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We provide an exhaustive numerical exploration of the predictions of loop quantum cosmology with a
postbounce phase of inflation for the primordial power spectrum of scalar and tensor perturbations. We
extend previous analysis by characterizing the phenomenologically relevant parameter space and by
constraining it using observations. Furthermore, we characterize the shape of loop quantum cosmology
corrections to observable quantities across this parameter space. Our analysis provides a framework
to contrast more accurately the theory with forthcoming polarization data, and it also paves the road for the
computation of other observables beyond the power spectra, such as non-Gaussianity.
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I. INTRODUCTION

This paper focuses on the quantum gravity extension of
the inflationary scenario provided by loop quantum cos-
mology (LQC) [1–4]. We follow the framework introduced
by Agullo, Ashtekar, and Nelson in a series of papers [5–7].
(For other approaches to the early Universe in loop
quantum cosmology, see Refs. [8–25].) In short, in this
framework, quantum gravitational effects dominate the
Planck era of the Universe, and a quantum bounce appears
replacing the classical big bang singularity. For definite-
ness, the matter content of the Universe is assumed to
consist of a massive scalar (“inflaton”) field, although other
forms of the potential VðϕÞ can be accommodated without
altering the conclusions. Shortly after the bounce, quantum
gravity effects gradually lessen, and the potential energy
VðϕÞ begins to prevail. This potential-dominated phase
brings the Universe, under quite generic circumstances, to a
phase of inflation [26,27]. Therefore, LQC provides an
interesting arena to incorporate the highest energy density
and curvature stages of the Universe into cosmological
models, where questions about Planck-scale physics and
initial conditions for inflation can be addressed squarely.
The theory of cosmological perturbations in the Planck

era was developed in Ref. [6], following previous results in
Ref. [28]. It was then applied in Ref. [7] to show that,
generically, the preinflationary evolution makes scalar
and tensor perturbations reach the onset of inflation in
an excited state, rather than in the Bunch-Davies vacuum
often assumed in the cosmology literature. Consequently,
the inflationary primordial spectra that source the cosmic
microwave background (CMB) anisotropies acquire
some extra features with quantum gravitational origin.
As described in detail in Ref. [7] and summarized in
Sec. II, the effects of the preinflationary evolution are more

important for infrared modes (which correspond to large
angles in the CMB), and the size of these effects depends
on the parameters of the model: specifically the inflaton
mass m and the “initial” value at some reference time—
for which we choose the bounce time—of the inflaton
field, ϕðtBounceÞ≡ ϕB.
The first phenomenological exploration of the spectrum

of scalar and tensor perturbations under this framework
appeared in Ref. [7]. For phenomenological interest, this
analysis focused on a small region of the parameter space of
the theory, consisting of values of ϕB near to its minimum
possible value and the inflaton mass m that is commonly
used in inflationary cosmology. The main goal of this paper
is to extend the study to the full parameter space spanning
the plane (ϕB, m).
The goals are multiple: (1) compute the power spectra

of scalar and tensor perturbations for the theoretically
allowed values of ϕB andm; (2) identify which region of the
(ϕB,m) planepasses all observational constraints; (3) localize
the subspace which, in addition to being observationally
allowed, contains significant corrections, originating in the
preinflationary evolutionofLQC, to the standard inflationary
picture; and (4) analyze in detail the predicted observational
signatures, which will mostly involve tensor modes.
The main challenge of the analysis presented here is

computational. Time—and memory—intensive computa-
tions using high-performance computing are required to
explore the most interesting region of this space. But this
effort is necessary to understand completely the predictions
of the theory across the parameter space.
Our results are in agreement with those obtained pre-

viously in Ref. [7] when we restrict to the range of
parameters explored there, but interesting new findings
arise in other regions of the parameter space. We summa-
rize here the most important points:

(i) Two scales dictate the form of the LQC-corrected
power spectrum: first, kLQC, the momentum scale
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associated with the spacetime curvature at the
bounce, where it attains its maximum value, and
second, kI, the momentum scale associated with the
spacetime curvature at the onset of inflation. (It
always happens that kLQC ≫ kI.)

(ii) The LQC power spectrum is oscillatory, and its
average has an amplitude that is amplified with
respect to the standard predictions of slow-roll
inflation for modes kI ≲ k≲ kLQC but is in agree-
ment with them otherwise (see Fig. 2).

(iii) The present values of the physical scales kI=a0 and
kLQC=a0 (a0 is the scale factor today) depend on the
amount of expansion that has occurred since the time
of the bounce, which in turn depends on the values
of the parameters ϕB and m. Therefore, ϕB and m
control whether the modes affected by the preinfla-
tionary dynamics of LQC fall within the window of
modes which are observable today.

(iv) The region of parameter space which is observatio-
nally viable is

0.8≲ ϕB1.1 × 10−6 ≲m≲ 1.5 × 10−6: ð1:1Þ

(v) The region which, in addition to being observatio-
nally allowed, also shows non-negligible LQC
modification is an approximately one-dimensional
subset of (1.1), which satisfies ϕB ≈ 1.3 × 10−6=m
(see Fig. 4).

(vi) LQC corrections to the power spectra tend to make
the tensor spectral index nt more negative and to
produce a positive running αs of the scalar spectral
index.

(vii) The corrections tend to reduce the tensor-to-scalar
ratio r, which serves to alleviate the observational
constraints on the m2ϕ2 potential.

(viii) The LQC corrections modify the inflationary con-
sistency relation r=nt ¼ −8.

(ix) The particular choice of initial data for quantum
scalar and tensor perturbations has very little impact
on the above conclusions, at least for the reasonable
choices of the initial vacuum state that we have
considered in this paper.

In the rest of this paper, we provide the details and
summarize the calculations leading to these conclusions.
We begin in Sec. II by summarizing the preinflationary
physics in LQC, both for the background spacetime and for
cosmological perturbations, and by describing the main
features of the resulting power spectra for a typical
evolution. In Sec. III, we report the results of exploring
the predictions of LQC across the parameter space and their
relation with observations. Section IV analyzes the sensi-
tivity of the results to the initial quantum state of scalar and
tensor perturbations. In Sec. V, we discuss our results and
add some final comments.

Throughout this paper, all numerical values are given
in Planck units, in which c ¼ G ¼ ℏ ¼ 1. Consequently
the Planck length, time, and mass all equal unity:
lPl ¼ tPl ¼ mPlð≡

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=G

p Þ ¼ 1. However, we will retain
G and ℏ explicitly in theoretical expressions to emphasize
their physical content.
Remark.—In previous analysis [5,7], WMAP’s seven-

year observational data were used to compare with obser-
vations and to fix some parameters—for instance the
inflaton mass. In this paper, we use the more recent
2013 Planck results [29] (Planck 2015 results [30] are
very similar). Therefore, some care is needed in directly
comparing numerical values across the two analyses.

II. SUMMARY OF THE PREINFLATIONARY
EVOLUTION OF LOOP QUANTUM COSMOLOGY

The goal of this section is twofold. First, we summarize
the physics of the spacetime evolution of the early Universe
in loop quantum cosmology, as well as the equations
governing the evolution of first-order scalar and tensor
perturbations thereon. The material has been explained in
full detail in the original references [6,7,26,27] and
summarized in review articles [2,26,31]; we therefore
provide here only a succinct summary and refer the reader
to those references for further subtleties and details.
Second, we analyze the main features of the power spectra
for a representative concrete choice of initial parameters.
This analysis will provide an understanding of the origin
and characteristics of the corrections that LQC introduces
to the primordial spectra. While some of this material was
computed and analyzed in detail in Ref. [7] as well, we also
discuss a number of new features of interest.

