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We consider the generalization of the “spinor approach” to the Lorentzian case, in the context of three-
dimensional loop quantum gravity with cosmological constant Λ ¼ 0. The key technical tool that allows
this generalization is the recoupling theory between unitary infinite-dimensional representations and
nonunitary finite-dimensional ones, obtained in the process of generalizing the Wigner–Eckart theorem to
SU(1,1). We use SU(1,1) tensor operators to build observables and a solvable quantum Hamiltonian
constraint, analogous to the one introduced by V. Bonzom and his collaborators in the Euclidean case (with
both Λ ¼ 0 and Λ ≠ 0). We show that the Lorentzian Ponzano-Regge amplitude is the solution of the
quantum Hamiltonian constraint by recovering the Biedenharn-Elliott relation [generalized to the case
where unitary and nonunitary SU(1,1) representations are coupled to each other]. Our formalism is
sufficiently general that both the Lorentzian and the Euclidean case can be recovered (with Λ ¼ 0).
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I. INTRODUCTION

Three-dimensional (3D) quantum gravity is a nice
laboratory to explore and test some issues met in the
four-dimensional (4D) theory [1]: for example, it is
possible to solve the Hamiltonian constraint and to relate
loop quantum gravity (LQG) to the relevant spin foam
model. This was done in the Euclidean case, with either a
vanishing or negative cosmological constant [2–5].
The spinorial framework to quantum gravity is a very

powerful tool to formulate and solve some questions in
LQG. For example, this formalism allows one to define a
closed algebra of (kinematical) intertwiner observables [6].
In 4D, the simplicity constraints can be rigorously dealt
with to build a Euclidean spin foam model [7], using this
closed algebra of observables. At the quantum level, the
spinor approach makes extensive use of tensor operators
(often called also grasping operators). The key feature of
tensor operators is that their matrix elements are given in
terms of Clebsch-Gordan coefficients. When dealing with
SU(2), the spinor operators are conveniently realized in
terms of harmonic oscillators, which can make some
calculations easier. The understanding that tensor operators
were in fact the general mathematical structure behind the
spinor approach has been the key to unlock the formulation
of LQGwith a nonzero cosmological constant in the 3D case
[8,9]: they provide a quantization of the Hamiltonian
constraint as an operator implementing a recursion relation,
whose solution is the (deformed) 6j-symbol, the amplitude
of the relevant spin foammodel (Ponzano-Regge or Turaev-
Viro, according to the value of the cosmological constant).
This spinorial framework was always used in the

Euclidean setting, and one might wonder if this works

as well in the Lorentzian scheme. In 4D, some steps have
been accomplished. The Lorentzian Engle-Pereira-Rovelli-
Livine (EPRL) model was constructed using spinorial
tools [10]; however, the Lorentzian generalization of
the Euclidean holomorphic model [7] is still not known.
The Lorentzian holomorphic model was developed at the
classical level but its quantum version is still not yet
available [11]. As a warmup, it is interesting to test whether
one can use this spinorial framework in the 3D Lorentzian
case. In particular, we construct the closed algebra of
observables and use it to construct a Hamiltonian constraint
which we could solve to recover the Lorentzian spin foam
model. This is the topic of the present article.
The classical part, i.e., the spinorial description of the

LQG phase space in terms of SU(1,1), is not difficult;
however, similarly to the 4D case, the construction of a
quantum version is not an easy task. Indeed, until recently,
all the tensor operators for SU(1,1) were not known. Let us
describe the issue at hand. A tensor operator is a set of
operators that transforms as a vector in some representation
of the considered Lie group or Lie algebra, here SU(1,1).
Since this group is noncompact, the unitary representations
are infinite dimensional and the finite-dimensional repre-
sentations [isomorphic to the SU(2) ones] are nonunitary.
One could build a tensor operator transforming as a unitary
representation [12], but that would mean considering an
infinite set of operators. Instead, we can consider a set of
operators transforming as a finite-dimensional (nonunitary)
representation, hence a finite set of operators. It is actually
possible to realize the Lie algebra generators in terms of
such a set of operators when it is acting on the discrete
series [i.e. the representations of SU(1,1) characterized by a
discrete eigenvalue of the Casimir] as harmonic oscillators
(see Ref. [13] and references therein): since the represen-
tation is characterized by discrete numbers, we can use
harmonic oscillators (which have a discrete spectrum) to
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characterize them and hence act on them. This trick does
not work if one considers a representation in the continuous
series (i.e. with the a continuous Casimir eigenvalue).
The recent paper [13] solved this problem and gave the
equivalent realization of the harmonic oscillators when
acting on a continuous series: the key difficulty was to
consider the recoupling between infinite unitary represen-
tations and finite-dimensional nonunitary representations.
This means that we are now able to quantize the classical
spinor description of the 3D Lorentzian LQG phase space
using the full machinery of tensor operators.
With the spinor operators at hand, we can proceed to the

generalization of the spinor approach [4,14] (studied in the
Euclidean signature) to the Lorentzian case. The key results
we focus on are the quantization of the SU(1,1) holonomy,
the (closed) algebra of spinor observables from which
we can construct any observables, and finally the con-
struction of a solvable quantum Hamiltonian constraint.
The SU(1,1) case is more subtle than the SU(2) case due to
the different possible choices of unitary representations;
furthermore, as mentioned earlier, we will be led to
consider the recoupling between unitary and nonunitary
representations. As a consequence, the spinor observables
will not properly be observables since they will map
intertwiners defined in terms of unitary representations
to intertwiners defined in terms of nonunitary representa-
tions. Nevertheless, these observables can be used as
building blocks to construct proper observables as well
as a solvable quantum Hamiltonian constraint, whose
solution is the Lorentzian Ponzano-Regge amplitude.
The article is organized as follows. In Sec. I, we recall the

