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This work was mainly driven by the desire to explore to what extent embedding some given geometry in
a higher dimensional flat one is useful for understanding the causal structure of classical fields traveling in
the former, in terms of that in the latter. We point out, in the four-dimensional (4D) spatially flat Friedmann-
Lemaître-Robertson-Walker universe, that the causal structure of transverse-traceless (TT) gravitational
waves can be elucidated by first reducing the problem to a two-dimensional (2D) Minkowski wave
equation with a time-dependent potential, where the relevant Green’s function is a pure tail—waves
produced by a physical source propagate strictly within the null cone. By viewing this 2D world as
embedded in a 4D one, the 2D Green’s function can also be seen to be sourced by a cylindrically symmetric
scalar field in three dimensions (3D). From both the 2D wave equation and the 3D scalar perspective, we
recover the exact solution of the 4D graviton tail for the case where the scale factor written in conformal
time is a power law. There are no TT gravitational-wave tails when the universe is radiation dominated
because the background Ricci scalar is zero. In a matter-dominated one, we estimate the amplitude of the
tail to be suppressed relative to its null counterpart by both the ratio of the duration of the (isolated) source
to the age of the universe η0 and the ratio of the observer-source spatial distance (at the observer’s time) to
the same η0. In a universe driven primarily by a cosmological constant, the tail contribution to the
background geometry a½η�2ημν after the source has ceased is the conformal factor a2 times a spacetime-
constant symmetric matrix proportional to the spacetime volume integral of the TT part of the source’s
stress-energy-momentum tensor. In other words, massless spin-2 gravitational waves exhibit a tail-induced
memory effect in 4D de Sitter spacetime.
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I. MOTIVATION AND INTRODUCTION

The geometry of our Universe appears to be well
described by Einstein’s equations with a cosmological
constant Λ ¼ 3H2,

Gμ
ν − Λδμν ¼ 8πGNTμ

ν: ð1Þ

At zeroth order and at very large scales, Tμ
ν ¼ T̄μ

ν contains
an isotropic and homogeneous background matter-energy
distribution that drives the evolution of a four-dimensional
(4D) spatially flat Friedmann-Lemaître-Robertson-Walker
(FLRW) geometry parametrized by conformal time η and
three spatial coordinates ~x, i.e.,

ḡμν½η�≡ a½η�2ημν; diag½1;−1;−1;−1�: ð2Þ

At first order, Tμ
ν ¼ T̄μ

ν þ δTμ
ν also includes the inho-

mogeneous matter perturbations δTμ
ν necessary to describe

the finer structure present in the universe—clumping of
dark matter, for instance—once cosmologists try to probe it
at smaller scales and higher resolution. These perturbations
will also produce inhomogeneities in the metric, so now

gμν½η; ~x� ¼ a½η�2ðημν þ hμν½η; ~x�Þ: ð3Þ

It is possible to perform a scalar-vector-tensor decompo-
sition of both the matter δTα

β and metric hαβ fluctuations,
such that at linear order in these fields, Eq. (1) would yield
separate partial differential equations (PDEs) for each of
the perturbations transforming differently under the rota-
tion group SO3, an isometry group of the background 4D
FLRW geometry in Eq. (2).1

This paper is specifically about understanding the
causal structure of the transverse-traceless (TT) metric
perturbations

hμνdxμdxν ¼ Dijdxidxj;

with δijDij ¼ δij∂iDjk ¼ 0. The Dij, describing gravita-
tional radiation capable of carrying energy-momentum to
infinity, is governed by

□̄Dij ¼ 16πGNΠ
ðTÞ
ij ; ð4Þ

1For a detailed and pedagogical treatment of cosmological
perturbation theory, see, for example, Chapter 5 of Weinberg’s
cosmology textbook [1].
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with ΠðTÞ
ij denoting the part of δTi

j that is subject to the TT

constraints, δijΠðTÞ
ij ¼ δij∂iΠ

ðTÞ
jk ¼ 0.2 Now, the □̄ in

Eq. (4) is the scalar one, i.e.,

□̄Dij ¼
1ffiffiffiffiffijḡjp ∂μð

ffiffiffiffiffi
jḡj

p
ḡμν∂νDijÞ; ð5Þ

where
ffiffiffiffiffijḡjp ¼ a4, so that the contribution to the deviation

from Eq. (2) due to the presence of ΠðTÞ
ij is given by

Dij½η; ~x� ¼ 16πGN

Z
dη0

Z
R3

d3~x0a½η0�4

×Gþ
4 ½η; ~x; η0; ~x0�ΠðTÞ

ij ½η0; ~x0�; ð6Þ

with the retarded Gþ
4 obeying

□̄η;~xG
þ
4 ½η; ~x; η0; ~x0� ¼ □̄η0;~x0G

þ
4 ½η; ~x; η0; ~x0�

¼ δ½η − η0�δð3Þ½~x − ~x0�
a½η�2a½η0�2 : ð7Þ

We see that the study of the causal structure of TT
gravitational waves (GWs) propagating in our Universe
is the same as that of a minimally coupled massless scalar
field. By causal structure, we are referring to the fact that, in
a curved spacetime, particles that are otherwise massless in
four-dimensional (4D) Minkowski spacetime no longer
travel strictly on the null cone—they travel both on and
within it. (The part of the field traveling inside the light
cone is usually called the “tail.”) While this is known, in
principle [2], a thorough understanding of the causal
structure of waves propagating in physically important
geometries is lacking, particularly in black hole spacetimes.
The black hole case is not only a rich problem because
caustics can form from the focusing of null geodesics—
indicating the causal structure of the Green’s functions in
Kerr spacetime will likely be highly nontrivial—but under-
standing it has become fundamental to a successful
prediction of GW signatures from extreme-mass-
ratio-inspiral systems.3

In cosmology, photons and gravitons are assumed to
follow null geodesics, and this is usually justified via
Jeffreys-Wentzel-Kramers-Brillouin arguments. If the uni-
verse is perfectly homogeneous and isotropic, this actually
is an exact statement for electromagnetic fields because of
the conformal symmetry enjoyed by the 4D Maxwell
action. However, as we see explicitly below, while light
requires the inclusion of inhomogeneities in Eq. (3) to

develop tails [8], GWs already do so in the 4D spatially flat
FLRW background geometry of Eq. (2)—except during
radiation domination. Moreover, current and future gen-
eration GW detectors have the potential to listen in on
sources at cosmological distances. One may wonder if the
tail part of such GW signals can thus acquire additional
properties during their propagation, as a result of their
interaction with the geometry of the expanding universe,
such that they can in turn be used to tell us something about
the history of cosmic evolution. The estimates made later in
the paper inform us that, unfortunately, this is unlikely; i.e.,
the dominant effect of cosmic evolution on Dij is that its
waves propagate at unit speed and redshift as 1=a½η�.
Nonetheless, we remark that the computation of GW
signals from astrophysical sources, such as inspiraling
compact binary systems, is usually performed with asymp-
totically Minkowskian boundary conditions. A treatment of
how GWs from astrophysical systems propagate over such
cosmological distances would presumably have to involve
drawing a correspondence between the stress-energy-

momentum ΠðTÞ
ij ½η; ~x� in Eq. (6) and its counterpart in

the post-Minkowskian or Newtonian treatment, by
demanding that the far-field asymptotic predictions of
the latter coincide with the near or intermediate zones of
the former in Eq. (6).
One of the key technical goals of this paper is to continue

the investigation initiated in [9] and [10] to see if embed-
ding the relevant geometry in some appropriate higher
dimensional Minkowski spacetime will aid in understand-
ing the causal structure of waves in the former since the
Green’s functions encoding causal structure information
are known explicitly in the latter in all dimensions greater
than or equal to 2. In the current cosmological context, we
find it useful to exploit the spatial translation and rotation
symmetries of the 4D FLRW geometry in Eq. (2), as well as
to perform a conformal rescaling of the massless scalar/
graviton Dij, to first reduce the problem to a 2D one. Next,
we show how this allows us to cleanly separate the part of
Dij that transmits signals on the light cone from its tail part.
In particular, the light-cone term of its Green’s function—
the “direct” part, as it is usually known in the gravitational
physics literature—is completely determined by the flat 4D
Minkowski counterpart modulated by the conformal rescal-
ing 1=ða½η�a½η0�Þ, where η and η0 are the observation and
emission time, respectively. The tail part of Dij is what
carries physical information about how the graviton inter-
acts with the background spacetime.
In this paper, for technical convenience, we mostly deal

with symmetric—retarded plus advanced—Green’s func-
tions.4 Because the retarded or advanced Green’s functions

2These TT requirements provide four equations, reducing the
six components of the symmetric Dij and of ΠðTÞ

ij down to two
independent ones.

3See [3–7] for a sample of recent work related to Green’s
functions in Kerr or Schwarzschild spacetimes.

