57%;)? is of the order of €4, only
the first three terms on the right-hand side of (5.5)
contribute to the 4PN-accurate Routhian.
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By virtue of the above result, to get the 4PN-accurate
Routhian it is enough to eliminate from the 4PN-accurate
reduced Hamiltonian (3.17) the TT part 77 of the field
momentum by means of the relation (4.8). Making use of
Egs. (3.19)—(3.28) and Eq. (4.8), the 4PN-accurate
Routhian reads

R§4PN {pra’h;'l;r’h};r]
~ [t amlsx, o B 65)
where
to4pn X5 X, Pas BT ]
= Zmaéa + h(4)(X; Xa> pa) + h(G)(X; X4 pa)
+ h(S)(X; Xa>Pa> h;[;r) + T(10) (X; X4 Pa> h??? h:l;r)
+ v(12) [X; X0 Pas 11 h,T,T] (5.8)

The Routhian densities h(4), h(é), and h(g) are identical with
the corresponding densities of the reduced Hamiltonian
(3.17) and they are given in Egs. (3.19) and (3.21). The
3PN density 1(j(), after some more integrations by parts,
can be written as

l:(10)(X; XgsPas h;l;‘T’ h;l;r)
= %(10)(X; X5 Pa) + 2¢(2),iV'(’3)(¢<2>73213))TT
+ Bio)ij (X: X, o) + mfﬁ(z)hﬁTAd’l}?
2(d-2) st L oerr
+ J-1 ¢(2),in3>hij ~a (hij ). (5.9)

The 4PN-level Routhian density 15y can be easily
obtained by replacing in the 4PN-level Hamiltonian density
h12) [given in Eq. (3.28)] the field momentum mie by the
two first terms from the right-hand side of Eq. (5.2a),

r(lZ)[X;Xa’paih;‘l}T’l:l:gT]
Lo d=2
=h) X;Xuvah;'l;T’EhET+ﬂ(¢(2)ﬂ(é))TT . (5.10)

VI. 4PN-ACCURATE CONSERVATIVE
MATTER HAMILTONIAN

In this section we consider the 4PN-accurate conservative
matter Hamiltonian, which depends only on the particle
variables x,, p,. To obtain the conservative Hamiltonian,
from now on we use only the time-symmetric part of the field
function ;;". To get the matter Hamiltonian we eliminate h;;"

(and hiTjT) by replacing it by (time-symmetric) solution of the
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field equation (4.5). We thus treat hj' (and its time
derivatives) as functions of matter variables x,, p,. All time
derivatives of X ,, p,, involved in 2" (and h,TJT) are eliminated
by means of the lower-order equations of motion.

We thus start from plugging into the 4PN-accurate
Routhian (5.7) the time-symmetric solution of the field
equation for the function 4. This way we obtain the
4PN-accurate conservative matter Hamiltonian

HZipK (Xar Pa)

= RS4PN[X¢¢’ Pa: h;‘S‘T(X; Xas pa)v h;l;T(X’ Xa pa)]? (61)

where we have assumed that all time derivatives of x, and
P, present in /" and hi' were eliminated by means of
lower-order equations of motion (to get the 4PN-accurate
results we only need to use Newtonian and 1PN equations
of motion). We reorganize now density of the Hamiltonian
(6.1) by employing the field equation (4.5) for the func-
tion h,-TjT.

We first split /2" into the leading-order term h(Tf)ij and
the rest 5h;;": '

TT _ }, TT TT
hij = higy,; + Shij,
Shi = O(e°), ShiT = O(r*=4) for r - co. (6.2)

The part of the 2PN density h(g) which depends on h}}T
reads [see Eq. (3.21)]

1 1
6[’11 = 55(4) hTT + - (h?ka)2,

where S4);; is the source term for h(Tgl.j [see Eq. (4.11)].

Making use of the splitting (6.2), Eq. (6.3) can be rewritten
as

1

1 1
S<4)ijh(T4T)ij +7 (h(thT)ij,k)2 + ) hEAfT)ij,k‘shiTgk

Shy = =
) 4
1 TT

+ 5 (6nT,

1
)+ 5 Swi O (6.4)

We still rewrite Eq. (6.4) in the following way:
1
2

1 TT TT
+5 h(4)ij,k5hij,k

1
Seyishiay; + 7 (iayijx

1
)+ 3 (AghTS, oL

ohy = )ij

1
7 (GNP

2
1
+5 (S = St oh (6.5)

where we have employed the field equation (4.11) for the

function h(T‘tT)ij. Finally, making use of the identity
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(Adh(T“Tﬁj)‘ShiTjT = 0k (h(Tgijﬁkéh};‘T) h h(ngij,k‘Sh}fk’ (6.6)
equation (6.5) takes the form
éhfl KT lhTT 2 léhTTz 0
I—ES(4)ij (4),~j+1( (4)ij.k) +Z( ij,k) +O0(EDy,
(6.7)

where the exact divergence EDy, is defined as [we have
used here the explicit form (2.14) of the TT projection
operator]

1 _
ED = 5y 40hij +0hi! <Ad 'Sz

1 d-=2

2(d—1) A7 S _mA325(4>/l,J’li> . (6.8)

Because ED,; decays as 1/r*~3 for r — oo, it does not
contribute to the Hamiltonian. Therefore the Hamiltonian
density 6k, can be replaced by k', where

1 1 1
Shi =5 Stiihiay; + 4 () + 4 (Ohi)*
(5h}fk)2 — O(e). (6.9)
Because
(8hTR)? = =6h T (AShTT) + OEDy,
ED, = ShTTORTT,, (6.10)

and EDy; = O(r3724) for r — oo, instead of the density
(6.9) one can also use

1 1 1
OI s= S a5 () = 7ORET (AgdhTT). (6.11)

The part of the 3PN Routhian density t;, [see Eq. (5.9)]
which depends on /" or hij" reads

Blonihij + g -1y Pl Adhif
2<d - 2) j 7 TT l TT
+ 2 VI = G (6.12)

Let us denote the sum of these terms and of the expression
(6.11) by 6hs,

1
5]’12 ==

1
D) S(4)ijh(T4T)ij + 4 (hp(ré;l;ijfk)z + B(6>"h'T'T

ijlij
I
MO
2(d-2)
d—1

1
Pl AT = ShTT(A5hET)

o 1 .
b).iVishiy - i (hi")2. (6.13)
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In the field equation (4.5) we split the source term S into

the leading-order part S(Tf)ij and the rest 657",

TT _ (TT TT
O hF = STT, + 68

w T sSTT = 0(ef).  (6.14)

After substituting the splitting (6.2) into (6.14) we obtain
(remembering that O, | = =07 + A)

TT _ jTT TT TT
AT = REF 4 ST 4 8STT.

" (6.15)

By virtue of Egs. (6.2) and (4.11), Eq. (6.15) finally leads to

T _ jTT TT
AgShT = hTT + 68T,

1

(6.16)

Making use of Egs. (6.2) and (6.16), we can prove the
following relation:

. 1
TTy2 TT T
(hi;i) —Zéhij (Ag0h;;)

d TT 1 1 TT 1 7 TT

1'TT 2 1"TT TT 1 TT s ¢TT

(6.17)
With the aid of the above relation, after dropping the total
time derivative on the right-hand side of Eq. (6.17), the
density 6h, from (6.13) can be replaced by

1
Sh = =

1
2 n (ha[;ij.k)z + B(6)ijhiTjT

4
TTA 3 TT
dyhi; Aghi;

S(“)U”(T;ij +
1

2(d—1)
2(d -2)
d—1

. 1.
TT TT
D)V ihij — 1 (hayi;)?

1 TT TT 1 TT s¢TT
o il oh T~ ohlTeS.

o, (6.18)

The expression (6.18) contains all terms related with the
2PN-level and 3PN-level parts of the Routhian (5.7) which
depend on hiTjT or h};T Taking into account this expression
and all other terms entering the Routhian (5.7), one can
write the 4PN-accurate conservative matter Hamiltonian
(6.1) in the form

HYS (x,.p,) = / e (x:xp). (6.19)

where
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hrsnﬁaﬁ;le\}‘(x’ Xa’ pd) = Zmaéa + h(4) (X’ Xav pa)
a

+ hie)(X: Xg. D) + h(E1 (X3 X0 Py)
+ hiio) " (X3 Xq. o) + M35 (X3 X0 Po)-
(6.20)
Here the densities /14 (at the Newtonian order) and £ (at

the 1PN order) can be found in Egs. (3.19) and the densities
at the 2PN, 3PN, and 4PN orders are as follows:

1
hl(‘r;ge;tter(x; X, pa) = }((8) (X; X, pa) + E S(4)l]h’(r‘;l;l]

1
+ 3 )% (6.21a)

R0y (X3 Xas Pa) = X(10)(X: X4 Pa)

+ 2001V (5 (b)) ™ + Bl

e g
+ 227__12) ¢(2),iv{3)iliTjT - % (h(zr)ij)zv
(6.21b)
T (x: X, p,)
= h(12) | X; X4, Pa> h,'TjTéjliTjT + % (¢(2>7~féé))TT
4y BTD oTT — S STTSST. (621¢)

VIIL. 4PN-ACCURATE NEAR-ZONE
CONSERVATIVE MATTER HAMILTONIAN

We employ now the crucial near-zone (time-symmetric)
PN expansion (4.10) of the field variable th]T i.e., we use
hi' = hi, + 6hll with ShET = hig, + O(e*). We also
employ [see Eq. (6.14)]

(7.1)

5SIT = ST 4 O(e®), |

The first part h! . reads

(12)

2 TT

hl

1 ((3d-2)(3d—4) (3d—4)(d—2)

d—l( 8(d—1) P+ S - 4(d—-1)
7(d—2)?

—5(4>1,j+ﬁ

d-3 : 2(d-2
_m¢(2)([[h(Tz¢T)ij]]o)2+ (d—l )¢(2),iV

(12)(X§mea) :K(llz)(X;mea) +}{(12)(X;mea»h(4),’j) +}{?12) [XQXa,Pa»h%};U] —¢(2)<(¢(2>IZ<3)

i ;4 i
¢<2>¢(2>J) V(3) +2<d_2)¢(2),jv(5) __V]((S).kh(Té;l;ij +2V(3).kh(Ta$jk -

Ty T8 5 R Mo 673 1
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where the next-to-leading-order source function S);; is
defined in Eq. (4.13). After plugging (4.10) and (7.1) into
the 4PN-accurate conservative matter Hamiltonian of
Eq. (6.19), we obtain the 4PN-accurate near-zone
conservative matter Hamiltonian,

HEE™ (X0 Pa) = / AR (X X, Pa)s (7:2)

where
hréaagﬁone(x; pra) = ng&g + h(4) (X;Xavpa)

+ h(ﬁ) (X; Xas pa) + h?g;]r_zone(X;pra)
e (0,

+ A5 " (XX Pa)- (7.3)

Here again the densities /() and h) can be found in
Egs. (3.19), the 2PN density h?g;“'zone(x; X4 Pu) =
h?%‘;m(x;xa,pa), where h?;‘j“er is given in Eq. (6.21), and
the 3PN /4PN densities h?fg;'m“e and h‘(‘fgr)‘zone follow from the
sum of densities h?}*g;e‘ + h‘(‘}*g;e‘ after plugging the expansions
(4.10) and (7.1) into the latter. The 3PN-level density reads

Aoy " (X3 X Pa) = %(10) (X: X5 Pa)
+ 2¢(2>’V(3) (¢<2);[l(é))TT + B(6)11ha€11

|
gy P Ay

2(d—1)
2(d—2 o
(d— I )¢(2),in3)[[’1(4)1‘,‘]]0
— (TS0, (74)

where the notation [[h(Tf)ijﬂo means elimination of time

derivatives X, p, in hgr)i ; by means of Newtonian equations

of motion.
The 4PN-order density we split into two parts,

S (5500 D) = oy (55X ) + ) (55,2,
(7.5)

~ij ~ij 3(d—-2)?
S(4)2> ”({%) (45(2)”(13))TT+ { (4(d—1)25(4)2’j
1 TT
d Vis by } ([ yiillo

(7.6)
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The density hgm depends on the following functions: ¢ ,)

S(4)1 and S4), [they determine, via Eq. (3.11), the functlon
Dl V and V [they define, through Eq. (2.9), the
functions n< 3 and iz” 1 hT j»and ¢ )1, ¢(6)2- The function

®(6)1 1s the solution of Eq (3 14a); the equation fulfilled by
the function ¢ ), one obtains from Eq. (3.14b) for the

function ¢ 62 after replacing in the latter h by the
leading—order h Tu’
d-2
Ay = m@z),ijhgg,-j- (7.7)

Formulas needed to express in an explicit way all these
functions in terms of x,, p,, and x are given in Appendix C.
The last two terms in Eq. (7.6) are related with the last two

terms in Eq. (7.4); [[hTT ;1]; means here elimination of the

time derivatives x,, p, by means of 1PN equations of
motion. In the rest of this section and in Sec. VIII all time
derivatives of x,, p,, are eliminated by means of Newtonian
equations of motion; therefore from now on we drop the
notation [[-]],-

The second part h( 12) of the 4PN density h‘gea; zone is the
4PN-level contnbutlon coming from the density (6.18); it
equals

d=2 .
h(zlz)(X;Xa’pa> :_d 1¢( ) Ej)hr(”;

! T T
t 2(d—-1) b) (g Aahis),;

TT TT
FhigiAalia;)

1. 1
+ (B((,)ijJr hTT..——STTi) BT

1w 756 ey 78

The function hTT

the two terms,

, according to Eq. (4.12), is the sum of

hig; = Clow + B2 hajy (7.9)
where
TT _ A-1¢TT
C<6)U =A; S(6>ij. (7.10)

After plugging Eq. (7.9) into Eq. (7.8) and shifting some
time derivatives,' the density h%m can be rewritten as

R, = hoh + hes + he

(2) = Moy + iy + iy (7.11)

'Shifting time derivatives means replacing AB by —AB. This
implies adding a total time derivative to the Hamiltonian density
and on the level of Hamiltonian is equivalent to performing a
canonical transformation.
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where
1
2,1 TT TT
") =3 1)¢<2)h<4>us<ew
1
TT \_ ' ¢TT TT
+(B 2(d 3a—n oAk 4S<6)ij>c<6>u’
d-2 ~tj TT
~ 10k Clo (7.12a)
22 =L g g Lo
(12) 2(d—1) @)™ (@)ij" (4)ij 4 @)ij=a " (4)ij
1 d-2 ’
TT ~1]
+ <m¢(2)(Adh(4)j/’) +ﬂ8t(¢(2)”(3))>
X AZ S+ Bieyi A A s (7.12b)
1 ) )
23 TT jTT TT —-1,TT
hia) = 3 (Ceyiiayis = Steyis (A Piayip))- (7.12¢)

VIII. COMPUTATION OF THE 4PN-ACCURATE
NEAR-ZONE CONSERVATIVE MATTER
HAMILTONIAN

The bulk of computations we did to derive the explicit
form of the 4PN-accurate near-zone conservative matter
Hamiltonian, i.e. to perform integration in Eq. (7.2), was
performed in d = 3 dimensions, where our working horse
was Riesz-implemented Hadamard regularization supple-
mented by a Hadamard “partie finie” concept of a function
at its singular point. The results of global (i.e., extending to
the whole R? space) three-dimensional integrations were
then corrected in two different ways: (i) the UV divergences
were locally (i.e., within small balls surrounding particles’
positions) recomputed by using dimensional regularization;
(ii) the IR divergences were also “locally” (i.e., outside a
large ball enclosing particles, or in a neighborhood of
r = oo0) recomputed by introducing an additional regulari-
zation factor (r/s)? (with a new IR length scale s5), which
modifies the behavior of the part of the field function h(TﬁT)ij

which diverges at r — oo [see Eq. (A40)]. The details of
regularization procedure are explained in Appendix A.
Dimensional regularization introduces a natural length
scale 7, which relates gravitational constants in d and 3
dimensions [see Eq. (A26)]. As explained below correction
of the UV divergences by means of dimensional regulari-
zation produces some poles proportional to 1/(d —3)
together with #-dependent logarithms In(r,/Zy). All

The density h*> ) after ignoring its last term, is identical to
the density rﬁPN introduced in Eq. (3.4) of Ref. [51] (the
reason of omission of this term in [51] is explained at the end
of Sec. VIII C 2).
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these poles and logarithms were removed by adding to the
Hamiltonian a total time derivative. The terms which
contribute to IR divergences depend, after regularization,
on the IR length scale s. Moreover, as we also explain
below, different ways of regularizing IR divergences lead to
different results, so the final result of IR regularization is
ambiguous. We were able to express this ambiguity in
terms of only one dimensionless constant, which we denote
by C.

