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In recent years, Planck-scale modifications of the dispersion relation have been attracting increasing
interest also from the viewpoint of possible applications in astrophysics and cosmology, where spacetime
curvature cannot be neglected. Nonetheless, the interplay between Planck-scale effects and spacetime
curvature is still poorly understood, particularly in cases where curvature is not constant. These challenges
have been so far postponed by relying on an ansatz, first introduced by Jacob and Piran. We propose here a
general strategy of analysis of the effects of modifications of the dispersion relation in Friedmann-
Robertson-Walker spacetimes, applicable both to cases where the relativistic equivalence of frames is
spoiled (“preferred-frame scenarios”) and to the alternative possibility of “DSR-relativistic theories,”
theories that are fully relativistic but with relativistic laws deformed so that the modified dispersion relation
is observer independent. We show that the Jacob-Piran ansatz implicitly assumes that spacetime
translations are not affected by the Planck scale, while under rather general conditions, the same
Planck-scale quantum-spacetime structures producing modifications of the dispersion relation also affect
translations. Through the explicit analysis of one of the effects produced by modifications of the dispersion
relation, an effect amounting to Planck-scale corrections to travel times, we show that our concerns are not
merely conceptual but rather can have significant quantitative implications.
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I. INTRODUCTION

The possibility that Planck-scale effects might modify
the “dispersion relation,” the on-shell requirement linking
energy and momentum of a particle, has attracted a good
amount of interest in the recent quantum-gravity literature
(see, e.g., Refs. [1,2] and references therein). Motivation
for the study of this possibility also comes from the fact that
it provides a rare case of a conjectured Planck-scale feature
that could produce effects observable already with pres-
ently available experimental technologies. These opportu-
nities for testing are not for controlled Earth-bound
laboratory setups, where the effects would still be too
small, but rather they arise in some contexts of astrophysics
and cosmology where the ultralarge propagation distances
act as an amplifier of the minute Planck-scale effects [1,2].
These opportunities from astrophysics and cosmology,

however, also bring about a challenge for theories, since in
the relevant quantum-spacetime pictures very little has been
so far understood about the interplay between curvature and
Planck-scale effects. This is particularly true for cases where
the analysis does not allow schematization in terms of a
constant spacetime curvature, as it is indeed the case when
tests are performed exploiting cosmological distances.
These challenges have been so far mostly postponed,

assuming the applicability of an ansatz, first formulated by
Jacob and Piran [3] (also see Refs. [4,5]) for this interplay
between Planck-scale modifications of the dispersion

relation and spacetime curvature. In Ref. [3], for the
scenario in which Lorentz symmetries are violated
[Lorentz invariance violation (LIV) scenario], a modified
dispersion relation for photons was proposed, which, at
linear order in the scale of violation, takes the form

EðpÞ ¼ p
a
−
λ

2

p2

a2
; ð1Þ

E, p being the measured particle’s energy and momentum
(in comoving coordinates), a the universe scale factor, and
λ the scale of Lorentz violation.
We propose here a general strategy of analysis of the

effects of modifications of the dispersion relation applicable
when a nonconstant curvature of spacetime is to be taken
into account. We adopt a phenomenological approach: rather
than attempting to establish a specific form of interplay
between Planck-scale effects and spacetime curvature within
one or another quantum-spacetime picture, we use what is
presently known about the various possibilities for formal-
izing a quantum spacetime as guidance for modeling in a
very general way the possible forms of this interplay.
Of particular interest is the fact that we allow for Planck-

scale features to be present not only in the dispersion
relation but also in the description of translation trans-
formations. This is important since in some of the most
studied quantum spacetimes, such as the κ-Minkowski
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noncommutative spacetime [6–8], dedicated analyses have
shown that the Planck scale does have this double role,
affecting both the dispersion relation and translations.
In this respect, we uncover a particularly significant

characterization of the Jacob-Piran ansatz: we show that
this ansatz implicitly assumes that translations are unaf-
fected by Planck-scale structures. By this, we mean that in
particular specializing the Jacob-Piran ansatz to the case of
constant rate of spacetime expansion (de Sitter spacetime)
one gets a picture that is invariant under ordinarily classical
space and time translations. Analyses depicted as full
explorations of the implications of modified dispersion
relations, which instead rely exclusively on the Jacob-Piran
ansatz, should be more carefully described as testing the
dispersion relation under the restrictive requirement that
translations should be unaffected by Planck-scale features.
Another qualifying aspect of our analysis is that it

considers both the case of modifications of the dispersion
relation that signal LIV (i.e., preferred-frame scenarios) and
the very different casewhere the modified dispersion relation
is implemented within a fully relativistic picture. This latter
possibility of course requires deforming the relativistic laws
of transformation among observers in a way suitable for
enforcing the modified dispersion relation as an observer-
independent law, a possibility that can be formalized in terms
of the relativistic theories of type doubly special, or, for some
authors, deformed-special, relativity (DSR), first introduced
in Ref. [9] (also see Refs. [10,11]).
As is well established in the recent literature, the DSR

case imposes taking into account of the novel relativistic
effect of “relative locality” [12] (also see Refs. [8,13]).
Within the scopes of our analysis, this is tedious but
straightforward. However, it should be noted that we report
here the most advanced phenomenological analysis to date
of the interplay between relative locality and (nonconstant)
spacetime curvature.
Most of the issues we are concerned with are already

present in the constant-curvature case, as we shall show
explicitly. But extending the analysis to cases with non-
constant curvature leads us to encounter additional chal-
lenges. The constant-curvature case allows us to analyze
most aspects of the problem at hand in terms of pure
symmetry considerations. This is not directly available in
cases with nonconstant curvature; however, we recover a
role for symmetries also in the case of nonconstant
curvature by using the fact that locally the symmetries
of the constant-curvature case reemerge. One can in
particular describe a finite path within a Friedmann-
Robertson-Walker (FRW)-type spacetime by gluing infini-
tesimal paths within a suitable series of de Sitter-type
spacetimes, a strategy of analysis we refer to as “thick
slicing.”
While the conceptual significance of our concerns should

become clear to our readers very early in the analysis
reported here, it is important for us to show that our concerns

can also have significant quantitative implications. It is for
this reason that we devote much effort to the illustrative
application provided by the description of the path of a
particle in a “quantum-FRW spacetime” and the evaluation
of travel times from a given source to a given detector.
For the case of the Piran-Jacob ansatz [3], the predicted

time delay in the arrival of a hard (ultraenergetic) photon
relative to a soft (low-energy) photon, emitted simulta-
neously from a (cosmologically) distant source, is
expressed in terms of the redshift z as

Δt ¼ λΔp
Z

z

0

dz̄ð1þ z̄Þ
Hðz̄Þ ; ð2Þ

H being the universe expansion rate (the Hubble parameter)
and Δp being the difference in energy between the two
photons.
In light of the conceptual and quantitative complexity of

the issues we are dealing with, we opt to focus on the case
of a 1þ 1-dimensional spacetime and obtain results only at
leading order in the ultrasmall Planck length.

II. PRELIMINARIES ON CLASSICAL DE SITTER
SPACETIME AND TRANSLATIONS IN A

QUANTUM SPACETIME

Before starting with the main part of our analysis, we
find it convenient to collect in this section some known
facts that we shall then use. In the first part of this section,
we shall review some known facts about classical de Sitter
spacetime, the ones most relevant for our later discussion of
propagation of particles in a quantum spacetime with
curvature. In the second part, we remind our readers about
the interconnection found in some much-studied quantum
spacetimes between Planck-scale modifications of the
dispersion relation and Planck-scale modifications of trans-
lation transformations.