4Retarded Green’s functions will be labeled with a þ super-
script and are the symmetric counterpart multiplied by Θ½η − η0�;
moreover, throughout this paper, Θ½…� is the Heaviside step
function and δ½…� is the Dirac delta function.
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are usually normalized so that they can be sourced by some
appropriately defined unit strength spacetime point source,
the corresponding PDE for the symmetric Green’s function
G½y; y0� is the field observed at yμ ≡ ðη; ~xÞ sourced by a
spacetime point source at y0μ ≡ ðη0; ~x0Þ of amplitude 2.
Specifically, the symmetric Green’s function G4½y; y0�
equation for Dij obeys

□̄yG4½y; y0� ¼ □̄y0G4½y; y0� ¼ 2
δ½η − η0�δð3Þ½~x − ~x0�

a½η�2a½η0�2 : ð8Þ

We will define [11,12]

G4½x; x0�≡ Ĝ4½x; x0�
a½η�a½η0� ; ð9Þ

which will then lead to the following 4D Minkowski wave
equation with a time-dependent potential:

ð∂2
η − δij∂i∂j þ U½η�ÞĜ4 ¼ ð∂2

η0 − δij∂i0∂j0 þ U½η0�ÞĜ4

¼ 2δ½η − η0�δð3Þ½~x − ~x0�; ð10Þ

with

U½η� ¼ −
ä½η�
a½η�≡ −a−1

d2a
dη2

: ð11Þ

For reference, the Ricci scalar R̄ of the 4D spatially flat
FLRW universe in Eq. (2) is proportional to this potential
U: ða2=6ÞR̄ ¼ −ä=a.
In Sec. II, we begin by explaining why any Green’s

function equation of the form in Eq. (10), with a space-
independent but otherwise arbitrary potential—not neces-
sarily arising from a cosmological context—can be reduced
to a 2D one. We then use this 2D → 4D prescription to
cleanly split the “direct” part of the cosmological Green’s
function from its tail from the outset. In both 2D and 4D,
the relevant wave equations and the light-cone boundary
conditions obeyed by the tail functions will be discussed.
We apply what we have learned to solve for the TT-GW
Green’s function in a power-law cosmology, and use this
solution to estimate the size of the tail effect in a radiation,
matter, and cosmological constant dominated universe. In
Sec. III, we offer a different perspective on this 2D wave
equation with a potential by showing how embedding this
2D world in a 4D flat one allows us to see that the 2D
Green’s function can be sourced by a 3D scalar field. We
summarize our findings in Sec. IV. A significant portion of
the analysis in Secs. II and III is based on Appendix A.
There, we discuss the causal structure of the Green’s
function associated with a flat spacetime 2D wave equation
with an arbitrary potential. We do so directly in 2D and also
by embedding the 2D world in a flat 4D one. An infinite
Born series solution is derived for the retarded 2D reduced

Green’s function Ĝþ
2 and for its tail function. We also work

out the light-cone boundary conditions obeyed by the first
derivatives of this tail function. In Appendix B, we use
position-space methods to argue that the symmetric Green’s
function of the 2DMinkowski wave operator ∂2 is given by
1=2 everywhere within the light cone of its source and zero
outside of the null cone.

II. 4D CAUSAL STRUCTURE FROM 2D

We begin by explaining why any Green’s function Ĝ4 in
4D that reflects the spatial translation and rotational
symmetries of its background geometry may be reduced
to a 2D problem. Such a high degree of symmetry means
both Green’s functions ought to depend on the spatial
locations of the observers and sources through the
Euclidean distances between them. Let us denote x1 ≡ x,
x01 ≡ x0, ~x⊥ ≡ ð0; x2; x3Þ and ~x0⊥ ≡ ð0; x02; x03Þ. Next, we
consider

Ĝ2½η;η0;R�≡
Z
R2

d2~x0⊥Ĝ4

h
η;η0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx− x0Þ2 þ ð~x⊥ − ~x0⊥Þ2

q i
:

ð12Þ

In what follows, it will be useful to work in terms of the
symbol R. If it occurs within a 2D object, it is R≡ jx − x0j;
if it occurs in a 4D object, then it is R≡ j~x − ~x0j.
Similar remarks apply to Synge’s world function σ̄y;y0 ¼
ð1=2Þðy − y0Þ2, which is half the square of the geodesic
distance between the observer at y and the spacetime point
source at y0 in flat spacetime. By switching to cylindrical
coordinates r⊥ ≡ j~x⊥j, followed by ρ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx − x0Þ2 þ r2⊥
p

,
Eq. (12) then reads

Ĝ2½η; η0;R� ¼ 2π

Z
∞

R
dρρĜ4½η; η0; ρ�: ð13Þ

Differentiating both sides with respect to R then tells us Ĝ4

does indeed follow from Ĝ2
5:

Ĝ4½η; η0;R� ¼ −
1

2πR
∂Ĝ2½η; η0;R�

∂R : ð14Þ

The 2D Green’s function, in turn, obeys the 2D analog of
Eq. (10),

ð∂2
η − ∂2

x þ U½η�ÞĜ2 ¼ ð∂2
η0 − ∂2

x0 þU½η0�ÞĜ2

¼ 2δ½η − η0�δ½x − x0�: ð15Þ

5This result, when applied to Minkowski Green’s functions, is
why there exists a recursion relation allowing one to construct all
even dimensional ones from the 2D case and the odd ones from
the 3D result; see [13] for a pedagogical discussion.
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To see this, we applyW2 ≡ ∂2
η − ∂2

x þU½η� to both sides of
Eq. (12). Interchanging the differentiation and integration
on the right-hand side, and then adding and subtracting the

Euclidean Laplacian ~∇2
⊥ ≡ ∂2

2 þ ∂2
3 with respect to ~x⊥, and

finally invoking Eq. (10) obeyed by Ĝ4, we have

ð∂2
η − ∂2

x þ U½η�ÞĜ2½η; η0;R�
¼ 2δ½η − η0�δ½x − x0�

þ
Z
R2

d2~x⊥ ~∇2
⊥Ĝ4

h
η; η0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ~x2⊥

q i
: ð16Þ

We recognize the remaining integral on the right-hand side
of Eq. (16) to be a surface term at spatial infinity. As long as
the Ĝ4 respects causality, then this surface term must be
zero because the source and observer, for fixed times and x,
x0, must lie outside each other’s light cone as j~x⊥j → ∞.
[Similar manipulations hold for the equation with respect
to ðη0; x0Þ.]
Because of the primary role played by the 2D wave

equation (15), in Appendix A we study its properties for a
general potential U½ξμ2 ≡ ðη; xÞ�—the reader can refer to
this appendix before returning to the main body of this
paper. Here, we will summarize the main results but
specialize to the case where U depends only on the
conformal time η. The solution to Eq. (15) takes the
general pure tail form

Ĝ2½η; x; η0; x0� ¼
1

2
Θ½σ̄�J½η; η0; R�; ð17Þ

where J itself obeys the homogeneous 2D wave equation

ð∂2
η − ∂2

x þ U½η�ÞJ ¼ ð∂2
η0 − ∂2

x0 þ U½η0�ÞJ ¼ 0; ð18Þ

and the light-cone boundary condition J½σ̄ ¼ 0� ¼ 1. These
facts, together with −ð1=RÞ∂R ¼ ∂=∂σ̄ and Eq. (14),
immediately imply the 4D reduced Green’s function itself
takes the form

Ĝ4 ¼ Ḡ4½σ̄� þ
Θ½σ̄�
4π

∂J½η; η0; σ̄�
∂σ̄ ; ð19Þ

where Ḡ4½σ̄� is the 4D minimally coupled massless scalar
symmetric Green’s function,

Ḡ4½σ̄� ¼
δ½σ̄�
4π

: ð20Þ

Without solving any PDEs, we have managed to isolate the
light-cone part of Ĝ4 from its tail. Note that, because 4D
FLRW cosmology a2ημν is conformally flat, its light cone is
the Minkowskian one σ̄ ¼ 0. Witness, too, that the 4D tail
term ∂J=∂σ̄ in Eq. (19) is entirely determined by the
homogeneous solution to the 2D wave equation.

Because it may be useful for 4D cosmology, we record
here the analogous homogeneous equations for the 4D
graviton tail in terms of η, η0 and σ̄ treated as independent
variables.

∂ηð2ðη − η0Þ∂ σ̄J0Þ þ ∂ σ̄ð2σ̄∂ σ̄J0Þ þ ð∂2
η þU½η�ÞJ0 ¼ 0;

∂η0 ð2ðη0 − ηÞ∂ σ̄J0Þ þ ∂ σ̄ð2σ̄∂ σ̄J0Þ þ ð∂2
η0 þ U½η0�ÞJ0 ¼ 0:

ð21Þ

In Eq. (21) and the following paragraphs, _J ≡ ∂ηJ and
J0 ≡ ∂ σ̄J. As one may expect, evaluating σ̄ ¼
ð1=2Þððη − ηÞ02 − ðx − x0Þ2 − ð~x⊥ − ~x0⊥Þ2Þ, we find that
Eq. (21) is simply the homogeneous version of the
4D wave equation for the reduced Green’s function
[Eq. (10)],

ð∂2
η − δij∂i∂j þ U½η�ÞJ0 ¼ ð∂2

η0 − δij∂i0∂j0 þ U½η0�ÞJ0
¼ 0: ð22Þ

The light-cone boundary condition for J0 with an arbitrary
but space-independent potential U½η� is
�∂J½η; η0; σ̄ ¼ 0�

∂σ̄
�

η;η0
¼ −

1

2ðη − η0Þ
Z

η

η0
dη00U½η00�: ð23Þ

In a 4D spatially flat cosmology, U ¼ −ä=a and hence
Eq. (23) yields

�∂J½η; η0; σ̄ ¼ 0�
∂σ̄

�
η;η0

¼ 1

2ðη − η0Þ
Z

η

η0
dη00

ä½η00�
a½η00� : ð24Þ

In terms ofW2J ≡ ð∂2
η − ∂2

R þUÞJ, Eq. (21) follows from
Eq. (A3) and

0 ¼ ∂ σ̄W2J ¼ ðW2 þ 2∂ σ̄ÞJ0: ð25Þ

As for the boundary conditions in Eq. (23), it is convenient
to use the light-cone coordinates ξ� ≡ η� R and ξ0� ≡ η0,
so that η ¼ ðξþ þ ξ−Þ=2 and σ̄ ¼ ð1=2Þðξþ − η0Þðξ− − η0Þ.
This in turn implies

∂�J ¼ 1

2
_J þ 1

2
ðξ∓ − η0ÞJ0: ð26Þ

We now consider the light-cone limit σ̄ ¼ 0 by setting
ξ� → η0. Because J½η; η0; σ̄ ¼ 0� ¼ 1 for all times, we
must have _J½σ̄ ¼ 0� ¼ 0. Applying Eqs. (A26) and
(A27) to Eq. (26), and recognizing η00 ¼ ðξ00þ þ ξ00−Þ=2,
we obtain
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�
ξ∓ þ η0