The UV divergences is not the only problem caused by
usage of distributional sources. General relativity uses
standard algebraic and differential calculus of ordinary
functions, which includes e.g. the Leibniz rule. By intro-
ducing distributional sources we violate this framework: in
some places we have to use distributional differentiation
which does not fulfill the Leibniz rule [see Appendix A 5].
The field equations (3.10), (3.12), and (3.14)—(3.16) tell
us that for the second (space and time) derivatives of ¢,
and for the first (space and time) derivatives of ﬁz’n  the
distributional derivative has to be applied. The same also
holds for h<TnT>ij and ﬂ'(’n o1+ Tespectively, taking into account

the Egs. (4.11)—(4.12) and (4.8). The differentiation of any
product of these functions goes with the Leibniz rule.

The 4PN-accurate near-zone Hamiltonian is the sum of
Hamiltonians at different PN orders,

HE ) (X4, pas €)
= Zma =+ HN(Xa’ pa)

+ HlPN(Xav pa) + HZPN(Xav pa)
+ H3PN(X(1’ pa) + Hz;alfl_zone (S>(Xa9 Pa> C)? (81)

where we have introduced notation which indicates
that the 4PN near-zone Hamiltonian depends on the IR
regularization scale s and on one dimensionless constant
C parametrizing ambiguity in the regularization of IR
divergences. Hamiltonians Hy through Hipy were uniquely
recomputed by us using three-dimensional Riesz-
implemented Hadamard regularization supplemented
by dimensional regularization. These Hamiltonians do
not develop IR divergences.

A. Computation of the 3PN-accurate Hamiltonian

The three-dimensional 3PN-accurate Hamiltonian,
H§3PN(Xuv pu) = Zmu + HN(XM’ pa)
a

+ HIPN(Xaa pa) + H2PN<Xa’ pa)

+ Hpn(Xg: Pa)s (8.2)

was computed for the first time in the series of papers
[31-35]. We have recomputed it here and got the result

PHYSICAL REVIEW D 92, 124043 (2015)

identical with the previously obtained. The explicit for-
mulas for the three-dimensional Hamiltonians Hy through
H;py written in general reference frame are given at the end
of the current section.

In the computation of the 3PN/4PN Hamiltonians we
eliminate time derivatives of x, and p, [present in
Egs. (7.4) and (7.6)] by means of lower-order equations
of motion: we use Newtonian [in both (7.4) and (7.6)] or
1PN [in (7.6)] equations of motion. To perform dimen-
sional regularization of UV divergences we have to use the
d-dimensional version of these equations, which follows
from d-dimensional Hamiltonians. We have explicitly
computed the Newtonian and 1PN Hamiltonians in d
dimensions. They read [notation “+(1<«>2)” used here
means adding to each term another term obtained by the
exchange of the bodies’ labels]

7p_%_1<(d—2)m1m2
Hd—1) r2

HN(Xw pa) + (162)7 (833)

_Zml

212 p
(;711)3 +4(d—1) (%(307—2)(1’1 ‘P2)

1

Hipn(Xg.Pg) = —

m 1
—d—2P%+—(d—2)2(“12‘Pl)(nlz'P2)>
m 2

1 2(d=2)’mim,
T2 (162),
A sa—ne pge TP

where we have introduced

_ r(d/2-1)
' Ard/?

Let us note that k = 1/(4x) in d = 3 dimensions.

B. Integral of th2>

The part h%12) of the 4PN density given in Eq. (7.6) is UV
divergent but it does not develop IR poles with the
exception of the term o ¢, (iz(TA‘T)i ;)2 This term contains
however the multiplication factor d — 3 which causes the IR
divergence of ¢, (h(T4T) ;) to not contribute to the
Hamiltonian (but the UV divergence of this term produces
some nonzero contribution). After employing the regulari-

zation procedures described in Appendix A we have
obtained

reg 1
H4e§N(Xa,Pa§d):/ddXh(llz)

r
:)(;llz)(xmpa) +)(2122)(Xa,pa) In ;02
1.3
X(iZ)(Xw pa)
O(d -3), 8.5
-3 (d-3) (8.5)
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where for convenience we have introduced a new dimen-

sional-regularization (DR) scale 7, related with the original
scale 7, defined in Eq. (A26) by the relation

_ fo
by =——e1e/2, 8.6
W (8.6)

Here yg denotes the Euler-Mascheroni constant.

C. Integral of h%n)

To compute the integral of h%IZ) we have to study
asymptotics of the function h(TﬁT)l.]. for r — oo. The function

h(Tg)l.j is the sum of two parts, C(T6T)i. and A 1h ; [see

Eq. (7.9)]. By virtue of Eq. (4.13) the functlon C(TT)”
[defined in Eq. (7.10)] can be written more explicitly as

1 2(d—
T _ T
Cloyii = (d— 1 Pyt d—

+2A7'Bg

2922) 5 i)

TT
d 1 1(¢(2)Adhr(l};ij)> . (87)
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) for
r — oo. It is also not difficult to check that the inverse
Laplacian A 1hTT =0O(r*?) when r— oo (e, it
diverges linearly m d = 3 dimensions). This behavior of

Analysis of this equation shows that C(), . = O(r+

C(TéTm. and A;lﬁ(Tf)i j for r — co implies that the term h%ilz) is
convergent at infinity, whereas the terms h?é) and h%fz)
develop IR divergences.

1. Integral of h%ilz)

The integral of h%ilz is convergent at spatial infinity but it
is difficult to express its integrand as an explicit function of
x (and of x,, p,).- To do this we further transform the
density h%ilz), after employing Eq. (8.7), by making some
additional integrations by parts in space and shifting time
derivatives. We also replace A, (¢ h(TélT)ij)TT [which comes
from the first term of Eq. (7.12a)] by more explicit

expression using the definition (2.14) of the TT projection
operator. We finally obtain

d-2 i 1
21 i
hia) = m3x(¢(2)h(T4T),-j)(¢(2)ﬂ(é)>TT + =17 (2¢ o) ihahi = (@ex)* (h,)?
d-2 - (d=27 ~ij
+ Pl i Aahia + ﬁqﬁ(z%l‘fh(Tf)ijAdl (‘/’(2>ak1h<T4T>kl)> d-12% by (A7 (boap))™
2(d-2) |

+

d—1

where the last term equals

1 1 TT
21,1
M2y =4z 1¢<2>h(Tf>ij (B<6>i/ +m¢(z>Adh(Tf>ij)

|
+ (B (6)ij +mf/’(2>Adh<T4T)ij

) 1 T
X (Adl (B(G)ij +72<d— 1)¢(2) Adhp(lzl;ij) ) . (89)

It is crucial to single out the last term in Eq. (8.8) and to
put it exactly in the form of Eq. (8.9). Due to this it is
possible to compute fully explicitly (in d = 3 dimensions)
all inverse Laplacians involved in Eq. (8.9). Formulas
needed to calculate in d = 3 all inverse Laplacians and
perform TT projections involved in Egs. (8.8) and (8.9) are
given in Appendix C.

After performing regularization by means of the proce-
dures described in Appendix A we have

— ~I 2,1,1
<B(6)ij + 2<T_1)¢(2)Adh&ij) 0D (P + iy

|
reg 2,1 2,1
HipN (X0, pasd) = ddXh(lz)

2.1.1 2,12 2
= X, Pa) T X1y (Xas Py In—
)((1 )( |Y ) )((12)( |Y ) 7

0
2,13
X2y (Xas Pa)
%+0((1—3). (8.10)

2. Integral of h<2i22)

The integral of the density h2i22 is not convergent at
spatial infinity and it also develops UV poles. After making
use of the procedures described in Appendix A one gets

22 _ =221
/ddXh(lz) X(lZ)dmb(Xa’ Pa: C)

223
rio X2 (Xa:Pa)
1) (ko) In 224 S5

—i—)(%é)“(xa,pa)ln——i—(’)(d 3).  (8.11)
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Because of the ambiguity of the results of IR regularization
discussed in the Appendix A 3, the term ;'(%izz‘)la b (XarPas C)
depends on some undetermined dimensionless constant C

which parametrizes this ambiguity. We have found that
|

21 (m; + mz)m]m2

PHYSICAL REVIEW D 92, 124043 (2015)

224

the coefficient y{j5 of the logarithm In(ry,/s) can be

written, after adding a total time derivative, in a very
specific form. Thus we have shown that there exists a
unique term q(X,, P),

- 2 ,
90%e-Pa) = 2 (167)*r3, (- py) +
21m;  687m;,
+< 16 40 >(n12 pl) (n12 p2)+<48 40—m
7m1 307m2
+ <48+40> (ny; - p2)pi + <
such that
d
ﬁzf(xwl’aHdQ(mea): F(X4pa),  (8.13)
where
2M -
F(Xa:Pa) =5 (13j)*. 8.14
(X4-Pa) 5(1671)2( 7) (8.14)

Here /;; is the Newtonian quadrupole moment of the binary

system
o1
I = Zma (x;x{l - §5UX“2>'
a

All time derivatives on the right-hand side of the for-
mula (8.14) were eliminated by means of Newtonian
equations of motion. By virtue of Eq. (8.13) the result
of Eq. (8.11) we can rewrite in the following form:

d r
a2 4 T2
/d xh(lZ) + dr <Q(Xm pa) In s >

(8.15)

r
= X%lé)lamb(xa’ Pas C) —i_)(%lzz)z(xa7 pa) ln%
0
223
X2 (Xa’ pa)
()dT + F(Xq. Pa) 1n— +0(d-3),

(8.16)

where

Z?izz)ldmb (Xa’ Pa; C) = Z%lzz)tmb (Xw Pu; C)

d
Fatepn) 5 (72). G1)

We have found (see Appendix A 3) that the ambiguity of
the term )(%lzz)ﬂmb(xa, p.; C) can be expressed, up to adding
a total time derivative, as a multiple of the term F

introduced in Eq. (8.14)

(xa,pa) + CF (X, Py4)

+ (total time derivative).

Z?izzy)lamb<xav pa’ C)
(8.18)

15971”12 7m1

1 OTmy 21\
—— m .
(162)°7%, | \20m, ~16)""\M12 P

77 237m
:) 2(“12'P1)P%

oI g )| + (192, (812)

|
Therefore as the contribution of the density 4 (i2 2.2 ) to the 4PN
Hamiltonian we take

2,2
H5 (X4, paids 5. C)

223
22.1 222 ro  X(12) (Xa: Pa)

_)((12) (Xavpa) +)((12) (Xa,pa)ln?o 73

+F(xa,pa)(ln%+C> +O(d-3). (8.19)
Let us finally mention that the integral of the last term of the
density h%izz), Bg)i jAglﬁ(T‘;r)ij, though IR divergent, can be in
fact regularized uniquely. This is so because the difference
between results of different methods of regularizing this
term is a total time derivative.

3. Integral of h%fz)

The density h?fz) is an exact divergence, it can be written
in the form

1 TT jTT TT —-1,TT — 1

7 Coyiay = Siop (A hiayyy) = 70Ee - (8.20)
where

By o= CIT (07T ) — T (AT ). (821)

The surface integral associated with Ej, is not convergent at
spatial infinity in d = 3 dimensions. However in d dimen-
sions E;, ~ =24 for r — o0, so the surface integral behaves
like *~¢ and it vanishes in the limit » — co when d is large
enough. Therefore this term does not contribute to the
Hamiltonian.

D. Removing UV poles

As the result of UV and IR regularizations described in
the previous subsections, we have obtained the 4PN near-
zone Hamiltonian of the following form:
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1 2,1 2,2
HZ?N(Xa’ pa;d;s’ C) = HZ%YN (Xuv pasd) + Hf&’gN (Xw pasd) + Hf&’gN (Xw pu;d;sv C)

—risp) + 220 0 R i, ) (02 C) 4 0a-3). (522
0 - N

where

1.k 2,1,k 2.2,k

c(Xa,Pa) =1 12) (Xa»Pa) +Z(12) (Xa»Pa) "’)((12) (Xa»Pa) =1,2,3. (8.23)

In the next step we remove both the DR-related scale 7, and the pole terms proportional to 1/(d — 3) by adding a total time

derivative. To do this we have found a unique function D(x,, p,;d),

D(X,,ps:d) =

(16:7:7)13&2 <<%{[(n12 p1)’ = pil(ni - pa) +2(nn - p1)(Pr - P2)} +§(n12 -pz)p§>

1
d-3

+ <117 [P% S UITE Pl)z](nlz “P2) —2(nyp - py)(pr - P2)} —2(nyy P2)P%> 1“?) +(1<2), (8.24)

80

such that the sum

0

I d
H4i’gN(Xa’pa;d;s’ C) + _D(pra;d)

dr

has the finite limit as d — 3. This limit we take as the regularized value of the 4PN near-zone Hamiltonian:

near-zone (s . Te, d
H4PN ( >(Xm pu;C) = LT%(HM‘%N(XLH pa;d;s9 C) +&D(Xm pu;d)>'

(8.25)

This Hamiltonian depends on the IR regularization scale s and on the dimensionless constant C and can be rewritten as

near-zone (s r
H4PN ( )(Xaa Pa; C) - Hi%ﬁlo(xa’pa) + F(Xa’pa) (ln% + C) s

where the uniquely computed part Hig4? of the near-zone Hamiltonian reads

HERO ) =1 (5000) + i (72 02+

Let us stress again that H'js30 is without DR-related scale £, and poles in 1/(d — 3).

E. Total 4PN-accurate conservative
matter Hamiltonian

Reference [51] showed that the total 4PN conservative
matter Hamiltonian is the sum of the local-in-time near-
zone Hamiltonian (8.26) and the time-symmetric but non-

L ; S T ailsym (3
local-in-time tail Hamiltonian H' ™",

H4PN [Xm pa] = HZ;H;_ZOHS 2 (Xa’ Pas C)

+ HEY™ O (8.28)

where we have used brackets [, -] to emphasize that the tail
Hamiltonian Hzill\?ym(“‘) is a functional of phase-space
trajectories X,(t), p,(z). Reference [51] also computed

the value of the constant C,

1681
=—— 2
¢ 1536° (8.29)
and showed that the total 4PN Hamiltonian (8.28) does not

depend on the scale s and can be written as

(8.26)
ro | 3(XePa) | d
A3 Fa) L D(x,.paid) ). 8.27
|
H4PN [Xa’ pu} = Hlﬁfﬁwxa’ pa) + Hz](;rﬁ}ocal [Xa’ pa]v (830)

where the local piece of the 4PN Hamiltonian reads
HH (X4, Pa) = HFR (X0 P0) + CF (X0, pa).  (8.31)

and the nonlocal-in-time piece can be written as (from now
on we restore the constants ¢ and G)

nonlocal 1 GZM
HipN [Xaapa] :—57 ij
Foo ... do
foZ,lz/C/_oo LT (832)

Here | ;j denotes a third time derivative of the Newtonian
quadrupole moment of the binary [defined in Eq. (8.15)] and
Pf,, . /. is a Hadamard partie finie with time scale 2r,/c [see
Eq. (4.2) in [51] for the definition of the Pf operation].