A. Dynamics of the FLRW spacetimes in LQC

Since this paper focuses on results directly relevant for
observations, we restrict to spatially flat, Friedmann-
Lemaître, Robertson, Walker (FLRW) spacetimes. The
gravitational field is sourced by a single scalar field ϕ,
the inflaton, with an effective potential VðϕÞ that we choose
to have the simple quadratic form VðϕÞ ¼ 1

2
m2ϕ2. As

mentioned previously, other choices are certainly possible,
and, although the concrete numerical values obtained
below would change, our findings would remain qualita-
tively unaltered; the underlying reason for this is that the
LQC effects on primordial perturbations originate from
quantum-gravitational effects that are largely insensitive to
the specific form of VðϕÞ. (See Refs. [32,33] for the
analysis of the Starobinsky potential in LQC.)
In LQC, the quantum homogeneous and isotropic

spacetime is described by a quantum state Ψ0ða;ϕÞ which
is a complex function of the classical scale factor a (or
equivalently its cube, v ¼ a3, which is more commonly
used in the LQC literature) and the homogeneous part of
the inflaton field ϕ. Among the many states Ψ0ða;ϕÞ
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contained in the LQC Hilbert space [34–37], of particular
physical relevance are those which are sharply peaked
around a classical trajectory at late times, when the
curvature of the Universe is well below the Planck scale.
Most of these states continue to be sharply peaked during
the entire dynamical trajectory [35,36], including the
Planck era. More importantly, the evolution of the peak
of the wave function of such states can be accurately
described by effective equations that very much resemble
the equations of general relativity, apart from some extra
terms that account for the quantum gravity corrections [see
Eqs. (2.1) and (2.2) below]. One can therefore explore the
phenomenological consequences of the theory without the
need to solve the complicated discrete equations of the full
theory. For this reason, the effective dynamics have been
used in essentially all phenomenological analysis per-
formed so far in the literature. We do the same in this
paper.1

The effective equations of LQC were derived in
Refs. [39–42] (see also Ref. [43]). The modified
Friedmann equation is given by

H2 ¼ 8πG
3

ρ

�
1 −

ρ

ρmax

�
; ð2:1Þ

the modified Raychaudhuri equation is

ä
a
¼ −

4πG
3

ρ

�
1 − 4

ρ

ρmax

�
− 4πGP

�
1 − 2

ρ

ρmax

�
; ð2:2Þ

and the equation of motion for the inflaton field, which
takes the same form as in the classical theory, is

ϕ̈ðtÞ þ 3H _ϕðtÞ þ dV
dϕ

¼ 0: ð2:3Þ

In these equations, ρ ¼ 1
2
_ϕ2 þ VðϕÞ and P ¼ 1

2
_ϕ2 − VðϕÞ

are the energy and pressure density, respectively, of the
scalar field; ρmax is the upper bound of the energy density in
LQC, which is of the order of the Planck energy density ρPl.
One way of fixing its value in LQG is by using the results of
black hole entropy counting [44,45]; one then obtains
ρmax ¼ 0.41ρPl. For concreteness, we use this value in the

rest of the paper.2 Note that ρmax is proportional to ℏ−1;
thus, in the classical limit, ρmax diverges, and Eqs. (2.1) and
(2.2) reduce to the classical Friedmann and Raychaudhuri
equations.

1. Relevant parameter space

The previous equations can be solved numerically by
specifying initial data for a, _a, ϕ and _ϕ at a given time,
together with a value of the inflaton mass m. The bounce is
a convenient time to specify initial data because the
universality of the solutions there reduces the number of
free parameters, as we now explain. First, note that in a flat
FLRW spacetime only ratios between values of the scalar
factor at different times have objective physical meaning,
not the value of aðtÞ itself at any one time. We are therefore
free to rescale a at our convenience. A convenient choice is
aðtBÞ ¼ 1, at the bounce time tB. Second, note that,
because the potential VðϕÞ is symmetric, the transforma-
tion ð _ϕðtBÞ;ϕðtBÞÞ → ð− _ϕðtBÞ;−ϕðtBÞÞ does not alter
the physics. We can therefore restrict our solutions to
_ϕðtBÞ ≥ 0 without loss of generality. Third, at the bounce,
we always have _a ¼ 0. Fourth, from Eq. (2.1), it is easy to
see that the value of ρ at the bounce must equal ρmax. This
implies that ϕðtBÞ and _ϕðtBÞ are related by ρðtBÞ ¼
1
2
_ϕðtBÞ2 þ 1

2
m2ϕðtBÞ2 ¼ ρmax.

In summary, solutions to Eqs. (2.1), (2.2) and (2.3) form
a two-parameter family labeled by couples ðϕðtBÞ; mÞ.
[From now on, we will denote ϕðtBÞ by ϕB.] Because the
energy density is bounded above, the parameters jϕBj and
m are as well—they must satisfy mjϕBj ≤ 0.90. For
definiteness, we will assume ϕB > 0 because the sign will
not make any qualitative difference in our analysis. We
conclude, therefore, that the relevant parameter space for
this paper is the set of couples (ϕB, m) satisfying

0 ≤ mϕB ≤ 0.90: ð2:4Þ

We now briefly summarize the main qualitative features
of the solutions to Eqs. (2.1), (2.2) and (2.3), which are
illustrated in Fig. 1. All solutions experience a bounce at
which H ¼ 0 and ρ ¼ ρmax. The bounce has a quantum
gravitational origin that makes it independent of the matter
content of the theory, and in particular independent of the
form of the potential VðϕÞ. The effective spacetime
geometry is symmetric around tB for a kinetic-dominated
bounce ( _ϕðtBÞ2 ≫ m2ϕ2

B), which, as explained in Sec. III,
turns out to be the most interesting regime for possible new

1One can, however, legitimately argue that other quantum
states Ψ0ða;ϕÞ showing large quantum fluctuations in the
Planck era may be of physical interest. States Ψ0ða;ϕÞ which
are not sharply peaked are not accurately described by the
effective equations, and to explore their phenomenology, one
is forced to face the full discrete equations of LQC, which are
significantly more complicated. The analysis that we present in
this paper has been extended to such a more generic family of
quantum states, and the results will be presented in a separate
publication [38].

2One could think that the freedom in ρmax should be added to
the parameter space of our theory, which is discussed in the next
paragraph. But it has been shown in Ref. [38] that changing the
value of ρmax has the same effect in observable quantities as
varying the value of the parameter ϕB. Therefore, it suffices to
vary one of the two; we choose ϕB as the free quantity and fix
ρmax ¼ 0.41ρPl.
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predictions. We will therefore focus our discussion on this
regime. Immediately after the bounce, the Hubble rate H
grows from zero to its maximum value Hmax ≈ 0.93, which
is attained around 0.2 Planck seconds after the bounce.
Because _H > 0, this period is commonly known as super-
inflation (there is an essentially symmetric period of
superdeflation prior to the bounce). After superinflation,
_H becomes negative as the inflaton field keeps climbing
up the potential at the expense of its kinetic energy,
gradually entering a potential-dominated regime.
Around 105 Planck seconds after the bounce, the inflaton
loses its last remaining kinetic energy, stops moving
upward and begins a phase of slow roll back down the
potential; this is the onset of inflation. At this time, the
energy density has decreased approximately 11 orders of
magnitude since the bounce, and consequently the quantum
effects of gravity are negligible. The duration of the
slow-roll phase depends on how high the inflaton has been
able to climb up the potential; this grows monotonically
with ϕB.
In order to define more precisely the times at which the

phase of slow-roll inflation begins and ends, we introduce
the first-order slow-roll parameters3

ϵ ¼ −
_H
H2

; δ ¼ Ḧ

2 _HH
: ð2:5Þ

Slow-roll inflation is said to have begun when both of these
parameters are much smaller than unity; for concreteness,
we define the onset of slow-roll inflation in this work as the
time ton such that ϵðtonÞ ¼ 0.1 and δðtonÞ ¼ 0.1 and the end
of slow-roll inflation tend as the first time after ton when
ϵðtendÞ ¼ 1.