2
− η0

�
J0½η; η0; σ̄ ¼ 0� ¼ −

1

2

Z ðξ∓þη0Þ=2

η0
dη00U½η00�:

ð27Þ

The ξ∓ are arbitrary at this point, but we would like results
expressed solely in terms of η and η0, so we may put
ξ� þ η0 → 2η and thereby verify Eq. (23).
When we insert Eqs. (19) and (9) into Eq. (6), we

learn that a physical source in any spatially flat FLRW
universe produces a null GW front that takes a universal
form:

DðγÞ
ij ½η; ~x� ¼ 4GN

Z
R3

d3~x0a½ηr�3
ΠðTÞ

ij ½ηr; ~x0�
a½η�j~x − ~x0j ; ð28Þ

where ηr ≡ η − j~x − ~x0j is the retarded time. If the source is

isolated, we may define ~x0 ¼ ~0 to be in its interior. Then,
in the far-field limit—specifically, whenever j~xj is
much larger than the spatial extent of the source—we
may deduce that this null portion of the GW detected at
ðη; ~xÞ is, roughly speaking, the spatial total of the
stress-momentum of the source at retarded time, modulated
by the inverse physical distance between the observer and
source:

DðγÞ
ij ½η; ~x�≈

4GN

a½η�j~xj
Z
R3

d3~x0a½η− j~xj�3ΠðTÞ
ij ½η− j~xj; ~x0�: ð29Þ

Unlike its direct part, the knowledge of the tail ∂J=∂σ̄
requires solving its full wave equation. Hence, it is the
part of the GW moving slower than unit speed that
actually encodes information regarding how these massless
spin-2 particles interact with the background geometry
of Eq. (2).
We now solve the GW tail in a power-law cosmology.

A. Power-law cosmology

A scale factor that is a power law in conformal time,

a½η� ¼
�
η

η0

�
p
; ð30Þ

can be used to approximate the major epochs in cosmology
—inflation/dark energy/de Sitter (p ¼ −1), radiation
(p ¼ 1) and matter domination (p ¼ 2). This means
U ¼ −ä=a becomes

U½η� ¼ −
pðp − 1Þ

η2
; ð31Þ

and the corresponding 2D wave equation for J in Eq. (18)
can be reduced to an ordinary differential equation. (We

attribute this realization to Nariai [14].) Let J depend on
spacetime solely through the combination s≡ σ̄=ðηη0Þ.
Then Eq. (18) becomes

1

η2
fsðsþ2ÞJ00½s�þ2ðsþ1ÞJ0½s�−ðp−1ÞpJ½s�g¼0: ð32Þ

The regular solution obeying the light-cone boundary
condition J½σ̄ ¼ s ¼ 0� ¼ 1 reads

J½s� ¼ P−p½sþ 1�
¼ Pp−1½sþ 1�
¼ 2F1

h
1 − p; p; 1;−

s
2

i
; s≡ σ̄

ηη0
: ð33Þ

We have provided, for reference, two equivalent ways of
expressing the Legendre function Pν, as well as its hyper-
geometric function 2F1 representation; see the μ ¼ 0 limit
of Eqs. 8.702 and 8.704 in Ref. [15]. The symmetric
Green’s function Ĝ2 obeying

�
∂2
η − ∂2

x −
pðp − 1Þ

η2

�
Ĝ2½η; x; η0; x0�

¼
�
∂2
η0 − ∂2

x0 −
pðp − 1Þ

η02

�
Ĝ2½η; x; η0; x0�

¼ 2δ½η − η0�δ½x − x0� ð34Þ

is

Ĝ2½η; x; η; x0� ¼
1

2
Θ½σ̄�P−p

�
1þ σ̄

ηη0

�

¼ 1

2
Θ½σ̄�2F1

�
1 − p; p; 1;−

σ̄

2ηη0

�
; ð35Þ

with σ̄ ≡ fðη − η0Þ2 − ðx − x0Þ2g=2. At this point, putting
the conformal rescaling back [Eq. (9)], we have (re)derived
the 4D symmetric Green’s function of the minimally
coupled massless scalar—and, therefore, also that of
the transverse-traceless graviton [obeying Eq. (8)]—in a
spatially flat FLRW background power-law universe
[Eq. (30)]:

G4½η;η0;R� ¼
1

4πa½η�a½η0�
�
δ½σ̄� þΘ½σ̄�P−p

0½1þ σ̄=ðηη0Þ�
ηη0

�
;

¼ 1

4πa½η�a½η0�
�
δ½σ̄� þΘ½σ̄�pðp− 1Þ

2ηη0

× 2F1

�
2−p;pþ 1;2;−

σ̄

2ηη0

��
; ð36Þ

where the prime on the Legendre function denotes the
derivative with respect to its argument, and here
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σ̄ ≡ ð1=2Þððη − η0Þ2 − ð~x − ~x0Þ2Þ.6 For ease of comparison
to Nariai’s results in Eq. (3.5) of [14], we also display the
solution in terms of 2F1.

7 One can check that, since

2F1½α; β; γ; 0� ¼ 1, the tail portion of the solution in
Eq. (36) satisfies the light-cone boundary condition in
Eq. (24):

∂J½η; η0; σ̄ ¼ 0�
∂σ̄ ¼ pðp − 1Þ

2ηη0
: ð37Þ

B. Radiation domination

The second line of Eq. (36) makes manifest the fact that
there are no GW tails in a radiation dominated (p ¼ 1)
universe. Mathematically, this can be understood from U in
Eq. (31) being zero, and therefore Ĝ2 ¼ Θ½σ̄�=2. One may
also recall that, if the radiation were primarily photons,
because the Maxwell action is conformally invariant in 4D,
the trace of its stress-energy-momentum tensor is zero—
and so is the background Ricci scalar R̄, by Einstein’s
equations. It then follows that U is zero, as we have
previously observed that it is proportional to the Ricci
scalar.

GðRadiationÞ
4 ½η; η0;R� ¼ δ½σ̄�

4πa½η�a½η0� ;

η; η0 ∈ ð0;∞Þ; a½η� ¼ η

η0
: ð38Þ

Therefore, the contribution to the geometry Dij, given the

TT part of some source ΠðTÞ
ij , is completely determined by

the universal form in Eq. (28).
By setting p ¼ 2 and p ¼ −1 in Eq. (36), one can

verify that the reduced 4D Green’s function Ĝ4 of the TT
graviton is in fact the same object in both matter and
cosmological constant dominated universes. Their differ-
ence in G4 is entirely due to the overall conformal rescaling
1=ða½η�a½η0�Þ.

C. Matter domination

The matter dominated TT graviton Green’s function tail
is constant in space but goes as 1=ða½η�32a½η0�32Þ,

GðMatterÞ
4 ½η;η0;R� ¼ 1

4π

�
δ½σ̄�

a½η�a½η0� þΘ½σ̄� η40
ðηη0Þ3

�
;

η;η0 ∈ ð0;∞Þ; a½η� ¼
�
η

η0

�
2

; ð39Þ

and the deviation from Eq. (2) due to ΠðTÞ
ij ½η0; ~x0� is given by

Dij ¼ DðγÞ
ij þDðtailÞ

ij ; ð40Þ

where the wavefront that travels at unit speed given by
Eq. (28) and the tail part of the GW is

DðtailÞ
ij ½η; ~x� ¼ 4GN

η20a½η�
3
2

Z
η−j~x−~x0j−0þ

0

dη0a½η0�52

×
Z
R3

d3~x0ΠðTÞ
ij ½η0; ~x0�: ð41Þ

Suppose the strength of the source peaks at time η�, and
suppose Δt ∼

R
peak width dη

0a½η0� is the physical duration of
the source in the cosmic rest frame. The direct part of the

6We mention here that in [16] Caldwell claimed to have solved
the Green’s function of the TT graviton in a FLRW universe with
arbitrary spatial curvature. We do not believe his results are
correct. When K ¼ 0 (spatially flat FLRW), the V=ðη − η0Þ in
Table I of [16] corresponds to our tail ∂J=∂σ̄. However, on the
very first line of Table I, the power-law cosmology TT-GW tail
obtained there was ∂J=∂σ̄ ¼ pðp − 1Þ=ð2ηη0Þ—Caldwell’s
ðα; ηiÞ is our ðp; η0Þ—and is therefore inconsistent with the
solution obtained by [11] and [14] and in Eq. (36). Indeed, his
spatially flat tail result is really the light-cone boundary condition
in Eq. (37); compare his Eq. (III.6) or (III.7) with Eq. (24). One
potential source of error is that Caldwell appears to have
incorrectly asserted that Synge’s world function in FLRW
spacetime is given by σ ¼ ð1=2ÞðR2 − ðη − η0Þ2Þ—see the state-
ment right before his Eq. (III.6)—which he then used in his
Eq. (II.7) to calculate the TT GWGreen’s function. For reference,
we compare the methods used here, and in Refs. [14] and [11], to
obtain the minimally coupled massless scalar Green’s function in
a 4D spatially flat power-law cosmology. In Eq. (2.13) of [14] and
Eq. (3.8) of [11], a Fourier transform/mode-integral representa-
tion involving Bessel functions was found for the Green’s
function. Nariai [14] replaced the Bessel functions with their
asymptotic expansions and proceeded to work out a power series
expansion for the Green’s function tail in Eq. (2.17). Next, an
ansatz for the exact solution was proposed in Eq. (3.1), which led
to a hypergeometric (ordinary) differential equation in terms of
our σ̄=ð2ηη0Þ. The appropriate solution of the two linearly
independent ones was then selected by matching it onto the
power series in Eq. (2.17). In Ref. [11], Ref. [15] was consulted to
directly evaluate the mode integrals in terms of the Appell
function F4; see their Green’s function tail in Eq. (3.10). Hence,
their solution for a generic power-law cosmology is more
complicated than Nariai’s [14] and ours [Eq. (36)] in that—by
referring to [15], for instance—F4 appears to have fewer
tabulated properties than 2F1. On the other hand, in this paper,
we provided a largely self-contained derivation without resorting
to the Fourier transform. We showed that the 4D symmetric
Green’s function is simply related to the first derivative (with
respect to σ̄) of its 2D cousin. The 2D Green’s function, in turn,
not only takes a pure tail form, but the tail J is fixed uniquely
because it satisfies the homogeneous 2D wave equation and is
unity on the light cone. To be sure, however, note that our 2D
power-law solution was obtained by postulating that the tail J was
a function solely of σ̄=ðηη0Þ, and this was certainly predicated on
Nariai’s results.