The total 4PN-accurate conservative matter Hamiltonian
is the sum
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H54PN [Xavpa] = Zmacz +HN (Xa’pa) +H1PN(Xaspa)

+H2PN(Xa’pu)+H3PN(Xuvpa)
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The explicit formulas for the local-in-time Hamiltonians
from the Newtonian up to the 4PN level [the local piece
(8.31) of the 4PN Hamiltonian given below incorporates
the value (8.29) of the constant C], valid in the generic, i.e.,

+ Hypn [X a5 Pa)- (8.33)  noncenter-of-mass, reference frame, are as follows:
|
2
P 1Gmm,
H = ——— 4 (12 8.34
N(Xa’pa) 2m1 2 i +( <~ )’ ( a)
czHIPN(mea):_l(Pi)z 1Gmym, <_12p_%2+14(p]~p2)+2(n12’p1)(n12~p2)>+1Gm1m2G(m|+m2)+(1<_>2),
8 miy 8 rp mj mm, mym, 4 rp r'io
(8.34Db)
1 311G 22 11 2 p,)? . . .
A Hopn (X Py) = (Pl) mynt (5(1’12 Pi P22 (P12P22) + Pi (n122 2)2) _6(P1 Pz)(n122 le)(nlz P2)
16 m} 8 rp mj 2mim3s  mim} mym; mym3;
3 . 2 . 2 1G2 2 2
_3(myp, pl)z(n212 P2) >+ ”;1”12( (10 L 19P2 )
2 mim; 4 m? m3
__(ml+m2)27(P1'P2)+6(n12'P1)(n12'P2) _1Gm1m2G2(m%+5m1m2+mg)_I_(1<_>2), (8.34¢)
2 nmyn, 8 I"lz 7'12
5 (), 1Gmymy (- (P7)’ |, ((P1°P2)’ +4PiP3)PT | Pi(n12-P1)*(12-P2)°
6H —_ 1 —14 1 4 152 16 1
<*Hpn(Xa,Pa) 128 m{ 32 ryp m? + m‘l‘m% m4m%
(pT(n12-p2)* +p5(m1p-p1)°)pPi Pi(Pi-P2)(ipr)(N12P2) | PI(P1P2)(12-P2)°
10 ) +24 4,2 +2 3.3
mims; mims; mim;
+(7P%P§—10(P1'Pz)z)(nlz'm)(nlz'l)z)+(P%P§—2(P1'P2)2>(P1'P2)+15(131'Pz)(nlz'Pl)z(nlz'Pz)z
mim3 mim3 mim3
181’%(“12'1313)(13112'1)2)’+5(“12'P1)j(11312'p2)3>+G2"21m2 (i(m1—27m2)<p%4)2 115 P1(l’31'l32)
mim; mim; 1, 16 mj 16 mim,
+_ 5(P1'P2)2+371P%P§+17[’%(“12'[’1)2 5 (myp-py)*
48 mim3 16 m3 12 m}
_lm (1513%(“12'132)"'11([’1'Pz)(nlz'Pl))(nlz'Pl)_ém (LIPR DNCIER D))
g mim, 2! mim,
125 (Pl'Pz)(nlz P)(n2-py) 10 (njp-py)*(np-py)* 1 pi(n;-py)?
— — ——(220 193m, ) ————"—
+ 12 m%m% + 3 g m%m% 48( my+193m,) m%m%
G3m1m2

2
p 1
S ( 13 <425m%+ (473——7[ )m1m2+ 150m%) m—l T (77(m1 +m3)+ <143_Zﬂ'2) m1m2)

(P1p2) (nip-py)? 1 3
X — = oy 16 20m 43+ 71' mn, T% 1_6 21(}’}’[ +m2) 119+Zﬂ2 mymy
. . 1G4 227 21
X(mz pi)(ng, Pz)) n m1m2 ((_ nz) m1+m2> +(12), (8.34d)
myny 8 3
7(p Gmym G*mm G’mym
AHE (X00Pa) = (i) 5T 1 2H48(Xa7pa)+ 21 2m1H46(Xavpa)+ 31 z(m%H441(Xa’pa)+mlm2H442(mea>)
256m} i 2 "2
G*mym G’mym
r41 2(m3Hao1 (X0 Pa) +m3myH gy (X4.Pa)) + 1 2Hyo(X,.pa) +(1452), (8.34e)
12 T
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Hug(X,.p ):45(13%)4_9(1112'Pl)z(nlz'Pz)z(P%)z_i_15(“12'P2)2<P%)3_9(1112'Pl)(nlz'Pz)(P%)z(Pl'Pz)
SRRl 28 m8 64mSm3 64mSm3 16m8m3
3(p1)*(P1-P2)’° 15(“12‘Pl)z(P%)ZP%_Zl(P%PP%_35(n12'p1)5(n12'P2)3 25(ny;-p1)* (12 P2)°p
32mSm3 64mSm?3 64mSm3 256mim3 128m3m3
33(1112'P1)(n12'P2)3(P%)2_85(n12'P1)4(n12'P2)2(P1'P2)_45(n12'P1>2(n12'Pz)QP%(Pl'Pz)
256m3m3 256m3m3 128m3m3
_(nn'pz)z(P%)z(Pl'Pz)+25(n12'P1)3(n12'P2)(P1'P2)2+7(n12'Pl)(nlz'Pz)P%(m'P2)2
256m3m3 64m3im3 64mim3
55(1112'Pl)s(nlz'P2)P§_7(n12'P1)3(n12'P2>P%P%

3y pi)’(Piop2)’ |, 3pi(P1-P2)’
64m3m3 64m3im3 256m3m3 128m3m3

_25(n12 P1)(n12-P2) (P1)’P3 _23(n12 P (P1-P2)P3 +7(n12 P1)’Pi (P 'P2)P%_7(P%)2(P1 ‘P2)P3
256m3im3 256m3im3 128m3m3 256m3im;3

Smyp-pi)*(n2-p2)*pT 7(“12'P2)4(P%)2_(nlz'Pl)(n12‘P2)3p%(P1 ‘P2) | (n12-P2)°Pi(Pi-P2)°

- + +
64mim} 64mim} dmtm3 16mtm3

_5(“12'Pl)4(1112'P2)2P%+21(“12'Pl)z(nlz‘Pz)ZP%P%_3(1112'1)2)2(1’%)21’%_(nlz‘P1)3(n12'P2)(P1'Pz)l’%
64mim} 64mim; 32mim} dmim;
(n12-p1) (12 P2)P; (P1P2)P3 (n12'P1)2(P1'Pz)ng_P%(Pl‘p2)2P%+7(n12'P1)4(P§)2
16mim3 16mim; 32mim} 64mim;
3(nio-p1)’pi(p3)” _7(p1)*(p3)°

- - , 8.34f
32mim} 128mim} ( )

+ +

Hag(X,.p ):369(1112'131)6_889(1112'P1)4P%+49(n12'Pl)z(P%)2_63(P%)3_549(n12‘P1)5(n12'P2)
oA T K 160mS 192mS 16mS 64mS 128m3m,
+67(n12'p1)3(n12-p2)p%_167(n12~p1)(n12-p2)(p%)2 1547(“12'[’1)4(1)1'Pz)_851(n12'P1)2P%(P1'pz)
16m3m, 128m3m, 256m3im, 128m3m,
1099(1’%)2(1’1‘P2)+3263(n12‘P1)4(n12'P2)2+1067(“12'1)1)2(1112'Pz)zp%_4567(1112'1)2)2(1’%)2
256m?m2 1280mm3 480mim3 3840mtm3
_3571(1112'P1)3(n12'P2)(P1'Pz)+3073(n12'Pl)(nlz'Pz)P%(m'pz) 4349(n;-p1)*(P1-p2)°
320mim3 480m{m3 1280m7m3
_3461P%(P1'P2)2+1673(1112'P1>4P%_1999(“12'P1>2P%P%+2081(P%)2P%_13(“12‘[’1)3(“12'1’2)3
3840m¢{m3 1920m}m3 3840mtm3 3840mtm3 8mim3
191(“12'1’1)(“12'[’2)3[’%_19(“12‘[’1)z(nlz'Pz)z(Pl‘Pz)_5(n12'P2)2P%(P1'Pz)
192m3m3 384mim3 384m3im3
11(ny;-py)(ny2-P2)(PiP2)* | 77(Pi-P2)’ 233(1112'P1)3(n12'Pz)P%_47(n12'P1)(nlz'Pz)P%P%
192mim3 96mim;3 96m3im3 32mim3
(n12'p1)2(P1'P2)P%_185P%(P1'Pz)P%_7(1112'1’1)2(“12'P2)4+7(n12'P2)4P%_7(n12'Pl)(n12'P2)3(P1'Pz)
384mim3 384mim3 dmim; dmim} 2mim;
21(“12'[’2)2(1’1’p2)2+7(n12‘pl)z(nlz'P2)2P% 49(“12‘[’2)2[’%[’%_133(1112'1)1)(“12'1’2)([’1'Pz)l’%
16m3m; 6mim; 48m3m} 24m3im}

_T7(p1-P2)’P5 | 197(nyp-p1)*(p3)* 173pi(p3)° | 13(p3)°
96m?im; 96mim; 48mim; 8m$

+

+

, (8.34¢g)
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_5027(np-py)* 22993(nyp-pi)’pT 6695(p7)* 3191(nyp-pi)*(miz-ps) | 28561(nys-py)(ny2-P2)P]

Hoyyi (X4P0) =

384m* 960m*

1152m?

640m3m, 1920m3m,

8777(“12'1’1)2(1’1‘P2)+752969P%(P1‘Pz)_16481(nlz'Pl)z(nlz'P2)2+94433(n12'P2)2P%

103957(ny;-py) (2 P2) (P1P2) | 791(P1-Pa)* | 26627(ny,-py)°p;  118261pip;  105(p3)°

960m?m3 4800m?m3

(8.34h)

2400m3m3 400m3m3 1600m?m?3 4800m3m3 32m5
2749z> 211189 (p%)z_i_ 63347 10597> (nu-pl)zp%+ 3757% 23533\ (ny-py)*
8192 19200 ) mf 1600 1024 m} 8192 1280 mi

H442(Xavpa):<

2.,,2

16384

2.2 2.2

57600 19200 512

<106317r2 1918349> (p1-p»)> <13723n2 2492417> p2p? <1411429 1059712) (np>-p2)*p?

8192 57600 ) m2m?

mymy mimy

(248991 6153”2>(nlz'Pl)(nlz'Pz)(P1'P2) (30383 36405”2>(nlz'pl)z(nl2‘p2)2

2.2
myn;

6400 2048

2.2
mym;

960 16384

3

14400 16384 60

16384 3

(1243717 404837r2> p2(p ), (2369+35655ﬂ2> (n5-p;)*(npy-ps)

m1m2

mlm2

431012° 391711\ (ny3-py)(npo-Po)Pi | (569557 1646983\ (ny;-p1)*(P1-P2) (8.341)
16384 6400 mim, 16384 19200 mim, ’ '
64861p?  91(p, - 105p2  9841(ny,-p;)*> 7(npy- :
Ha (Xa.Pa) = le_ (1 - P2) Pzz_ (g 2Pl) _ (2 - py)(mpp Pz)’ (8.34)
4800m?  8mym, = 32m3 1600m3 2mym,
Ho(%0.p) = 1937033 1991772\ p? | (176033z> 2864917\ (p; -p,) , (282361 218377\ p}
22Xa-Pa) =\ “57600 49152 ) m? 24576 57600 ) m;m, 19200 8192 ) m?
698723 2174527\ (ny, - p;)>  [(63641x% 2712013\ (ny, - p;)(np; - pa)
19200 ' 16384 m3 24576 19200 mym,
3200179 2869172 - p2)?
_ 2869177 (12 -pa)”. (8.34k)
57600 24576 m2
mb (62372 169799 4482572 609427
H =__1 - 3 - 212, 341
40(Xa:Pa) = =75+ ( 1024 2400 >m1m2+ ( 6144 7200 )m‘m2 (8.341)
F let let lement th ic 4PN- . H — Mc?
or completeness let us supplement the generic Hoipx[r. p] = <ipn[T, P c ’ (8.38)

accurate local Hamiltonian given above by its center-of-
mass expression. The center-of-mass reference frame is
defined through the condition

pi+p=0. (8.35)

Let us introduce the reduced mass y of the system and its
symmetric mass ratio v,
mym mym
pe=2 s B T (g 36)
M M (ml + mz)

It is convenient to introduce the reduced variables

_ X _Pi_ _P2

=212 : 8.37
M =" p (8.37)

(with r:=|r| and n :=r/r). We also define the reduced
4PN-accurate center-of-mass Hamiltonian

7

which is the sum of different PN contributions,

ﬁs4PN[l‘, p] = Hy(r.p) + H px(r. p) + Hopx(r, p)

+ Hipx(r.p) + Hypx[r. pl. (8.39)
where the 4PN Hamiltonian is the sum of local- and
nonlocal-in-time parts,

Hapn[r.p] = HEY (r.p) + AR [rp].  (8.40)

The local Hamiltonians from Ay to A% are equal to (let

us recall that their coefficients depend on masses m;, m,
only through the symmetric mass ratio v)
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2
p 1
a == = 8.41
sEp) =5~ (8.41a)
- 1 by, 1 5 O
Hyp(r.p) = g (3= 1)()? =5 {3 +0)p* +v(n PP} + 5. (8.41b)
. 1 1 1
cHHopn(r,p) = 1 (1= 50+ 50)(p?)* + g {(5 = 200 = 3%)(p?)* = 2°(n - p)’p? = 307 (n - p)*}
1 1 1 1
+§{(5 + 8v)p? + 3v(n -p)z}ﬁ—z(l +3,,)F (8.41c)

N 1
cSHipn(r,p) = —= (=5 + 350 =700 + 35%) (p*)* + 1_6 {(=7 +42v-5302 - 503)(p?)* + (2= 3v)v*(n - p)*(p?)?

128

1 1
+3(1=v)*(n-p)'p? =5 (n-p)°}—+ { (=27 4 1360 + 10922 (p?)? +—

T (17 +30v)v(n - p)?p?