B. Evolution of cosmological perturbations

In the standard inflationary scenario, cosmic nonuni-
formities are described by first-order scalar and tensor
perturbations. Scalar perturbations can be conveniently
described by the Mukhanov-Sasaki variable QðxÞ,4 and
we will collectively denote by T ðxÞ the 2 degrees of
freedom in tensor perturbations. Because the background
energy density is well below the Planck scale during
inflation, perturbations are accurately described as quantum
fields propagating in the classical FLRW inflationary
spacetime. This mathematical framework of quantum field
theory in classical but curved spacetimes was developed in
the late 1960s and 1970s, and since then, it has been
successfully applied to multiple interesting physical sit-
uations. But prior to inflation, and particularly in the
vicinity of the bounce, the quantum effects of gravity
are no longer negligible, and a description in terms of a
classical spacetime metric must be abandoned. One needs
to learn how quantum fields propagate in a quantum
gravitational background.
The quantum theory of cosmological perturbations in the

Planck regime was developed in Ref. [6], based on previous
work by Ashtekar, Kaminski, and Lewandowski [28], and
the result can be summarized as follows. In the regime in
which perturbations can be treated as test fields, i.e., their
backreaction on the FLRW spacetime is small, the equa-
tions of motion of the operators representing scalar and
tensor perturbations are formally the same as the equations
appearing in classical spacetimes, which in Fourier space
are

Q̂00
~k
ð~ηÞ þ 2

~a0

~a
ð~ηÞQ̂0

~k
ð~ηÞ þ ðk2 þ ~Uð~ηÞÞQ̂~kð~ηÞ ¼ 0; ð2:6Þ

T̂ 00
~k
ð~ηÞ þ 2

~a0

~a
ð~ηÞT̂ 0

~k
ð~ηÞ þ k2T̂ ~kð~ηÞ ¼ 0: ð2:7Þ

FIG. 1. A typical evolution of the energy density and Hubble
rate of the background spacetime (in Planck units). Note that both
axes are logarithmically scaled. The LQC modification to the
classical Friedmann equation is evident near the bounce (since
classically ρ ¼ 3

8πGH
2), but by 2 Planck seconds, the behavior

coincides with the classical trajectory.

3The slow-roll parameters defined here, which are calculated
in terms of the Hubble parameter, differ from another frequently
encountered set of slow-roll parameters, in terms of the
potential V:

ϵV ¼ 1

2V2

�∂V
∂ϕ

�
2

; δV ¼ 1

V
∂2V
∂ϕ2

:

While these two sets of parameters are distinct, they are related if
_H and Ḧ are sufficiently small by ϵV ≈ ϵ, δV ≈ ϵ − δ.

4When the matter sector is a single scalar field, this variable
relates to the standard comoving curvature perturbation R by
R ¼ H

_ϕ
Q. As explained in Sec. V of Ref. [7], to analyze the

preinflatioanry Universe, it is more convenient to use the gauge-
invariant variable Q in place of R, and convert its power
spectrum PQðxÞ to the desired power spectrum PRðxÞ at the
end of inflation, than it is to compute the power spectrum of the
field RðxÞ directly.
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A prime indicates a derivative with respect to conformal
time ~η, and k ¼ j~kj. However, the background quantities
that appear in these equations, namely ~a, ~U and ~η, are
different from their classical counterparts.5 In contrast,
~aðηÞ, ~UðηÞ and ~η are now obtained as complicated expect-
ation values in the background quantum state Ψ0ða;ϕÞ,
which involve the associated quantum operators â and Û as
well as the Hamiltonian background operator (see Sec. II. C
of Ref. [7]). Their explicit form will not be needed for this
summary. Remarkably, because of the formal analogy with
quantum field theory in classical spacetimes, it is possible
to import all the well-developed mathematical machinery
from that framework—e.g., Fock quantization, transition
amplitudes, renormalization and regularization—to build a
well-defined quantum field theory in quantum spacetimes.
Therefore, once the quantum backgrounds quantities ~a, ~U
have been computed, the evolution of perturbations and
computation of observables closely follows the formalism
commonly used in semiclassical cosmology. All the diffi-
culties of the quantum spacetime Ψ0ða;ϕÞ are encoded in
the expectation values ~að~ηÞ and ~Uð~ηÞ. This formalism goes
under the name dressed geometry approach, because the
evolution of perturbations turns out to be mathematically
equivalent to the evolution in a curved spacetime of which
the metric has been dressed by quantum gravity effects.
The framework has been applied in Ref. [38] to explore the
phenomenology of quantum states Ψ0ða;ϕÞ which have
large fluctuations in the Planck regime and are therefore not
semiclassical in any sense.
But a significant simplification to this process appears

when Ψ0ða;ϕÞ is chosen to be a highly peaked state of
which the expectation values are well approximated by the
solutions of the effective equations (2.1) and (2.2). For such
highly peaked states, higher moments of Ψ0ða;ϕÞ are well
approximated by powers of the simplest expectation values.
Consequently, explicit computations show that the scale
factor ~að~ηÞ appearing in (2.6) and (2.7) reduces to the
solution aðηÞ of the effective equations, and the potential
UðηÞ takes the same form as in the classical theory where
the time evolution is now dictated by the effective equations
of LQC. Therefore, for statesΨ0 that are highly peaked, the
computation of power spectra and other physical relevant
quantities in LQC follows the same steps as in general
relativity, with the only difference being that the evolution
of the scale factor aðηÞ and the background inflaton field
ϕðηÞ is now replaced by the solution of the effective
equations of LQC.
The quantization of scalar and tensor perturbations now

proceeds in the standard way, which we summarize here.
For scalar perturbations, one begins by decomposing the
field operator Q̂ðxÞ as