A. Covariant mechanics in de Sitter spacetime

In this section, we present a covariant Hamiltonian
formulation for the motion of a classical point particle in
de Sitter spacetime. Taking E, p, and N to be, respectively,
the generators of time translations, space translations,
and boosts, the algebra of spacetime symmetries for 2D
de Sitter spacetime can be described in terms of Poisson
brackets as

fE; pg ¼ Hp; fN;Eg ¼ pþHN; fN; pg ¼ E:

ð3Þ

The spacetime-symmetry generators leave invariant the
Casimir

C ¼ E2 − p2 − 2HNp: ð4Þ
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Let us then consider the “conformal time coordinatiza-
tion” with the spatial coordinate x the conformal-time
coordinate η, related to the comoving time t by

η ¼ H−1ð1 − e−HtÞ
and their canonically conjugate variables Ω;Π:

fΩ; ηg ¼ 1; fΩ; xg ¼ 0; fΩ;Πg ¼ 0;

fΠ; ηg ¼ 0; fΠ; xg ¼ −1; fη; xg ¼ 0: ð5Þ

We can represent the symmetry generators (3) in terms of
conformal-time coordinates as

E ¼ Ωð1 −HηÞ þHxΠ; p ¼ Π;

N ¼ xΩð1 −HηÞ − Π
�
η −

H
2
η2 −

H
2
x2
�
: ð6Þ

The invariant H ¼ C −m2, with m the mass of the
particle, can be taken to describe the particles on-shell
relation (H ¼ 0) and then can be used as a Hamiltonian
constraint, in the spirit of a “covariant formulation” of
classical mechanics, generating equations of motion in
terms of an auxiliary affine parameter, which we denote by
τ. In terms of conformal-time coordinates (6), the mass-
shell relation H ¼ 0 assumes the “conformal” aspect

H ¼ ð1 −HηÞ2ðΩ2 − Π2Þ −m2 ¼ 0: ð7Þ
The fact that the Poisson brackets between H and E, p, N
vanish implies that E, p, N are conserved charges; i.e.,
they are constant along the evolution generated by the
Hamiltonian _E ¼ _p ¼ _N ¼ 0, where _f ¼ df=dτ ¼
fH; fg. Then, E, p, N generate symmetry transformations
(time and space translations and boosts) on the system by
Poisson brackets.
One can derive the velocity of particles from the

Hamiltonian constraint and the Poisson brackets (5).
Indeed, by the chain rule,1

vðηÞ ¼ dxðηÞ
dη

¼ dx=dτ
dη=dτ

����
H¼0

¼ fH; xg
fH; ηg

����
H¼0

: ð8Þ

By using Eqs. (7) and (5), one thus finds the velocity in
conformal-time coordinates (assuming Π > 0),

vðηÞ ¼ Πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π2 − m2

ð1−HηÞ2
q ⟶

m→0
1: ð9Þ

Notice that in the equivalent description given in terms of
the comoving time the velocity is

vðtÞ ¼ dx
dt

¼ e−HtvðηðtÞÞ ¼ e−HtΠffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π2 − e2Htm2

p ~
m~0

e−Ht: ð10Þ

B. Preliminaries on Planck-scale deformations
of translations

As announced, we shall find that there are important
issues at stake, particularly in the understanding of how
Planck-scale effects may affect translation transformations.
It is valuable for us to provide early on in this manuscript
some intuition to our readers concerning the reason why
these aspects of translation transformations become so
significant when spacetime curvature is taken into account,
while they are instead largely irrelevant in the Minkowski
limit. We shall be satisfied in this subsection with offering
only a few remarks and exclusively for the DSR-relativistic
case. In the following sections, the relevant issues will of
course be analyzed in detail, both for the DSR-relativistic
case and the LIV case.
In the Minkowski limit, the realm of possibilities we

could consider is rather tightly constrained by the fact that
the characteristic scale of quantum-gravity effects with the
dimensions of an inverse momentum (which we denote by
l for DSR) is the only scale available for deforming the
mass-shell relation. This in particular implies that at leading
order in this deformation scale one can only have two
possible new terms, one proportional to the cubic power of
energy lE3 and one linear in energy and quadratic in
momentum lEp2, so that2

m2 ¼ E2 − p2 þ αlE3 þ βlEp2:

It is then easy to see why such modifications of the mass-
shell relation have no impact on translation transformations
in the Minkowski limit; both the correction term lE3 and
the correction term lEp2 have vanishing Poisson brackets
with the generators of translations, which are E and p
themselves, and have vanishing Poisson brackets among
them in the Minkowski limit,

fE; pg ¼ 0;

so that the modified mass shell is still invariant under the
standard action of space and time translation generators.
As we underlined in the previous subsection, the

situation is very different when spacetime is curved: the
translation generators no longer have vanishing Poisson
brackets, as shown by Eq. (3),

1One can show, using the Poisson brackets (5) and the chain
rule, that the velocity can be also expressed, after enforcing
H ¼ 0, as vðηÞ≡ ∂ΩðΠÞ=∂Π.

2As usually done in this research area, we exclude terms going
with odd powers of momentum, since (in their application to
spacetimes with two or more spatial dimensions) they would
bring in implications also for spatial rotations, implications which
are not usually expected in the quantum-gravity literature.
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fE; pg ¼ Hp:

It turns out that in the DSR case and in the presence of
spacetime curvature, the assumption of undeformed trans-
lation transformations is only compatible with the term
lEp2, whereas allowing for the term lE3 imposes a rather
severe modification of translation transformations.
Since the quantum-gravity literature provides no argu-

ment favoring the term lEp2 over the term lE3, evidently
any systematic study of quantum-gravity modifications of
the mass-shell relation should take into account what we
find here on the implications of the translation sector.

III. LIV WITH CONSTANT CURVATURE

Evidently, the general idea of a LIV modification of de
Sitter kinematics could be realized in an infinity of ways: if
one allows breaking relativistic symmetries, as is the
premise of the LIV scenario, the framework is totally
unconstrained. It should be understood that a fully general
analysis of the LIV scenario is accordingly impossible. It is
nonetheless useful for our purposes to consider at least a
few possibilities, also as a way to show that the differences
between alternative LIV scenarios are not “merely aca-
demic” but rather have tangible (potentially observable)
consequences. This objective is pursued efficiently by
taking as starting point for the LIV modification the de
Sitter property coded in (7) and adding a few parametrized
terms of LIV type:

H ¼ −m2 þ ð1 −HηÞ2ðΩ2 − Π2Þ þ ð ~αΩ3 þ ~βΩΠ2Þ
× ½λ0ð1 −HηÞ þ λ00ð1 −HηÞ2 þ λð1 −HηÞ3
þ λ000ð1 −HηÞ4�: ð11Þ

Here, λ0, λ00, λ, and λ000 are different choices of the inverse-
momentum scale characterizing the contribution of differ-
ent LIV terms, which differ essentially for their time
dependence, while ~α, ~β are parameters governing the
dependence of these terms on the particle’s energy and
momentum. Of course, one could add not only other forms
of time dependence of the LIV terms but also LIV terms of
completely different form (for example, involving spatial
dependence), but these few terms we introduced will suffice
for exposing the strength of our concerns.
Important for the main objective of this study is the fact

that the LIV modification coded in (11) is not in general
translationally invariant. One can check by using (3) and
(5) that (11) is invariant under the action of spatial trans-
lations p but is not in general invariant under the action of
time translations generated by E. The Poisson bracket
between E and H is

fH; Eg ¼ Hð ~αΩ3 þ ~βΩΠ2Þ
×ð−2λ0ð1 −HηÞ− λ00ð1 −HηÞ2þλ000ð1 −HηÞ4Þ:

ð12Þ

Thus, in general, not only (evidently) boost symmetry but
also (more implicitly) time-translational symmetries are
broken by a LIV scenario. Among the LIV parameters we
introduced, only λ is not present in (12), meaning that λ is
compatible with translational invariance, while all other
parameters (λ0, λ00, λ000) are incompatible with translational
invariance. These differences are particularly striking since
from the “LIV perspective” (the perspective of Lorentz
invariance violation) the four parameters λ, λ0, λ00, λ000 should
be viewed at exactly the same level, since their Lorentz-
transformation properties are completely analogous.
As a way to quantify the differences produced by

different LIV parameters, we perform a travel time analysis.
We start by noticing that from the Hamiltonian constraint
(11), for massless particles, one gets the velocity (for
Π > 0)

vðηÞ¼ 1−Π
�

λ0

ð1−HηÞþλ00 þλð1−HηÞþλ000ð1−HηÞ2
�
;

ð13Þ

where we have set the parameters ~αþ ~β ¼ 1, noticing that
for massless particles they can be both reabsorbed in the
definition of the parameters λ, λ0, λ00, λ000.
In looking for the travel time for a particle to go from one

observer to another, it is important to notice that the
breakdown of (time) translational invariance implies that
the description of a particle’s Hamiltonian given in (11),
and the velocity law (13), can only hold for one of the two
distant observers: if (11) holds for Bob, then Alice’s
description is given by the nontrivially translated version
of (11). Suppose that (11) and (13) hold in the frame of
Bob, who is local to a detector, and suppose that this
detector reveals two photons, one “soft” (the energy of
which is small enough that the LIV effects are negligible)
and one “hard,” emitted simultaneously at a distant source,
local to an observer, say, Alice, at rest relatively to Bob
(i.e., Alice and Bob are related by a pure translation). The
relation between Bob and Alice’s coordinates, connected
by a finite de Sitter translation, can be derived by
exponentiating the action by Poisson brackets of the
translation generators E, p, Eqs. (6) and (5). Taking Bob
to be connected to Alice by a finite spatial translation
followed by a finite time translation, we write symbolically

ðη; xÞB ¼ e−ξp▹e−ζE▹ðη; xÞA; ð14Þ

where ζ and ξ are the finite translation parameters and ▹

stands for the action by nested Poisson brackets.3 One finds

3For a generator G with parameter a, the finite action on a
coordinate x is eaG▹x≡P∞

n¼0
an
n! fG; xgn, where fG; xgn ¼

fG; fG; xgn−1g, fG; xg0 ¼ x. In this formalism, the composed
action of a spatial translation followed by a time translation is
given by e−ξp▹e−ζE▹x (cf. also Ref. [14]).
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ηB ¼ eHζηA −
eHζ − 1

H
;

xB ¼ eHζðxA − ξÞ;
ΩB ¼ e−HζΩA;

ΠB ¼ e−HζΠA: ð15Þ

On the basis of (13), one deduces that Bob describes the
photons trajectories to be

xBðηBÞ ¼ xBOA
þ
Z

ηB

ηBOA

vBðηÞdη; ð16Þ

where vB is given by Eq. (13) written in Bob coordinates
and xBOA

, ηBOA
are the coordinates that Bob assigns to the

event of emission, which coincides with Alice’s origin,
i.e., ηBOA

¼ ηBðxA ¼ 0;ηA ¼ 0Þ, xBOA
¼ xBðxA ¼ 0;ηA ¼ 0Þ.