7Note that Nariai uses observer time t, where a½t� ∝ tq, and his
background FLRW geometry is dt2 − a½t�2d~x2; our p is related to
q there via p¼q=ð1−qÞ; Nariai obtains ν¼ð3q−1Þ=ð2ð1−qÞÞ,
τ ¼ η − η0, ξ ¼ 2σ̄ and z ¼ σ̄=ð2ηη0Þ.
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signal in Eq. (28), in the far-field limit, is then roughly
bounded by

jDðγÞ
ij ½η; ~x�j≲ 4GN

a½η�j~xj
����
Z
R3

d3~x0a½η��3ΠðTÞ
ij ½η�; ~x0�

����; ð42Þ

whereas the tail DðtailÞ
ij is roughly bounded by

jDðtailÞ
ij ½η; ~x�j≲ 4GNΔt

η20a½η�
3
2a½η��32

����
Z
R3

d3~x0a½η��3ΠðTÞ
ij ½η�; ~x0�

����:
ð43Þ

Suppose we normalize the scale factor such that η ¼ η0 is
the observer’s time; up to factors of unity, and assuming
matter domination throughout cosmic history, η0 is also the
age of the universe. According to the observer, the ratio of
the peak tail amplitude to that of the null cone signal can be
estimated as

����D
ðtailÞ
ij ½η0; ~x�
DðγÞ

ij ½η0; ~x�

���� ∼
�
Δt
η0

��j~xj
η0

�
a½η��−3

2: ð44Þ

The tail effect, in a matter dominated spatially flat FLRW
universe, is suppressed relative to its null-cone counterpart,
by the ratio of the duration of the source to the age of the
universe times the ratio of the observer-source distance
(at the observer’s time) to the age of the universe. The way
to overcome this suppression is to have the GW sources
reside at a very early epoch of this universe, so that
a½η��≲ ððΔt=η0Þðj~xj=η0ÞÞ2=3.

D. The de Sitter case

The de Sitter TT graviton Green’s function tail is a
constant:

GðΛÞ
4 ½η; η0;R� ¼ 1

4π

�
δ½σ̄�

a½η�a½η0� þ
Θ½σ̄�
η20

�
;

η; η0 ∈ ð−∞; 0Þ; a½η� ¼ η0
η
: ð45Þ

(This is consistent with the de Sitter minimally coupled
massless scalar result in [9] and [10].) Therefore, the metric

fluctuation Dij ¼ DðγÞ
ij þDðtailÞ

ij engendered by the TT part

of the source ΠðTÞ
ij ½η0; ~x0� has a null cone portion given by

Eq. (28) and a tail part that reads

DðtailÞ
ij ½η; ~x� ¼ 4GN

η20

Z
η−j~x−~x0j−0þ

−∞
dη0

×
Z
R3

d3~x0
ffiffiffiffiffiffiffiffiffiffiffi
jḡ½η0�j

p
ΠðTÞ

ij ½η0; ~x0�: ð46Þ

Assuming ΠðTÞ
ij ½η0; ~x0� describes a source that radiates GWs

over a finite duration, any detector that was present before,
during, and after the GW train has passed the observer’s
location will find that Dij does not decay back to zero but
instead suffers a permanent “DC” shift ΔDij proportional

to the spacetime volume integral of ΠðTÞ
ij

8:

ΔDij ¼
4GN

η20
Hij; ð47Þ

Hij ≡
Z

0−

−∞
dη0

Z
R3

d3~x0
ffiffiffiffiffiffiffiffiffiffiffi
jḡ½η0�j

p
ΠðTÞ

ij ½η0; ~x0�: ð48Þ

For de Sitter spacetime, we may identify η0 ¼ −1=H
to be the negative reciprocal of the Hubble expansion
parameter. This means the size of the memory effect is
governed by the square of the ratio of the Hubble parameter
to that of the Planck mass ðH=MplÞ2, with GN ∼ 1=M2

pl,
while the magnitude of the components of the constant
symmetric matrixHij is, heuristically speaking, the TT part
of the spacetime total of the stress-momentum of the
source.
Just as for the matter dominated case, let us compare the

peak amplitudes of the direct signal to the tail. Again, we

assume ΠðTÞ
ij itself peaks at η�, and the source duration is

Δt ∼
R
peak width dη

0a½η0�. Then, recalling ffiffiffiffiffiffiffiffiffiffiffijḡ½η0�jp ¼ a½η0�4,
we may estimate that in the far zone

jDðγÞ
ij ½η; ~x�j ≲ 4GN

a½η�j~xj
����
Z
R3

d3~x0a½η��3ΠðTÞ
ij ½η�; ~x0�

����; ð49Þ

jDðtailÞ
ij ½η; ~x�j≲ 4GNΔt

η20

����
Z
R3

d3~x0a½η��3ΠðTÞ
ij ½η�; ~x0�

����: ð50Þ

The ratio of the tail amplitude to that of the null-cone
signal is roughly ðH · ΔtÞðH · a½η�j~xjÞ, where aj~xj is the
comoving source-observer distance evaluated at the
observer’s time.
We illustrate what we have found regarding the causal

structure of FLRW TT gravitons in Fig. 1. We reiterate that
the estimates performed here provide strong evidence that,

8For foundational work on the gravitational memory effect in
asymptotically flat spacetimes, see [17] and [18]; for more recent
theoretical investigations, see [19–21]; for observational
searches, see, for instance, Ref. [22]. In addition, recent work
in [23] and [24] has connected this asymptotically Minkowskian
memory effect to the low frequency limit of the Ward-Takahashi
identities obeyed by graviton scattering amplitudes due to the
Bondi-van der Burg-Metzner-Sachs (BMS) symmetry at null
infinity, commonly known as Weinberg’s soft graviton theorem.
We pose the analogous question here: Is the memory effect in
Eq. (47) related to some symmetries associated with asymptoti-
cally de Sitter spacetimes? (Note that de Sitter asymptotics are not
as well studied as flat ones—see [25].)
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for the most part, TT GWs in our Universe propagate on the
null cone. The predominant effect of cosmic evolution on
them is the redshift 1=a½η� in Eq. (28).

III. 3D SCALAR PERSPECTIVE:
2D EMBEDDED IN 4D

We now take a different perspective on the 2D wave
equation of Eq. (15) by demonstrating that it is possible
to view the 2D world as embedded in some 4D
Minkowski spacetime, such that the Ĝ2 is sourced
by an appropriate 2D time-dependent plane source
J½η; η0; r2⊥ ≡ ~x2⊥�:

Ĝ2½η; η0;R� ¼
Z
R2

d2~x⊥Ḡ4½σ̄�J½η; η0; ~x2⊥�;

σ̄ ≡ 1

2
ððη − η0Þ2 − R2 − ~x2⊥Þ; ð51Þ

where we have let the spatial dimension of the 2D world

pierce the 2D ~x⊥ plane at its origin ~x⊥ ¼ ~0⊥, and Ḡ4 [from
Eq. (20)] itself obeys

∂2
yḠ4½σ̄� ¼ ∂2

y0Ḡ4½σ̄� ¼ 2δð4Þ½y − y0�: ð52Þ

As it turns out, J can be viewed as a cylindrically
symmetric scalar field living in 3D, obeying

ð∂2
η þ ~∇2

⊥ þU½η�ÞJ þ ðη − η0Þ ~∇⊥ ln½r2⊥� · ~∇⊥∂ηJ ¼ 0;

ð∂2
η0 þ ~∇2

⊥ þ U½η0�ÞJ þ ðη0 − ηÞ ~∇⊥ ln½r2⊥� · ~∇⊥∂η0J ¼ 0;

ð53Þ

and the boundary condition

J½η; η0; ~x⊥ ¼ ~0⊥� ¼ 1; ∀ η; η0: ð54Þ

In appendix (A), we discuss the more general case where U
depends on both η and the first spatial coordinate x; we
refer the reader to this appendix for the derivation of
Eqs. (53) and (54). Notice that from the prescription in
Eq. (51), since Ḡ4 itself is Poincaré invariant, we have
attributed to the source J all the time-translation symmetry-
breaking effects encoded in Ĝ2 due to the presence of the
potential U½η�. The representation in Eq. (51) also illumi-
nates the causal structure of a signal due to a spacetime
point source at ðη0; x0Þ in the 2D world, in terms of that of
the collective 4D signal due to the 2D plane source
J½η; η0; ~x2⊥�—we explain it in some detail through
Fig. 2.9 Furthermore, by using Eq. (20) and switching to
cylindrical coordinates in Eq. (51), we may demonstrate
explicitly that Ĝ2½η; η0;R� is a pure tail [see Eq. (A15)]:

Ĝ2½η; η0;R� ¼
Θ½σ̄�
2

J½η; η0; r2⊥ ¼ 2σ̄�: ð55Þ

Utilizing −ð1=RÞ∂R ¼ ∂ σ̄ and Eqs. (14) and (20) in
Eq. (55), we again recover the null cone versus tail split
in Eq. (19). Moreover, when the relationship r⊥ ↔ 2σ̄ is