Q̂ðxÞ ¼
Z

d3k
ð2πÞ3 Q̂~kðηÞei

~k·~x

¼
Z

d3k
ð2πÞ3 ½Â~kqkðηÞ þ Â†

−~k
q�kðηÞ�ei~k·~x; ð2:8Þ

where the functions qkðηÞ, labeled by k, form a orthogonal
basis of the subspace of “positive frequency”—more
precisely, positive norm—complex solutions to the equa-
tion of motion (2.6). If the basis elements are chosen to
satisfy the normalization condition

qkðηÞq0�k ðηÞ − q�kðηÞq0kðηÞ ¼
i

aðηÞ2 ; ð2:9Þ

then Â~k and Â†
~k
satisfy the usual algebra of creation and

annihilation operators ½Â~k; Â~k0 � ¼ ½Â†
~k
; Â†

~k0
� ¼ 0, ½Â~k; Â

†
~k0
� ¼

ℏð2πÞ3δð~k − ~k0Þ.
The vacuum is the state annihilated by all Â~k, and the

symmetric Fock space is the Hilbert space generated by
repeatedly operating on this vacuum with creation oper-
ators. Equation (2.8) is then the representation of the
operator Q̂ in this Hilbert space. It is important to
emphasize that the definition of vacuum is tailored to
the choice of positive-frequency basis functions qkðηÞ. In
maximally symmetric backgrounds such as Minkowski or
de Sitter, one can use the spacetime isometries, together
with suitable regularity conditions, to single out a preferred
basis qkðηÞ and a preferred vacuum state. But in spacetimes
with fewer isometries, e.g., homogeneous and isotropic
FLRW backgrounds with arbitrary scale factor aðηÞ, there
is no canonical vacuum, and consequently the notion of
particle is ambiguous. Note that by using a basis of Fourier
modes qkðηÞ that only depend on the length k of the wave
vector, rather than its direction, one is already restricting to
a family of vacua in which all members are isotropic and
homogeneous; this is manifest in the form of the two-point
function written below. But there still remains infinite
freedom in the choice of vacuum, even within this family.6

In a free theory, all vacuum correlation functions can be
written in terms of the two-point function, which—given a
choice of basis qkðηÞ—can be computed as

h0jQ̂ðη1; ~xÞQ̂ðη2; ~xþ Δ~xÞj0i

¼ ℏ
Z

d3k
ð2πÞ3 qkðη1Þq

�
kðη2Þei~k·Δ~x: ð2:10Þ

5The classical potential that appears in the equation for Q~kðηÞ
is UðηÞ¼a2½VðϕÞr−2VϕðϕÞ

ffiffiffi
r

p þVϕϕðϕÞ�, where r¼3a2ϕ028πG
ρ ,

VðϕÞ is the inflaton potential, and VϕðϕÞ≡ dVðϕÞ=dϕ.

6The adiabatic condition (see Ref. [6] for a summary) forces
the mode functions qkðηÞ to approach Minkowski positive-
frequency modes at a specific rate when the physical momentum
k=aðtÞ is large compared to the spacetime scalar curvature. But
this is an asymptotic condition, and therefore there are infinitely
many choices of basis modes qkðηÞ satisfying it.
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The relevant observable in cosmology is the two-point
function in momentum space at concurrent times. For a
homogeneous and isotropic vacuum, this two-point func-
tion is diagonal in the two momenta involved, and a simple
computation shows it is given by

h0jQ̂~kðηÞQ̂~k0 ðηÞj0i ¼ ð2πÞ3δð~kþ ~k0Þ 2π
2

k3
PQðk; ηÞ; ð2:11Þ

where PQ is the power spectrum, which is written in terms
of the mode functions as PQðk; ηÞ ¼ ℏ k3

2π2
jqkðηÞj2.

Although this power spectrum of the Mukhanov-Sasaki
variable is easier to compute, the quantity which is more
directly related to observations and thus more interesting in
inflationary cosmology is the power spectrum of comoving
curvature perturbations PR. Evaluated at the end of
inflation ηend, this power spectrum can be obtained from
PQ as

PRðkÞ ¼
�
HðηendÞ
_ϕðηendÞ

�
2

PQðk; ηendÞ: ð2:12Þ

During the inflationary era, sometimes it is useful to
write the mode functions qkðηÞ obtained from the preinfla-
tionary evolution in terms of the modes qBDk ðηÞ that define
the Bunch-Davies vacuum during slow-roll inflation,

qkðηÞ ¼ αkqBDk ðηÞ þ βkqBD�k ðηÞ; ð2:13Þ

where qBDk ðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηπ=4a2

p
Hð1Þ

μ ð−kηÞ, with Hð1Þ
μ ðxÞ a

Hankel function of the first kind of order μ ¼
3=2þ 2ϵþ δ. Then, PRðkÞ can be written as the power
spectrum for the modes qBDk times a factor encoding the
preinflationary evolution which involves the Bogoliubov
coefficients αk and βk:

PRðkÞ ¼ Pð0Þ
R ðkÞjαk þ βkj2; ð2:14Þ

where

Pð0Þ
R ðkÞ ¼

�
HðηendÞ
_ϕðηendÞ

�
2 k3

2π2
jqBDk ðηendÞj2

¼ ℏ
4πG
ϵðηkÞ

�
HðηkÞ
2π

�
2

; ð2:15Þ

with the Hubble exit time for the mode k, ηk, defined by the
relation k=aðηkÞ ¼ HðηkÞ.
The analysis of tensor perturbations is analogous. The

field operator is now expanded in terms of the elements
ekðηÞ of a basis of the space of “positive-frequency”
complex solutions of Eq. (2.7) as

T̂ ðxÞ ¼
Z

d3k
ð2πÞ3 T̂ ~kðηÞei

~k·~x

¼
Z

d3k
ð2πÞ3 ½B̂~kekðηÞ þ B̂†

−~k
e�kðηÞ�ei~k·~x; ð2:16Þ

where the basis functions are normalized to

ekðηÞe0�k ðηÞ − e�kðηÞe0kðηÞ ¼ 32πG
i

aðηÞ2 : ð2:17Þ

The power spectrum for each polarization is given by

PT ðkÞ ¼ ℏ
k3

2π2
jekðηendÞj2 ¼ Pð0Þ

T ðkÞjαTk þ βTk j2; ð2:18Þ

where Pð0Þ
T ðkÞ ¼ ℏ32πGðHðηkÞ

2π Þ2, and αTk and βTk are the
Bogoliubov coefficients relating ekðηÞ and the Bunch-

Davies modes eBDk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηπ=4a2

p
Hð1Þ

ν ð−kηÞ, with ν¼3=2þϵ,
during slow-roll inflation.

C. LQC power spectrum

The scalar and tensor power spectra in LQC were
computed and analyzed in detail in Ref. [7] following
the theoretical framework we have just described above
(see Refs. [8,9,11–25] for other approaches within LQC).
Here, we will conclude this section by summarizing some
results found in Ref. [7] and also presenting some new
features.
We have seen that a unique evolution corresponds to

each choice of the parameters (ϕB,m). For definiteness, we
will consider in this section the power spectra generated by
choosing m ¼ 1.3 × 10−6, which corresponds to the value
that is commonly used in standard inflation, and ϕB ¼ 1.
(Recall that we use Planck units throughout this paper.) We
also must supply concrete initial conditions for the pertur-
bations. As an illustrative example for this section, we
choose the preferred instantaneous vacuum introduced in
Ref. [46]; we will impose this vacuum at an initial time
25000 Planck seconds before the bounce, when all the
modes of interest are inside the curvature radius. As
previously discussed, and as will be shown explicitly in
Sec. IV, other reasonable choices of initial vacua and initial
times produce power spectra which are all very similar.
It is useful to provide a qualitative understanding of

the physical evolution of perturbations across the
bounce. There are two relevant energy scales in the
problem. On the one hand, LQC introduces a new
energy scale kLQC=aðtBÞ≡

ffiffiffiffiffiffiffiffiffiffiffi
RB=6

p
≈ 3.21 that is directly

related to the spacetime scalar curvature at the bounce
RB ¼ 48πρmax ≈ 62. (This is the maximum value that the
curvature attains along its evolution.) A second scale is
provided by the value of the scalar curvature at the onset of
inflation kI=aðtIÞ≡

ffiffiffiffiffiffiffiffiffiffi
RI=6

p
≈ 10−5. For kinetic-dominated
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bounces, the onset of inflation takes place at tI ≈ 5 × 104

after the bounce.7 To understand the qualitative features of
the preinflationary evolution of a Fourier mode with
comoving wave number k, it is convenient to divide the
discussion in three different groups:

(i) Fourier modes with comoving wave number
k > kLQC. These modes are “inside” the curvature
radius at the bounce (i.e., their wavelengths are
smaller than the radius of curvature at that time) and
will continue to be so until the slow-roll inflationary
era. Consequently, spacetime curvature will not
affect their evolution until the inflationary era.
One expects that these modes will reach the onset
of inflation in the Bunch-Davies vacuum, and the
final power spectrum will have negligible contribu-
tions from the LQC preinflationary evolution.