Suppose that the event of detection of the soft photon
coincides with Bob’s frame’s origin (xB ¼ ηB ¼ 0). Since
for the soft photon vðηÞ≃ 1, Eq. (16) implies that
xBOA

¼ ηBOA
. One then obtains the time Bob assigns to the

arrival of the hard photon by setting to zero Eq. (16) and
solving for ηB. From Eqs. (16) and (13), and using that
xBOA

¼ ηBOA
, one finds that the hard photon is detected with a

delay,

Δη ¼ pB
h

�
λ0T þ λ00

eHT − 1

H
þ λ

e2HT − 1

2H
þ λ000

e3HT − 1

3H

�
;

ð17Þ

where we called pB
h the hard particle’s momentum mea-

sured by Bob, we used Eq. (15) to derive ηBOA
, and we called

T ¼ ζ the (comoving) time distance between Alice and
Bob. We can express the delay in terms of the redshift of
the source (relative to Bob) z ¼ −HηBOA

¼ eHT − 1,

Δη ¼ pB
h

H

�
λ0 ln ð1þ zÞ þ λ00zþ λ

�
zþ z2

2

�

þ λ000
�
zþ z2 þ z3

3

��
; ð18Þ

where we also expressed the delay in terms of comoving
time. Notice that, since Δη ¼ OðlΠÞ, it follows that

Δt ¼
Z

Δη

0

dηaðηÞ ¼ ΔηþOðl2Þ ð19Þ

so that the expression of the delay in conformal and
comoving time coincide at the level accurately described
by the approximations we are relying on.
The term in the delay (18) proportional to λ coincides

with the one advocated by Jacob and Piran in Ref. [3].

Jacob and Piran provided as motivation an intuitive
argument in favor of switching on only the λ parameter
in the LIV phenomenology. Here, we exposed the fact that
the Jacob-Piran intuition unknowingly reflected a pref-
erence for assuming that the quantum-gravity effects
leave translations unaffected.4 However, as stressed
above, the quantum-gravity literature providing motiva-
tion for LIV research does not justify the assumption that
quantum-gravity effects should leave translations unaf-
fected. This makes us particularly concerned for the fact
that limits claiming general applicability to LIV scenarios
have been presented in the literature [15–21], even though
they were based exclusively on the Jacob-Piran ansatz.
The observations reported in this section, strengthened by
what we shall find in the following sections, show instead
that those limits only apply to a particular case of LIV.
They should be viewed as “conditional limits,” the
condition being indeed that translations are unaffected
by the quantum-gravity effects producing the breakdown
of Lorentz invariance.
In closing this section, we offer one more remark that can

provide some intuition for the significance of our concerns,
a remark which applies to the description of the equations
of motion. For this, we consider a third observer Bob0, at
rest relatively to Alice and Bob, whose origin is along the
soft photon worldline connecting Alice and Bob, at some
point between Alice and Bob, a point which is at (comov-
ing) time T 0 from the origin of the reference frame of
Bob. The coordinates of Bob0 will be related to the ones of
Bob by expression (15) replacing the coordinates of Alice
with the ones of Bob0 and replacing ζ with T 0. Then, from
Eqs. (15) and (13), it follows that Bob0 describes the
photons traveling with velocity

vB
0 ðηB0 Þ ¼ 1 − ΠB0

�
λ0e−2HT 0

ð1 −HηB
0 Þ þ λ00e−HT 0

þ λð1 −HηB
0 Þ þ λ000eHT 0 ð1 −HηB

0 Þ2
�
: ð20Þ

Here, it is particularly important to notice that the only term
which maintains the same form of (13) is the one propor-
tional to λ, which indeed corresponds to the translational
invariant term in the Hamiltonian (11).

4The Jacob-Piran proposal [3] applies to the general case of an
arbitrary expansion rate, but it is for us particularly insightful to
analyze it in the special case of the constant expansion rate. With
the constant expansion rate, the original theory is fully transla-
tionally invariant, whereas for the nonconstant expansion rate,
time translations are not a symmetry. It is noteworthy that the
Jacob-Piran proposal is such that the LIV effects are fully
translationally invariant (including invariance under time trans-
lations) when the expansion rate is constant, whereas other
possible LIV terms would not have this property. This is a
key aspect of what we label as a case where translations are
unaffected by the quantum-gravity effects.
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IV. DSR-RELATIVISTIC PICTURE AND
RELATIVE LOCALITY WITH
CONSTANT CURVATURE

In the DSR approach, the (inverse-momentum) scale l at
which the dispersion relation is modified is a relativistic
invariant (it plays a role completely analogous to the role of
c, the velocity of light, in ordinary special relativity). This
requirement enforces the (l-deformed) dispersion relation
to be expressible as a combination of only the (charges)
generators of the relativistic symmetries; in fact, it must be
a Casimir of an algebra of charges/generators. As first
observed in Ref. [9] (also see Refs. [10,11]), the relativistic
invariance of a modified dispersion relation requires that
the algebra of relativistic-symmetry generators must also be
deformed by the scale l.
In light of these considerations, it is preferable, for the

purposes of the DSR analysis, to start from a modification,
rather than of the dispersion relation (7), of the Casimir
equation (4). The motion of particles is then generated by
the deformed Hamiltonian constraintH ¼ C −m2. We take
the following deformation5:

C ¼ E2 − p2 − 2HNpþ lðαE3 þ βEp2Þ: ð21Þ

The following l-deformed (2D) de Sitter algebra of charges
is compatible with the invariance of C:

fE; pg ¼ Hp − lðα − γÞHEp;

fN;Eg ¼ pþHN − lðα − γÞEðpþHNÞ − lβEp;

fN;pg ¼ Eþ 1

2
lðαþ 2γÞE2 þ 1

2
lβp2: ð22Þ

This generalizes the results of Ref. [14] and reproduces the
results of Ref. [14] for γ ¼ 0.
Notice that, as stressed already earlier in this manuscript,

the deformation term going like Ep2 does not require a
modification of translation transformations, while for the
deformation term going like E3, a modification of trans-
lation transformations is required. This is particularly clear
by looking at Eqs. (21) and (22): the parameter α of the
term going like E3 has implications not only for trans-
formations involving boosts (α affects fN;Eg and fN; pg)
but also for transformations involving exclusively

translations (α also affects fE; pg), whereas the parameter
β of the term going like Ep2 does not affect fE; pg.
To study the motion of particles, we want to express the

deformed Hamiltonian H ¼ C −m2 in terms of a set of
spacetime coordinates and conjugate momenta and derive
the particles velocity in terms of these coordinates, as done in
Secs. II A and III. At this stage, one must expect a crucial
difference with respect to the LIV case, a feature known in
the literature as “relative locality” [12] (also see Refs. [8,13].
This is another consequence of the fact that, in the DSR case,
the algebra of the generators of spacetime relativistic-
symmetry transformations is deformed by the inverse-
momentum scale l; the result is that the action of the whole
set of the symmetry generators on spacetime coordinates
must be necessarily momentum dependent, leading to the
presence of momentum-dependent misleading inferences for
the description by a given observer of events occurring at a
large distance from that observer (large distance from the
origin of the reference frame of that observer). This core
feature of relative locality [12] is usually rather surprising for
newcomers, but actually it can be easily understood via an
analogy with the one case of deformation of relativistic
symmetries we all know, the one of the deformation from
Galileian to special-relativistic symmetries: according to the
mindset of a Galileian-era physicist, the special-relativistic
transformations introduce misleading inferences concerning
the simultaneity of events, misleading inferences of increas-
ing severity when the compared notions of simultaneity
concern observers connected by a large boost.
We shall deal with these challenges drawing from

previous results on relative locality, but we shall at the
same time provide sufficient details for a self-contained
description of the relative-locality effects.
We start by seeking a representation6 of the charges (22)

suitable for a comparison with the LIV scenario of Sec. III.
We choose the following representation in terms of the
canonically conjugate “conformal-time coordinates” Ω, Π,
η, x defined in (5):