16
1 1 25 7% 335 23,2 85 3722 Tv 1
— 4 pHl= = - \p? = _ - p)2 L=
+ O+ 43pn-p) }r2+{< 8+<64 48)” g )p +< 16 64 4)”(“ P) }r3
1 (109 21 ,\ ) 1
i - 8.41d
+{8+<12 32”)”}#’ (8.41d)
7 63 189 105 63 45 45 423 3
8 fylocal (52 %% s 2D 5 B 225 ) * 04 v VI 2(n2)3
PR 0) = (e poe o190+t ) 02074 o ) =+ (070 00
9 2 2 1013 é Q 4(.2\2 i 652 2 8 3
AR+ (e 7 g P+ 07 ()0 S nop) o

() - p P - gy w0 - g ) )t b {
+< 76941( )3+g(n'p)2(p2)2—%(n p)4p2+?23(n-p)6)1/+ (4285567(1)2)3 56445( p)z(pZ)z

9475 ., 1151 G\ . (2335, ., 1135 S v, 1649 i
+ g (m n-p)‘p 128(np)>v+ 256(r>)+256(np)(p) 768(np)p

10353, )\ S\ 1 (105 ., [[27492> 589189\ ., (63347 1059z> -
g0 ™P) )” }r2+{ 12 PV (5102 19200 ) P F o0 ~100a ) (PP

37522 23533 \ 184917% 1189789\ ,, [ 127 4035z -
+(8192 1280)(n ) >”+ << 16384 28800 >(p V"3 20 )PP
57563 386557 \ 553 25, L, 381, )\ 41
(1920 16384 )(“ P) )” +< 12s P g (M RV =g (mep)?
105 gy (((LBSTOL 21837\ (3401779 28691a%\ N (672811 181777

_ 012 )y _
19200 8192 )P "\ 757000 " 24576 )" P 19200 49152 )P

100992 21807\ N SV L [ L (€370 169199\ (7403 1256) ) 1
49152 3840 ) RV 6 T to2e 2400 )Y T\ 3072 T 45 )Y A

(8.41¢)

+

+

+

IX. THE POINCARE INVARIANCE

There are several possibilities for partial checks of our results: first the test-body limit and second the linear in G part of
the 4PN Hamiltonian through comparison with the post-Minkowskian results achieved in Ref. [54]. Both these checks were
already performed by us in Ref. [52]. The most important tool however is the Poincaré invariance, discussed for the first
time in the context of the ADM Hamiltonian approach to the two-body problem in Ref. [35]. Poincaré symmetry holds
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because our (isolated and conservative) two-point-mass
system is living in asymptotically flat spacetime with its
globally conserved quantities: energy H, linear momentum
P, angular momentum J, and Lorentz boost vector
K = -Pr+ G, where G denotes the center-of-(mass)
energy vector. All these quantities are realized as functions
on the two-body phase space (X, X,, p;, P»), Whose usual
Poisson brackets,

() ots,p )= 3 (50— L0
(9.1)
satisfy the Poincaré algebra relations,
{P:,P;} =0, Ui} =€l (9.2a)
{Ji. Pj} = € Py (9.2b)
{P:.H} =0, Vi,H} =0, (9.2¢)
{Ji.G;} = €y Gr., (9.2d)
{Gi.H} =P, (9.2e)
{G,.P;} = c*Hé,;, (9.2f)
{Gi, G} = —c ey (9:2g)

These relations have to be fulfilled through 4PN order.The
total linear and angular momenta have universal forms,

E Puais E €t]kxtlpakv

(9.3)

(X402 Pa) Ji(X4:Pa)

and they exactly satisfy Eqgs. (9.2a)—(9.2c). We will con-
struct the boost vector G as a three-vector from x, and p,
only; therefore, the relation (9.2d) will also be exactly
satisfied. Consequently Egs. (9.2e)—(9.2g) are the only
nontrivial relations which have to be satisfied by the vector
G. The Hamitonian H entering Poincaré algebra (9.2) is the
full 4PN-accurate Hamiltonian,

H§4PN [Xm pa} Hli)XglN(Xav pa) =+ HnonlOCdl [Xav pa]’ (94)
where the local-in-time part reads
HISOXI%IN(XW pa) = Zmacz + HN<Xav pa)

+ Hipn (X4, Pa) + Hopn (X4 Pa)

+ Hypn(Xo: Pa) + HER (XasPa). - (9:5)
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Because the nonlocal-in-time piece Hijgnecdl js Galileo
invariant [see Eq. (5.15) in [51] for the proof], it is
enough to restrict the 4PN-accurate Hamiltonian to its
local part H'%2, when looking for the 4PN-accurate boost
vector G.

We have found the 4PN-accurate boost vector G using
the method of undetermined coefficients employed at the
3PN level in Ref. [35]. The generic form of the three-vector
G reads

G(Xaﬂ pa) - Z(Ma

a

(Xb’ pb)xa +Na(xb’ pb)pa)’ (96)

where the scalars M, and N, possess the following
4PN-accurate expansions:

M, =m,+ MIPN + MZPN 4 AN L PN (9.7a)
N, = NN + N3N + NN (9.7b)
Let us note that M, and N, reduce to m, and O,

respectively, in the Newtonian approximation. Next we
write the most general expressions for the successive PN
approximations to the functions M, and N, as sums of
scalar monomials of the form

o (PT)" (P1-P2\" (P3\™
arpn’ | = =
m% mymy m%
Np-pr\™ (N -P2\" 4 a 938
X<m1><m2)mlm2’ 68

where ng, ..., n; are non-negative integers. To constrain
the possible values of ny, ..., n; we employ dimensional
analysis, Euclidean covariance (including parity sym-
metry), and time reversal symmetry (which imposes
that M, is even and N, is odd under the operation
P. = —P.)- We also use the 1«2 relabeling symmetry.
At the 4PN level the most general pattern for the
functions M"N and NN involves 210 dimensionless
coefficients c¢,,.

To find the functions MIPN ... M4PN and N2PN | |
it is enough to use Eq. (9.2e) only. The 3PN-accurate
functions were constructed in Ref. [35] (for completeness
we give below their explicit expressions). At the 4PN level
the relation (9.2e) yields 525 equations to be satisfied. We
have found a unique solution to these equations [and we have
then checked that this solution satisfies the remaining
Poincaré algebra relations (9.2f) and (9.2g)]. The explicit
forms of the functions MIPN ... M*PN and N2PN . N4PN
read

4PN
Ng
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1m2)? 1G 2 2 . . . 1G G
AMPPN(x,.p,) =— (p1) mymp (_SP_;_&_'J(IH p2)+(n12 p1)(mgp Pz)) 4o mymy G(m; +m;) (9.9b)

3 2 ’
8 ml 4 r ml mz mymy mymy 4 ri2 ri2

1 (p3)® 1 Gmmy [ (p})* | (p3)? pip: . (pi-p2)? L pi(n - po)?
CéM?PN(XaaPa):E m? 16 - 9 4 4 —11 2 2_2 2 7 3 2.2

m] m; miyms; miymy miyms;
P%(nlz'l’l)2 (p1 - P2)(ny2 - py)(my; - Pa) (n12'pl)2(n12'p2)2>

+7 -12 -3
2,2 2.2 2.2
mymy; mymy; mymy;

2 2 .
Py _ L o0om, + 115m,) L P2)

1G2m1m2 p
— = = (112 45m,) —L + (15 2m,) —% — =
(12 5m2) Bt (150, 2 22— ¢ LR

24 r%z

np - n;-
)( 12-P1)(np P2)+
myniy m my

— (31m, + 5m, (- p1)* (- po)*\  1Gmymy G*(mi + 5’;11’"2 + m3) ’
8 rio r12

(9.9¢)
G*mm,

5(p1)* | Gmymy
- M X4 Pa + mM X4sPa +m,M X4sPa
128]’711 rin 46( ) r%2 ( 117441 ( ) 2 442( ))

M (X0, p,) =

G’mym G*mm
%(’"%M@l (X2 Do) +mymyMany (X Pa) +m3M 3 (X4, P,)) +#M40(mea)’ (9.9d)
12 12

_13(p7)°  15(np-py)t(npa - pa)? | 45(np - py)’(ni - p2)’PT 91(nis - Pa)*(P)’
32mé 256mm3 128m¢m3 256mm3
_ 5(nip - pi)*(miz - p2)(Pi - P2) I 25(nyp - p1)(ny2 - P2)PI(P1 - P2) i 5y -p1)*(P1 - P2)’
32mim3 32mim3 64mim3
pi(p: - P2)’ n 11(ny;-p1)*p3 _ 47(ny, - p1)°pip; | 91(P7)°P3
64mim3 256mim3 128mm3 256mm3

5(nj; - pi)’(nyp - po)’ _ 7(nyy - py)(nyp - P2)°pi + 15(ny; - p1)*(niz - P2)*(P1 - P2)
32mim3 32mim3 32mim3

i 7(n; - p2)*Pi(P1 - P2) S5y p) (M- pa) (P P2)’ _(p p)’ 1y, - P1)’(ni - p2)P3
32mim3 16m3m3 16m3m3 32mim3

7(n; - pi)(niz - P2)PIP _5(my, P1)’(P1P2)P3 | PI(P1 - P2)P3

3,3 3,3 3,3
32mim; 32mim; 32mim;

15(n5 - p1)*(ny; - po)* _ 1(ny - py)*pt | Sy -py) (i p2)*(P1 - P2) _ 5y - p2)*(P1 - P2)’
256mim; 256mim; 32mim} 64m3m}
_ 21(nyp - py)*(n2 - P2)°P3 + 7(ny; - p2)’PiP3 _ (ny2 - 1) (12 - P2)(P1 - P2)P3
128m3m; 128m3m} 32mim3
(Prpo)’py | 11(mio-p1)*(p)* | 37pi(03)* _ (P3)°
64m3m} 256mim; 256mim5  32m§’

M46(Xav pa) =

+

_|_

_|_

+

(9.9¢)
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_ 7711 (ny, - py)*  2689(ny, - pi)’pi | 2683(pi)°  67(ni-pi)P(mi - o)

M1 (X4, Py)

3840mt 3840mt 1920m} 30m3m,
1621(ny; - py) (12 - P2)P] _411(1112 P1)’(P1 - P2) _ 25021p3(p; - P2)
1920m3m, 1280m3m, 3840m3m,
289(nyp - p1)’(nyy - P2)° _ 259(ny - p2)’pPi + 689(ny; - p1)(nyz - P2)(P1 - P2) + 11(p: - po)°
128m?m}3 128m?m?3 192m?m?3 48m3m3
_147(ny, - py)’p5 | 283p7p; | 7(ny5 - pi)(nys - py)’ n 49(ny3 - p2)*(p1 - P2)
64m3im3 64m3m3 12mm3 48m,m3
Ty -p)(mp-p)P; 7(Pi PP 9(P3)’ (9.91)
6mm3 48m,m3 32mj ’

45(p1)* | 7pi(P1-P2) | Ty py)(nia - P2)PT  49(nyz - p1)*(Pi - P2)

M Pa) = —
#2(Xa: Pa) 32mf 48m3m, * 6m3im, 48m3m,
UCTEE P)’(nip-pa)  7(pi-p2)* | 635pip; _983(ny P1)°P
12m3m, 24mim3  192m3m3 384mim3
413(nj5 - p1)* (N2 - Pa)’ _ 331(ny; - po)°p7 | 437(n13 - P1) (N1 - P2)(P1 - P2)
384mim3 192m?mj3 64m3im3
11(n;-p)(nyy - po)° _ 1349(n 5 - p2)*(P1 - P2) _ 5221(ny; - py)(ni2 - P2)P3
15m1m% 1280m1m% 1920m1m%
_ 2579(p1 - P2)P3 | 6769(n; - P2)’pP3 _ 2563(p3)? _ 2037(n,, - py)* (9.9¢)
3840m;m3 3840m; 1920m3 1280m5 '
179843p7  10223(p; -py)  15p;  8881(ny; - pi)(myz - pa) n 17737 (n;5 - py)° (9.9h)

M Pa) = — - ’
21(Xq. Pa) 14400m2 1200m;m,  16m> 2400m,m, 1600m?

Mop(x,p,) = (257 12007\ pi | (143 2\ (pi-Py) (655 7969x7\ pj , (696377 40697\ (nyy-py)’
2WXaPa) =\ e384~ 1152 1152 16384 16384 3840 :

m2 \ 16 64) mm, m2 m3
119 3722\ (n,- n;- 30377 773172\ (ny,-p,)? .
_+i (ny2-py) (s Pz)+ _ n7\ (n, 5’2) ’ (9.9i)
16 64 myn, 3840 16384 m;
M B 35P% 1327(p; - p2) 52343[’% 2581(ny, - py)(nyy - po) 15737(“12‘P2)2 :
423(Xu7 pa) - 2 2 - 2 ’ (99J)
16m; 1200m,m, 14400m3 2400m,m, 1600m5
m3 3371722 6701 20321 740372 m3
Ma(x,.p,) =1 22 2 et P L 9k
w0(Xa:Pa) = 7+ ( 6144 1440)””1’”2 (1440 6144 >m‘m2+ 16 (9.9%)
4A72PN 5
NI (X, Pa) = = G0y - o), (9.91)
6 A73PN 1 G 2 2
NN (X4, Pu) “3m . (2(p1 - p2)(np2 - p2) = P3Nz - py) + 3y - py)(nyz - P2)7)
I
1 G?
+Er—12(19m2(n12 “P1) + (130m; + 137my)(ny, - pa)), (9.9m)
8 A74PN G*m,
NN (Xg, Pa) = GmyNys (X4, Pa) + " (m N4z (Xg5 Pa) + maNyz (X4, Pa))
G3m2 2 )
+ 2 (MIN411 (X4, Pa) + mimaNapp(Xa Pa) + maNg3(Xgs Pa)) (9.9n)
12
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5(ny, 'P1)3(n12 'Pz)2

(- py)(myy - Pz)zp%

PHYSICAL REVIEW D 92, 124043 (2015)

5(ny, - Pl)z(nlz “P2)(p1 - P2)

N. Pa) =—
45(Xa: Pa) 64m3im3 64m3im3 * 32m3im3
_ (1 - P2)Pi(P1 - P2) + 3y pr)(P1 - P2)’ _ (ny; - p1)°p3 _ (1 - P1)PiP3
32m3m3 32mim3 64m3im3 64m3m3
(n2-p1)*(ni2-p2)*  7(n1-p2)°PT | 3z - py) (M1 P2)*(P1 - P2) | (Mi2 - P2)(P1 - P2)?
+ - +
32mim3 32mim3 16m2m3 16m3m3
_ 9(myp-p1)*(n12 - P2)P3 | 5(nys - P2)PIP3 _ 3y pi)(P1 - P2)P3 _ 11(ng; - p;)(nyy - po)*
32mim3 32mim3 16m?m3 128m,mj
n (g, - P2)3(Pi "P2) n 7(ny 'Pl)(n124' P2)’P3 n (2 - p2) (P ;Pz)P% _ 3(nyy - Pl)(f%)z (9.90)
32mym; 64mm; 32mym; 128mmj;
Naai (X, pa) = — 387(njy - py)° | 10429(nyy - pi)pi  751(myp - pi)’(mip - Pa) | 2209(nys - po)pi
B Ta B 1280m} 3840m; 480m3m, 640m2m,
_ 6851(ny; - p1)(P1 - P2) | 43(nyy - pi)(myy - Po)° _ 125(ny; - po)(P1 - P2) | 25(ni2 - P1)P3
1920m3m, 192mm3 192m,m3 48mmj3
_7(1112 ‘p2)° | 7(nyp-pa)p3 9.9
8m3 12m3 (9:9p)
N (X0, Pa) = 7(nyp-p2)PT |, 712 P1)(Pi - P2) _ 49y - pi)*(n12 - pa) | 295(mpp - py) (g2 - Pa)°
4323 %a> Ka 48m2m, 24m3m, 48m2m, 384m, m?
_ 5(np> - po)(P1 - P2) _ 155(n;, - p1)p3 _ 5999(n;y - py)* | 11251(ny; - py)P3 (9.9q)
24m,m3 384m m3 3840m3 3840m3 ' ’
37397(1112 . pl) 12311(1112 . p2)
N. Pa) = — - . 9.9
411(Xa: Pa) 7200m, 2400m, (9.9r)
50057z 81643\ (nj,-p;) 7737> 61177\ (ny; - py)
N. Pa) = - - . 9.9
412(Xa: Pa) < 8192 11520) m \2048 T11520)  m, (9.95)
7073(ny; - p;)
N. Py) = —— e —— 9.9t
413(X4. Pa) 1200m, (9.9t)

The fulfillment of the Poincaré algebra does not imply a
complete check of the Hamiltonian, but rather a check of all
terms besides the purely static ones. Of course, the Poincaré
algebra is invariant against canonical transformations,
particularly those induced by coordinate-gauge transfor-
mations, so the single terms in the Hamiltonian have no
direct physical meaning. The reader interested in a repre-
sentation of a higher-order PN Hamiltonian through center-
of-mass and relative coordinates is referred to [72].
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APPENDIX A: REGULARIZATION

In this appendix we describe techniques which we have
used to regularize divergent integrals which appear in
our paper.