(ii) Modes with comoving wave number kI < k < kLQC.
They are “outside” the curvature radius at the
bounce. But evolution will bring them inside soon
after the bounce, and they will exit again during
slow-roll inflation. This process of “curvature radius
crossing” enhances the amplitude of the perturba-
tion. In the semiheuristic language of particle
creation, the evolution will create quanta as a
consequence of the interaction with spacetime cur-
vature, and the onset of inflation is reached in an
excited state. Therefore, we expect the preinfla-
tionary evolution to affect significantly the power
spectra of those perturbations.

(iii) Modes with comoving wave number k < kI. They
are outside the curvature radius at the bounce and
will continue to be so all the way until the end of
inflation. Since these modes do not cross the
curvature radius, it is expected that their power
spectrum remain small as compared to other modes
that do cross it.

Therefore, we expect LQC corrections to be relevant for
Fourier modes with comoving wave number kI <k<kLQC.
The important question is whether those modes are
observable today. To answer this, we need to know what
physical scales the two scales kLQC and kI correspond to at
the present time. The wave numbers that we can observe in
the CMB lie approximately in the interval ðk⋆=8.9; 100k⋆Þ,
where k⋆=a0 ¼ 0.002 Mpc−1 is the “pivot” mode used by
the Planck satellite team in parametrizing the primordial
power spectrum [29] and corresponds to approximately
l ¼ 27 in the angular power spectrum today.8 Because
physical momenta k=aðtÞ exhibit redshift as the Universe
expands, the values of the quantities kLQC=a0 and kI=a0
depend on how much expansion has occurred from the

bounce and the onset of inflation, respectively, until the
present time. The amount of expansion, in turn, is con-
trolled in part by the values chosen for ϕB and m. Thus, the
question of whether or not the scale kLQC is observable
today, and therefore whether the effects of LQC physics
may be potentially imprinted in the CMB, will depend on
the value of the parameters ϕB and m.
The above discussion, although very useful to create an

intuitive picture, is heuristic. It needs to be supported by
explicit computations. Figures 2 and 3 show the scalar and
tensor power spectrum, respectively, obtained after numeri-
cally evolving a large range of comoving Fourier modes k.9

As previously mentioned, this figure corresponds to the
background values ϕB ¼ 1, m ¼ 1.3 × 10−6, and preferred
instantaneous vacuum initial data [46] for perturbations
specified in the prebounce, contracting phase at
t ¼ −50000, when all interesting modes are well inside
the curvature radius. The figure clearly shows the three
regions in k-space previously specified. For k > kLQC, the
power spectrum has negligible LQC corrections, and
therefore the results agree with the inflationary prediction
obtained using Bunch-Davies vacuum initial data at the
onset of inflation. In contrast, the intermediate region
kI < k < kLQC shows a significant enhancement coming
from the LQC preinflationary evolution. Finally, the power

FIG. 2. The LQC scalar power spectrum for parameter values
ϕB ¼ 1, m ¼ 1.3 × 10−6, and preferred instantaneous vacuum
[46] initial data for perturbations at initial time t ¼ −50000.
The numerically evolved spectrum, shown in gray, is rapidly
oscillatory; its average, shown in black, has an amplitude which is
amplified with respect to the standard predictions of slow-roll
inflation for modes kI≲k≲kLQC but agrees with them otherwise.

7Note that this time is different from the onset of slow roll, ton,
defined previously. Onset of inflation here is defined as the
beginning of the phase of accelerated expansion, at which ϵ
becomes smaller than unity.

8 1
8.9 k⋆=a0 equals the Hubble rate today.

9The behavior of the numerically evolved scalar power
spectrum is highly oscillatory in k; this phenomenon is generi-
cally expected for departures from the standard inflationary
paradigm (see, e.g., Refs. [47–49]). All statements we make
about the power spectrum should be interpreted as referring to its
value after averaging over these high-frequency oscillations,
which are so rapid in k as to be unmeasurable by any realistic
observation.
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spectrum for the longest wavelengths k < kI is largely
suppressed.
For the chosen values ϕB ¼ 1 and m ¼ 1.3 × 10−6, the

LQC scale today kLQC=a0 is around one-third of the pivot
scale k⋆=a0 ¼ 0.002 Mpc−1. Therefore, the CMB would
show some LQC contributions, although only on the largest
angular scales l≲ 15. The scale kI=a0 is approximately
10−5 times k⋆=a0; equivalently, it corresponds to a wave-
length 104 times larger than the Hubble radius today.
To summarize, the LQC corrections to the primordial

spectrum of cosmic perturbations are more pronounced for
low values of k (i.e., long wavelengths). Depending on the
values of the background parameters ϕB and m, it is
possible that LQC corrections begin to appear for the
longest-wavelength modes that we can observe, or only for
wavelengths that are larger than the Hubble radius today
and thus not directly observable. The power spectrum is
further amplified for yet larger super-Hubble wavelengths.
But remarkably, the power does not grow unboundedly for
smaller k; on the contrary, it reaches a maximum around
k ¼ kI and then decreases quite abruptly for lower k values.
The power enhancement of super-Hubble modes in the

range between kI and kLQC is quite interesting, and,
although counterintuitive at first, it may lead to additional
observable effects. This could be the case if strong
correlations between observable and super-Hubble modes
happen to exist, i.e., if there is considerable non-
Gaussianity between these two sets of modes. Under these
circumstances, super-Hubble scales can indeed affect the
observed power spectrum, introducing a modulation super-
imposed on the power spectrum we have shown in Fig. 2.
Such a modulation could help us to understand the origin
of some anomalies discovered by WMAP and confirmed
by Planck at the largest angular scales of the CMB.
The computations of the non-Gaussianity arising as a

consequence of the large power spectrum in super-
Hubble modes, and its effects on large angular scales in
the CMB, has been analyzed in Ref. [50].

III. EXPLORING THE PARAMETER SPACE

The previous section summarized the theoretical frame-
work needed to propagate cosmic perturbations in the early
Universe and to compute the power spectra in LQC for a
specified choice of initial parameters ϕB and m. In this
section, we consider pairs (ϕB, m) throughout the relevant
parameter space defined in Eq. (2.4) and inquire for which
such pairs the resulting power spectra are consistent
with the strict constraints coming from observations.
Then, among this region in the parameter space which is
observationally viable, we additionally identify the subset
of those points which nonetheless incorporate significant
LQC modifications, and we characterize what those mod-
ifications are and how they might be distinguished in future
observations.