E ¼ ð1 −HηÞΩþHxΠ −
l
2
ðα − γÞðð1 −HηÞΩþHxΠÞ2;

p ¼ Π;

N ¼ xΩð1 −HηÞ − Π
�
η −

H
2
η2 −

H
2
x2
�

þ l
2
βðηð2 − 3HηþH2η2ÞΩΠþ xΠ2Þ

þ l
2
γxðH2x2Π2 þ 3Ωð1 −HηÞðΩð1 −HηÞ þHxΠÞÞ:

ð23Þ

5Consistently with our objectives, we enforce the requirement
that in the “flat limit,” H → 0, one should get the velocity
v≃ 1 − lE. We also do not make room for deformation terms
proportional to N, since our flat-limit requirements would only
allow such terms to be of the type lHNEp or lHNE2, producing
negligibly small effects. In general, we should proceed with full
awareness of the smallness of both l and H, so among possible
terms going with lH, we shall only keep track of those involving
lHx or lHt, i.e., cases where the cosmological travel times and
travel distances of interest here can compensate for the smallness
of lH.

6Previous related studies of relative locality have shown
[8,14,22] that the physical results do not depend on the choice
of the representation.
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With this representation, the Casimir (21) takes the form

C ¼ ð1 −HηÞ2ðΩ2 − Π2Þ þ lð1 −HηÞ3ðγΩ3 þ βΩΠ2Þ;
ð24Þ

and it is interesting to notice that the corresponding form of
the Hamiltonian constraint H ¼ C −m2 reproduces the
one in the LIV scenario (11) for the special choice
λ ≠ 0, λ0 ¼ λ00 ¼ λ000 ¼ 0, which is the particular LIV case
in which translational symmetry is not broken. Much
insight on the differences between the LIV and the DSR
scenarios will be provided here by contrasting these two
cases with the same Hamiltonian constraint. We shall
see that:

(i) even when they rely on the same Hamiltonian
constraint, a LIV and a DSR scenario do not in
general lead to the same predictions.

(ii) in particular, even a case where the Hamiltonian
constraint requires nothing new of translation trans-
formations in the LIV scenario can require in the DSR
scenario a deformation of translation-symmetry trans-
formations.

This last point is already evident in (23), which shows
how the representation of (time-)translation generators
depends in the DSR case on the parameters α and γ,
through the combination α − γ. So, translations are unaf-
fected by the parameter β but do depend on γ, the other
parameter present in the Hamiltonian constraint. They also
depend on α, which is a parameter coding properties
specifically of boost-symmetry transformations.
For massless particles, setting to zero the Hamiltonian

constraint (21), one finds the velocity (for Π > 0)

vðηÞ ¼ 1 − lðγ þ βÞð1 −HηÞΠ: ð25Þ
Differently from the LIV scenario of the previous section,
in the DSR scenario, the (deformed) relativistic symmetries
are preserved, and all the relativistic observers describe
(massless) particles moving, in their coordinates, with the
same expression for the velocity, given in Eq. (25). Indeed,
the generators of relativistic-symmetry transformations, E,
p, and N, are conserved charges, and therefore their
Poisson bracket with the Casimir/Hamiltonian is null, as
one can easily verify.
We are interested, as in Sec. III, in the time of arrival at a

distant detector of two photons, one hard (xh, ηh, ph) and one
soft (xs, ηs, ps), emitted simultaneously at a distant source.
Again, take Alice and Bob to be the observers local,
respectively, to the source and to the detector. As in
Eq. (16), Bobdescribes photons tomove along the trajectories

xBðηBÞ ¼ xBOA
þ
Z

ηB

ηBOA

dηvBðηÞ ¼ xBOA
þ ðηB − ηBOA

Þ

− lðηB − ηBOA
Þðγ þ βÞΠBð1 −HðηB þ ηBOA

ÞÞ;
ð26Þ

wherevB now is givenbyEq. (25). For simplicity,we focuson
the case such that the soft photon reaches the detector in the
origin ofBob’s frame; i.e., itsworldline crosses ηBs ¼ xBs ¼ 0.
To derive the measured time of arrival at the detector of the
hard photon, we need to enforce the event of emission to be
local for Alice, who is at the source. This is most clearly
investigated by focusing on the case such that both particles
are emitted, according to Alice, at ηA ¼ xA ¼ 0. As men-
tioned above, differently from the LIV case, since the trans-
lations (27) depend onmomenta, they are affected by relative
locality. Then, the coordinates xBOA

¼ xBðxA ¼ 0; ηA ¼ 0Þ,
ηBOA

¼ ηBðxA ¼ 0; ηA ¼ 0Þ that Bob assigns to the (distant)
events of emission do not coincide, as a result of the fact that
the particles have different momenta (and, as stressed and
shown above, translation transformations act in amomentum-
dependentmanner).ToevaluateηBOA

,xBOA
,weneed tocalculate

the finite translations connecting Alice and Bob. As shown in
Ref. [14], the relation between Bob’s and Alice’s coordinates
can be derived by exponentiating the action by Poisson
brackets of the translation generators E, p, which is

fE; ηg ¼ ð1 −HηÞð1 − lðα − γÞEÞ; fp; ηg ¼ 0;

fE; xg ¼ −Hxð1 − lðα − γÞEÞ; fp; xg ¼ −1: ð27Þ

As in Sec. III, taking Bob to be connected to Alice by a
finite spatial translation followed by a finite time trans-
lation, Eq. (14), one finds

ηB ¼ 1 − eHζ

H
þ eHζηA þ lðα − γÞζeHζð1 −HηAÞEA

H;ξ;

xB ¼ eHζðxA − ξÞ − lðα − γÞζeHζHðxA − ξÞEA
H;ξ;

ΩB ¼ e−HζðΩA þ lðα − γÞHζΩAEA
H;ξÞ;

ΠB ¼ e−HζðΠA þ lðα − γÞHζΠAEA
H;ξÞ; ð28Þ

where we find it convenient to introduce

EA
H;ξ ≡ ΩAð1 −HηAÞ þHΠAðxA − ξÞ:

Notice that the condition for Bob’s origin to coincide
with the event of detection of the soft photon is enforced
by setting ζ ¼ T and ξ ¼ H−1ð1 − e−HTÞ, where T is the
(comoving) time distance between Alice and Bob. From
these relations, one gets [also using the fact that, for a
massless particle on shell, one has Ω ¼ ΠþOðlΠÞ]

ηBOA
¼ −

eHT − 1

H
þ lðα − γÞTeHTΠB

xBOA
¼ −

eHT − 1

H
þ lðα − γÞTðeHT − 1ÞΠB: ð29Þ

Substituting ηBOA
, xBOA

in (26) and solving for ηBh ðxBh ¼ 0Þ,
we get the time of arrival at the detector of the hard photon:
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ΔηB ¼ ηBh ðxBh ¼ 0Þ¼ lpB
h

�
ðα − γÞT þðβ þ γÞ e

2HT − 1

2H

�
:

At this stage, it is convenient to remove the suffixes
indicating the observer and express the detected delay in
terms of the redshift z characterizing the source, giving us
the result in the form

Δt ¼ lph

�
ðα − γÞ ln ð1þ zÞ

H
þ ðβ þ γÞ zþ

z2
2

H

�
; ð30Þ

where we denoted by ph the momentum of the hard particle
observed at the detector and we expressed the delay in
terms of comoving time [keeping again in mind the
observation reported in Eq. (19)].