1. Three-dimensional Riesz-implemented
Hadamard regularization

The Riesz-implemented Hadamard (RH) regularization
was developed in the context of deriving PN equations of
motion of binary systems in Refs. [32,41] (see also [73]) to
deal with locally divergent integrals computed in 3
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dimensions. The RH regularization relies on multiplying
the full integrand, say i(x), of the divergent integral by a
regularization factor,

(3 ()

and studying the double limit ¢; — 0, ¢, — 0 (here s; and
s, are arbitrary three-dimensional UV regularization
scales). Let us thus consider such an integral performed
over the whole space R® and let us assume that it develops
only local poles (so it is convergent at spatial infinity). The
value of the integral, after performing the RH regularization
in 3 dimensions, has the structure

R3 S1 52

1 1
:A—‘rCl(——f—lnm)—'—Cz(——i—lnm)
€1 S € $2

+ Oley, €). (A2)

(A1)

In the case of an integral over R developing poles only
at spatial infinity (so it is locally integrable) it would be
enough to use a regularization factor of the form (r/ry)¢
(where ry is an IR regularization scale), but it is more
convenient to use the factor

T ae ry be
() ()
and study the limit € — 0. Let us denote the integrand again

by i(x). The value of the integral, after performing the RH
regularization in 3 dimensions, has the structure

ae be
M(3;a,b,¢) = / i(x)(ﬂ) <Q> dx
R3 ro o

— o <(a+—1b)€+ln%> +O(®e). (A4)

Many integrals appearing in Eqs. (A2) and (A4) we
compute using three-dimensional form of the following
formula, first derived in d dimensions probably by
Riesz [74]:

(A3)

d p+d a+p+d
rfllrgddx _ ﬂ'd/Zr(f;—ﬁ+d F(%)F(T)F(_ T)

F(-9r(-§rEga)

(A5)

To compute the 4PN-accurate Hamiltonian one needs to
employ a generalization of the three-dimensional version of
the Riesz formula (A5) for integrands of the form r?rgéy,
where

$:=r| +ry+r. (A6)

Such formula was derived in Ref. [32] and it reads
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/ rirhe! Bx = R(a. f.y)rfy 1, (A7a)

where [let us note that the formula given below is invariant
under the permutation (a<>b)]
Cla+2)0(p+2)l(-a—-f—-y—4)
I(=7)
x[Ip(@+2,—a—y=2)
+11/2(ﬂ+2,_ﬁ_7/—2)
—Ip(a+p+d—a-p-y—4)-1]

R(a,B,y)=2m

(A7b)
The function 7, /, in Eq. (A7b) is defined as follows:

Bip(x,y)

B(x,y) ' (A%)

11/2(3@)’) =

where B stands for the beta function (Euler’s integral of the

first kind) and B, is the incomplete beta function; it can

be expressed in terms of the Gauss hypergeometric function
F:

2171

1 1
Bl/z(x,y):2xx2F1<1—y,x;x+1;2). (Ag)

The regularization procedure based on the formulas (A5)
and (A7) consists of several steps. We enumerate them now.
The most general integrand we have to consider has the
form

(ny-py)?(ny - py)%(ny - po)®(my - py)=rirhsr,  (A10)
where ¢, ...,q4 are non-negative integers and y is a
negative integer. We first eliminate the unit vector n, by
the identity

1 T2

n, =—n; +—nj.

All
ry ry ( )

We thus plug Eq. (A11) into (A10) and expand the scalar
product n; - nj, by means of the relation

2 2 2
nRn—-r—-rp

. = Al2
n;-ny; 2r 7 ( )

After this the most general integrand reduces to
(ny-py)?(ny - py)2rirh8r (A13)

where again g; and g, are non-negative integers.

We perform integration in prolate spheroidal coordi-
nates. By using these coordinates it is possible to represent
integrand (A13) as a linear combination of integrands of the
type r’frg g”. To show this let us locate the particles in the
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focal points of the prolate spheroidal coordinates [they lie
along the z axis of the Cartesian coordinate system
(x,y,2)], so the particles’ position vectors have the follow-
ing Cartesian coordinates:

X = (0,0, —r12/2), Xy = (0,0, r12/2). (A14)
The Cartesian components of the unit vector nj:=
(x—x;)/r; can be expressed by r, r, and the azimuthal

angle ¢,

VI + )2 =i, = (=)’

ni = i cos¢p, (Al5a)
T 202 — (r = )2

= ARl =0 G s

O ki § (Al5c)

2rirpp

Without loss of generality we can place the vector p; in the
(x, z) plane (we can also assume that p;, > 0). One can then
show that the Cartesian components of the vector p; are as
follows:

Pix = \/P% - (n), 'Pl)zv (Al6a)
Py =0, (A16b)
Pz =—(my-py). (Aléc)

The x and z Cartesian components of the vector p, read

(P1-P2) —(ny-py)(nyy - ps)
P% S UITE I’l)2

P = . (Al7a)

P2 = —(N12 - Pa)s (A17b)

the y component of the vector p, can be computed from

pzy:i\/p%_p%x_p%z‘

We have checked that the result of the procedure described
below does not depend on the + ambiguity in Eq. (A17c¢).

Making use of Eqs. (A15)-(A17) we compute scalar
products (n; - p;) and (n; - p,) in Eq. (A13). After this the
integrand (A13) becomes a sum of terms of the form
A(ry,ry)B(¢), where B(¢) is a polynomial in sin¢ and
cos ¢p. Each of these terms we integrate in the following
way:

(Al7c)
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[Atrs@s= [atraes [T s

= (B)/A(rl,rz)d3x, (A18)
where (B) is the average over the angle ¢,
1 2r
®)=5, [ B, (A19)
7 Jo

After this step the integrand (A13) becomes the linear
combination of the type

> eritbian, (A20)
1

where the constant coefficients ¢; may depend only on r,,
P%, (P1-P2)s P%, (ny; - p;), and (ny; - py). The integral of
(A20) is computed by means of Eq. (A2) or (A4) and with
the usage of formulas (AS) and (A7).

Appendix A 6 of Ref. [28] contains generalization of the
above presented procedure to d space dimensions (and it
employs prolate spheroidal coordinates in d dimensions).

2. UV corrections

Reference [32] showed that the three-dimensional RH
regularization described above used to derive the 3PN two-
point-mass Hamiltonian gave ambiguous results. Namely,
by means of integration by parts (assuming that all involved
integrals are convergent at infinity, so all surface terms can
be neglected) one can replace one form of Hamiltonian
density (or its part) by some other form. Integration of both
equivalent densities should give the same result, but it did
not. To correct the result of the three-dimensional RH
regularization (i.e., to remove ambiguity), Ref. [31] (see
Secs. 3 and 4 there) developed dimensional-regularization
(DR) technique,3 which we have also used to make the
results of the three-dimensional RH regularization of the
locally divergent part of the 4PN-accurate Hamiltonian
unique.

The technique of Ref. [31] boils down to the computa-
tion of the difference

lim (d) — HE(3). (A21)
where HEHI¢(3) is the “local part” of the Hamiltonian
obtained by means of the three-dimensional RH regulari-
zation [it is the sum of all integrals of the type IRY(3; ¢, €,)
introduced in Eq. (A2)]; Hisy(d) is its d-dimensional
counterpart.

The presentation of this technique given below is an improved
and more complete version of the explanations contained in
Sec. III of [53].
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Reference [31] showed that to find the DR correction to
the integral IR¥(3; €, €,) related with the local pole at, say,
X = Xj, it is enough to consider only this part of the
integrand i(x) which develops logarithmic singularities, i.e.
which locally behaves like 1/73,
i(x)=---4+¢(n)r°+---, whenx —>x;. (A22)
Then the pole part of the integral (A2) (related with the
singularity at X = x;) we recover by RH regularization of
the integral of ¢, (n;)ry> over the ball B(x;,#;) of radius
¢ surrounding the particle x;. The RH regularized value of
this integral reads

Il]QH(?’;el) :=/ El(nl)rl_3<ﬂ> ld3l‘1
B(x,.)) S1

7y ry\ @

_ 1

=c / rll (—) dry,
0 S

where c¢; is the angle-averaged value of the coefficient
¢(n;). The expansion of the integral IR (3;¢,) around
€; = 0 equals

(A23)

RH(3:e)) = ¢, (i+ 1nﬁ> L Oe).  (A24)

€1 S1

The idea of the technique developed in [31] relies on
replacing the RH-regularized value of the three-dimen-
sional integral IRt (3; ¢,) by the value of its d-dimensional
version I, (d). We thus consider the d-dimensional counter-
part of the expansion (A22). It reads

n fg(d_3>51(d;n1)r?_3d +---, when x - x|,

(A25)

i(x) =

where £ is the scale which relates the Newtonian Gy and
the D-dimensional (D =d+ 1) Gp gravitational con-
stants,

Gp = GnZ23. (A26)

The number £ in the exponent of £ g(d_3) is related with the
momentum-order of the considered term [the term with & is
of the order of O(p'°=%), where k = 1, ..., 5]. The integral
I,(d) we define as

e [

B(x,,7,)

7
= f](;(d_:;)Cl (d) / r?_derl R
0

¢ (dymy)r§34dr,
(A27)

where ¢, (d) is the angle-averaged value of the coefficient
3 (d; n ),
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(d) = ?{ ¢ (din;)dQy . (A28)
s41(0,1)
One checks that always
Lllll'l'%cl(d) = C1(3) = Cq. (A29)

The radial integral in Eq. (A27) is convergent if the real part
N(d) of d fulfills N(d) < 3. Let us introduce

e=d-3
and let us expand ¢;(d) around & = 0,

a(d) =c(B3+e) =c +¢,3e+OE).  (A30)

Then the expansion of the integral /;(d) around £ = 0 reads
(A31)

In Egs. (A30)—(A31) we have used (A29). Let us note that
the coefficient ¢ (3) usually depends on In r|, and it has the
structure

¢(3) = ¢, (3) + clp(3) 2. (A32)

0

Therefore the DR correction also changes the terms o In 7y,.
The DR correction to the RH-regularized value of the
integral IRH(3; ¢, ¢,) relies on replacing this integral by

IRH<3;€1,€2) +A11 +A12, (A33)
where
Al, =1,(d) - I’ (3;¢)), a=1,2. (A34)
Then one computes the double limit
lim(I®M35¢,,6,) + Al +AlL)
€1—=3
€3
ci+cp, 1 r
=A=T5 5B GG + (e e In 24 O
ci+c 1
R LA ORRNE)
1 , 1 , I
+(c1—5¢(3)+ =565 (3) | In—=+0O(e). (A35)
2 2 £

Note that all poles  1/¢;, 1/¢, and all terms depending on
radii ¢, £, or scales sy, s, cancel each other. The result
(A35) is as if all computations were fully done in d
dimensions.
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In the DR correcting UV divergences of the 3PN two-
point-mass Hamiltonian performed in Ref. [31], after
collecting all terms of the type (A35) together, all poles
o 1/(d — 3) cancel each other. This is not the case for the
UV divergences of the 4PN two-point-mass Hamiltonian
considered in the present paper. As explained in Sec. VIII D
of our paper after collecting all terms of the type (A35), one
has to add to the Hamiltonian a unique total time derivative
[given in Eq. (8.24)] to eliminate all poles o 1/(d — 3)
(together with #,-dependent logarithms).

3. IR corrections

To regularize IR-divergent integrals which appear in the
derivation of the 4PN two-point-mass Hamiltonian, we
have originally developed a technique analogous to the one
described above and used to compute DR corrections to
UV-divergent integrals regularized in 3 dimensions. After
completing tedious computations we have obtained IR
terms analogous to UV terms described by Eq. (A35). After
adding all these terms we have the expression with poles
o 1/(d —3). Then we have checked that there exists no
total time derivative by means of which one can eliminate
these poles. The conclusion was that even in d-dimensional
computation of IR-divergent integrals one has to introduce
an additional IR regularization factor (r/s)® with a new
scale s.

To be consistent with DR correction of UV divergences
performed in d dimensions, we have developed a d-
dimensional version of IR regularization. We have devised
two different regularization schemes. We will however see
that the results of these regularizations are identical with the
results achieved by means of purely three-dimensional
computations.

There is a crucial difference between the results of
application of UV and IR regularizations: the results of
IR regularizations depend on an arbitrary IR regularization
scale which we had to introduce, whereas the result of UV
regularization does not depend on any scale. Moreover the
results of two different IR regularizations developed below
are different; therefore, we have to conclude that the result
of IR regularization is ambiguous. In Appendix A 3 c we
show that the ambiguity can be expressed in terms of only
one unknown dimensionless parameter.

The basic idea of both IR regularizations is, similarly to
what we have done for UV divergences, to replace this part
of the three-dimensional integral I%(3;a,b,¢) from
Eq. (A4) which is responsible for IR divergences, by its
d-dimensional counterpart. Let us thus consider the three-
dimensional integral (A4) which is IR divergent. In all
considered cases one checks that its IR pole term propor-
tional to 1/e is related to this part of the integrand i(x) of
(A4), which, after expansion around r = oo (r := |x|), is
proportional to 1/73,
when r - oo,

i(X) = 4 Coo(m)r3 + -, (A36)
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where n := x/r. It means that one can reproduce the pole
term of Eq. (A4) by means of integration of ¢, (n)r~3 taken
over the exterior of the ball B(0, R) (with the center at the
origin 0 of the coordinate system and the radius R). We thus
IRM(3;a,b,¢) ::/ Coo

define
(a+b)e
(n)r3 <L> d3x
R3\B(0.R) ro

) (a+b)e
=Cy / ] rdr
R o

el <L+1n5> LO).  (A37)

(a+b)e 1y

where ¢, is the angle-averaged value of the coefficient

Ce(m),

Coo = %Z‘m(n)dﬁz.

$2(0.1)

(A38)

a. Modifying behavior of the hgy at infinity
All terms contributing to poles at spatial infinity are
collected in Eq. (7.12b). They (with the exception of the
first term) have the structure

Fiy(x)AG (A39)

4)ij°
and the first term in Eq. (7.12b) we treat as

1 TT -1, TT
2(d _ 1) ¢(2)h(4)ijAd(Ad h(4)ij)'

To regularize all these terms properly we have made the
replacement

.. r\B..
A;'h(Tf)l.j - A} [(E) h(T4T>iJ} , (A40)
where (r/s)® is an IR regularization factor with s being a
new constant (needed to make the regularization factor
dimensionless).

After making the replacement (A40) in each term in
Eq. (7.12b), we have found in d-dimensions for each term
this part of its expansion around r = co which contributes

to the IR divergence. It is proportional to r®~3¢*5 and has
the structure
(P = )
fij(X)Ad E h(4)lj :+c00(de’n)
w §—BpO-3d+B 4.
when r — 0. (A41)
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One can make the replacement (A40) directly in d =3
dimensions, then instead of the expansion (A41l) one
obtains

rat| (2) g, | = eimy x st

when r — . (A42)

We have checked that always
hrr%c (d,B;n) =% (B;n), (A43a)
1limc%, (B;n) = ¢, (n), (A43b)

B—0

where ¢ (n) is the coefficient in the three-dimensional
expansion (A36).