SU(1,1) representation theory, its standard recoupling
theory and the less known recouplings between unitary
and (nonunitary) finite-dimensional representations. We
then use these notions to construct classical SU(1,1) tensors
[spinors, vectors, spinor representation of SU(1,1)] and their
quantum version, i.e., SU(1,1) tensor operators, which
satisfy the Wigner-Eckart theorem [13]. In Sec. II, we recall
the classical picture behind 3D Lorentzian loop quantum
gravity. In particular, we construct the Hamiltonian con-
straint, following the method used in Ref. [4]. In Sec. III, we
introduce the notion of SU(1,1) intertwiners and Racah
coefficients; since we are dealing with a noncompact gauge
group, special care has to be given to them. In Sec. IV, we
construct the quantum Hamiltonian constraint and show
how the Lorentzian Ponzano-Regge amplitude solves it. In
Sec. V,we discuss howwe can recover the results of Ref. [4],
based on SU(2), within our framework.

II. TENSORS AND TENSOR OPERATORS
FOR SU(1,1)

A. SU(1,1) representation theory

The noncompact Lie group SU(1,1) is the double cover
of the proper orthocronous Lorentz group SO0ð2; 1Þ, just as

SU(2) is the double cover of SO(3). A basis for the Lie
algebra suð1; 1Þ is given by

X0 ¼
1

2

�
i 0

0 −i

�
; X1 ¼

1

2

�
0 1

1 0

�
;

X2 ¼
1

2

�
0 −i
i 0

�
; ð1Þ

with commutation relations

½X0; X1� ¼ −X2; ½X1; X2� ¼ X0; ½X2; X0� ¼ −X1:

ð2Þ

X0 is the generator of the subgroup Uð1Þ ≅ SOð2Þ, i.e.
spatial rotations, while X1 and X2 generate boosts. As usual
in physics, we work with complexified generators

J0 ≔ −iX0; J� ≔ −iX1 � X2; ð3Þ

satisfying

½J0; J�� ¼ �J�; ½Jþ; J−� ¼ −2J0: ð4Þ

The Casimir operator is given by

Q¼ðX0Þ2−ðX1Þ2−ðX2Þ2≡−J0ðJ0þ1ÞþJ−Jþ: ð5Þ

Complex irreducible representations of SU(1,1) fall into
four different classes.1 In each case, the vector space is
spanned by the orthonormal vectors jj;mi, where j labels
the representation and m belongs to the (countable) index
set M, which depends on the representation. The action of
the generators on this vector is always the same, namely

8><
>:

J0jj; mi ¼ mjj; mi
J�jj; mi ¼ C�ðj; mÞjj; m� 1i
Qjj; mi ¼ −jðjþ 1Þjj; mi;

ð6Þ

with

C�ðj; mÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffi
j∓m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�mþ 1

p
: ð7Þ

The possible representation classes are the following:
(i) Discrete series D�

j (positive and negative): infinite-
dimensional representations, with

j ∈
�
−
1

2
; 0;

1

2
; 1;…

�
;

M� ¼ f�ðjþ 1Þ;�ðjþ 2Þ;�ðjþ 3Þ…g:

1We only consider here admissible representations, i.e.
those that are unitary when restricted to the maximal compact
subgroup U(1).
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They are always unitary, but only appear in the
Plancherel decomposition when j ≥ 0.

(ii) Continuous series Cε
j: infinite-dimensional represen-

tations of parity ε ∈ f0; 1
2
g, with

j ∈ C; M ¼ εþ Z

and satisfying the constraint

jþ ε∈Z:

The representations Cε
j and Cε

−j−1 are isomorphic.
They are unitary only if j ∈ f− 1

2
þ isjs ≠ 0g or

when ε ¼ 0, if j ∈ ð−1; 0Þ; they only appear in the
Plancherel decomposition in the former case.

(iii) Finite-dimensional series Fj: finite-dimensional rep-
resentations, with

j∈
�
0;
1

2
;1;…

�
; M¼f−j;−jþ1;…;j−1;jg

and dimension 2jþ 1. The only unitary one is the
trivial representation with j ¼ 0, which however
does not appear in the Plancherel decomposition.

We illustrate now some results of SU(1,1) recoupling
theory. In particular we present some nontrivial recouplings
of finite- and infinite-dimensional representations.