A. Observational constraints

Our ultimate goal is to contrast the result of our
computations with observations. To that end, in this
section, we summarize the constraints stemming from
CMB observations that are relevant for our computations.
We will use Planck 2013 results [29] for most of our
analysis. Observational constraints come entirely from
scalar perturbations; for tensor perturbations, we have only
an upper bound on their amplitude, coming from a joint
Planck-BICEP2/Keck Array analysis [51]: rðk⋆Þ < 0.12
(95 % C.L.).

1. Amplitude and spectral index of the
scalar power spectrum

By using a phenomenological parametrization of the
primordial power spectrum given by PRðkÞ¼Asðk=k⋆Þns−1,
the Planck data, in combination with WMAP and BAO,
provide the following values for the best fit of the scalar
amplitude As and spectral index ns [29],

As ¼ ð2.196þ0.053
−0.058Þ × 10−9;

ns ¼ 0.9643� 0.0059; ð3:1Þ
where 1σ uncertainty ranges are indicated.

2. Running of the spectral index

When a running αs ≡ dns=d ln k is included in the

parametrization, PRðkÞ ¼ Asðk=k⋆Þns−1þ
1
2
αs ln

k
k⋆ , the Planck

2013 data produce

αs ¼ −0.0013� 0.009; ð3:2Þ
again displaying a 1σ uncertainty range. This running is
compatible with zero and even a positive value at a 1.5σ

FIG. 3. The LQC tensor power spectrum for parameter values
ϕB ¼ 1, m ¼ 1.3 × 10−6, and preferred instantaneous vacuum
[46] initial data for perturbations at initial time t ¼ −50000. The
numerically evolved spectrum is shown in gray and its average in
black. The qualitative behavior is similar to the scalar spectrum
shown in Fig. 2.
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level. The inclusion of running does not improve signifi-
cantly the maximum likelihood of the parametrization.
The recently released new 2015 Planck data [30] provide

slightly different values for As, ns and αs. The impact this
change produces on our conclusions is negligible.

3. Number of e-folds of inflation

The number of e-foldsN ⋆ between the time tk⋆ at which
the pivot scale k⋆ left the Hubble radius during inflation
and the end of the inflationary era tend is constrained [52].
(Recall that tend is defined here as the time when the slow-
roll parameter ϵ ¼ − _H=H2 reaches the value ϵ ¼ 1 for the
first time after slow roll.) The origin of this constraint is as
follows: The pivot scale k⋆ is, at the present time, 8.9 times
smaller than the Hubble scale, i.e., H0 ¼ 1=8.9 k⋆=a0. On
the other hand, the Hubble exit time of the mode k⋆ during
inflation, tk⋆ , is defined by the relationHðtk⋆Þ¼ k⋆=aðtk⋆Þ.
Therefore, by eliminating k⋆ from these two equations, we
have a relation between quantities at tk⋆ and at the present
time: H0a0 8.9 ¼ Hðtk⋆Þaðtk⋆Þ. From this expression, it is
straightforward to obtain

N ⋆ ≡ ln
aðtendÞ
aðtk⋆Þ

¼ − ln 8.9þ ln
�
aðtendÞ
a0

Hðtk⋆Þ
H0

�
: ð3:3Þ

If we make the extreme assumption that the process of
reheating is instantaneous and nondissipative (meaning all
energy in the inflaton potential is converted into radiation),
then, for the quadratic potential that we use in this paper,
N ⋆ can be estimated as approximately 61. A more realistic
reheating process could both increase and decrease this
quantity; taking into account this uncertainty, we allow the
conservative range

50 < N ⋆ < 70: ð3:4Þ

A different choice for this window will not qualitatively
modify our discussion below. At the quantitative level, it
would translate in a different width of the striped region in
Fig. 4 and therefore a different size of the allowed region in
the parameter space.

B. Constraining the parameter space

In this section, we report the main computational results
of this paper. We have written a numerical code which
systematically computes the scalar and tensor power
spectra for values of ϕB and m in the relevant parameter
space discussed in Sec. II—pairs (ϕB, m) with
0 ≤ mϕB ≤ 0.90—and contrasts the result against obser-
vations. The code is written in Mathematica; it evolves the
mode functions using Mathematica’s native numerical
differential-equation solver, which uses an LSODA

approach, switching between a nonstiff Adams method
and a stiff Gear backward differentiation formula method.
The code was run on the “Philip” high-performance

computer cluster at Louisiana State University, where it
requires approximately 10 processor-hours per point in the
parameter space.
Using the observational constraints spelled out in the

previous subsection, the code classifies pairs (ϕB, m) into
the following three (overlapping) categories: (1) pairs for
which the scalar power spectrum is compatible with Planck
observations for As and ns, (2) the subset of the those points
for which the scalar or tensor power spectra contain
significant LQC contributions, and (3) points for which
the number of e-folds N ⋆ satisfies the constraint spelled
out at the end of previous subsection: 50 < N ⋆ < 70. In
the following, we provide further explanation of each
category and show the results.
For definiteness, the computations in this section are done

using the preferred instantaneous vacuum initial condition
for perturbations imposed at t ¼ −0.2.10 Section IV dis-
cusses the use of other initial conditions and shows that the
results obtained here are unchanged for different reasonable
choices of initial vacuum or initial time.

1. Points (ϕB, m) compatible with Planck observations
for As and ns

Pairs (ϕB, m) belong to this category if the scalar power
spectrum contains at least one value of k for which the

FIG. 4. Regions of the (ϕB, m) parameter space that yield LQC
power spectra meeting various criteria. The thick black outline
demarcates the points (1) consistent with the Planck 2013
observational constraints on the amplitude and tilt of the scalar
power spectrum. The gray region (2) indicates the subset of such
points for which the spectra contain potentially observable LQC
contributions. Finally, the striped region (3) indicates the points
consistent with the constraint on the number of e-folds N ⋆.
Several values at selected points from this figure (indicated by the
black shapes) are given in Table I. Due to prohibitive constraints
on computational resources, the shapes of the regions (1) and
(3) have been extrapolated for the largest shown values of ϕB.

10We use t ¼ −0.2 rather than the bounce t ¼ 0 because the
preferred instantaneous vacuum initial data are not well defined at
the bounce time.
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amplitude and tilt agree with Eq. (3.1) inside their joint
1σ uncertainty region.11 (The uncertainty ranges make it
possible for more than one k to satisfy this condition.)
These k values are candidates for the pivot scale k⋆.
Points in the plane (ϕB, m) satisfying this condition are

in the region of Fig. 4 outlined by the thick black line,
which corresponds to ϕB ≳ 0.8 and 0.9 × 10−6 ≲m≲
1.6 × 10−6. Note that these points cover a small portion
of the theoretically allowed parameter space. However, that
is already the case in the standard inflationary paradigm
without LQC, or more generally in any physical model after
contrasting with observational data.
It may seem surprising at first that it suffices to check the

values of As and ns at the single mode k⋆ to ensure
compatibility with observations. The reason is that, because
the LQC corrections are more important for low k’s, it is
guaranteed that pairs (ϕB, m) with appropriate amplitude
and tilt at k⋆ also show negligible deviation from a power
law for all k > k⋆. Therefore, they are compatible with
Planck observations.