For all terms from Eq. (7.12b) we have computed the
integral

1L(d,B) = s‘B/ & (d, B;m)ro-3d+Bgdy
RA\B(0,R)

=ck(d,B)s™8 /oo P2+ B gy
R

R6—2d+B

—el (dB)s B
Cold: B)s ™ e g

(A44)

where ¢l (d, B) is the angle-averaged value of the coef-
ficient ¢l (d, B;n),

cl.(d,B) :=% cl(d,B;n)dQ, ;. (A45)
s41(0,1)

One easily checks that the equalities analogous to (A43) are
also fulfilled for the angle-averaged values of the coef-
ficients,

Lljin;c},o(d, B) = % (B), (A46a)
llgl_rf(l)c (B) = Ceo» (A46b)

where the three-dimensional coefficient ¢% (B) is the angle-
averaged value of the 3-dimensional coefficient ¢% (B;n),

% (B) = f &% (B;n)dQ,. (A47)
S%(0,1)

The integral 11, (d, B) can be shortly written as (let us recall
that € :== d — 3)

IL(d,B) =1,(3+¢,B) =

where we have defined
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N(e,B) == —cl, (3 + ¢, B)s BRE2¢. (A49)

As the regularized value of the integral (A48) for e — 0
and B — 0 we take the finite part (FP) of the pole occurring
at B = 2¢ in d dimensions (we follow here Ref. [60]; see
especially Sec. VIII there). We thus define

FPIL. = FP Jim (& B) = V(e 2¢)
© =0 B—0 B —2¢
P N(e,0) — N(g,2¢)
-0 —2¢
ON ON
_FP<6‘B(OO)+O( )) 83(00)
Ocl, R
= —52(3.0) = L (3.0)In~. (A50)

As the correction to integral IRH(3;a, b, €) we define the
difference

All, :==FPI,, — IR (3;a,b,¢), (A51)
so the regularized value of the three-dimensional IR-
divergent integral over i(x) reads

(/ i(X) %) 00y = lim(IRH(3;a,b,e) + AI&)
R3 €—>

8C 180
—A-52(3,0) - ck(3.0)In "2,

(A52)

In view of the equalities (A46) it is clear that the value of
the right-hand side of Eq. (A52) would be the same if all
computations leading to it were performed in 3 dimensions.
We thus have

(A53)

b. d-dimensional RH regularization

We have also considered another way of regularizng IR
divergences. Namely, before integrating an IR-divergent
integral over d-dimensional space, we multiply the full
integrand by a factor

rl ay r2 [2%)

s) \s
and after evaluating it we take the finite part of the IR pole
occurring at @, + a, = 2(d — 3). This recipe means noth-
ing more than the d-dimensional version of the Riesz-

implemented Hadamard regularization we performed in
3 dimensions.

(A54)
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In this approach instead of the expansion (A41) one has
(we introduce here f := a; + a,)

fij(x)Ad‘]iiaT)ij =+ & (dyn)sTPrO3E 4
(A55)

when r — oo,

and instead of the integral (A44) one considers the integral

&, (ds m) o3+ qd

Rd.p) =7 |

RY\B(0,R)

=% (d)s™” /oo P24y
R

, ; R6-2d+p
= —c5(d)sP —————., A56
s g5y (AS6)
where
Cgo (d) = f Eoo (d, n)de_l. <A57)
s41(0,1)

One checks that always

lime2, (d) = 2, (3) = Cq. (A58)

d—3

The crucial difference between the integral 1% (d, ) and
the integral I' (d, B) of (A44) is such that in 1% (d, ) the
coefficient ¢ (d;n) [and its angle-averaged value ¢2,(d)]
does not depend on 3, whereas in I.,(d, B) the coefficient
¢L.(d,B;n) [and its angle-averaged value c.,(d; B)] does
depend on B. The integral (A56) can be written as

_n(e.p)
Ra.p =120, (AS90)
n(e, ) == —c% (3 + &)sPRF2¢, (A59b)

and its regularized value for e — 0 and # — 0 we define as
the finite part

FPI2 := FP 1imw
e—0 p—0 ﬂ _ 28

on R
=—1(0,0) = =% (3) In—. A60
0.0 =A@ (A6
The correction to the integral IRH(3;a, b, €) is again the
difference
AL =FPI2 — IRM(3:4,b,¢), (A61)
so the regularized value of the three-dimensional IR-
divergent integral over i(x) reads
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</ i(x)d3x> = lim(IRM(3;a, b, €) + ALZ)
R? reg?2

e—=0

—A-&(3)In 2. (A62)
s
By virtue of Eq. (A58) it is clear that the value of the
right-hand side of Eq. (A63) would be the same if all
computations were performed in 3 dimensions. We thus
have

</ i(x)d3x> —A-c ™2 (AG3)
R3 reg?2 s

Let us finally note that the above result can be immediately
read off from Eq. (A4) after dropping the pole part and
identifying the scales ry and s.

c. IR ambiguity

Comparison of the two IR regularization schemes
considered above immediately leads to the conclusion that
the results of their application to computation of the integral
of {15, Eq. (7.12b), are different. By virtue of Egs. (A53)
and (A63) one gets

reg22 2,2 2,2
AH 5 = </3 h<12)d3x> - </3 h(12>d3x>
R reg 1 R reg?2

Y
=-) —>2(0), A64
PIEI0) (A64)
where the summation is over all terms of the integrand

h?ié). We have computed the difference AH 5. It turns

out that it can be written as

137
AH fteg]\? ? = (total time derivative) + —— F,

A
768 (A65)

where F is defined in Eq. (8.14).

To take into account ambiguity (A65) of IR regulariza-
tion we have introduced in Eq. (8.11) a dimensionless
ambiguity parameter C. According to Eq. (A65) this
ambiguity can be written (up to adding a total time
derivative) as a multiple of the term F, and this is the
content of Eq. (8.18).

4. “Partie finie” value of singular function

The concept of “partie finie” value of function at its
singular point was previously used e.g. in the calculation of
ADM point-particle Hamiltonians at the 2PN and 2.5PN
levels (see Appendix B in [75]), and also at the 3PN and
3.5PN orders (see also [41]).

Let f be a smooth real-valued function defined in an open
ball B(x,, E) C R? of radius E > 0 and origin at x, € R?,
excluding the point Xy, i.e., f € C*(B(xo, E)\{Xo}). AtXq
the function f is assumed to be singular. It is enough to
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consider functions f which have only rational singularities.
We thus assume that there exists positive integer N such that
the limit

lim £(x)|x — x|V (A66)
X—X(

exists and is finite. Let us denote by N,;, the smallest positive
integer N for which the limit (A66) exists and is finite. We
define

for x # X,

{f(X)|X — X[V,
g(x) = (A67)

lim f£(x)[x — xo|[Vmin,  for x = xq.
X=X

We also define two families of auxiliary functions f, and g,
(labeled by unit vectors n, n - n = 1):

(0;E) 3 € fale) := f(Xg +€n) € R, (A68a)

(0;E) 3 € > gn(e) = g(xg +€n) € R. (A68Db)
Our final assumption is that for all unit vectors n the function

G is smooth in the half-closed interval (0;E). Using
Egs. (A67) and (A68) we obtain

. A69

€N min ( )
From Eq. (A69), after expanding g, into Taylor series around
€ = 0, the formal expansion of f,, into Laurent series around

e = 0 follows:

o0

Z am (n)em

m==N iy

_6(0)  6a(0) g™ (0)
€Nmin €Nmin_l (Nmin — 1) !6

fn(e) =

+ g (0) 4+ Ofe). (A70)

Nmin'

We define the regularized “partie finie” value of the function
f at xq as the coefficient at €* in the expansion (A70)
averaged over all unit vectors n:

Fuslxo) = 5. f (o)

dgngINmin) (O) .

4N ! (A7)

Let us consider the function
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where N is the positive integer N> Npin Then one can
define f,(xX() using the function g instead of g. It is easy to
show that the value of f,.,(X,) will not change, so the
definition (A71) does not depend on the choice of the number
N provided N> N in-

Definition (A71) is used to give the meaning to integrals
of f(x)&,, where the function f is assumed to be singular at
X = X,. Namely, we define

[ 508, Fr(x,) (AT2)
The definition (A72) is an extension of the notion of “good”
Dirac o-functions introduced by Infeld and Plebanski [44].
Their definition assumes that “good” o-function, besides
having the properties of ordinary Dirac ¢ distributions, also
satisfies the condition (cf. Appendix 1 in [44])

S
3.9 _
/dxrk—O,

Obviously the definition (A72) entails the fulfillment of the
condition (A73).

The important feature of the definition (A71) is that the
regularized value of the product of functions is not, in
general, equal to the product of the regularized values of the
individual functions:

fork=1,2,....p.  (A73)

(fle o ')reg(x()) # flreg(XO)ereg(XO> T (A74)
(the above property but with the equality sign was called
“tweedling of products” by Infeld and Plebanski; see,
e.g., Appendix 2 in [44]). The property (A74) of three-
dimensional “partie finie” operation leads to problems. Let
us consider some function § singular at x = x,,. It is natural
to demand that

S(X)5a = Sreg(xa)(sa' (A75)
The above rule is always used when solving Poisson
equations with singular source terms of the form S(x)3,
[see Eq. (B2) below]. Then, multiplying both sides of
Eq. (A75) by another function 7" which is also singular at
X = X,, one gets

T(X)S(X)éa = T(X)Sreg(xa)aa' (A76)
The rule (A75) applied to Eq. (A76) implies that
(TS)reg(Xa) = Treg(Xa)Sreg(Xu)’ (A77)

what in general contradicts Eq. (A74).

To avoid this kind of problem one should employ
dimensional regularization. One can check that in the
generic d-dimensional case the distributivity is always
satisfied,
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ALY ) (X)) = A0 () o (Xa) -0 (ATS)

where fggg(xu) is rather not defined by the d-dimensional
analog of the definition (A71), but it is directly computed
by employing the existence of such region in the complex
d-plane where the function f(4)(x) is finite for x = x,, (see
the example at the end of this appendix). In d dimensions
one can thus always use

FDx)69(x — x,) = [ (x,)59 (x = x,).  (AT9)

Therefore one defines the dimensional-regularization rule,

Free(%a) = m(fia(x,). (A80)
where f(@ is the d-dimensional version of f. In the
computation of the 4PN Hamiltonian the usage of the rule
(A80) boils down in practice to the usage of the three-
dimensional definition (A71) after the usage of distrib-
utivity (A78) (in the case of computing regularized value of
the product of functions).

As an example of justifying the distributivity (A78) let us
consider the following 4PN-related contact integral [here
we denote by ¢g> the function, given by the right-hand side
of Eq. (Cla), which is the d-dimensional version of the
three-dimensional potential denoted by ¢ )

/ dx(4) (%)), = / Ak (0, 72+ 1355,
(A81)
Because N (d) < 2 = limy_, ri~¢ = 0, then
d — d
/ () (x))°8) = K5 (marz?)S = [(h(3)) e (X1
(A82)

Therefore the three-dimensional value of the integral (A81)
equals

[ 0%, = {48 cs(x0))
= [(¢(2))reg(xl )]5

Computation of the three-dimensional integral of
(¢2)(x))°8; directly by means of Eq. (A71) leads to the
result different from the result of Eq. (A83).

(A83)

5. Distributional differentiation of
homogeneous functions

Appearance of UV divergences is not the only cost of
employing Dirac-delta sources. Another consequence is
that in our computations we have to differentiate homo-
geneous functions using an enhanced (or distributional)
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rule, which comes from standard distribution theory (see
Sec. 3.3 in Chapter III of Ref. [76]).

Let f be a real-valued function defined in a neighbor-
hood of the origin of R. f is said to be a positively
homogeneous function of degree 1, if for any number a > 0

flax) = a*f(x).

Let k:= —A—2.1f 1is an integer and if 1 < -2 (i.e. kisa
non-negative integer), then the partial derivative of f with
respect to the coordinate x' has to be calculated by means of
the formula [cf. Eq. (5.15) in [77]]

(=D 0%(x)
k! Oxt .. Ox'

X j{ do, f(x")x -+ x/ik,
s

(A84)

9if(x) = 0,if(x) +
(A85)

where 0;f means the derivative computed using the
standard rules of differentiations, X is any smooth close
surface surrounding the origin and do; is the surface
element on X.

The rule (A85) should also be applied to differentiation
of functions which are homogeneous not with respect to x,
but with respect to X — X, for some constant x, € R3. Let
f be such function, then there exists another function ¢ for
which the relation

f(x) = ¢(x = xo)

is fulfilled and the function &+ (&) is a positively
homogeneous function of degree 4, i.e., for any number
a>0

(A86)

p(ag) = d'¢(8). (A87)
Obviously (here & := x — X()
of(x) _ 0p(§)
oxt OF (A88)

and for the derivative O¢/0& the rule (A84) is directly
applicable. Therefore the partial derivative with respect to
the coordinate x’ of the function f satisfying conditions
(A86) and (A87) should, by virtue of (A88) and (A85), be
calculated by means of the formula

(=1)¢ 95(x ~ x0)
k! Ox .- Ox

do: / /i].../ik’
xfoz G

9, (x) = 9;f (x) +
(A89)

where 0;f means the derivative computed using the
standard rules of differentiations, X is any smooth close
surface surrounding the point x, and do; is the surface
element on .
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As an example let us employ the formula (A89) to
calculate first and second partial derivatives of 1/r,, 1/r2,
and 1/r}. For the first partial derivatives we obtain

1

B =8,—. (A90a)

Yy T,

1 1
0i—= =0, A90b
"2 Tt ( )

1 1 4n
85E = 6,5—?8,-5(1 (A9OC)

Let us note that in Eq. (A90a) there is no need to use the
rule (A89), and in Eq. (A90) the term proportional to J,
[obtained from the usage of (A89)], vanishes. The second
partial derivatives read

1 1 4z
ataja - aiagr—a—?%ﬁa, (A91a)
1 1
&@22@@%, (A91b)
1 1 2n
a,ajr—3: 8£813—E(168,8150 +36UA6“) (A9IC)

Making use of Egs. (A91a), (A91b), and (A91c), one gets

1

A— =415, (A92a)
rll
12

A=, (A92b)
1 6 10

A =———"As, (A92¢)

r,3l rfl 3

The distributional derivative (A89) does not obey the
Leibniz rule. It can easily be seen by considering the
distributional partial derivative of the product 1/r, and
1/r%. Let us suppose that the Leibniz rule is applicable here:

1 11 1 1 1 1
0 —==0—— | =—0, —+—0,—.
Rl Or) BT r:

ra ra rll a (A93)
By virtue of Egs. (A90a) and (A90b) the right-hand side of
Eq. (A93) can be computed using standard differential
calculus (no terms with Dirac deltas), whereas computing
the left-hand side of (A93) by means of (A90c) one obtains
some term proportional to 0;4,,.

The distributional differentiation is necessary when
one differentiates homogeneous functions under the
integral sign. Let us consider the following locally diver-
gent integral (here a # b):

1\ 1
paipaj/d3x<aiajr_) ’”_zzi.

(A94)
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We shall regularize this integral in two different ways. We
first replace in (A94) differentiations with respect to x’ by
those with respect to x!, (obviously d,r, = —0,;r,). Then
we shift the differentiations before the integral sign and
apply directly the Riesz formula (AS). The result is

1\ 1 d3x
paipuj/d3x (aia/‘ r> }7; = paipujaaiauj A

a arb

2
= paipujaaiauj <— 2>
rab
4zpz — 4(ng - Pa)’]
rib .

(A95)

We have obtained (A95) performing integration first and
then differentiation. Now we shall regularize the integral
(A94) doing differentiation first. To do it we have to use the
rule (A89), which gives [cf. Eq. (A91a)]

1 - 1 4
0idy— = (3l = 8y)) — - ?”5,,5“. (A96)

We substitute (A96) into (A94):

1\ 1
paipaj/d3x(aiajr_>r_;§

3(n, - p.)?—p: 4rn 1)

= | Py e e = 2/d3 —=. A97
/ * r r‘g 3 Pa x ”2 ( )
The second integral on the right-hand side of (A97) is
calculated by means of the definition (A72). The obvious

result is
d3 xé_a — L
A A
b ab

To calculate the first integral on the right-hand side of
(A97) we apply the procedure described in Appendix A 1.
We obtain

/d3x3(na ‘Po)’ —Pi _ 162[p% —3(ny - Pa)’]

rars 3rd,

(A98)

(A99)

Collecting Eqgs. (A97)—(A99) together we get the result
which coincides with the result (A95) obtained before. The
two ways of regularizing the integral (A94), described
above, coincide only if we apply formula (A89) when we
perform differentiation before integration.