V. FRW SPACETIME COMBINING SLICES
OF DE SITTER SPACETIME

So far, we focused on spacetimes with constant curvature
(de Sitter), providing for the LIV case a generalization of
the results of Ref. [3] and providing for the DSR case a
genealization of the results of Ref. [14]. For our purposes, it
is crucial to further generalize these result to the case of
nonconstant curvature, specifically the case of FRW-type
expansion, since our analysis is aimed at applications of
modified dispersion relations in astrophysics and cosmol-
ogy. For the constant-curvature case, our strategy of
analysis proved to be very powerful thanks to its reliance
on techniques that exploit the high amount of symmetries
present in the de Sitter case. This is of course particularly
evident for DSR-relativistic scenarios but also plays a role
for the LIV scenarios (where the relativistic symmetries are
broken, but at zeroth order of analysis, one has them all).
The fact that for FRW expansion one loses quite a bit of
those symmetries poses a challenge from our perspective.
We shall argue, however, that the connection between de
Sitter spacetimes and FRW spacetimes is nonetheless
strong enough to provide a clear path for the generalization
we are seeking. Specifically, we shall use the fact that FRW
spacetimes can be described in terms of a suitable sequence
of thick slices of de Sitter spacetimes.
In the following sections, we shall use this notion of de

Sitter slicing of FRW spacetimes for the purpose of
deriving predictions for the implications of modified
dispersion relations in the presence of FRW-type spacetime
expansion at a nonconstant rate. In preparation for that, we
first show in this section how the thick slicing can be used
in the standard case of the propagation of a classical particle
in a classical FRW spacetime (no modifications of the
dispersion relation). In doing so, we shall build on the
strength of related results on de Sitter slicing already
reported in Ref. [23]. We refine the proposal put forward
in Ref. [23] by strengthening the role of symmetry
generators in characterizing each de Sitter slice and by

making reference to observers associated to each slice.
These refinements prove valuable in order to deal with the
effects of relative locality, which require physical obser-
vations to be described by observers local to the spacetime
events [12].
We find that it is convenient to perform the analysis first

in terms of the comoving time t. The FRW spacetime is
described by the metric

ds2 ¼ dt2 − a2ðtÞdx2; ð31Þ

where aðtÞ is the scale factor of the universe, defined by the
relationHðtÞ ¼ _aðtÞ=aðtÞ,HðtÞ being the (time-dependent)
expansion rate, from which we also get

aðtfÞ
aðtiÞ

¼ exp

�Z
tf

ti

dtHðtÞ
�
: ð32Þ

We reconstruct the trajectory of a FRW massless particle
from its source to a distant detector considering a first
observer, Alice, local to the emission, and a final observer,
Bob, local to the detection. If the particle moves in a FRW
spacetime, it is straightforward from Eq. (31) to derive
Bob’s description of its trajectory as

xBðtBÞ ¼ xBOA
þ
Z

tB

tBOA

dt
aðtÞ ; ð33Þ

where we are assuming aðtB ¼ 0Þ ¼ 1.
Since in this section we just consider a classical particle

in a classical FRW spacetime, the thick slices here of
interest will have the geometry of a classical de Sitter
spacetime, which in particular affords us also the luxury of
analyzing each slice using classical translational invariance
(this will change in the later section for the cases where the
deformation affects translational invariance).
Our thick slices of FRW spacetime are introduced by

dividing the time interval between the event of emission
and the event of detection in N time intervals of temporal
size7 Δtn, n ¼ 1;…; N. In each slice, spacetime is
described, to good approximation, by a constant expansion
rateHn ¼ HðtnÞ, where tn is the initial time of the nth slice.
For simplicity, we divide the time interval in slices of equal
size Δtn ¼ T=N, where T is the time of flight of the photon
from the source to the detector. Then, of course, we have
that tn ¼ ti þ nT=N. Starting from the observer Alice, who
is at the source, we contemplate a set of intermediate
observers Bobn, n ¼ 1;…; N, such that each nth observer
crosses the photon’s trajectory at the time tn. Each observer

7Above, we used the symbol Δt to indicate the delay in the
time of arrival of a hard photon with respect to a soft photon.
Here, with the symbol Δt, we indicate the thickness, in time, of
each slice. Which notion of Δt we refer to at a given point in the
manuscript should always be clear from the context.
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Bobn, in the corresponding nth slice, which goes from tn−1
to tn, will describe the motion of particles in terms of a
constant expansion rate Hn.
We are of course ultimately interested in taking the limit

N → ∞, so that we have an infinity of infinitesimally small
slices and the assumption of a constant expansion rate in
each slice becomes fully justified.
We can also describe each Bobn as the observer con-

nected to Alice by a set of n spatial translations followed by
a set of n time translations, with each kth translation
characterized by the relative constant expansion rate Hk
and finite translation parameters ζk, ξk, i.e.,

ðt; xÞBn ¼ e−
P

n
k¼1

ξkp
▹e−

P
n
k¼1

ζkEHk▹ðt; xÞA: ð34Þ

These give the relation between Bobn and Alice’s
coordinates

tBnðtA; xAÞ ¼ tA −
Xn
k¼1

ζk;

xBnðtA; xAÞ ¼ e
P

n
k¼1

Hkζk

�
xA −

Xn
k¼1

ξk

�
: ð35Þ

The requirement for each observer Bobn to be along
the photons trajectories at the time tn is then ensured
by imposing that the translation parameters satisfy the
conditions

ζn ¼ ζ ¼ T=N; ξn ¼ e−
P

n
k¼1

Hkζn
eHnζn − 1

Hn
; ð36Þ

and Alice describes the slices to be of sizes ΔtAn ¼ ζ,
ΔxAn ¼ ξn.
We are interested in the worldline described by the

observer BobN, which is our Bob, local to the detection.
From the relations (35), we can derive the relation between
the coordinates of Bobn and the coordinates of BobN ,

tBN ¼ tBn − ðN − nÞζ

xBN ¼ e
P

N
k¼nþ1

HkζxBn −
XN

k¼nþ1

e
P

N
s¼k

Hsζ
1 − e−Hkζ

Hk
: ð37Þ

Since, as seen using these relations,

vBN ¼ dxBN

dtBN
¼ e

P
N
k¼nþ1

Hkζ dx
Bn

dtBn
¼ e

P
N
k¼nþ1

HkζvBn; ð38Þ

BobN , in each nth slice, describes photons to move with
velocity

vBN
n ðtBN Þ ¼ e

P
N
k¼nþ1

HkζvBn
n ðtBnðtBN ÞÞ

¼ e
P

N
k¼nþ1

Hkζe−HnðtBN−tBNOn
Þ; ð39Þ

where, here and in the following, we denote by tBN
On

and xBN
On

the value of the coordinates that the observer BobN
attributes to the position of the particle at crossing of the
spatial origin of observer Bobn’s frame.
Then, the photon trajectories in the nth slice are

described by BobN to be

xBN ðtBN Þn ¼ xBN
OA

þ
Xn−1
k¼1

Z
t
BN
Ok

t
BN
Ok−1

dtvBN
k þ

Z
tBN

t
BN
On−1

dtvBN
n : ð40Þ

Since the observers Bobn are defined so that the photons
cross the origin of their reference frame, the second
term on the right-hand side of Eq. (40) can be obtained
using relations (37) and (39) with tBN

On
¼ tBN ðtBn ¼ 0Þ,

xBN
On

¼ xBN ðxBn ¼ 0Þ, so that it becomes

Xn−1
k¼1

e
P

N
s¼kþ1

Hsζ e
Hkζ − 1

Hk
: ð41Þ

Considering that ζ ¼ T=N ¼ ΔTn, in the limit N → ∞,

Xnf
k¼niþ1

ζ →
Z

tnf

tni

dt: ð42Þ

It follows from (32) that

e
P

n
s¼kþ1

Hs →
aðtnÞ
aðtkÞ

: ð43Þ

Then, the term (41) tends to

Xn−1
k¼1

ζ

aðtkÞ
→

Z
t
BN
On−1

t
BN
OA

dt
aðtÞ ; ð44Þ

where we considered that for N → ∞ one has that
eHkζ−1
Hk

→ ζ and that aðtNÞ ¼ 1 since tN ¼ tON
. For what

concerns the last term in Eq. (40), consider that in the slice
tBn
On−1

≤ t ≤ tBn
On
, where HðtÞ ¼ Hn ¼ const,

e−Hnðt−tBNOn
Þ ≃ aðtnÞ

aðtÞ ;

so that, using also Eq. (43), the term becomes

e
P

N
s¼nþ1

Hsζ
Z

tBN

t
BN
On−1

dte−Hnðt−tBNOn
Þ →

Z
tBN

t
BN
On−1

dt
aðtÞ ð45Þ

and, substituting Eqs. (44) and (45) in Eq. (40), we obtain
that asN → ∞ the trajectory of BobN tends to the trajectory
of Bob, given in Eq. (33).
The fact that in the N → ∞ limit our thick-slicing

procedure would match exactly the results obtained in a
FRW spacetime was assured by construction. It was useful

PLANCK-SCALE-MODIFIED DISPERSION RELATIONS IN … PHYSICAL REVIEW D 92, 124042 (2015)

124042-9



for what follows to see, as done above, the technical details
of how this convergence takes shape. On the quantitative
side, it is rather impressive how quickly this convergence
takes place; as shown in Fig. 1, even for relatively small
values of N, our slicing procedure gives results that are
already in pretty good agreement with the results of the
analysis done in the corresponding FRW spacetime.
Further insight can be gained by working with con-

formal-time coordinates. Conformal time is defined by the
relation dt ¼ aðηÞdη, where aðηÞ ¼ aðtðηÞÞ. In conformal-
time coordinates, the FRW spacetime metric becomes

ds2 ¼ a2ðηÞðdη2 − dx2Þ: ð46Þ

Notice also that the expansion rate can then be expressed as
follows:

HðtÞ ¼ 1

aðtÞ
daðtÞ
dt

¼ 1

a2ðηÞ
daðηÞ
dη

: ð47Þ

Bob’s description of the worldline [Eq. (33)] is

xBðηBÞ ¼ xBOA
− ηBOA

þ ηB ¼ ηB; ð48Þ

where the requirement for Bob’s origin to coincide with the
detection of the photon enforces

ηBOA
¼ xBOA

¼ −
Z

0

−T

dt
aðtÞ : ð49Þ

The slices are of size Δηn ¼ H−1
n ð1 − e−HnT=NÞ, and the

relations between Alice and Bobn coordinates, generated
by the action (34), are

ηBn ¼ e
P

n
k¼1

HkζkηA −
Xn
k¼1

e
P

n
s¼kþ1

Hsζs e
Hkζk − 1

Hk
;

xBn ¼ e
P

n
k¼1

Hkζk

�
xA −

XN
k¼1

ξk

�
: ð50Þ

Imposing the conditions (36), one finds from Eq. (50) the
relations between Bobn and BobN coordinates:

ηBN ¼ e
P

N
k¼nþ1

HkζηBn −
XN

k¼nþ1

e
P

N
s¼kþ1

Hsat e
Hkζ − 1

Hk
;

xBN ¼ e
P

N
k¼nþ1

HkζxBn −
XN

k¼nþ1

e
P

N
s¼kþ1

Hsat e
Hkζ − 1

Hk

ΠBN
¼ e−

P
N
k¼nþ1

HkζΠBn
; ΩBN

¼ e−
P

N
k¼nþ1

HkζΩBn
:

ð51Þ

Each Bobn describes, in each nth slice, the photons to move
with velocity vBn

n ðηBnÞ ¼ 1, since, using Eq. (51),

vBN ¼ dxBN

dηBN
¼ dxBn

dηBn
¼ vBn ¼ 1: ð52Þ

Then, it is straightforward to see that BobN’s description of
the photons trajectories in the nth slice coincides with
Eq. (48):

xBN ðηBN ÞN ¼ xBN
OA

þ
Xn−1
k¼1

Z
η
BN
Ok

η
BN
Ok−1

dηvBN
k þ

Z
ηBN

η
BN
On−1

dηvBN
n

¼ xBN
OA

þ
Xn−1
k¼1

ðηBN
Ok

− ηBN
Ok−1

Þ þ ηBN − ηBN
On−1

¼ xBN
OA

− ηBN
OA

þ ηBN ¼ ηBN : ð53Þ

For a standard (undeformed) FRW picture, all the non-
triviality of our thick slicing is in BobN’s description of the
point of emission ðηBN

OA
; xBN

OA
Þ, which in a FRW spacetime is

Eq. (49). From Eq. (50), considering also Eq. (36), one
finds that

FIG. 1 (color online). Here we show the worldline of a massless
particle emitted at a distant source at the time −T, from the point
of view of an observer at the detector. We choose for our pictorial
example the scale factor to obey the power law behavior
aðtBÞ ¼ ððtB þ t0Þ=t0Þ2=3, were t0 is a constant indicating the
“Big-Bang” time. We show respectively the trajectory (black
curve, no dots) described by a FRWobserver, and the trajectories
described by observers (BobN) obtained through our thick-slicing
procedure, Eq. (40), with different levels of approximations
(curves magenta, purple and blue, increasing number of dots).
The dots indicate the spacetime position of each Bobn observer,
as described by BobN. We see that as the slicing approximation
gets finer (as N increases) the particle’s worldline, as well as the
source position, converge to the ones of FRW spacetime.

ROSATI, AMELINO-CAMELIA, MARCIANÒ, and MATASSA PHYSICAL REVIEW D 92, 124042 (2015)

124042-10



ηBN
OA

¼ xBN
OA

¼ −
XN
k¼1

e
P

N
s¼kþ1

Hsζs e
Hkζk − 1

Hk

→ −
XN
k¼1

ζ

aðtkÞ
→ −

Z
0

−T

dt
aðtÞ : ð54Þ

As a last remark, we notice that, as we discussed at the
beginning of this section, the translational invariance of de
Sitter spacetime allows us to define our thick slices in such
a way that each observer Bobn describes the particle’s
motion, in the corresponding nth slice (defined in the
interval ηOn−1

≤ η ≤ ηOn
), through the same de Sitter

Hamiltonian, the only difference being the value of the
expansion rate Hn. Explicitly, in the nth slice,

HBn
n ¼ ð1 −Hnη

BnÞ2ðΩ2
Bn

− Π2
Bn
Þ −m2:

Using Eqs. (51), we get the Hamiltonian that BobN
attributes to each nth slice:

HBN
n þm2 ¼ ðΩ2

BN
− Π2

BN
Þ

×

�
e
P

N
k¼nþ1

Hkat −Hn

×
XN

k¼nþ1

e
P

N
s¼kþ1

Hsat e
Hkζ − 1

Hk
−Hnη

BN

�2

:

One can see that the slices are patched together in such a
way that the Hamiltonian is continuous in the point of
juncture of two consecutive slices. Indeed,

HBN
n ðηBN

On
Þ ¼ HBN

nþ1ðηBN
On
Þ:

VI. LIV WITH FRW EXPANSION

The thick-slicing setup introduced in the previous
section is ideally suited for our objective of studying
LIV and DSR-relativistic effects in spacetimes with FRW
expansion. We start in this section with the LIV case.
Through our slicing, we will be able to rely on the results
for LIV in de Sitter spacetime reported in Sec. III, thereby
obtaining a LIV-FRW scenario.
In the previous section, Sec. V, we described FRW

expansion in terms of thick slices of de Sitter expansion
by also relying on the translational invariance available in
each de Sitter slice. For the LIV-FRW case, we shall of
course involve LIV-de Sitter slices, for which, as shown at
the end of Sec. III, the breakdown of translational invariance
is such that distant observers, at relative rest, describe the
motion of particles through different laws, i.e., different
functional expressions for the Hamiltonian and velocities
[see Eq. (20)].
Just as in Sec. III, we want to find the time of arrival of a

soft and a hard photon emitted simultaneously at a distant

source. As in the previous section, we take Alice to be local
to the event of emission and BobN to be local to the
detector. We assume that the soft photon has been emitted
at the (comoving) BobN time −T and that BobN’s origin
coincides with the event of detection of the soft photon.
Moreover, we take the intermediate observers Bobn such
that the soft photon crosses the origin of their reference
frame. Since in the LIV scenario the laws of transformation
among observers are not deformed, the relation between
Bobn and BobN coordinates is still given by Eqs. (51). We
start by assuming that BobN describes, in the Nth slice, the
velocity to be the one given by the Hamiltonian (11),
Eq. (13). To reconstruct the velocity in the other slices, we
can focus on the scale factor in conformal-time coordinates,

anðηÞ ¼
1

1 −Hnη
; ð55Þ

so that (as in Sec. III, we assume ~αþ ~β ¼ 1)

vBN
N ðηBN Þ ¼ 1 − ΠBN

�
λ0aNðηBN Þ þ λ00

þ λ

aNðηBN Þ þ
λ000

a2NðηBN Þ
�
:

Let us consider first the observer BobN−1. Using relations
(51) to get the relations between BobN and BobN−1
coordinates,

ηBN ðηBN−1Þ ¼ eHNζðηBN−1 þ ηBN
ON−1

Þ

¼ eHNζ

�
ηBN−1 −

1 − e−HNζ

HN

�
;

we derive BobN−1’s description of the scale factor aN in the
Nth slice as

aNðηBN ðηBN−1ÞÞ ¼ e−HNζ

1 −HNη
BN−1

¼ e−HNζaNðηBN−1Þ:

In its origin, since aNð0Þ ¼ 1, BobN−1 describes the scale
factor to be e−HNζ. We define the N − 1th slice to be such
that the scale factor remains constant at the value it has in
BobN−1’s origin, the point of contact between the two
slices. This condition can be imposed assuming that in the
N − 1th slice, governed by the constant expansion rate
HN−1, BobN−1 describes the scale factor to be

e−HNζaN−1ðηBN−1Þ: ð56Þ

With this condition, BobN describes the scale factor to be,
in the N − 1th slice,

e−HNζaN−1ðηBN−1ðηBN ÞÞ ¼ e−HNζaN−1ðe−HNζðηBN − ηBN
ON−1

ÞÞ:
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Iterating this construction, one finds that BobN describes
the scale factor in the nth slice to be

aBN
n ðηBN Þ ¼ e−

P
N
k¼nþ1

Hkζanðe−
P

N
k¼nþ1

HkζðηBN − ηBN
On
ÞÞ

¼ e−
P

N
k¼nþ1

Hkζ

1 −Hne
−
P

N
k¼nþ1

HkζðηBN − ηBN
On
Þ
:

Consistently with this setup, we have that the velocity
assigned by BobN to the photons in each nth slice is

vBN
n ¼ 1 − ΠBN

�
λ0aBN

n ðηBN Þ þ λ00 þ λ

aBN
n ðηBN Þ

þ λ000

ðaBN
n ðηBN ÞÞ2

�
: ð57Þ

Notice that in this way the velocity (and then the
Hamiltonian) is continuous in the point of junction of
two contiguous slices. In Sec. III we discussed how, in the
de Sitter case, the term proportional to λ in Eq. (11) plays a
special role in relation to translational invariance. A special
role is played by this term also in the FRW case, even
though time-translations are not a symmetry of FRW
spacetime. We shall see this by first observing that, as a
result of Eqs. (52), (51), and (55), each observer Bobn
describes the velocity, in the nth slice, to be

vBn
n ðηBn ;ΠBnÞ ¼ vBN

n ðηBN ðηBnÞ;ΠBN ðΠBnÞÞ

¼ 1 − ΠBn

�
λ0e−2

P
N
k¼nþ1

HkζanðηBnÞ

þ λ00e−
P

N
k¼nþ1

Hkζ þ λ

anðηBnÞ

þ λ000
e
P

N
k¼nþ1

Hkζ

a2nðηBnÞ
�
:

One can see that for the term proportional to λ the velocity
takes the same form in all slices (though of course with a
different expansion rate Hn).
To evaluate the arrival time at the detector, we consider

that the trajectory that BobN assigns to photons in the Nth
slice is

xBN ðηBN ÞN ¼ xBN
OA

þ
XN−1

n¼1

Z
η
BN
On

η
BN
On−1

vBN
n dηBN þ

Z
ηBN

η
BN
ON−1

vBN
N dηBN :

ð58Þ

The expression (57) can be easily integrated in each slice.
The intermediate observers Bobn are along the worldline

of the soft photon, but the hard photon crosses the spatial
origin of these intermediate observers at ηBn ≠ 0,

ηBN
On

¼ ηBN ðηBn ¼ 0; xBn ¼ 0Þ þOðλÞ;
xBN
On

¼ xBN ðηBn ¼ 0; xBn ¼ 0Þ þOðλÞ: ð59Þ

However, in Eq. (58), the coordinates ηBN
On
, xBN

On
appear only

multiplied by factors of λ, and therefore we can neglect
higher orders and obtain from (51) the relations

ηBN
On

¼ −
XN

k¼nþ1

e
P

N
s¼k

Hsζ
1 − e−Hkζ

Hk
; ð60Þ

ηBN
On

− ηBN
On−1

¼ e
P

N
s¼n

Hsζ
1 − e−Hnζ

Hn
; ð61Þ

ηBN
On−1

þ ηBN
On

¼ ηBN
On−1

− ηBN
On

þ 2ηBN
On
: ð62Þ

Using also that xBN
OA

¼ ηBN
OA
, one gets, after some algebra, the

trajectory

xBN ðηBN ÞN ¼ ηBN − ΠBN

XN
n¼1

�
λ0ζ þ λ00e

P
N
s¼n

Hsζ
1 − e−Hnζ

Hn
þ λe2

P
N
s¼n

Hsζ
1 − e−2Hnζ

2Hn
þ λ000e3

P
N
s¼n

Hsζ
1 − e−3Hnζ

3Hn

�

− ΠBN

�
λ0

1

HN
ln ½1þHne

−
P

N
k¼nþ1

HkζðηBN
On

− ηBN Þ� þ ðλ00 þ λþ λ000ÞηBN

−
�
λ

2
þ λ000

�
HNðηBN Þ2 þ λ000

3
H2

NðηBN Þ3
�
: ð63Þ

The time of arrival of the hard photon is obtained by solving ηBN ðxBN ¼ 0Þ. Since the delay isOðλÞ, we can disregard all the
terms OððηBN Þ2Þ in the right-hand side of Eq. (63), and we get the expression for the delay

ΔηBN ¼ ΠBN

XN
n¼1

�
λ0ζ þ λ00e

P
N
s¼n

Hsζ
1 − e−Hnζ

Hn
þ λe2

P
N
s¼n

Hsζ
1 − e−2Hnζ

2Hn
þ λ000e3

P
N
s¼n

Hsζ
1 − e−3Hnζ

3Hn

�
: ð64Þ
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In the limit in which N → ∞, using Eqs. (42) and (43), the
delay takes the form (omitting the suffix BN)

Δt ¼ Δη ¼ ph

Z
0

−T
dt

�
λ0 þ λ00

aðtÞ þ
λ

a2ðtÞ þ
λ000

a3ðtÞ
�
; ð65Þ

where again we expressed the delay in terms of comoving
time and we denoted by ph the momentum of the hard
particle observed at the detector. We can finally reexpress
the delay in terms of the redshift of the source z≡ zð−TÞ,
noting that for z̄≡ zðtÞ

aðtÞ ¼ 1

1þ z̄
; dt ¼ −

dz̄
Hðz̄Þð1þ z̄Þ ; ð66Þ

so that the delay becomes

Δt ¼ph

Z
z

0

dz̄
Hðz̄Þ

�
λ0

ð1þ z̄Þ þ λ00 þ λð1þ z̄Þ þ λ000ð1þ z̄Þ2
�
:

ð67Þ

For the choice of parameters λ0 ¼ λ00 ¼ λ000 ¼ 0, λ ≠ 0, the
delay coincides with the one reported in Ref. [3], as it should
have been expected on the basis of the observations we
offered above. Indeed, one can show that the trajectory (63),
in the limit N → ∞, is consistent with the Hamiltonian

Hþm2 ¼ Ω2 − Π2

a2ðηÞ þ ~αΩ3 þ ~βΩΠ2

a2ðηÞ

×

�
λ0aðηÞ þ λ00 þ λ

aðηÞ þ
λ000

a2ðηÞ
�
; ð68Þ

which coincides, for the same choice of parameters
λ0 ¼ λ00 ¼ λ000 ¼ 0, λ ≠ 0, with the one presented in Refs. [3]
and [4].

VII. DSR AND RELATIVE LOCALITY WITH
FRW EXPANSION

Our final task is to perform a DSR-relativistic analysis
with FRW expansion. We use again as an illustrative
application an analysis of the times of arrival of a soft
and a hard photon emitted simultaneously at a distant
source, with Alice local to the event of emission and BobN
local to the event of detection of the soft photon, emitted at
the (comoving) BobN time −T. Evidently, for a DSR-
relativistic analysis, our thick slicing of FRW must involve
slices described by the DSR-deformed de Sitter scenario of
Sec. IV. Analogously to Sec. V, the translational invariance
[under the l-deformed translations (28)] of the DSR-de
Sitter setup of Sec. IV, allows us to construct our slices
choosing the Hamiltonian in the nth slice, for each observer
Bobn, to have the same functional expression as the one of
Sec. IV but with the corresponding value of the expansion
rate Hn. It follows that in the nth slice Bobn describes the
photons moving with velocity (for Π > 0)

vBn
n ¼ 1 − lðγ þ βÞð1 −Hnη

BnÞΠBn
: ð69Þ

Moreover, each observer Bobn is connected to Alice, who
is at the source, by a transformation (34), but with the l-
deformed translation generators given in Eqs. (23) and (27)
(with theHn appropriate for each nth slice). That is, Bobn is
connected to Alice by a series of finite l-deformed space
translations (each with the corresponding parameter ξk)
followed by a series of finite l-deformed time translations
(each with the corresponding parameter ζk, Hk). Then,
the relation between BobN’s and Alice’s coordinates is
obtained computing the transformation (34), for n ¼ N,
where each intermediate step is described by Eq. (28), with
the relative translation parameter ζk or ξk and expansion
rate Hk. This leads to

ηBN ¼ ηð0ÞN þ lðα − γÞ
XN
n¼1

ζne
P

N
k¼n

Hkζkð1 −Hnη
ð0Þ
n−1ÞEð0Þ

Hn;n−1; xBN ¼ xð0ÞN − lðα − γÞ
XN
n¼1

e
P

N
k¼n

HkζkHnx
ð0Þ
n−1E

ð0Þ
Hn;n−1;