FIG. 1 (color online). Causal structure of TT GWs. This
spacetime diagram depicts a hypothetical astrophysical process,
where a massive star undergoes core collapse and becomes a
supernova (right world line). The dashed-dotted segment of the
right world line represents the full duration during which GWs
are produced: Before that, the collapse has not started; after that,
the system has settled down completely. These GWs are detected
by a distant detector (left world line). We assume that the
background geometry is that of a 4D spatially flat FLRW
universe. The black dashed lines emanating from the detector’s
world line are the past light cones of events A, B and C. The
bottom pair of light gray dashed lines emanating from the right
world line is the forward light cone at the beginning of the
collapse; the top pair is that at the end of the process. The light
gray shaded region of spacetime is filled with GWs propagating
both on and inside the null cone. The darker gray region of
spacetime is filled with GW tails only. The detector at A sees no
signal. The detector at B sees a “direct” signal from B0 but also a
tail from the dashed-dotted segment of the massive star before B0.
At C the signal received is the accumulation of the GW tails
from the entire dashed-dotted segment. As we show in the
main text, in a radiation dominated universe, there are, in fact,
no tails, so the detector sees nothing at C. In a matter dominated
universe, the signal at C is independent of the spatial location but
decays with time in an expanding universe. In a de Sitter
background, the Green’s function tail is a constant; the
detector that was operational from A through C would sense a
permanent change in Dij that is proportional to ðH=MplÞ2 and to

the total ΠðTÞ
ij contained in the dashed-dotted segment, i.e.,

ðH=MplÞ2
R
d4x0

ffiffiffiffiffiffiffiffiffiffiffijḡ½η0�jp
ΠðTÞ

ij ½η0; ~x0�.

9It it worth highlighting that the embedding perspective here
should not be taken too literally because the source J½η; η0; r⊥�,
although turned on only for an instant, somehow needs to take
into account the time of observation η to properly fool the 2D
observer she is detecting the field of a spacetime point source at
x0. This “acausality” of the source never arises when solving
Green’s functions within a given geometry; for example, in
□G½X;X0� ¼ δðdÞ½X − X0�= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijg½X�g½X0�j4

p
the source location X0 is

completely independent of the observer’s X.
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kept in mind, a direct calculation will show that Eqs. (53)
and (54) are, in fact, just a rephrasing of the 2D homo-
geneous equation obeyed by J½η; η0; σ̄�, namely,

Jð2;0;0Þ½η; η0;R� − Jð0;0;2Þ½η; η0;R� þU½η�J½η; η0;R�
¼ Jð0;2;0Þ½η; η0;R� − Jð0;0;2Þ½η; η0;R� þ U½η0�J½η; η0;R� ¼ 0;

ð56Þ

and the light-cone boundary condition J½η; η0; r2⊥ ¼
2σ̄ ¼ 0� ¼ 1—except here R≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðη − η0Þ2 − r2⊥
p

.
Is there some general expansion scheme that would

allow us to solve Eq. (53) using, e.g., a separation-of-
variables technique, while incorporating the boundary
condition Eq. (54)? At the moment, we merely pose the
question, but we will show how the power-law universe
results of the past section follow readily from Eqs. (53)
and (54).

A. Power-law cosmology

From the 3D scalar point of view, when the scale factor
of the universe is a power law in conformal time
a½η� ¼ ðη=η0Þp, we use the ansatz J½s≡ r2⊥=ð2ηη0Þ� and
find that J obeys, via Eq. (53),

4η02s2

r4⊥
ðsðsþ 2ÞJ00½s� þ 2ðsþ 1ÞJ0½s� − ðp − 1ÞpJ½s�Þ ¼ 0:

ð57Þ

This is, of course, equivalent to Eq. (32). Requiring
J½r⊥ ¼ 0� ¼ 1, Eq. (54) leads to the solution

J½η; η0; r⊥� ¼ P−p½sþ 1�
¼ Pp−1½sþ 1�

¼ 2F1

�
1 − p; p; 1;−

s
2

�
; s≡ r2⊥

2ηη0
: ð58Þ

We recover the results of the previous section once we
invoke Eq. (55).

IV. SUMMARY, DISCUSSION,
AND A 5D QUESTION

In this paper we have shown that, after the (known)
conformal rescaling of the TT graviton Green’s function in
a 4D spatially flat FLRW universe, an understanding of its
causal structure can be achieved by first reducing the
problem to a 2D one. It turns out that the reduced 4D
Green’s function’s “direct” part is equal to its Minkowski
cousin for any background cosmic history a½η�. It is really
the tail part of the TT graviton that has physical information
about how these massless spin-2 particles interact with the
background FLRW geometry since it is here that the wave
equation needs to be solved in detail before the tail can be
known explicitly. What we have uncovered is that the 4D
graviton tail function can be thought of as the derivative of
the tail of the associated 2D Green’s function with respect
to σ̄, Synge’s world function in Minkowski spacetime. It
can also be viewed as the radial derivative of a cylindrically
symmetric scalar field residing in 3D. This 3D perspective
comes from embedding the 2D world in a 4D Minkowski
spacetime. The 2D Green’s function is sourced by some
instantaneous (at η0) 2D plane source J½η; η0; j~x⊥j�, which
intersects the 1D space of the 2D world orthogonally at x0.
This J is a 3D scalar because it depends on both time and
the 2D space parametrized by ~x⊥. Moreover, while in the
2D context the tail function obeys the boundary condition
on the light cone—it is unity there—the analogous boun-
dary condition for the 3D scalar J translates to a spatial one,
where J½η; η0; j~x⊥j ¼ 0� ¼ 1.
We have built on earlier work by Nariai [14], and used

our 2D and 3D pictures to recover the exact TT graviton
Green’s function in a power-law cosmology. We found that

FIG. 2. 1D space embedded in 3D space.—This figure illus-
trates the causal structure encapsulated in the integral represen-
tation of Ĝ2 in Eq. (51). The large shaded oval is to be viewed as a
portion of the infinite 2D plane source J½η; η0; r⊥�, which comes
into existence for only an instant at η0, whereas the observer’s
time is η; i.e., the elapsed time between observation and emission
is η − η0. The 1D space of the 2D world whose scalar waves are
described by Ĝ2 pierces the 2D plane source J orthogonally at its
origin (denoted byO). The 2D observer is located R away fromO
along the 1D line. (In 2D R≡ jx − x0j, where x and x0 are,
respectively, the spatial locations of the observer and the source
of the Green’s function. In 4D R≡ j~x − ~x0j, with similar mean-
ings for ~x and ~x0.) Because the ambient 4D spacetime is
Minkowskian [the Ḡ4 in Eq. (51)], for a fixed R and elapsed
time jη − η0j, no signal from any part of the 2D plane source J can
reach the observer whenever jη − η0j < R. Suppose instead
jη − η0j ≥ R; then, because massless scalars in 4D Minkowski
travel strictly on the light cone, the observed signal—from this
4D perspective—receives contributions only from the (dotted)
circle on J of infinitesimal thickness dr⊥ and radius defined by
jη − η0j2 ¼ R2 þ r2⊥. But from the 2D point of view, jη − η0j > R
is simply the statement that the observed signal is the tail of Ĝ2;
from Eq. (55) we also see that the 2D signal has no δ-function
impulse at jη − η0j ¼ R. Finally, since it is the integrated signal
that is being observed, there is no need to allow for the source J to
have an azimuthal dependence.
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there are no TT GW tails in a radiation dominated universe.
In a matter dominated cosmology, the TT GW tail is
constant in space but decays with increasing time (in
conformal coordinates). We estimated, in this case, that
the ratio of the peak amplitude of the tail part of the signal
generated by an isolated source to that of the direct part is
proportional to the ratio of the duration of the source to the
age of the universe and also to the observer-source distance
(at the observer’s time) to the same. In de Sitter spacetime,
the tail of the TT graviton Green’s function is a constant,
and this leads to an inside-the-null-cone memory effect
proportional to ðH=MplÞ2 ∼GNH2, and to the TT portion
of the spacetime-total stress-momentum of the source. On
the other hand, in 4D Minkowski spacetime, the massless
scalar and the spin-2 graviton travel strictly on the light
cone; i.e., they have no tails. As far as causal structure is
concerned, therefore, the de Sitter memory effect uncov-
ered here has no analog to its counterpart(s) in 4D
asymptotically flat spacetimes.
As part of our exploration, we have studied in some

detail—see Appendix (A)—the properties of the 2D
Minkowski wave equation with an arbitrary potential.
This includes the pure tail nature of the corresponding
2D Green’s function, the light-cone boundary conditions
obeyed by the tail function J and its first derivatives, an
infinite Born series solution for both the retarded version of
the 2D Green’s function and for J, as well as how the 2D
tail J can also be viewed as a 3D scalar field by embedding
the 2D world in 4D Minkowski. As a byproduct, we have
found that there are at least three other ways of obtaining
the 2D Minkowski massive scalar Green’s function, apart
from its Fourier integral representation: by reducing the
associated homogeneous wave equation into an ordinary
differential equation, by switching to the 3D scalar picture,
where the tail obeys a Laplace-Helmholtz equation, and by
evaluating the tail’s infinite Born series expansion term
by term.
Dimensional reduction, together with embedding, has

allowed us to write down a PDE solely for the massless
scalar/TT-graviton tail before it is solved explicitly. This is
to be contrasted with what is usually done in cosmology,
where a Fourier expansion of Einstein’s equations linear-
ized about the background geometry of Eq. (2) is per-
formed from the outset. Fourier space is crucial, of course,
for applications such as predicting the power spectra of
metric fluctuations that could be traced back to the
inflationary epoch of the early universe. But to obtain
information regarding the causal structure of TT-GWs, one
would have to inverse Fourier transform the mode expan-
sion of the Green’s function, and except for special cases
where the mode functions are known explicitly—and are
simple enough for the integrals to be performed—momen-
tum space actually appears to hide both the general features
of the light cone versus tail separation and the detailed
solution of the tail itself. In fact, our recognition here, that

the Green’s function of the massless scalar field in 4D
spatially flat FLRW can be cleanly split into its direct and
tail pieces, can also be found in the past literature—see, for
example, Eq. (3.3) of [11] (which was a followup of [12]).
However, in [11], where the case of a power-law cosmol-
ogy a½η� ¼ ðη=η0Þα was solved, the tail part of the Green’s
function was still obtained via the Fourier transform of
the whole Green’s function [Eqs. (3.4), (3.6) and (3.8)]. We
see that working in position spacetime as long as possible,
and utilizing the dimension reduction/embedding perspec-
tive, lets us arrive more readily at a simpler form of the
solution consistent with that found by Nariai [14].10 (See
footnote (6) for more subtle details.)
We actually started this 4D spatially flat FLRW inves-

tigation motivated by the fact that our 4D universe can be
embedded in 5D Minkowski. Is there a “line mass/charge”
in 5D piercing the 4D FLRW world at x0, such that the 4D
observer is fooled into thinking that she is detecting the
field generated by a spacetime point source at x0, i.e., that of
a Green’s function G4½x; x0�? This question is still unan-
swered. However, we hope that the insights we have gained
in this paper will help us further this goal.
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APPENDIX A: THE 2D MINKOWSKI
WAVE EQUATION WITH AN
ARBITRARY POTENTIAL