It is not difficult to show that the formula (A85) is also
valid (without any change) in the d-dimensional case, i.e.
when f is a real-valued and positively homogeneous
function of degree A defined in a neighborhood of the
origin of R?. The formula (A85) can be applied in d

124043-38



DERIVATION OF LOCAL-IN-TIME FOURTH POST- ...

dimensions when the number k:= -1+ d—1 is a non-

negative integer, e.g., the d-dimensional versions of
Egs. (A90a) and (A91a) read

O = Oy A100
P2 Iyd=2 ( a)
1 1 1
8,0j rd_2 - 3101ﬁ—;15u5a (AIOOb)

Using the formula (A85) [or (A89)] in d (or 3) dimensions
requires averaging of products of unit vectors over the unit
sphere. This can be done by means of the following
formulas (see Appendix A2 of [28] for d-dimensional
expression and Appendix A 5 of [78] for its three-dimen-
sional version):

f dQu nft - -nix =0, k=0,1,2,..., (AlOla)
Sd—]
o (a2
f;d_] dQ,_n" - - n'* —mgd—l
X Biiy Oy i
k=0,1.2,.... (A101b)

Here, for positive integer k, k!! := k(k —2)--- 1 for k odd
and k!! == k(k—2)---2 for k even, Q,_, is the area of the
unit sphere in R?,

(A102)

and Ay; .. = deSAg(il).“g(,»k), where S is the smallest
set of permutations of {1,...,k} making A ;.. fully
symmetric in iy, iy, ..., iy. Let us note some simple cases:

o
f de_ln"n’Z = &Qd—léiliw (A103a)
Sd—] -
L 1
id-l dQ,_n'in"2n"n" ZMQ‘H
X (84,,01,4, 04,1, 0yi, + 611,01y )
(A103b)

6. Riesz kernel

To avoid problems related with applying distributional
derivatives (even in d dimensions) one can replace Dirac
delta distribution 6 by some functional representation
(“delta sequence”). In d dimensions one can e.g. employ
the Riesz kernel K ,(e,):
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_ F((d_eu)/Z) e,,—d'

Ou=lmKo(ea).  Kalea)s= 2225 (e,2)

(A104)

Then one should replace in the constraint equations (2.5)
Dirac-delta sources by Riesz kernels (A104), solve the
constraints perturbatively and develop the whole PN
scheme (let us stress that then no distributional differ-
entiation is needed). At the end of the calculation, one takes
the limits €; — 0, e, — 0, and only after this one computes
d — 3 limit.

This procedure was applied by us in [46] to recompute
all UV divergent integrals at the 3PN level. It is however
too difficult to be performed fully at the 4PN level, so it has
not been applied in the main part of the present paper, but it
was used for checking some results. It should be mentioned
that the Riesz-kernel method of regularization has been
applied by Damour in Refs. [79,80]. It also may be pointed
out that the dimensional regularization calculations of
Ref. [63] have been performed in momentum representa-
tion, where also only ordinary (i.e., nondistributional)
space-time derivatives show up.

As an example let us first compute the potential ¢, for
Riesz-kernel sources. Instead of Eq. (3.10a) we thus solve

Aoy == mK,. (A105)
Making use of Eq. (B4) one gets
2 en™PT((d = €)/2)  2ar
__ a 2=dtea  (A106
R R e e

Let us next consider the integral of Eq. (A81), which now
takes the form

/ ddxqsgz)l(l. (A107)

To compute this integral it is enough to use Eq. (AS5). After
computing the double limit e; — 0, e, — 0 (the order of the
limits does not matter) one obtains

”—Sd/2r d/2 5
The value of the above formula in the limit d — 3 coincides
with the result (A83).

Let us finally mention that the usage of the Riesz kernel
directly in 3 dimensions does not resolve ambiguities. For
example, three-dimensional computations corresponding to
d-dimensional ones presented in the above example would
lead to the result which is different from (A83) (so the
“tweedling property” of the product would be violated).
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APPENDIX B: INVERSE LAPLACIANS

In the present paper we have to consider (both in d and in
3 dimensions) numerous Poisson equations with distribu-
tional source terms,

Aaf = 9(x)8., (B1)

where usually the function g is singular at x = x,. Equation
of this type we solve as follows:

FX) = A7 g(x)8, = A7 Greg(Xa)34
= Zgreg(xa)Agl‘sm <B2)

where the regularized value g,., of the function g is defined
in Eq. (A71) (in 3 dimensions) or in Eq. (A80) (when, to
avoid ambiguities, one has to employ the d-dimensional
version of computing of g.,). The function AZ'S, s

defined below in Eq. (B9) (in d dimensions) or in
Eq. (B15) (in 3 dimensions).

1. d-dimensional inverse Laplacians

We start from considering some solutions of equation

ALf =rg, n=12,..., (B3)
where A’} denotes n-folded superposition of the d-dimen-
sional flat Laplacian A,. By direct computation one checks
that the function

ma [(a/2+ 1) ((a+d)/2) at2n
A rg = a2t nt (@t d)/2en) rat? (B4)

is the solution of Eq. (B3). The function A" r§ we call nth
inverse Laplacian of r%. Let us note the formulas for the
first, second, and third inverse Laplacians of r%:
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. ra+2
Alpd = —— B5a
d (a+2)(a+d) (B3a)
5 r4+a
A re = - , B5b
d 2+a)d+a)d+a)2+d+a) (BSb)
r6+a
APra= < .
24+a)(4+a)(6+a)(d+a)2+d+a)(4+d+a)
(B5c¢)
We also have to consider solutions of equation
Alf =6, n=12... (B6)
Making use of Eq. (B4) and the formula
Ayt = -5, (B7)
one checks that the function
r2-d/2
A7, = K2 =d/2) 2r=d (B

4 T (n—1)C(n+1-d/2) “

solves Eq. (B6). The function A}"5, we call the nth inverse
Laplacian of ,,. The first inverse Laplacian of o, thus reads

AGYS, = —krdd, (B9)

We also need solutions of equations of a more general
type than Eq. (B3). It reads

ALf=ronllonlf, n=12,....  (B10)

More precisely, we need to consider Eq. (B10) forn =1, 2,
3 and for each of these values of n we need to take
k=1, ...,6. To save space we list below solutions (inverse
Laplacians) related to Eq. (B10) only for n =1, 2, 3 and
k=1,2,3:

A L nir2+a 11
=1y pa ala B
d e = G Y a+d+ 1) (Blla)
- 2 d inl —268; ]2t
A7 nlnlrd = @+ a)(d + jnan i , (B11b)
a2+ a)d+a)2+d+a)
A_lni njnkr,, = [2(511{”51 + 5ikn{4 + 51]"52) - (1 + a)(l +d+ a)nénénﬁ]rﬁ*" (B] IC)
d Teralata 1-a)1+a)(1+d+a)3+d+a) ’
) nir4+a
A—Z i, a a , Bl1ld
T Y )Gt a1 +d+a)(3+d+a) (B
o 4+ a)(d+ a)ninl — 45, rite
AZni s = 4+ a)(d + a)nna = 40, (Blle)

“Tal+a)d+a)d+a)2+d+ta)d+d+a)’
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‘ [(B+a)(1 +d+ a)nl, nana

PHYSICAL REVIEW D 92, 124043 (2015)

4(51]na + 5/kna =+ 511(””)} P

A nmanr = @-D1+a)B+a)l+d+a)3+d+a)5+d+a) (B11f)
A= BTG LA fjra)@ rdra(5tdta) (BiTe)

6 a
A7 T a2t a)d+ a><£(6+Z>TL(iZ)°E§”+"Z +f§<i ++ d+a)6+d+a) (BI1h)
At o= [(5 +a) (1 +d + a)ninianl — 6(3;nk + 8;nl + G|l (B11i)

2. Three-dimensional inverse Laplacians

For convenience let us start from rewriting some

d-dimensional results of Appendix B1 in d=3
dimensions. The function
r 2
T PR CA k) B (B12)

[(a+2n+2) “

is the nth inverse Laplacian of r% [it is thus the solution of
Eq. (B3) in d =3 dimensions], so the first inverse
Laplacian of r¢ reads

ra+2
A_lrz ::m. (B13)
The function
I FPS (B14)
4r(2n —2)!

solves Eq. (B6) in d = 3 dimensions and is the nth inverse
Laplacian of §,. The first inverse Laplacian of §, thus
equals

(B15)

In the derivations of the field functions needed to
calculate the 4PN-accurate two-point-mass Hamiltonian
we have used some special solutions to the partial differ-
ential equations of the form

A"f=r2b (a#b), n=12,.. (B16)
This special solution to Eq. (B16) is defined below, we
denote it by I(n;a, ) and call the nth inverse Laplacian
of rgrf.

Let us mention that in Ref. [81] one can find formulas
[see Eq. (B13) there and equations below it], which
describe the formal solution to Eq. (B16) in d dimensions

(a-1)1+a)B+a)5+a)(l+d+a)3+d+a)5+d+a)(T+d+a)

[
for any complex values of n, @, and . The solution is
expressed in terms of the Appell hypergeometric function
F, of two variables. We have tried to use it in our 4PN-
related computations but, in general, this has led to
calculations too complicated to be useful.

The large family of three-dimensional inverse Laplacians
of r“r/ is based on the solution to the Poisson equation

(B17)

One immediately checks that In(r, + r, +r,,) solves
Eq. (B17). Because In(r, + r, — ry,) is singular along
the segment joining the points x, and x,, the first inverse
Laplacian of r;'r;! we define to be

I(1;=1,=1) :==1n(r, + rp + ryp)- (B18)
Let us apply the operator A, (A, contains differentiations
with respect to x!, only) to the both sides of Eq. (B17).

Assuming commutativity of the operators A, and A one
obtains
1 1 Oy,
AJAf) = AAf) =— (D, ) =472, (B19)
Ty Ta T
where we have used
1 1
A,—=A— = —476,. (B20)

Tq T'a

After applying the rule [see Eq. (A75) and the discussion
around this equation]

f(X)au = freg(xa)éa (BZI)
to the right-hand side of Eq. (B19), one gets
S,
A(A,f) = —4r—. (B22)
Tab

124043-41



PIOTR JARANOWSKI and GERHARD SCHAFER
Using Eq. (B15) from (B22) one obtains

A

Af=—-—A"15, = . (B23)
Tab Talap
Analogously one can derive the equation
1
Ayf = . (B24)
TpTap

One checks that the solution (B18) fulfills Egs. (B23) and
(B24), whereas the function In(r, 4+ r, — r,;) does not.

Using the result (B18) it is possible to calculate all
multiple inverse Laplacians of the type4

I(n;2k—1,21-1), n=1,2,..., k,1=0,1,2,.... (B25)
To obtain I(n;2k—1,21—1) (for n=1,2,..., k,1 =0,
1,2,...) one assumes that it has the following structure:

I(n; 2k — 1,21 = 1) :== Wi (ry, 1y Tap)
+W2(ra’rhvrah)ln(ra+rh+rah>’
(B26)

where W, and W, are polynomials of variables r,, r,, and
Fap», consisting of terms of only 2(k + [ 4+ n — 1)-order in
these variables. The form of Eq. (B26) can be inferred from
dimensional analysis which takes into account the first
inverse Laplacian of r;'r;! given in Eq. (B18). To fix the
coefficients of W, and W, uniquely one requires that the
following conditions are fulfilled:

AI(n;2k—=1,21—1)=I(n—1;2k—1,21—1), (B27a)

A I(n;2k —1,21— 1) = 2k(2k = 1)I(n:2k = 3,21 - 1),
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Ayl (n;2k—1,21—1) = 21(20 — 1)I(n;2k — 1,21 = 3).
(B27¢)

Equation (B27b) and (B27c¢) corresponds to Eq. (B23) and
(B24), respectively. In the case of k = 0, Eq. (B27b) should
be replaced by

21-1
1) — Tab 2n—-3.

Agd(n; 1,21 — 1) = —Lab___ 203,
ol (n 2n-2)1"

(B27d)

analogously for / = 0 instead of Eq. (B27c) one uses

r2k—1
ApI(n;2k—1,-1) = m ran=3, (B27e)

To illustrate the above procedure let us consider the
second inverse Laplacian 7(2;—1, —1). We are thus looking
for a solution f of the partial differential equation
A’f = 1/(r,r,). We assume that the solution f is of the
form Wl(ra’ T'ps rab) + WZ(rm Tps rab) ln(ra +rp+ rab)’
where W, and W, are polynomials of indicated variables
consisting of only quadratic terms in these variables
(i.e. the most general polynomial of this type is
arra 4 axry + asr’y, 4 agrary + asrorg, + agrpray).  We
need to fix the values of 12 coefficients (in fact less
because of symmetry with respect to interchanging the
labels a and b of the particles) defining the polynomials W
and W,. To do this we employ Egs. (B27a), (B27d), and
(B27e), which take the form (1) Af =1In(r, + ry, + rup);
(2) A= ra/(zrab); (3) Ayf = rb/(zrab)' The equa-
tions 1-3 fix the 12 coefficients of the polynomials W,
and W, uniquely. The result is given in Eq. (B28) below.

Below we list explicit formulas for the inverse
Laplacians which have been used throughout this paper

(B27b) (here a # b and s, :=r, + 1y + rpp):
|
A7l :=1Ins,, (B28a)
ralp
o 1 1 2 2 2 Lo 5 2
A ::_(_ra+3rarab+rah_3rarb+3rabrb_rh _(a_rab+rh)lnsab’ (Bng)
r.ry 36 12
1
A3 P . = 28800 (—63r§ + 15073, + 126r§r§b - 90rar2b - 63r2b — 90737, + 90727 1), + 90rar§brb - 901'(31er7
a
- 2r12,r% + 90rarabr[27 + 126r(21br127 - 90rar2 + 150rabr2 - 63r;‘;)
1
+ 960 (3rd —6r2r2, + 314, +2r2r2 — 612,12 + 3r}) In sy, (B28¢)
r 1 1
Al r—: = T (=12 = 3r,rep — rﬁb + 3r,ry + 3rr, + ri) + 3 (r2 + rﬁb - rl%) Ins,,, (B284d)

*The method presented below was devised in Ref. [14]; see Appendix C there.
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A—2:_: = % (=rh =30r3r,, — 62272, +90r,r3, + 63r%, —30rir, + 30rir,,r,
— 907,72, ry + 9083, 1y — 621212 — 907, 1oy r3 — 12672, 12 + 907,13
+90rabrz+63ri)+ﬁ(’. +2rgryy, = 31y, + 2rgry + 61,1, — 3r}) Insgy, (B28e)
Ta _ 1

A3 L=
p 2822400(
+ 210r4r 'ty — 84073 12 ry + 840r2r3brb + 1050rar2hrb — IOSOerrl7 374 rh 420r r brh - 1062ra ro,r

a’ab

+ 2100773, r3 4+ 307574, r7 — 280r; r} 4 420r2r 4,13 — 2100r, 12, 13 + 280072, r3 — 951727} — 1050”a”ab’”;,

—37r% = 21012 r,b — 95174 ab + 154073 3 ro,+ 2013727 = 1050rar2b - 1025r2b -210rr,

— 307572, r} 4 1050r,73 + 1050773 + 102579) + (rS +3rdr2, = 9r2rt, + 578, + rir2 + 6r2r2,r