1. Coupling of finite-dimensional representations

The finite-dimensional representations of SU(1,1)
coincide with those of SU(2). In particular, their recoupling
will have the same Clebsch-Gordan decomposition, i.e.

Fj ⊗ Fj0 ¼ ⨁
jþj0

J¼jj−j0j
FJ: ð8Þ

2. Coupling of unitary representations

The known recouplings for unitary representations
are [15]

D�
j ⊗ D�

j0 ¼ ⨁
∞

J¼jþj0þ1

D�
J ; ð9aÞ

D�
j ⊗ D∓

j0 ¼ ⨁
j−j0−1

J¼Jmin

D�
J ⊕ ⨁

j0−j−1

J¼Jmin

D∓
J ⊕

Z
⊕

Rþ
Cε
−1
2
þiS

dS;

Jmin ¼ ε ¼ ςðjþ j0Þ; ð9bÞ

D�
j ⊗ Cε

−1
2
þis

¼ ⨁
∞

J¼Jmin

D�
J ⊕

Z
⊕

Rþ
CE
−1
2
þiS

dS;

Jmin ¼ E ¼ ςðjþ εÞ; ð9cÞ

Cε
−1
2
þis

⊗ Cε0
−1
2
þis0 ¼ ⨁

∞

J¼Jmin

Dþ
J ⊕ ⨁

∞

J¼Jmin

D−
J⊕2

Z
⊕

Rþ
CE
−1
2
þiS

dS;

Jmin ¼ E ¼ ςðεþ ε0Þ; ð9dÞ

where j, j0 ≥ − 1
2
and s, s0 > 0, the function ς is defined by

ςðxÞ ¼
�
0 if x ∈ Z
1
2

if x ∈ 1
2
þ Z; ð10Þ

all the sums are in integer steps and it is to be understood

that ⨁
b

J¼a
vanishes if b < a. Notice in particular that only

representations in the Plancherel decomposition appear in
the Clebsch-Gordan decomposition, even when we con-
sider couplings involving discrete representations with
j ¼ − 1

2
. Moreover, the trivial representation F0 does not

appear in any of the representations. The factor 2 in (9d)
denotes that each continuous representation appears twice
in that decomposition.

3. Coupling of finite- and infinite-dimensional
representations

In order to make use of the full potential of tensor
operators, we need to know how the finite-dimensional
representations couple with those in the discrete and
continuous series; these couplings were studied in detail
in [13]. One has

ð11Þ

with the restriction j > γ − 1 and

ð12Þ

with the restriction that, if j ∈ Z=2, j > γ − 1 or j < −γ.
Here denotes a direct sum only with respect to the vector
space structure: the subspaces appearing in the decom-
position will not be orthogonal. Moreover, we denoted the
representations on the rhs as ~D and ~C because, with the
inner product inherited from the coupling, they have a
different Hilbert space structure than the usual representa-
tions: namely, the standard basis vectors jj; mi are orthogo-
nal to each other but not normalized to 1. They can be
brought to the standard form through a representation
isomorphism which will not, however, be an isometry.

4. Clebsch-Gordan coefficients and label notation

So far our results of recoupling theory are very hetero-
geneous. In order to have a uniform notation across
different cases, we introduce a new convention: the
quantum number j ∈ C will become a label, i.e. we will,
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with abuse of notation, continue to call j the pair ðj; αÞ,
where

α ∈ fDþ; D−; C0; C
1
2; Fg ð13Þ

is a symbol denoting the representation class. The label j
now completely determines the representation, which we
can denote by ρj∶ SUð1; 1Þ → GLðVjÞ, where Vj is the
vector space spanned by the standard basis jj; mi. The set
of possible m values will be denoted by Mj.
Consider now a generic coupling ρj ⊗ ρj0 . If a decom-

position exists, we are going to denote by Dðj; j0Þ the set
containing the labels of all representations appearing in it.
One has

jJ;Mi ¼
X
m;m0

Aðj; m; j0; m0jJ;MÞjj; mi ⊗ jj0; m0i;

J ∈ Dðj; j0Þ; M ∈ Mj; ð14Þ

where the Aðj;m; j0; m0jJ;MÞs are the Clebsch-Gordan
coefficients of the decomposition, i.e. the components of
the linear map A between the coupling and its decom-
position. To account for the case Fγ ⊗ ρj, in which this
map is generally not unitary, we write

jj;mi⊗ jj0;m0i¼
Z
Dðj;j0Þ

dξðJÞ
X

M∈MJ

BðJ;Mjj;m;j0;m0ÞjJ;Mi;

ð15Þ

where the BðJ;Mjj; m; j0; m0Þs are the components of A−1,
which we may call inverse Clebsch-Gordan coefficients.
The integral is taken with respect to a measure ξ defined as
follows: let Dαðj; j0Þ⊆Dðj; j0Þ denote the subset of labels
with representation class α; then

ξjDα
≔

( λ if jDαj ¼ jRjP
J∈Dα

δJ if jDαj ¼ jNj; ð16Þ

where λ is the Lebesgue measure and δJ is the Dirac
measure defined by

δJðAÞ ¼
�
1 if J ∈ A
0 if J ∈ A:

ð17Þ

Clebsch-Gordan coefficients possess many interesting
properties. It follows from their definition that they satisfy
the orthogonality relationsZ

dξðJÞ
X
M

Aðj; m; j0; m0jJ;MÞBðJ;Mjj; n; j0; n0Þ

¼ δm;nδm0;n0 ð18aÞ

X
m;m0

BðJ;Mjj; m; j0; m0ÞAðj;m; j0; m0jJ0;M0Þ

¼ δðJ; J0ÞδM;M0 ; ð18bÞ

where

δjDα×Dβ

8<
:

is a Dirac delta if α¼ β and jDαj ¼ jRj
is a Kronecker delta if α¼ β and jDαj ¼ jNj
identically vanishes if α≠ β

ð19Þ

Moreover, they can be normalized so that

Aðj;m; j0; m0jJ;MÞ≡ BðJ;Mjj; m; j0; m0Þ; ð20Þ

so that we may refer to both of them as Clebsch-Gordan
coefficients. With this normalization, they satisfy the
recursion relations

C�ðJ;MÞAðj; m; j0; m0jJ;M � 1Þ
¼ C�ðj; m∓ 1ÞAðj; m∓ 1; j0; m0jJ;MÞ
þ C�ðj0; m0∓1ÞAðj; m; j0; m0∓1jJ;MÞ: ð21Þ

The explicit values of some Clebsch-Gordan coefficients
we use, those of the couplings F1

2
⊗ ρj with arbitrary j, are

presented in Table I.

B. Classical tensors

We construct classical SU(1,1) tensors, where the infini-
tesimal action of SU(1,1) is implemented by a Poisson
bracket. The first step is to realize the suð1; 1Þ commu-
tation relations (4) at the classical level, i.e. using a Poisson
bracket. We consider therefore the elements xþ ∈ C, x0 ∈
R which satisfy the 3D real Poisson algebra isomorphic to
suð1; 1Þ,

x− ≡ x̄þ; fxþ; x−g ¼ 2ix0; fx0; x�g ¼ ∓ix�:
ð22Þ

We use these elements to generate suð1; 1Þ transforma-
tions, i.e. infinitesimal SU(1,1) transformations. A tensor
is a set of functions that transforms as a SU(1,1)

TABLE I. Values of the Clebsch-Gordan coefficient
BðJ;Mj 1

2
; μ; j;M − μÞ with arbitrary j.

J ¼ j − 1
2

J ¼ jþ 1
2

μ ¼ − 1
2 −

ffiffiffiffiffiffiffiffiffiffiffi
jþMþ1

2

p ffiffiffiffiffiffiffiffi
2jþ1

p
ffiffiffiffiffiffiffiffiffiffiffi
j−Mþ1

2

p ffiffiffiffiffiffiffiffi
2jþ1

p

μ ¼ þ 1
2

ffiffiffiffiffiffiffiffiffiffiffi
j−Mþ1

2

p ffiffiffiffiffiffiffiffi
2jþ1

p
ffiffiffiffiffiffiffiffiffiffiffi
jþMþ1

2

p ffiffiffiffiffiffiffiffi
2jþ1

p
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representation [or the tensor product of SU(1,1) represen-
tations]. For example, we can consider the tensor tjm which
corresponds to one of the irreducible representations ρj
discussed in the previous section. As such, the tensor tjm
should transform in a similar way as (6), under the
infinitesimal action of SU(1,1), i.e.

fx�; tjmg ¼ −iC�ðj; mÞtjm�1

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
j∓m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�mþ 1

p
tjm�1;

fx0; tjmg ¼ −imtjm: ð23Þ

Considering a unitary ρj would mean that tj has an infinite
number of components. We focus instead on the finite-
dimensional (nonunitary) representation Fγ , so that tγ has a
finite number of components. We consider in particular
scalars (γ ¼ 0), spinors (γ ¼ 1=2) and vectors (γ ¼ 1). We
consider also the tensor t

1
2
�⊗1

2 given by the SU(1,1)
fundamental representation. To construct the latter, we
need to introduce the notion of contravariant tensor, built
from the dual representation F�

γ . Since we are dealing with
finite-dimensional representations, the dual representation
F�
γ is isomorphic to the finite-dimensional representation

Fγ . As recalled in Appendix A, the isomorphism is
obtained as

hγ; μj ∈ V�
γ ↦ ð−1Þμjγ;−μi ∈ Vγ: ð24Þ

We can therefore introduce the contravariant tensor

tγ
�
m ¼ ð−1Þmtγ−m; fx�; tγ

�
mg ¼ iC�ðγ;−mÞtγ�m;

fx0; tγ
�
mg ¼ imtγ

�
m: ð25Þ

A nice property of tensors is that we can concatenate them
to obtain new tensors, just like we can concatenate
representations, using Clebsch-Gordan coefficients; in fact,

tγμ ¼
X
μ1;μ2

Aðγ1; μ1; γ2; μ2jγ; μÞtγ1μ1tγ2μ2 ;