In this section, we examine the dynamics of a scalar field
obeying a 2D Minkowski wave equation with a potential U
which is both time and space dependent. The defining
equation for the symmetric (retarded plus advanced)
Green’s function (Ĝ2½ξ; ξ0� ¼ Ĝ2½ξ0; ξ�) reads

10It could be that some integral transform or expansion scheme
is useful for the solution of the tail part of the cosmological scalar
Green’s function, but we advocate that this should be done
directly for the PDE obeyed by the 2D tail itself, not the entire 4D
Green’s function. Also, since the tail portion of the cosmological
Green’s function, when reduced to the 2D context, is unity on the
light cone, we suggest here that any useful method should be able
to incorporate this boundary condition in a transparent manner.

YI-ZEN CHU PHYSICAL REVIEW D 92, 124038 (2015)

124038-10



ð∂2
ξ þ U½ξ�ÞĜ2½ξ; ξ0� ¼ ð∂2

ξ0 þ U½ξ0�ÞĜ2½ξ; ξ0�
¼ 2δð2Þ½ξ − ξ0�: ðA1Þ

Note that ξμ2 ≡ ðη; xÞ and ξ0μ2 ≡ ðη0; x0Þ denote coordinates
in ð1þ 1ÞD; the subscript 2 in μ2 indicates that the
spacetime indices run from 0 to 1, so ∂2 ¼ ∂μ2∂μ2 ¼
∂2
η − ∂2

x and ∂μ0
2∂μ0

2
¼ ∂2

η0 − ∂2
x0 , for instance. The key

observation is that the solution to Eq. (A1) takes the
generic pure tail form

Ĝ2½ξ; ξ0� ¼
1

2
Θ½σ̄�J½ξ; ξ0�; σ̄ ≡ 1

2
ðξ − ξ0Þ2; ðA2Þ

where J obeys the homogeneous wave equation

ð∂2
ξ þU½ξ�ÞJ½ξ; ξ0� ¼ ð∂2

ξ0 þU½ξ0�ÞJ½ξ; ξ0� ¼ 0; ðA3Þ

and the boundary condition that it is unity on the light cone

J½σ̄ ¼ 0� ¼ 1: ðA4Þ

Here, σ̄ is half the square of the geodesic distance between ξ
and ξ0 in 2D Minkowski. Because we are dealing with the
symmetric Green’s function, J½ξ; ξ0� ¼ J½ξ0; ξ�. The step
function in Eq. (A2) tells us that the scalar waves in 2D
obeying Eq. (A1) travel strictly inside the cone of its
physical sources. This is to be contrasted with the 4D case,
where there is an additional term proportional to δ½σ̄�,
telling us scalar waves produced by a spacetime point
source also receive contributions from an impulsive shock
wavefront traveling exactly with unit speed.
We now proceed to derive Eqs. (A2)–(A4) by a direct

calculation. By inserting Eq. (A2) into Eq. (A1), on the left-
hand side, we find

ð∂2þUÞĜ2 ¼
1

2
ð∂2Θ · Jþ 2δ½σ̄�∂μσ̄∂μJþΘ · ð∂2 þUÞJÞ:

ðA5Þ

We argue in Appendix (B) that, in Cartesian coordinates,

∂2
ξΘ½σ̄� ¼ ∂2

ξ0Θ½σ̄� ¼ 4δð2Þ½ξ − ξ0�: ðA6Þ

Thus, the first term on the left of Eq. (A5) returns the
desired δ functions in the right-hand side of Eq. (A1) if
J ¼ 1 when ξ ¼ ξ0. Moreover, for Eq. (A1) to hold, the
coefficients of the δ and Θ functions in Eq. (A5) need to
vanish. Noting ∂μσ̄ ¼ ðξ − ξ0Þμ, the δ-function coefficient
informs us that J must be constant on the light cone:

ðξ − ξ0Þμ∂μJ½σ̄ ¼ 0� ¼ 0: ðA7Þ

But since J is unity at the apex of the light cone ξ ¼ ξ0, it
must, in fact, be unity everywhere σ̄ ¼ 0; i.e., we have

Eq. (A4). For the Θ function term to vanish everywhere
inside the light cone, we see J must obey the homogeneous
equation (A3).

1. Massive scalar in 2D Minkowski

As an application, let us derive the massive scalar
Green’s function in 2D Minkowski,

ð∂2 þUÞḠ2½ξ − ξ0� ¼ 2δð2Þ½ξ − ξ0�; U ¼ m2: ðA8Þ

We assume, because of the highly symmetric nature of the
problem, that J ¼ J½m ffiffiffiffiffi

2σ̄
p � depends on ξ and ξ0 solely

through σ̄. The homogeneous equation (A3) then reads

m2

�
J00½χ� þ J0½χ�

χ
þ J½χ�

�
¼ 0; χ ≡m

ffiffiffiffiffi
2σ̄

p
: ðA9Þ

The solution that obeys the light-cone boundary condition
J½χ; σ̄ → 0� ¼ 1 is the Bessel function J0½m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ − ξ0Þ2

p
�.

Therefore, we have the solution to the massive scalar
symmetric Green’s function:

Ḡ2½ξ − ξ0� ¼ 1

2
Θ½σ̄�J0½m

ffiffiffiffiffi
2σ̄

p
�: ðA10Þ

This result can be cross-checked by performing the Fourier
integral

Θ½η − η0�Ḡ2½ξ − ξ0� ¼
Z
ret

d2k
ð2πÞ2

e−ikμðξ−ξ0Þμ

−k2 þm2
; ðA11Þ

where the retarded contour needs to be chosen for the k0
integral.

2. The 2D world embedded in 4D one

Let us imagine that our 2D world is embedded in 4D
Minkowski, and ask if there is some source in 4D that
could, in fact, yield Ĝ2. Employing the minimally coupled
massless scalar 4D Green’s function Ḡ4 in Eq. (20), we now
argue that

Ĝ2½ξ; ξ0� ¼
Z
R2

d2~x⊥Ḡ4½σ̄�J½ξ; ξ0; ~x2⊥�;

σ̄ ≡ 1

2
ððξ − ξ0Þ2 − ~x2⊥Þ; ðA12Þ

where the source J obeys the equation(s)

ð∂μ2∂μ2 þ ~∇2
⊥ þU½ξ�ÞJ½ξ; ξ0; ~x2⊥�

þ ~∇⊥ ln½~x2⊥� · ~∇⊥ððξ− ξ0Þμ2∂μ2J½ξ; ξ0; ~x2⊥�Þ ¼ 0;

ð∂μ0
2
∂μ0

2 þ ~∇2
⊥ þU½ξ0�ÞJ½ξ; ξ0; ~x2⊥�

þ ~∇⊥ ln½~x2⊥� · ~∇⊥ððξ0 − ξÞμ2∂μ2
0J½ξ; ξ0; ~x2⊥�Þ ¼ 0; ðA13Þ
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and the boundary condition at the spatial origin of the 2D-
~x⊥ plane is

J½ξ; ξ0; ~x⊥ ¼ ~0⊥� ¼ 1 ∀ ξ; ξ0: ðA14Þ
Notice, if this prescription is valid, we have attributed to the
source J all the 2D Poincaré symmetry breaking due to the
presence of the potential U; otherwise, Ḡ4 is itself Poincaré
invariant. Also, for some fixed elapsed time η − η0 and fixed
source spatial location x0, the signal at x comes from
integrating over the circle on the ~x⊥ plane defined by
jη − η0j2 ¼ ðx − x0Þ2 þ ~x2⊥, or equivalently ~x2⊥ ¼ 2σ̄; since
it is integrated over anyway, there is no need to allow for the
source J to have an azimuthal dependence. Note that
Eq. (A12) provides a second means to deduce that Ĝ2 is
a pure tail. Recalling Eq. (20),11

Ĝ2½ξ; ξ0� ¼
Z

∞

0

dr2⊥
2

δ½ðξ − ξ0Þ2 − r2⊥�J½ξ; ξ0; r2⊥�

¼ Θ½σ̄�
2

J½ξ; ξ0; r⊥ ¼
ffiffiffiffiffi
2σ̄

p
�: ðA15Þ

We begin the derivation of Eqs. (A13) and (A14) by
highlighting that Ḡ4½σ̄� itself depends on spacetime solely
through the Minkowski world function σ̄. Now, apply the
2D wave operator on both sides of Eq. (A12), interchange
the order of integration and differentiation, and add and

subtract ~∇2
⊥.