ΩBN ¼ Ωð0Þ
N þ lðα − γÞ

XN
n¼1

e−
P

N
k¼n

HkζkHnζnΩ
ð0Þ
n Eð0Þ

Hn;n−1; ΠBN ¼ Πð0Þ
N þ lðα − γÞ

XN
n¼1

e−
P

N
k¼n

HkζkHnζnΠ
ð0Þ
n−1E

ð0Þ
Hn;n−1;

ð70Þ

where

Eð0Þ
Hn;k

¼ Ωð0Þ
k ð1 −Hnη

ð0Þ
k Þ þHnΠ

ð0Þ
k xð0Þk ; ð71Þ

and

ηð0Þk ¼ e
P

k
s¼1

HsζsηA þ
Xk
s¼1

e
P

k
r¼sþ1

Hrζr 1 − eHsζs

Hs
; xð0Þk ¼ e

P
k
s¼1

Hsζs

�
xA −

XN
s¼1

ξs

�
;

Ωð0Þ
k ¼ e−

P
k
s¼1

HsζsΩA; Πð0Þ
k ¼ e−

P
k
s¼1

HsζsΠA: ð72Þ
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From these relations, we see that, as in Sec. IV, relative
locality affects the coordinates that BobN assigns to the
point of emission ηBN

OA
, xBN

OA
, which now depend on the

particles momenta.
We impose again the conditions (36):

ζn ¼ ζ ¼ T=N; ξn ¼ e−
P

n
k¼1

Hkζn
eHnζn − 1

Hn
: ð73Þ

This amounts to enforcing that every observer Bobn is
local, at the time ηðtnÞ, to the trajectory of a soft photon, for
which the effects of the deformation can be neglected,
emitted at Alice.
To evaluate the time of arrival of the hard photon, we

consider the trajectory that BobN assigns to photons in the
Nth slice, which is given by

xBN ðηBN ÞN ¼ xBN
OA

þ
XN−1

n¼1

Z
η
BN
On

η
BN
On−1

vBN
n dηþ

Z
ηBN

η
BN
ON−1

vBN
N dη:

ð74Þ
It is straightforward to verify, using Eqs. (70) to establish
the relation between the coordinates of BobN and the
coordinates of Bobn, that the velocity of the photons in the
nth slice is described by BobN by simply reexpressing vBn

n

in terms of the coordinates of BobN ,

vBN
n ðXBN Þ ¼ vBn

n ðXBnðXBN ÞÞ; ð75Þ
so that

vBN
n ðηBN Þ ¼ 1 − lðγ þ βÞ

�
e
P

N
s¼nþ1

HSζ

−Hn

XN
k¼nþ1

e
P

N
s¼k

HSζ
1 − e−Hkζ

Hk
−Hnη

BN

�
ΠBN

:

ð76Þ

Equation (76) can be easily integrated in each nth slice,
and, after some algebra, the trajectory (74) can be
rearranged as follows:

xBN ¼ xBN
OA

− ηBN
OA

þ ηBN − lðγþ βÞΠBN

�
ηBN −

Hn

2
ðηBN Þ2

�

þ lðγþ βÞΠBN

XN
n¼1

ðηBN
On−1

− ηBN
On
Þ
�
e
P

N
k¼nþ1

Hkat

−Hn

XN
k¼nþ1

e
P

N
s¼k

Hsat 1− e−Hkat

Hk
−
Hn

2
ðηBN

On−1
þ ηBN

On
Þ
�
:

ð77Þ

Again, the time of arrival of the hard photon is obtained by
solving ηBN ðxBN ¼ 0Þ. We can identify two contributions
to the delay: one comes from the terms proportional to

lðγ þ βÞ [second and third rows of Eq. (77)]; the other
comes from the term ηBN

OA
− xBN

OA
, which, as we pointed out

above, contains a nonvanishing contribution proportional
to lðα − γÞ, as one can see by using Eqs. (70) [recall that
ηBN
OA

¼ ηBN ðηA ¼ 0;xA ¼ 0Þ and xBN
OA

¼ xBN ðηA ¼ 0;xA ¼ 0Þ].
Thus,

Δη ¼ lðγ þ βÞΔηγþβ þ lðα − γÞΔηα−γ: ð78Þ
Considering that at zeroth order in l the relations (60),
(61), and (62) hold, we get

Δηγþβ ¼ ph

XN
n¼1

e2
P

N
s¼n

Hsζ
1 − e−2Hnζ

2Hn
; ð79Þ

where we denoted again with ph the momentum of the
hard particle observed at the detector. From relations (70),
(71), (72), and (73), one gets (after a tedious but
straightforward derivation)

Δηα−γ ¼ ph

XN
n¼1

ζne
2
P

N
k¼n

Hkζ

×

�
1 −Hn

XN
k¼n

e−
P

k
r¼n

Hrζ
eHkζ − 1

Hk

�2

: ð80Þ

Using again the relations (42), (43), and (19), we get that
in the limit N → ∞ the delay is

Δt ¼ lph

�
ðβ þ γÞ

Z
0

−T

dt
a2ðtÞ

þ ðα − γÞ
Z

0

−T
dt

�
1

aðtÞ þHðtÞ
Z

t

0

dt0

aðt0Þ
�

2
�
:

Using relations (66), the delay can be written in terms of
the redshift of the source as

Δt¼ lph

�
ðβþ γÞ

Z
z

0

dz̄ð1þ z̄Þ
Hðz̄Þ þ ðα− γÞ

Z
z

0

dz̄
ð1þ z̄ÞHðz̄Þ

×

�
1þ z̄−Hðz̄Þ

Z
z̄ðtÞ

0

dz̄0

Hðz̄0Þ
�

2
�
: ð81Þ

One of the interesting applications of this DSR-
relativistic result (81) is to compare it to the corresponding
result (67) obtained in the LIV case. This comparison
shows that, as expected, in general DSR scenarios and LIV
scenarios produce completely different results, even when
applied to the same class of modified dispersion relations. It
is also noteworthy, however, that there is special case where
the two pictures give the same result: by fixing α ¼ γ in the
DSR case of Eq. (81), one gets the same formula obtained
by fixing λ0 ¼ λ00 ¼ λ000 ¼ 0 in the LIV case of Eq. (67).
This also provides a conceptual perspective on our results:
on the DSR side, the choice α ¼ γ is such that translation
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transformations are unaffected [see Eq. (22)] by the
quantum-gravity scenario just like how on the LIV side
the choice λ0 ¼ λ00 ¼ λ000 ¼ 0 is such that translational
invariance is unaffected [see Eq. (12)] by the quantum-
gravity scenario. So both in the LIV case and in the DSR
case, the formula advocated by Jacob and Piran [3],

Δt ∝
Z

z

0

dz̄ð1þ z̄Þ
Hðz̄Þ ;

is applicable only if the quantum-gravity scenario has no
implications for translational invariance and translation
transformations. When the quantum-gravity scenario does
have implications for translational invariance and/or trans-
lation transformations, the Jacob-Piran ansatz does not
apply, and the DSR scenario gives results different from the
LIV scenario.

VIII. CONCLUSIONS

Our research work was motivated by the fact that there are
at this point literally hundreds of publications on applications
of Planck-scale-modified dispersion relations in contexts
involving FRW expansion, but all these studies have an
exclusively heuristic basis. Over the last decade, significant
progress was made on the understanding of Planck-scale-
modified dispersion relations in the flat-spacetime limit, and
we now do have a partial but satisfactory understanding of
the generalization to the case of expansion at a constant rate,
but for FRW expansion before our investigations, we only
had heuristic analyses and a very limited understanding of
the conceptual issues at stake.
We feel we provided here a significant step forward

toward raising the standards of this phenomenology.
Of particular significance is the understanding that the

much-used Jacob-Piran ansatz implicitly assumes that
spacetime translations are unaffected by the quantum-
gravity scenario, and therefore that ansatz is applicable
exclusively to a corresponding subset of possible quantum-
gravity scenarios. We obtained predictions for both the LIV
case and the DSR case applicable when instead quantum
gravity affects spacetime translations, thereby finally pro-
viding a target for those interested in testing Planck-scale
modifications of the dispersion relation in full generality.
For some of our results, an important role was played by

our setup describing FRWexpansion as a series of stages of
de Sitter expansion, with appropriate conditions for gluing
the different thick slices. This provided a safe path for
generalizing to the case of FRW expansion the results
recently obtained for de Sitter expansion. While quantum-
gravity research is certainly full of surprises, we cannot
imagine any quantum-gravity picture that would prevent
one from describing FRWexpansion as a series of de Sitter
expansions, and indeed to our knowledge, there is no
quantum-gravity result in the literature that would suggest
this could be prevented. Since we have here shown that this
thick-slicing setup can play a pivotal role in phenomenol-
ogy, of course this issue should attract even more interest in
the future.
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