2. Points (ϕB, m) compatible with Planck observations
for As and ns that incorporate significant

corrections from LQC

This category is made of the subset of points from
category 1 which show at least a 10 % contribution from
LQC physics. To more precisely define what “contribution
from LQC-physics” means, it is convenient to write the
scalar power spectrum in terms of the auxiliary power
spectrum defined in Eq. (2.15); then, the amplitude and tilt
can be written as

PRðkÞ ¼ Pð0Þ
R ðkÞjαk þ βkj2;

nsðkÞ − 1 ¼ nð0Þs ðkÞ − 1þ d ln jαk þ βkj2
d ln k

; ð3:5Þ

where Pð0Þ
R ðkÞ was given in Eq. (2.15) and nð0Þs ðkÞ − 1 ¼

−4ϵðηkÞ − 2δðηkÞ. These expressions are very useful
because they neatly codify the contribution of preinfla-
tionary physics into the Bogoliubov coefficients αk and βk,
while the standard inflationary contributions are included in

Pð0Þ
R ðkÞ and nð0Þs ðkÞ. Therefore, we will say that a given

couple (ϕB, m) contains significant contributions from
LQC physics when the αk and βk contributions modify
somewhere (in k-space) the inflationary results by at least
10 %. The factor jαk þ βkj2 can be rewritten, by taking into

account the normalization condition jαkj2 − jβkj2 ¼ 1, as
1þ 2jβkj2 þ 2Refαkβ�kg. We observe in our computations
that the interference term Refαkβ�kg is, for the range of k’s
relevant for this section, highly oscillatory with zero
average. Therefore, we average it out and will say that a
given couple (ϕB, m) contains significant contributions
from LQC physics when

2jβkj2 > 0.1 or
1

nð0Þs ðkÞ − 1

d ln j1þ 2βkj2
d ln k

> 0.1 ð3:6Þ

for some value of k in the observable range.
The pairs (ϕB,m) satisfying this condition appear in gray

in Fig. 4. They are distributed narrowly around a curve
given approximately by ϕB ¼ 1.3 × 10−6=m. For all these
points, the LQC corrections appear for the lowest values
of k.
Table I indicates the values of the tensor-to-scalar ratio r,

tensor spectral index nt, scalar running αs and other
quantities of interest for some points in this category.
We observe that:

(i) The LQC corrections increase for lower values of m
along the curve ϕB ¼ 1.3 × 10−6=m. In previous
analysis [7], it was pointed out that the LQC
corrections decrease for larger values of ϕB when
m is held fixed. This is manifest in Fig. 4 where, for
any given value ofm in the range ð0.96; 1.6Þ × 10−6,
LQC corrections weaken when we move vertically
upward in the figure (becoming negligible once out
of the gray region). When the freedom in m is
included, our results indicate that LQC corrections
increase rapidly for lower values of m, more than
compensating for the effect of increasing ϕB,
when we approximately follow the curve ϕB ¼
1.3 × 10−6=m toward smaller m.

(ii) The trend of the LQC corrections is to make nt more
negative, and to increase αs. This can be understood
by simple inspection of Figs. 2 and 3, where the
corrections increase for lower k, therefore making
the spectral index more negative and increasing its
running.

(iii) LQC corrections decrease both the value of the
slow-roll parameter and the Hubble rate at the time
the reference mode k⋆ exited the Hubble radius
during inflation. The reason these values are modi-
fied is as follows. The scalar amplitude As and
spectral index ns—the values of which are fixed, up
to error bars, by the observational constraints of
Eq. (3.1)—are given in LQC by12

11Note that the 1σ region in the (As, ns) plane is not simply the
Cartesian product of the individual 1σ regions given in Eq. (3.1)
for As and ns. Rather, we model Planck’s measured values for the
magnitudes and uncertainties of As and ns as following skew-
normal and normal, respectively, distributions, and find the
(roughly elliptical) contour in the (As, ns) plane for which the
joint probability is no greater than 1σ.

12See Eqs. (3.5). The latter of these equations has been
particularized here for the quadratic potential discussed in this
paper; however, the same argument holds for other forms of
VðϕÞ.
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As ≡ PRðk⋆Þ ¼ ℏ
4πG
ϵðηk⋆Þ

�
Hðηk⋆Þ
2π

�
2

jαk⋆ þ βk⋆ j2

ð3:7Þ

and

nsðk⋆Þ ¼ 1 − 4ϵðηk⋆Þ þ
d ln jαk þ βkj2

d ln k

����
k¼k⋆

: ð3:8Þ

In standard inflation with vacuum initial conditions,
the last term in Eq. (3.8) vanishes, while it is
negative in LQC; to maintain the observationally
mandated value of ns, the value of ϵðηk⋆Þ must be
smaller than in standard inflation. Then, since
jαk þ βkj2 ≥ 1, Eq. (3.7) implies that LQC correc-
tions make Hðηk⋆Þ smaller as well.
As a consequence of the decreased value of

Hðηk⋆Þ in LQC, the energy scale of inflation at
the time observable perturbations were generated is
reduced.

(iv) LQC corrections tend to decrease r. As pointed out
in Ref. [7], the tensor-to-scalar ratio in LQC is

rðkÞ ¼ 2PT

PR
¼ 16ϵðηkÞ

jαTk þ βTk j2
jαk þ βkj2

≈ 16ϵðηkÞ; ð3:9Þ

where we have made use of Eqs. (2.14) and (2.18)
and in the last equality we have used the fact that the
Bogoliubov coefficients for scalar and tensor per-
turbations are very similar. This expression looks
exactly the same as the result that one would obtain
in standard inflation with Bunch-Davies vacuum
initial conditions (i.e., without LQC corrections).
But we noted above that the corrections decrease the
value of ϵðηk⋆Þ; thus, they in turn decrease the
predicted value of rðk⋆Þ.
Therefore, LQC helps to alleviate the observa-

tional constraint on the m2ϕ2 potential. However,
when all observational constraints are imposed, the
corrections on r are small, and this potential still
remains close to the border of the 95 % C.L. region
[51]. We will have to wait to polarization to know if
the m2ϕ2 potential is definitively ruled out. But we

emphasize that even if that turns out to be the case,
the results of this paper will remain valid for other
potentials (e.g., see Refs. [32,33] for the detailed
analysis of the Starobinsky potential in LQC).

(v) The ratio r=nt can depart from the standard con-
sistency relation of inflation r=nt ¼ −8; the ten-
dency is for this ratio to become less negative with
decreasing m (see Table I). More precisely, in LQC,
the consistency relation becomes [7]

r ¼ −8nt þ
d lnð1þ 2jβTk j2Þ

d ln k
: ð3:10Þ

The extra term
d lnð1þ2jβTk j2Þ

d ln k is negative in LQC,
therefore adding a positive term to the ratio r=nt
(recall nt is negative).

3. Points (ϕB, m) compatible with constraint on N ⋆

In this category, we add the conditions on the number of
e-folds to the points in category 1. As described previously
in Sec. III A, consistency with the present size of k⋆=a0
requires k⋆ to have exited the Hubble radius between 50
and 70 e-folds before the end of inflation, 50 < N ⋆ < 70.
As explained above, imposing that the amplitude and tilt
fall within the joint 1σ region observed by Planck provides
a range of candidate values of k⋆ at each point in category
1. We have marked with stripes in Fig. 4 the region of
points for which at least one of these candidates for k⋆ also
satisfies the constraint on N ⋆.