γ ∈ Dðγ1; γ2Þ; μ ∈ Mγ ð26Þ

is the μ component of a tensor of rank γ, as can be checked
using the recursion relations for the Clebsch-Gordan
coefficients.
We are interested in finding the spinor variables, that is a

set of variables t
1
2

�1
2

≡ t� ∈ C such that

fx�; t�g ¼ 0; fx�; t∓g ¼ t�;

fx0; t�g ¼ ∓ i
2
t�: ð27Þ

In the following, it is convenient to consider two spinors

~t ¼
�
~t−
~tþ

�
; t ¼

�
t−
tþ

�
∈ C2. The Poisson brackets in

(22) and (27) are realized if we set

x� ¼ �it�~t�; x0 ¼ −
1

2
ðt−~tþ þ tþ~t−Þ; ð28Þ

with

f~tþ; t−g ¼ ftþ; ~t−g ¼ −i;

f~tþ; ~t−g ¼ ftþ; t−g ¼ f~tþ; tþg ¼ f~t−; t−g ¼ 0: ð29Þ

As such, we are considering a (complex) symplectic form
on C4∋ðt; ~tÞ, which is not the canonical one. Note that we
have to implement the reality constraints x− ¼ x̄þ, and
x0 ¼ x̄0, so that we need to reduce our parametrization
space C4 to a smaller space. There are two natural choices
to implement the reality constraints,

t− ¼ ~̄tþ; ~t− ¼ t̄þ or t− ¼ −~̄tþ; ~t− ¼ −t̄þ;
ð30Þ

which reduce C4 to C2 equipped with the canonical
symplectic form.
We can concatenate the spinors ~t and t to form a scalar in

the following way. We use the Clebsch-Gordan coefficient
Að1

2
; μ1; 12 ; μ2j0; 0Þ ¼ ð−1Þ12−μδμ1;−μ2 to define a bilinear

form (notice that it is not diagonal, so the order we set
the vectors is important)

Bðt; ~tÞ ¼ −
ffiffiffi
2

p X
μ1;μ2

A

�
1

2
; μ1;

1

2
; μ2

����0; 0
�
tμ1 ~tμ2

¼ ð−1Þ12þμtμ~t−μ ¼ −tþ~t− þ t−~tþ ≡ hτjτi; ð31aÞ

Bð~t; tÞ ¼ −
ffiffiffi
2

p X
μ1;μ2

A

�
1

2
; μ1;

1

2
; μ2

����0; 0
�
~tμ1tμ2

¼ ð−1Þ12þμ~tμt−μ ¼ −~tþt− þ ~t−tþ ≡ ½τjτ� ¼ −hτjτi;
ð31bÞ

Bð~t; ~tÞ ¼ −
ffiffiffi
2

p X
μ1;μ2

A

�
1

2
; μ1;

1

2
; μ2

����0; 0
�
~tμ1 ~tμ2

¼ ð−1Þ12þμ~tμ~t−μ ≡ ½τjτi ¼ 0; ð31cÞ

Bðt; tÞ ¼ −
ffiffiffi
2

p X
μ1;μ2

A

�
1

2
; μ1;

1

2
; μ2

����0; 0
�
tμ1tμ2

¼ ð−1Þ12þμtμt−μ ≡ hτjτ� ¼ 0: ð31dÞ
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We have introduced the (square) bra-ket notation as it is
convenient to keep track of the nature of the spinor. The
kets jτi and jτ� are the initial spinors, respectively ~t and t,
whereas ½τj and hτj are contravariant spinors, as defined in
(25); explicitly

jτi≡ ~t; jτ�≡ t ð32Þ

and

hτj≡ ðð−1Þ12−μt−μÞμ ¼ ð−tþ; t−Þ;
½τj≡ ðð−1Þ12−μ~t−μÞμ ¼ ð−~tþ; ~t−Þ: ð33Þ

Out of the spinor variables t and ~t, using (26), we can also
define a vector

Xμ ¼
X
μ1;μ2

A

�
1

2
; μ1;

1

2
; μ2

����1; μ
�
tμ1 ~tμ2 with

X�1 ¼ t�~t�; X0 ¼
1ffiffiffi
2

p ðt−~tþ þ tþ~t−Þ; ð34Þ

we can explicitly check that

fx�; X�g ¼ 0; fx∓; X�g ¼
ffiffiffi
2

p
X0;

fx�; X0g ¼
ffiffiffi
2

p
X�; fx0; X�g ¼ ∓i

ffiffiffi
2

p
X�;

fx0; X0g ¼ 0: ð35Þ

We note that the components Xi are related to the suð1; 1Þ
generators xi by

X�1 ¼ ∓ix�; X0 ¼ −
ffiffiffi
2

p
x0; Xi ¼ hτjσijτi;