13440
— 1574, 12 4+ 3r2rb + 1572, 1t = 5r%) In s, (B28f)
Ay, = 3600 (63r% +90r3r,, — 62r2r 30rarab rib + 90737, — 907211 + 30raribrl7
=30r3,r, — 1261217 — 90rarabr% = 62r2,r2 +90r,r; 4+ 90r 13 + 63r})
1
+ 1—20( 3rd 4+ 222, 4+t 6122 + 212,12 = 3r)) In sy, (B28g)
A2 r) = 05600 (53175 +630r3r,, — 5317472, — 4207313, — 531r2r%, +630r,r3, 4+ 53175, +630r3rb
—630r4rpry —630r, 1, 1, + 63080, r, = 531rhrs —914rar2, ri — 53174, r; — 42013 r3 — 42013,
—531r2r} —630r,r 1} — 53172, 1 + 630r,r3, + 630r,,r3 + 531r9)
1
+_3360( =375 437 b—|—3ra p -390 b—|—3r rb—|—2ra T +3rabrb+3r2r‘g+3rabrb—Srb)lnsab, (B28h)
_ 1
A3 r,r) = 1519376800 (1897578 + 18900r] r,y, — 211007572, — 189007373, — 5055074 7%, + 6510013 >, + 885007275,
—31500r,r], —35825r8, + 18900r]r, — 189007511}, — 63007572, r), 4+ 6300743, ), — 441007 1, 1,
+ 44100727 abrb + 315007, r6 pTb = 31500”7be — 1820475 —|— 378073 rabrb 30804ra abr2 7560ra o
—39492r2r%, r7 + 44100r,r>, 3 + 8850078, r7 — 8820rr; — 3780r4r 13 — 840r3r2, rs — 75601213, r
—44100r, rabrb + 65100rabrb 154274 rb 378073 rabrb 3O8O4r2r§br;47 + 6300rarabrb 50550rabrb
— 882073 r —|— 378072 rabrb 63007, r rb - 18900r rb — 18204727 — 18900~ rabrb 21100r
1
+ 18900r,r] + 18900r,,r} + 18975r§) + 967680( 1578 4207872 ro, + 3074 ab - 60rurab + 258 T 12rarb
+ 1274 517 2 1 3672 rahrh 60rabr,7 + 61 rh + 1272 flb 44 30rubrh + 1272 rb + 20r3hr167 - 15r2) In s,,,(B28i)
T 1 4 3 > 2 3
’”_b = 1200( —63r4 —90rir,, —2rir?, 90rarab 63r;, + 150r,r, + 90r,r 1y, + 901,17, 1y + 1507, 1),
+ 126r2ri + 907,713 + 12672, 12 = 90r,r3 — 90r 73 — 6317})
40 (3r + 27272, + 31, —6r2r; — 612,12 + 3r}) In sy, (B28j)
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APPENDIX C: EXPLICIT RESULTS = _KQZ Zm myr2ydri=d, (C14)
FOR THE FIELD FUNCTIONS a b#a

In this appendix we give the explicit formulas for the PN
approximate solutions of both the constraint (2.5) and the
field (4.3) equations which can be found in the literature or
were computed by us for the first time. The different inverse

Laplacians needed to compute field functions presented The potential ¢ is split into two parts, ¢ =
below are given in Appendix B. $6)1 + P6)2> Where ¢g); is the solution of the Poisson
equation (3.14a) and ¢ ), fulfills the equation (7.7). The

1. Potentials ¢, solutions to these equations are fully known only for two-

The solutions of Egs. (3.10) for the potentials ¢, body pomt—m'flss sy-stem.s .and n d:.3 dimensions (they

and ¢4 are known in d dimensions. They can be obtained 0;121 be]:fl(:und mn in 1mp1]13011t. folrlm e.g. in Refs. [82,83] and
by means of Egs. (B2) and (B9) using the result [75]). They can be symbolically written as

where the coefficient x is defined in Eq. (8.4). These
solutions are valid also for general n-body, i.e., not only for
two-body, point-mass systems.

- I 1 5, P
(¢(2))reg (X ) - KZh;&amhrab They read ¢(6)1 =A"! (Z <—6—4¢%2) + §¢(4) + 1_6¢(2) m—g
_ 2-d
@ =x)_mari?, (Cla) 1(p2)? i
P + 8 my6, — (n(é))2 , (C2a)
1 d-2
b = —55(4)1 +4(d— 1)5(4)27 (Clb) | . .
_ 1Al TT \ _ -1 TT
. P =587 ()il 4)5) —gza:maA ((g) J,jh<4)ij)'
_ a 2-d '
S 1= —K;m—a}’a s (CIC) (CZb)

A more explicit form of the function ¢ ), can be written as’
|

_ 1 ( myPq m aMp 9 1 2pg_(na'pa)2
Pon=- 327r mir, ZZZm ra,,( ) 1671')322 r, rh 4(16ﬂ>2za: r’

a b#a a b#a tlb
IWZZ{ )P+ V5) (Vo Vi) 2 (A7 1)+ [=8(Pa 1) (Y Vi) +3(Pa- V) (B Vi)
~8(p,V,) (0, V.)] (A-l r 1r,,> 400, ) ()Y, 9 (2722 | (©)

where the inverse Laplacians A~ (r,r;,), A~ (r;'r;1), and A~ (r,r;"') can be found in Egs. (B28). The Poisson integral
needed to calculate the function ¢ ), reads (here b # a)

1 1 m,m
Al ((7) ”hF(T;U) = 73 (1671') 3.3 rbrb (3r — 12r Tap + 18rarab 12rarab + 3r‘a‘b + 28r2rb - 12r§rabrb — 12rar§brb
a/ . ab

3 p2-3 . 2
+ 2873, r, — 307213 + 60r,ror — 30r%, 2 — 361,13 — 361,13 + 35r%) + Pa = S\a * Pa)” (N, - Pa)

or mr

1 P; 2 2
sy {20y V-4 P VT, 4, V), V(T )

T ny, ry Falp
_4(p, - . . ) v (a1

40 V)(ps - V) (V- V)] (A )+ 8(p, V2 (a7 1)

r3

e Vw2 (a2 L (4

where the inverse Laplacians A~ (r,r;1), A1 (rg'r;t), and A=1(rjr;!) are given in Egs. (B28).

’In Appendix C we employ the following notation: V = (9;), V,, = (8,:), (s - V) = puiOi (Pa - Vi) = PaiOpir (Vo - V) = 04iOi.
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2. Longitudinal field momenta 77,
Equations (3.16) fulfilled by the longitudinal field
momenta 77,'( ) can be written in the form

~IJ _z
Tiyi = S

stands for the source term. Making use of the

(C5)

where S En)

decomposition (2.9) one rewrites Eq. (C5) in terms of the
vectorial function V’@,

d

: -2 ; :
1 B 72 ]
AgViyy + =03V = Si,) (C6)

(n)
It is not difficult to find the formal solution of Eq. (C6) in
terms of the first and the second inverse Laplacian of the
source Sén). It reads

. d-2
_ A—-l¢Q -2/
= 831800 = 31g = 1y AT Sy

Let us now assume that the source term in Eq. (C5) has the
form of a divergence of a symmetric and trace-free quantity,

_ ij
Sty = 9T (>

Vi

(n) (C7)

(C8)
where szn )= T{;) and T’(’n , = 0. Then, making use of

Eq. (2.9) and the definition (2.14) of the TT operator in
d dimensions, one can show that
|

3 ma
5) = mz (OPai +2(n, - pa)n

+apul(9-9,) (A-l

ralp

S TR SRR

2"
Iy ’

where the inverse Laplacians A~'(r7'r;t), A72(rgtrh),
A~!(r,ry'), and A7 (r,r,") are given in Egs. (B28). The

field momentum 7[( can be constructed from the vectorial

5)
function Vl(s) by means of the formula (2.9).

3. h(TT) and hTT) related terms

The leading-order TT part h< 2)ij
solution of Eq. (4.11). It is the sum

of the metric is the

TT k(d-2)
h(4)2l/ 8(d— 1)2_{[

+2d(nu pa)(nilpa/ +nt]lpul) +2patpa/}r5_d

The momentum independent part /),

L) - 200, -V><V-va>(A-2

—(d+2)(n,-p,)?*|6;;+
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~u __ij  _ (7i] \TT
iy =Ty = Ti)- (C9)
Using the source term from Eq. (3.16a) we have obtained
the explicit solution (C7) for the leading-order function
V’('3) in d dimensions,

i K

V(3) = S(d— 1) Z((3d_ 2)pai

+(d=2)*(n, - pa)my)ra .
This solution is also valid for n-body point-mass systems.
| €
constructed from the function Vi3 by means of the

(C10)

The leading-order longitudinal field momentum 7z ) can be

formula (2.9). Let us also quote the following useful form

of the field momentum 71’(7 ) in d = 3 dimensions,

3

i 1 1 1
el P g
”<3) B 167 ;pak{z |:6lk (ra> J * 5Jk <ra> ,i:|
1 1

The next-to-leading-order function Vi, has been calcu-
lated in d = 3 dimensions and for two-point-mass systems
only. It reads

(C11)

3
1677.' ZZZmb{ |:48a1 Pu- v) _Eai(pa ' va)

a b#a

1 ) — 0u(Pa Vo) (V- V,) (A_l Q)

Falp Ty

(C12)

/’lTT _ hTT

TT
@ij = Nayoi; +h

o (c13)

TT
Piayor;
h(ngij is quadratic in momenta. The quadratic-in-momenta

part of hi}),..

general n-body systems. It reads

where does not depend on particles’ momenta and

can be computed in d dimensions and for

[d(d=2)(n,-pa)* = (d+2)pZ]nin;

(C14)

is known only in d = 3 dimensions and for two-body systems. Its fully explicit

form reads (here s, == r, + 1, + ry, for a # b; see, e.g., Ref. [32])
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1 1 ro4+r, 12
TT a J
WT = l6ﬂzzzmmb{ ab( n )abnab+2< - +s2)nnb

a b#a Tab Sab ab ab
2 1 5 1 2 8 (1 1 —
+16 S T T3 (]’l nab+na ab)+ T3 Q+3ra - | —+— n’anfl
ab Tab Fab¥a  Typ \Ta Sab \Ta Sab
17 4 8 (1 4
ab rp Faba Talp Sab \Ta Tab
The next-to-leading-order conservative TT part h(TTij of the metric function A} is very complicated. It fulfills

equation (4.12). The piece of h<TT) which diverges linearly at infinity in d = 3 dlmenswns equals A7 'h<TT) . The part of this

inverse Laplacian which corresponds to the function hT Joij €an be computed in d dimensions (and for general n-point-mass
systems). It reads

A iy = [(16 = @) (n, - p.)* = (14 = d)p]6;; + 2(7d = 8) puipu;

2] 7 48 (4 — d 1)o7 Z

+(4—d)[(4+d)Pa—(d—2) (0, - py)*Inini = 2(4 = d)(2d = 1) (0, - po) (lpaj + napa) . (C16)

The part of the inverse Laplacian A7 1h<TT) corresponding to the function h(TT) - can be computed only in 3 dimensions and

for two-point-mass systems. It reads

1 0 171 5r r
—175TT 3 2 a a
A ]’l( )0” Wﬁ;;mamb{g [a(ra—rarb)—l—a} ij (88bj+6 ab, 88 880,)a
T L N P l(Sa 0y — 0,0, (a2 (C17)
]44r3b “jlla a\" b ab 2 ij Fal's 2 aiVpj — VivY; Faly .

The inverse Laplacians A~ (r7'r;!') and A=2(r;'r;!) can be found in Egs. (B28).
Other parts of the function h(TT) are determined by A~ IC(TT) and they enter the density h< i) from Eq. (8.8). We list below
formulas by which, together with the inverse Laplacians enumerated in Appendix B 2, one can compute the density h%

explicitly in 3 dimensions. These formulas read

1 r\TT
( 2padhy + 1)~ + 5001 b vnr—;) T (102), (C18a)

- 4m2
~ (167)?

dm?m, [ 3 1 1 35 1 \TT
AT )T = 2122 (29,0, ——(130,,0 150,;0 20,0 —
(¢(2) (4)11) (]671')3 27"12 li 7”1 r —+ 2}%2 li 1] + 2i 2] + 3 1iY1) r%rz

4 ml 1 5 rs TT
* (16z)> m (2p2(')2182] 4(p2j0i + P2:02j) (P2 - V2)) E + 02i0,j(p2 - V2) V_l
1 nmy P25u 3paiDaj T
127 m, ( o &) +(1e2), (C18b)
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(C18c)

To compute the density h?ilz) explicitly one has to employ Egs. (C18) together with the following inverse Laplacians, which

can be found in Egs. (B14) and (B28):

Als,, A%, AT,
At a2l pl
ry ’ ry ’ ry ’

Let us also note that after combining B(T6T)ij and

(¢(2>Ah(T£ij)TT into (3(6)1+(1/4)¢(2)Ah(T4T>,»j)TT, see
Eq. (8.9), there is no need to compute any inverse

Laplacians of (r{r;)~'. The inverse Laplacian

A‘1(¢<2),k,h({$kl) also needed to compute h%ilz) explicitly,

can be inferred from Egs. (C2) and (C4).

4. Local d-dimensional UV analysis

In Sec. 3 of Ref. [31] a method of local analysis of UV
divergences in d dimensions was proposed. This method
was essentially used in [31] for studying the local behavior
of only one specific function, namely, the momentum-
independent part h(TT) of the field function h(TT) At the
4PN level we have had to use it in many more cases;
therefore, we present this method here in more detail.

The problem is to find the local behavior in d dimensions
and, say, around x = x, of the solution of equation of the
type (for some cases we have to consider the Poisson
equation without TT projection)

(AT = (C20)
We assume that the full analytic solution of this equation is
not available. The source function g depends on the field
point x only through x —x; and x — x,; therefore. one
defines the auxiliary function g as follows:

g(r1) = g(X = X1, X = X,) = g(rymy, ring + ripnyy),
(C21)

A—IL A—2L A—3L
rry’ rry’ rry’
A_lrlrz, A_zrlrz, A_3r1r2. (C19)

|
where we have used X — x; = rn; and X — X, = rjn;+
r1on,. The method of Ref. [31] relies on expansion of the
source function g around r; = 0 and applying the operator
A7' to each term of the expansion. This expansion has
the form

(C22)

where m >0 is some nonnegative integer. With the
expansion (C22) of the source term one can relate the
following expansion of the solution to Eq. (C20) near
X = Xq:

(C23)

nonhom

Z k' ©ny)r)™.

k=—m

The above formula does not contain all terms of the
expansion of the physically acceptable solution of
Eq. (C20). The missing terms are solutions of homo-
geneous Poisson equation. We have devised a method to
compute these terms.

Let us write the formal solution of Eq. (C20) in the form
of the integral

7)== [ atgx)(x = x P (C24)

The crucial element of the method is expansion of the
kernel of the integral (C24) around x = x;. To do this one
introduces the auxiliary function
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K(r) =[x = X7 = |(x = xy) = (x = x) >

= [rim = rn{ 7 (C25)
and expands it around r; = O:
® K@ (m;n, 7
K(r1)=2—( Vi e (C26)

£=0
One then substitutes the expansion (C26) into the integral

(C24) and integrates the sum term by term. Consequently
one gets the expansion of the form

=1
n(®) ==k >_ 27 / dx'g(x') (K (my3mi, ) )T
=0 ""

(C27)
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As an example of applying the above formula let us
compute the leading-order term in the expansion of the
momentum-independent part &i(,j, . of the function A[)
near x = X;. Using Eq. (C15) one easily checks that the
function h(Tzﬁou is finite for x = x; in d = 3 dimensions.
This finite value cannot be obtained in d dimensions from
the expansion (C23), but it follows from Eq. (C27) (with
¢ = 0). After making use of Eq. (3.20b) [which is the

source term for the function h}f)l.j, see Eq. (4.11)] one gets

(x=x)) (d+ 1)d(d —2)*>

.. = = mym

(4)0ij Vle(d =134 —ad) 7

x (8; — dniyni,)riz>. (C28)
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