ð∂μ2∂μ2 þ UÞĜ2½ξ; ξ0�

¼
Z
R2

d2~x⊥fJð∂μ2∂μ2 − ~∇2
⊥ÞḠ4

þ ðḠ0
4 · 2∂μ2 σ̄∂μ2J þ Ḡ4 · ð∂μ2∂μ2 þ ~∇2

⊥ þ UÞJÞg:
ðA16Þ

We have integrated by parts one of the ~∇2
⊥ onto the J, and

also used the fact that Ḡ4 depends on spacetime solely
through σ̄. In fact, let us observe that

−~x⊥ · ~∇⊥Ḡ4 ¼ ð−Þ2~x2⊥ · Ḡ0
4; ðA17Þ

and thus the prime on the Ḡ4 can be expressed in terms of
~∇⊥ and then integrated by parts:

Z
d2~x⊥Ḡ0

4 · 2∂μ2 σ̄∂μ2J¼ 2

Z
d2~x⊥Ḡ4

~∇⊥ ·

�
~x⊥
~x2⊥

∂μ2 σ̄∂μ2J

�
:

ðA18Þ

Because ~∇⊥ ln ~x2⊥ ¼ 2~x⊥=~x2⊥,

2 ~∇⊥ ·

�
~x⊥
~x2⊥

∂μ2 σ̄∂μ2J

�

¼ ~∇⊥ ln½~x2⊥�∂μ2 σ̄∂μ2 · ~∇⊥J þ ~∇2
⊥ ln½~x2⊥�∂μ2 σ̄∂μ2J: ðA19Þ

The Green’s function equation for the 2D Laplacian

~∇2
⊥ ln½~x2⊥� ¼ 4πδð2Þ½~x⊥�; ðA20Þ

together with the 4D Minkowski wave equation
∂2Ḡ4 ¼ 2δð4Þ, then allows us to gather

ð∂μ2∂μ2 þ UÞĜ2½ξ; ξ0�
¼ 2J½ξ ¼ ξ0; ~0⊥�δð2Þ½ξ − ξ0�
þ 4πḠ4½σ̄� · ðξ − ξ0Þμ2∂μ2J½ξ; ξ0; ~0⊥�

þ
Z
R2

d2~x⊥Ḡ4fð∂μ2∂μ2 þ ~∇2
⊥ þUÞJ

þ ~∇⊥ ln½~x2⊥�∂μ2 σ̄ · ~∇⊥∂μ2Jg: ðA21Þ

To obtain 2δð2Þ½ξ − ξ0� on the right-hand side, we demand
that Eq. (A13) be satisfied so that the second line of
Eq. (A21) vanishes, and the simultaneous boundary con-

ditions are J½ξ¼ ξ0;~0⊥� ¼ 1 and ðξ−ξ0Þμ2∂μ2J½ξ;ξ0;~0⊥� ¼ 0

for all ξ, ξ0. But these latter two conditions amount to

demanding J½ξ; ξ0; ~0⊥� ¼ 1 for any ξ, ξ0, i.e., Eq. (A14).

3. The 2D Minkowski massive scalar

We now show how this 3D picture offers an alternate
perspective on Eq. (A8), the 2D massive scalar flat
spacetime Green’s function Ḡ2, which through Eq. (14),
would yield the latter’s 4D counterpart. We have U ¼ m2,
and will further make an inspired guess, based on the
correspondence between 2σ̄ and r2⊥ [recall Eq. (A15)], that
J is actually time independent—since in 2D, Poincaré
invariance indicates that Ḡ2 depends on spacetime solely
through σ̄. (In this specific context, there is a relationship
between rotational O2 invariance in the 3D picture and
Poincaré symmetry in 2D.) The problem of massive waves
in 2D Minkowski is now translated into, via Eq. (A13), a
static Laplace-Helmholtz-type equation in two spatial
dimensions:

ð ~∇2
⊥ þm2ÞJ½r⊥� ¼ 0: ðA22Þ

[This reduces to the same equation in (A9).] The solution
obeying the boundary condition in Eq. (54), J½r⊥ ¼ 0� ¼ 1,
is the Bessel function

11The integral in Eq. (A15) is a special case ofR
z2
z1
dzδ½z − a�f½z� ¼ f½a�Θ½z2 − a�Θ½a − z1�; the top hat

Θ½z2 − a�Θ½a − z1� is the constraint that the integral returns
f½a� if a lies within the interval a ∈ ½z1; z2� and is zero otherwise.
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J½r⊥� ¼ J0½mr⊥�: ðA23Þ

Inserting this into Eq. (A15) yields the result in Eq. (A10).

4. First derivatives on the light cone

Let us employ light-cone coordinates ξ� ≡ ξ0 � ξ1, so
that the 2D flat metric reads dξþdξ− and ∂2 ¼ 4∂þ∂−. For
some scalar field ψ obeying the homogeneous 2D wave
equation ð∂2 þUÞψ ¼ 0, suppose its value is known on
the light cone based at some fixed location ξ0; i.e.,
ψ ½ðξ − ξ0Þ2 ¼ 0� is known. This also means the first
derivatives ∂þψ ½ξþ; ξ− ¼ ξ0−� and ∂−ψ ½ξþ ¼ ξ0þ; ξ−�
along the light cone can be derived. (In fact, by this
assumption, all higher derivatives ∂nþψ ½ξþ; ξ− ¼ ξ0−� and
∂n
−ψ ½ξþ ¼ ξ0þ; ξ−�, n ≥ 1, can be computed.) The other

first derivatives of ψ evaluated on the light cone of ξ0 are
given by the following integrals:

∂þψ ½ξþ ¼ ξ0þ; ξ−�

¼ ∂þψ ½ξ ¼ ξ0� − 1

4

Z
ξ−

ξ0−
dξ00−U½ξþ ¼ ξ0þ; ξ00−�

× ψ ½ξþ ¼ ξ0þ; ξ00−�; ðA24Þ

∂−ψ ½ξþ; ξ− ¼ ξ0−�

¼ ∂−ψ ½ξ ¼ ξ0� − 1

4

Z
ξþ

ξ0þ
dξ00þU½ξ00þ; ξ− ¼ ξ0−�

× ψ ½ξ00þ; ξ− ¼ ξ0−�: ðA25Þ

To see this, we first observe that the relevant boundary
conditions at the light cone’s apex ξ ¼ ξ0 are satisfied.
Next, we take a derivative with respect to ∂− on both sides
of Eq. (A24) and ∂þ in Eq. (A25). This recovers the wave
equation ∂þ∂−ψ ¼ −ð1=4ÞUψ evaluated on the light cone.
Equations (A24) and (A25), when applied to the tail

function of Ĝ2 respecting J½σ̄ ¼ 0� ¼ 1 [Eq. (A4)], gives us

∂þJ½ξþ ¼ ξ0þ; ξ−� ¼ −
1

4

Z
ξ−

ξ0−
dξ00−U½ξþ ¼ ξ0þ; ξ00−�;

ðA26Þ

∂−J½ξþ; ξ− ¼ ξ0−� ¼ −
1

4

Z
ξþ

ξ0þ
dξ00þU½ξ00þ; ξ− ¼ ξ0−�:

ðA27Þ

The first derivatives of J at the null cone’s apex ξ ¼ ξ0 are
zero because J is a constant on the entire light cone.

5. Born series solution for Ĝþ
2 and J

We now turn to an infinite Born series solution for the
retarded Green’s function Ĝþ

2 in 2D, in terms of its

counterpart Ḡþ
2 (which obeys ∂2Ḡþ

2 ¼ δð2Þ) and the

potential U. This will also yield a corresponding series
for J itself. We first define the operator Q acting on a
biscalar Sξ;ξ0 as

ðQSÞ½ξ; ξ0�

≡
Z
Rð1;1Þ

d2ξ00Ḡ2½ξ − ξ00�U½ξ00�S½ξ00; ξ0� ðCartesianÞ:

ðA28Þ

Then the infinite Born series is

Ĝþ
2 ½ξ; ξ0� ¼

X∞
l¼0

ð−ÞlðQlḠþ
2 Þ½ξ; ξ0�: ðA29Þ

The zeroth term is defined as ðQl¼0Ḡþ
2 Þ½ξ; ξ0�≡

Ḡþ
2 ½ξ − ξ0�. For l ≥ 1, and written in light-cone coordinates

ξ� ≡ η� x and d2ξ → ð1=2Þdξþdξ−,

ðQlḠþ
2 Þ½ξ; ξ0� ¼

1

2l

�Yl
s¼1

Z
Rð1;1Þ

dξþs dξ−s

�

× Ḡþ
2 ½ξ − ξl�U½ξl�Ḡþ

2 ½ξl − ξl−1�
×U½ξl−1�Ḡþ

2 ½ξl−1 − ξl−2�…
× Ḡþ

2 ½ξ2 − ξ1�U½ξ1�Ḡþ
2 ½ξ1 − ξ0�: ðA30Þ

These l-nested spacetime integrals can be further broken
down into

ðQlḠþ
2 Þ½ξ; ξ0� ¼

Ḡþ
2 ½ξ; ξ0�
4l

Il½ξ; ξ0�; ðA31Þ

where I0½ξ; ξ0�≡ 1; using the shorthand
R ξ
ξ0 d

2ξ00� ≡R ξþ
ξ0þ dξ

00þ R ξ−

ξ0− dξ
00−, and for l ≥ 1,

Il½ξ; ξ0�≡
Z

ξ

ξ0
d2ξ�lU½ξl�

Z
ξl

ξ0
d2ξ�l−1U½ξl−1�…

×
Z

ξ3

ξ0
d2ξ�2 U½ξ2�

Z
ξ2

ξ0
d2ξ�1 U½ξ1�; ðA32Þ

¼
Z

ξ

ξ0
d2ξ�lU½ξl�Il−1½ξl; ξ0�: ðA33Þ

The Born series for J itself, whenever ξ lies within the
future light cone of ξ0—which we will denote as ξ > ξ0—is

J½ξ > ξ0� ¼
X∞
l¼0

ð−Þl
4l

Il½ξ; ξ0�: ðA34Þ

For the purposes of solving the 2D Green’s function Ĝ2, we
do not need J outside the light cone. Therefore, once J½ξ; ξ0�
is known for ξ lying within the future light cone of ξ0, by
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symmetry this means we have obtained J½ξ0; ξ� for ξ0 inside
the past light cone of ξ; by swapping the labels ξ ↔ ξ0, this
means we also know J½ξ; ξ0� for ξ lying in the past light
cone of ξ0.