ð36Þ

with

σþ ¼
�
0 1

0 0

�
; σ−¼

�
0 0

1 0

�
; σ0 ¼

�−1 0

0 1

�
: ð37Þ

By construction, having in mind the constraints (30), we
have that Xþ ¼ X̄−, X0 ¼ X̄0. The classical analogue q of
the suð1; 1Þ Casimir is proportional to the norm of X, as

jXj2 ¼
ffiffiffi
3

p X
m1;m2

Að1; m1; 1; m2j0; 0ÞXm1
Xm2

¼ 2XþX− − X2
0 ¼ 2ðxþx− − x20Þ ¼ 2q: ð38Þ

A SU(1,1) group element represented in the fundamental
representation is

g ¼
�
α β

β̄ ᾱ

�
∈ SUð1; 1Þ; jαj2 − jβj2 ¼ 1: ð39Þ

It is a matrix, hence it can be seen as the tensor product of
spinor and a contravariant spinor g ∼ t

1
2 ⊗ t

1
2
�
. Taking into

account that we must have det g ¼ 1, we consider the
spinorial representation for g as

g¼ −iffiffiffiffiffiffiffiffiffiffihτjτip ffiffiffiffiffiffiffiffiffiffiffiffihwjwip ðjwi½τj− jw�hτjÞ

¼ −iffiffiffiffiffiffiffiffiffiffihτjτip ffiffiffiffiffiffiffiffiffiffiffiffihwjwip �
− ~w−~tþþw−tþ −w−t−þ ~w−~t−

− ~wþ~tþþwþtþ −wþt−þ ~wþ~t−

�
;

ð40Þ

with hτjτi ¼ hwjwi. We can check that det g ¼ 1 and that
fgij; gklg ¼ 0. As an element of SU(1,1), we also require
the constraints g11 ¼ ḡ22 and g12 ¼ ḡ21; if one uses
the constraints (30), they are automatically satisfied. The
inverse holonomy is given by

g−1 ¼ iffiffiffiffiffiffiffiffiffiffihτjτip ffiffiffiffiffiffiffiffiffiffiffiffihwjwip ðjτi½wj − jτ�hwjÞ: ð41Þ

Using the matching constraint hwjwi ¼ hτjτi, we have(
gjτi ¼ ijw�; gjτ� ¼ ijwi;
hwjg ¼ −i½τj; ½wjg ¼ −ihτj and

(
g−1jwi ¼ −ijτ�; g−1jw� ¼ −ijτi;
hτjg−1 ¼ i½wj; ½τjg−1 ¼ ihwj: ð42Þ

Using their expression in terms of the spinors, we can
also calculate the Poisson bracket between the xi and the
SU(1,1) matrix elements to recover the full phase space
structure of T�SUð1; 1Þ. Hence, as expected, the spinors
provide a nice parametrization of T�SUð1; 1Þ, with

fxþ; x−g ¼ 2ix0; fx0; x�g ¼ ∓ix�;

fgij; gklg ¼ 0; fxα; gijg ¼ −ðgσαÞij; ð43Þ
where the σα, α ¼ �; 0 are given in (36).

C. Tensor operators

1. Definition and Wigner-Eckart theorem

At the representation theory level, we are interested in a
set of operators that transform as vectors in a finite-
dimensional representation2 under the action of the group.
Explicitly, let

ρj∶ SUð1; 1Þ → GLðVjÞ ð44Þ

denote any irreducible SU(1,1) representation, where j is to
be thought of as a label including, in addition to its numerical

2The representation need not be finite dimensional [12], but we
only consider this case here.
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value, the class of the representation (e.g. continuous,
discrete positive). Given two such representations ρj1 and
ρj2 one can associate to them a new representation

R∶ SUð1; 1Þ → GLðLinðVj1 ; Vj2ÞÞ ð45Þ

defined by

RðgÞA ¼ ρj2ðgÞAρj1ðgÞ−1; ∀ A ∈ LinðVj1 ; Vj2Þ: ð46Þ

An (irreducible) tensor operator of rank γ ∈ N0=2 is an
intertwiner between R and the finite-dimensional represen-
tation Fγ , i.e. a linear map

Tγ∶ Vγ → LinðVj1 ; Vj2Þ ð47Þ

such that

RðgÞ ∘ Tγ ¼ Tγ ∘ FγðgÞ; ∀ g ∈ SUð1; 1Þ: ð48Þ

As usual with linear maps, the components of a tensor
operator (in a given basis) are defined by evaluating it on
basis vectors: with our standard basis they are the linear
maps Tγ

μ∶ Vj1 → Vj2 defined by

Tγ
μ ≔ Tγðjγ; μiÞ; μ ∈ Mγ ¼ f−γ;…; γg: ð49Þ

Equation (48) can be rewritten in terms of these components
by evaluating both sides on each jγ; μi, to get

ρj2ðgÞTγ
μρj1ðgÞ−1 ¼

X
ν∈Mγ

hγ; νjFγðgÞjγ; νiTγ
ν;

∀g ∈ SUð1; 1Þ: ð50Þ

Differentiating at the identity we obtain, at the Lie algebra
level, that

ρj2ðXÞTγ
μ − Tγ

μρj1ðXÞ ¼
X
ν∈Mγ

hγ; νjFγðXÞjγ; νiTγ
ν;