IV. INITIAL CONDITIONS
FOR PERTURBATIONS

To compute the power spectrum, in addition to speci-
fying the background parameters ϕB and m, one also needs
to provide initial conditions for perturbations. This is done
by specifying the quantum state of perturbations at some
instant of time, at least for the Fourier modes of observa-
tional interest. At the practical level, as explained in Sec. II,
this is achieved by providing initial data for the modes
functions qkðηÞ and ekðηÞ of scalar and tensor modes,
respectively, for the values of kwe are interested in. As also
discussed in that section, in a generic FLRW spacetime,
there is no preferred or canonical choice for these initial

TABLE I. Values of the tensor-to-scalar ratio r, the tensor spectral index nt, the quotient r=nt appearing in the consistency relation, the
running of the scalar spectral index αs, the value of the Hubble rate H and the slow-roll parameter ϵ at ηk⋆ for various points (m, ϕB)
selected from the parameter space. The symbols appearing at the left of the table correspond to the symbols in Fig. 4 above.

m ϕB k⋆ rðk⋆Þ ntðk⋆Þ r=nt αsðk⋆Þ Hðηk⋆Þ ϵðηk⋆Þ
▾ 0.63 × 10−6 2.12 8.3 0.07 −0.035 −2.0 2.5 × 10−3 5.49 × 10−6 0.0044
• 0.96 × 10−6 1.37 10.7 0.11 −0.018 −6.0 3.3 × 10−4 6.70 × 10−6 0.0068
▪ 1.06 × 10−6 1.22 10.4 0.12 −0.021 −5.8 4.3 × 10−4 7.03 × 10−6 0.0075
✶ 1.28 × 10−6 1.00 16.0 0.14 −0.018 −7.9 2.9 × 10−6 7.81 × 10−6 0.0089
⧫ 1.51 × 10−6 0.79 15.0 0.17 −0.021 −7.9 8.2 × 10−6 8.46 × 10−6 0.0106
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data. The first choice one needs to make is when to specify
initial data. Two natural times to impose “vacuum” initial
conditions are the bounce and the far past (see Sec. III C of
Ref. [7] for physical arguments in favor of imposing
vacuum initial conditions at the bounce in LQC, and
see, e.g., Refs. [10,19] for references where initial con-
ditions in the past are favored). But even after a choice of
initial time is made, there is still the ambiguity of which
vacuum we choose. In this section, we analyze the
sensitivity of the observable predictions described in
Sec. III to different choices. The conclusion will be that
different reasonable choices of adiabatic vacua, imposed at
the bounce or at some time prior, all produce very similar
results for observable modes. Thus, the main conclusions of
Sec. III are robust.

A. Sensitivity to the choice of vacuum initial
conditions at a given time

We have explored the sensitivity of observable quan-
tities (power spectra and spectral indices) to different
choices of the vacuum state. At the time of the bounce, our
analysis reduces to the one in Ref. [7], and our con-
clusions are the same: Observable quantities are quite
insensitive to the particular choice of vacuum at the
bounce time. We therefore refer the reader to Ref. [7]
for further details. It is important—although perhaps
obvious—to emphasize that these conclusions cannot be
extrapolated to any vacuum state one can write. An
arbitrary Bogoliubov transformation of a given adiabatic
vacuum, with appropriate fall-off conditions as k → ∞, is
also a legitimate vacuum. Then, by choosing Bogoliubov
coefficients βk appropriately, one can modify the
observable quantities arbitrarily much. Our conclusions,
as those in Ref. [7], are therefore restricted to the small set
of states we have explored, which have been selected by
demanding extra physical conditions that make those
states reasonable candidates for the ground state (see, e.g.,
Ref. [46]).
We have extended the analysis in Ref. [7] to times before

the bounce, obtaining similar conclusions. As an example,
Fig. 5 shows the scalar power spectrum for two states
defined at 50000 Planck seconds before the bounce,
namely the preferred instantaneous vacuum introduced in
Ref. [46] and the state with Minkowski-vacuum-like13

initial data at that time. At times sufficiently before the
bounce, all observable modes had physical momentumwell
above the spacetime curvature scale (i.e., the observable
modes were well inside the curvature radius). In that limit,

all vacua of at least second adiabatic order differ only by

terms of order RðηÞ
ðk=aðηÞÞ2, where RðηÞ is the Ricci scalar.

Therefore, in that regime, different choices of adiabatic
vacua all produce a very similar result. In the extreme
limit η → −∞, there is a preferred notion of the ground
state: the Minkowski vacuum—or the Bunch-Davies vac-
uum if a positive cosmological constant is included in
the model.

B. Sensitivity to the choice of time at which
vacuum initial conditions are imposed

We have also explored the extent to which observable
quantities are affected by imposing the same notion of
vacuum initial data for perturbations at different times.
Again, we find that predictions are quite insensitive to the
specific time chosen for observable modes. However, we
also observe that the power spectrum for modes with
smaller wave number k (longer wavelength), which
today are super-Hubble, are significantly affected. Our
result are illustrated in Fig. 6, which shows the scalar power
spectra for ϕB ¼ 1 and m ¼ 1.3 × 10−6 arising from
Minkowski-like initial conditions at different times. The
figure shows that the power spectrum for modes k with
small ratio k=k⋆ changes significantly when initial data are
specified at different times. However, the power spectrum is
unchanged for modes with k=k⋆ ≳ 1. The physical reason
is that modes with low k exit the curvature radius well
before the bounce and consequently their prebounce
evolution is significantly affected by the spacetime curva-
ture. On the contrary, modes with k=k⋆ ∼ 1 only “feel” the
spacetime curvature very close to the bounce time, and
therefore their power spectrum is insensitive to which
time we choose to specify initial data in the contracting
phase.

FIG. 5. Averaged LQC scalar power spectrum for two different
choices of initial data for perturbations specified at 50000 Planck
seconds before the bounce. The two spectra are nearly indis-
tinguishable for observable modes. The background parameters
used for both spectra in the figure are m ¼ 1.3 × 10−6 and
ϕB ¼ 1.

13This state has initial data at η ¼ η0 given by qkðη0Þ ¼
1=½aðη0Þ

ffiffiffiffiffi
2k

p � and q0kðη0Þ ¼ −ikqkðη0Þ for all k. Strictly speak-
ing, the resulting state is not adiabatic (it is only zeroth-order
adiabatic). However, one can modify these initial data for values
of k much larger than the largest k we can observe in order to
make the resulting state fourth-order adiabatic; observable
quantities are unaffected by this process of “adiabatization.”
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V. CONCLUSIONS

In this work, we have used observational data to
constrain the parameter space of the phenomenological
sector of loop quantum cosmology, and we have provided a
detailed analysis of the shape of quantum gravitational
corrections to observable quantities along this parameter
space. We have emphasized that the freedoms in the value
of the parameters appearing in the inflaton potential VðϕÞ
are not fixed by observations alone and must be included in

the parameter space. The computations presented here
require the use of high-performance computing. It is our
view that this is a necessary task to have full control of the
phenomenologically allowed range of parameters and the
predictions of the model thereon. We expect our results to
be particularly useful for contrasting the theory with the
forthcoming data on CMB polarization as well as to extend
the phenomenological explorations in LQC beyond the
power spectrum—as for instance in the computations of
non-Gaussianity [50].
We find particularly remarkable the tight constraints that

current observations impose on the parameter space of
quantum gravity. When thinking of quantum gravity
corrections to observable quantities, one tends to imagine
minuscule contributions, hence leaving large freedom for
speculation without conflicting with observations. Our
analysis shows that this is far from the case. On the
contrary, we have seen that observations strongly constrain
the potential effects of quantum gravity. This is more
clearly illustrated in Fig. 4, where LQC corrections are
constrained to a tiny subset of points, distributed in an
almost one-dimensional strip, across the theoretically
allowed parameter space.
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