6. Derivation

Let us now justify Eqs. (A29)–(A34). We begin by
applying ∂2

ξ and ∂2
ξ0 to Eq. (A30). For l ¼ 0, the result is

just the δ function δð2Þ½ξ − ξ0�. For l ¼ 1, the result is

∂2QḠþ
2 ¼ UḠþ

2 : ðA35Þ

For l > 1, the leftmost or rightmost integral will collapse,
and we get

∂2QlḠþ
2 ¼ UQl−1Ḡþ

2 : ðA36Þ

A direct calculation would therefore tell us

∂2Ĝþ
2 ¼ δð2Þ½ξ − ξ0� −U

Xþ∞

l¼0

ð−ÞlðQlḠþ
2 Þ: ðA37Þ

which is ð∂2 þUÞĜ2 ¼ δ, the retarded version of
Eq. (A1).12 Next, we show that using the retarded flat
2D massless scalar Green’s function in this construction
implies that the solution for Ĝþ

2 also obeys the retarded
boundary condition. Now, for any object U, the integral

ðQḠþ
2 Þ½ξ; ξ0� ¼

1

2

Z
Rð1;1Þ

d2ξ00�
Θþ½ξ; ξ00�

2
U½ξ00�Θþ½ξ00; ξ0�

2

ðA38Þ

is zero if ξ lies outside the future light cone of ξ0, due to the
presence of the two retarded Green’s functions in the
integrand. We have also used the result

Ḡþ
2 ½ξ − ξ0� ¼ 1

2
Θ½η − η0�Θ½σ̄ξ;ξ0 �≡ 1

2
Θþ½ξ; ξ0�: ðA39Þ

When ξ > ξ0, the integral in Eq. (A38) is really that of
U½ξ00�=4 over the rectangular region on the ξ00-2D plane
bounded by the past light cone of ξ and the future light cone

of ξ0, i.e., ð1=4ÞI1½ξ; ξ0�. It is zero otherwise. What we have
argued, therefore, is that

ðQḠþ
2 Þ½ξ; ξ0� ¼

Ḡþ
2 ½ξ − ξ0�

4
I1½ξ; ξ0�: ðA40Þ

Let us suppose that Eq. (A31) holds for some l. Then

ðQlþ1Ḡþ
2 Þ½ξ; ξ0� ¼

1

4l · 2

Z
ξ

ξ0
d2ξ�lþ1Ḡ

þ
2 ½ξ − ξlþ1�U½ξlþ1�

× Il½ξlþ1; ξ0�Ḡþ
2 ½ξlþ1 − ξ0�: ðA41Þ

The causality arguments employed to analyze Eq. (A38)
tell us that, because of the two retarded Green’s functions,
the Qlþ1Ḡþ

2 must again be proportional to Ḡþ
2 ½ξ − ξ0�.

Assuming ξ > ξ0, the integral in Eq. (A41) becomes that of
U½ξlþ1�Il½ξlþ1; ξ0�=4 over the rectangular region bounded
by the past and future null cones of ξ and ξ0, respectively;
Eq. (A41) is thus

ðQlþ1Ḡþ
2 Þ½ξ;ξ0� ¼

Ḡþ
2 ½ξ−ξ0�
4lþ1

Z
ξ

ξ0
d2ξ�lþ1U½ξlþ1�Il½ξlþ1;ξ0�:

ðA42Þ

Recalling the integral recursion relation between Il and
Il−1 in Eq. (A33) then proves Eq. (A31) for arbitrary
l ≥ 1.
Because we have shown that every term in the Born

series of Ĝþ
2 in Eq. (A29) is proportional to Ḡþ

2 , we may, in
fact, define J to be the latter’s coefficient, namely,

Ĝþ
2 ½ξ; ξ0� ¼ Ḡþ

2 ½ξ − ξ0�J½ξ; ξ0�

¼ Ḡþ
2 ½ξ − ξ0�

X∞
l¼0

ð−Þl
4l

Il½ξ; ξ0�: ðA43Þ

[The first equality is, of course, consistent with Eq. (A2).]
The result in Eq. (A34) follows once we take ξ to lie
within the future light cone of ξ0, because there
Ḡþ

2 ½ξ − ξ0� → ð1=2Þ.
A different means of arriving at Eq. (A34) is to integrate

with respect to both ξ� the homogeneous equation
∂þ∂−J ¼ −ð1=4ÞUJ from the light cone to some arbitrary
point ξ lying within the future light cone of ξ0, taking into
account the boundary conditions J½σ̄ ¼ 0� ¼ 1 and
∂�J½ξ∓ ¼ ξ0∓� ¼ 0. The result is the integral equation

J½ξ > ξ0� ¼ 1 −
1

4

Z
ξ

ξ0
d2ξ00�U½ξ00�J½ξ00; ξ0�: ðA44Þ

Iterating Eq. (A44) infinite times yields Eq. (A34).

12As an aside, we remark here that the derivation up to this
point is not specific to 2D. This cosmological 2D reduced Green’s
function problem is, in fact, not the only curved spacetime
example that admits a solution as an infinite Born series in Ḡ, its
corresponding Minkowski Green’s function, because of the “flat
□”-plus-potential form of the wave operator. The other instance
we are aware of is that of the minimally coupled massless scalar
and photon retarded Green’s functions in black hole (BH)
geometries put in a Kerr-Schild form [27]. There, for both
Schwarzschild and Kerr spacetimes, the lth term in the summa-
tion goes as ðBHmassÞl times l-nested spacetime integrals that
are independent of the BH mass but involve, for the Kerr case, the
BH’s angular momentum.
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7. The 2D Minkowski massive scalar revisited

For the massive scalar in 2D Minkowski, U ¼ m2 is a
constant and every term of Eq. (A34) can be evaluated. The
lth term is, in light cone coordinates,
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The rightmost integral gives ðξþ2 − ξ0þÞðξ−2 − ξ0−Þ.
The one after that gives us ðξþ3 − ξ0þÞ2ðξ−3 − ξ0−Þ2=22,
and so on. After all l integrals are done, we have
ðξþ − ξ0þÞlðξ− − ξ0−Þl=ðl!Þ2. This leads us to

J½ξ; ξ0� ¼
X∞
l¼0

m2lðξþ − ξ0þÞlðξ− − ξ0−Þl
ð−4Þlðl!Þ2 :

This is nothing but the infinite series representation of
J0½m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξþ − ξ0þÞðξ− − ξ0−Þp �.

APPENDIX B: WHY ∂2Θ½σ̄� ¼ 4δð2Þ½ξ − ξ0�?
The primary goal of this section is to justify Eq. (A6).

Via a direct calculation, with ∂μσ̄ ¼ ðξ − ξ0Þμ and
ðξ − ξ0Þ2 ¼ 2σ̄,

∂2Θ½σ̄� ¼ 2∂ σ̄ðσ̄δ½σ̄�Þ ¼ 0: ðB1Þ

Therefore, Θ½σ̄� is the homogeneous solution to the 2D
massless scalar wave equation almost everywhere. Let us
employ light-cone coordinates,

ξ� ≡ η� x; ξ0� ≡ η0 � x0; ðB2Þ

so that σ̄ ¼ ð1=2Þðξþ − ξ0þÞðξ− − ξ0−Þ and ∂2 ¼ 4∂þ∂−.
Note that Θ½σ̄� is a constant inside the light cone, so
∂2Θ½σ̄� can only be nonzero on the light cone, when either
ξþ ¼ ξ0þ or ξ− ¼ ξ0−. To argue that it is, in fact, only
nontrivial at the apex of the light cone, i.e., ξ ¼ ξ0, we first
let ξþ be arbitrary but integrate the left-hand side of
Eq. (A6) about ξ− ≈ ξ0−:

Z
ξ0−þ0þ

ξ0−−0þ
dξ−4∂−∂þΘ½σ̄�

¼ δ½ξþ − ξ0þ�4 sgn½ξ− − ξ0−�jξ−¼ξ0−þ0þ
ξ−¼ξ0−−0þ

¼ 8δ½ξþ − ξ0þ�: ðB3Þ

We have used the distributional identity δ½ab� ¼ δ½b�=jaj.
Similarly,

Z
ξ0þþ0þ

ξ0þ−0þ
dξþ4∂þ∂−Θ½σ̄� ¼ 8δ½ξ− − ξ0−�: ðB4Þ

Therefore, ∂2Θ½σ̄� is nonzero only when both ξþ → ξ0þ and
ξ− → ξ0− simultaneously. This justifies the δð2Þ½ξ − ξ0�
(written in Cartesian coordinates) on the right-hand side
of Eq. (A6). The factor of 4 can now be checked by
reexpressing the δ functions of Eq. (A6) in light-cone
coordinates, δð2Þ½ξ−ξ0�¼2δ½ξþ−ξ0þ�δ½ξ−−ξ0−�, and then
integrating it with respect to dξþdξ− over an infinitesimal
region around ξ ¼ ξ0 to obtain 8. On the other hand,
Eq. (B3) is already the ∂2Θ integrated with respect to
dξ−, so to recover this 8 one simply has to integrate over
dξþ. The same check can be made by integrating both sides
of Eq. (B4) with respect to dξ−.
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