∀X ∈ suð1; 1Þ; ð51Þ

which in terms of the generators can be written in the
compact form

½J0; Tγ
μ� ¼ μTγ

μ; ½J�; Tγ
μ� ¼ C�ðγ; μÞTγ

μ�1; ð52Þ

this can be seen as the quantum version of (23). One can
show that the definitions at the group and algebra level are
equivalent [16].
Tensor operators possess two extremely useful proper-

ties. First of all, they can be combined to build other
operators of greater or smaller rank: explicitly, the operator
defined by

X
μ1;μ2

Aðγ1; μ1; γ2; μ2jγ; μÞTγ1
μ1T

γ2
μ2 ;

γ ∈ Dðγ1; γ2Þ; μ ∈ Mγ ð53Þ

is the μ component of a tensor operator of rank γ, as can be
checked by making use of the Clebsch-Gordan recursion
relations.
A second, more profound feature of tensor operators lies

in theWigner-Eckart theorem, which roughly states that the
matrix elements of a tensor operator between two irreduc-
ible representations are proportional to a Clebsch-Gordan
coefficient, the proportionality factor being the same for
every matrix element. Explicitly, let Tγ be a tensor operator
of rank γ between two representations ρj and ρj0 . When the
decomposition of Fγ ⊗ ρj exists, the matrix elements of the
components of Tγ are of the form

hj0; m0jTγ
μjj; mi ¼ hj0∥Tγ∥jiBðj0; m0jγ; μ; j; mÞ; ð54Þ

where the reduced matrix element hj0∥Tγ∥ji ∈ C does not
depend on μ, m or m0.
This theorem, originally formulated for SU(2), is known

to be valid more generally for compact groups, and it was
proved for the particular noncompact case of SU(1,1) in
[13]. An overview of the proof of the theorem is presented
in Appendix B.

2. Spinor and vector operators for SU(1,1)

We want to solve (52) in the case γ ¼ 1=2; 1. We discuss
the case γ ¼ 0 in Sec. IVA. Due to the Wigner-Eckart
theorem, we know the matrix elements of Tγ modulo the
reduced matrix element. Furthermore, just like in the
classical case, we want to reconstruct the vector operator,
whose components are proportional to the suð1; 1Þ, from
the spinor operators. This requirement essentially fixes the
reduced matrix element for both γ ¼ 1=2 and γ ¼ 1.
For the spinor case, we want to solve

½J0; T�� ¼ � 1

2
T�; ½J�; T∓� ¼ C�

�
1

2
;∓ 1

2

�
T�;

½J�; T�� ¼ 0; ð55Þ
which is the quantum version of (27). We consider two
solutions T and ~T, which are characterized by the chosen
reduced matrix elements

hj0∥T∥ji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
δj0;jþ1

2
;

hj0∥ ~T∥ji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
δj0;j−1

2
: ð56Þ

As mentioned above, these normalizations are chosen so
that we can recover the suð1; 1Þ generators out of the
spinor operators. With this normalization, the action of T
and ~T on a vector jj; mi belonging to a (unitary) irreducible
representation is
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T−jj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j −mþ 1

p ����jþ 1

2
; m −

1

2

�
;

Tþjj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþmþ 1

p ����jþ 1

2
; mþ 1

2

�
;

~T−jj; mi ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
jþm

p ����j − 1

2
; m −

1

2

�
;

~Tþjj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
j −m

p ����j − 1

2
; mþ 1

2

�
: ð57Þ

It follows therefore that

½Tþ; ~T−� ¼ ½ ~Tþ; T−� ¼ 1; ð58Þ
with all other commutators vanishing. We note that the
tensor operators T and ~T might send a unitary representa-
tion to a nonunitary one. Indeed, if j is a continuous
representation, then j ¼ − 1

2
þ is and j� 1

2
is not a unitary

representation anymore. As we see later on, this means that
we consider polynomials of combinations of the type T ~T or
~TT in order to always retrieve a unitary representation in
any case. The vector operator given in terms of the
generators is such an example.
Indeed, instead of γ ¼ 1=2, we can focus on the case

γ ¼ 1 and solve (52) in this case. It is not difficult to see that
the suð1; 1Þ generators, properly rescaled

V0 ¼ −
ffiffiffi
2

p
J0; V�1 ¼ ∓iJ�; ð59Þ

satisfy (52) with γ ¼ 1. Vμ is then a vector operator. Instead
of proceeding in this way, we can also recall that a vector
can be built out of spinors. We use the Clebsch-Gordan
coefficients to concatenate the spinor operators to form a
vector operator.

Vμ ¼
X1

2

μ1¼−1
2

X1
2

μ2¼−1
2

	
1

2
; μ1;

1

2
; μ2

����1; μ
�
Tμ1

~Tμ2 : ð60Þ

The choice of reduced matrix element for the spinor in (56)
is essential to recover the generators Ji. We have explicitly

J� ¼ �iT� ~T�; J0 ¼ −
1

2
ðT− ~Tþ þ Tþ ~T−Þ: ð61Þ

3. Quantization of classical tensors

In Sec. II B, we have defined the notion of classical
tensors. We have constructed the classical spinors t; ~t and
the vector X. In the previous section, we have constructed
the spinor and vector operators, and it is natural to ask
whether they can be seen as the quantization of their
classical counterparts. It is enough to focus on the spinors,
since they are the building blocks from which any other
tensor is built.

At the classical level, we started with a pair of spinors
ðt; ~tÞ ∈ C4. We built the generators xi and the holonomy g
out of these variables. Due to the reality constraints that
both xi and g have to satisfy, we had constraints on ðt; ~tÞ:
we could therefore reduce the number of independent
variables to C2. We found two natural constraints in (30).
Let us now discuss the quantization procedure. A priori,

we have a choice: we can first implement the reality
constraint, then quantize, or alternatively first quantize,
then implement a quantum version of the reality con-
straints. Since we have different types of operators (e.g.
different adjointness properties, possibly sending unitary
representations to nonunitary representations) according to
the space on which they act on, positive or negative discrete
series and continues series, we need to be cautious and
make a study case by case. We first consider the case where
we quantize the tensors and then find a quantum version of
the necessary reality conditions.
The (nonzero) Poisson brackets on C4 are straightfor-

ward to quantize as

~t → ~T; t → T; f~tþ; t−g ¼ −i → ½ ~Tþ; T−� ¼ 1;

ftþ; ~t−g ¼ −i → ½Tþ; ~T−� ¼ 1: ð62Þ

We consider now the natural reality constraints (30) we
found. They are easily quantized as

t� ¼
�
−~̄t∓
~̄t∓

→ T� ¼
�
− ~T†∓
~T†∓:

ð63Þ

A quick look at the spinor operator action shows that these
constraints are actually realized when acting on the discrete
series; we have indeed

T� ¼
�
− ~T†∓ when acting onDþ

j
~T†∓ when acting onD−

j :
ð64Þ

With these reality conditions, we see that we can use a pair
of quantum harmonic oscillators ða; a†Þ, ðb; b†Þ satisfying

½a; a†� ¼ ½b; b†� ¼ 1; ð65Þ

with all other commutators vanishing, to represent our
spinor operators; explicitly

8>>><
>>>:

T ¼
�

ib

−a†

�
; ~T ¼

�
a

ib†

�
for Dþ

j

T ¼
�
−ib†

a

�
; ~T ¼

�
a†

ib

�
for D−

j :

ð66Þ

With this parametrization, we recover the usual Schwinger-
Jordan representation of the suð1; 1Þ generators
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Jþ ¼ a†b†; J− ¼ ab;

J0 ¼
8<
:

1
2
ða†aþ b†bþ 1Þ for Dþ

j

− 1
2
ða†aþ b†bþ 1Þ for D−

j :
ð67Þ

When acting on the continuous representations, things
are more complicated. Indeed, in this case, the spinor
operators are not related by the adjoint, but only the
transpose, i.e.

	
jþ 1

2
; m� 1

2

����T�jj; mi ¼ ∓hj; mj ~T∓
����jþ 1

2
; m� 1

2

�
;

ð68Þ

since j is now complex. One might then wonder whether,
when acting on the continuous representation, one can still
recover

Jþ ¼ J†−; ð69Þ

this will be true since the combinations iTþ ~Tþ and −iT− ~T−
have real coefficients when acting on the continuous
series, as

J�jj; mi ¼ �iT� ~T�jj; mi
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffi
j∓m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�mþ 1

p
jj; m� 1i

¼ C�ðj; mÞjj; m� 1i: ð70Þ

The coefficients C�ðj; mÞ are real3 and hence it is easy to
see that we still have that Jþ ¼ J†− when expressing the
generators in terms of the spinor operators.
The other possible scheme of quantization, “reduce the

reality conditions, then quantize,” would also work easily
for the discrete series, when using the reality constraints
(30). However, for continuous representations, it is not
clear how it would work, since the standard way to quantize
two variables that are complex conjugate to each other is to

say that their quantum versions are related through the
adjoint.
To summarize, we recovered the well-known Schwinger-

Jordan trick for suð1; 1Þ, previously only known for the
discrete series. We have an extension to the continuous
series [13], but of course not in terms of the usual harmonic
oscillators.
The quantization of the holonomy given in (40) has some

ordering ambiguity due to the quantization of the inverse of
hτjτi (and hwjwi). Moreover, hτjτi itself can be quantized in
different ways as

hτjτi ¼ t−~tþ − tþ~t− →

8>>>>><
>>>>>:

T− ~Tþ − Tþ ~T− ¼ E

T− ~Tþ − ~T−Tþ ¼ Eþ 1

~TþT− − Tþ ~T− ¼ Eþ 1

~TþT− − ~T−Tþ ¼ Eþ 21;

ð71Þ

where

Ejj; mi ¼ 2jjj;mi: ð72Þ
For the term in the denominator, it is convenient to take one
ordering choice which leads to Eþ 1 since it has also the
effect of regularizing the denominator when j ¼ 0. The
sector in w is quantized in an analogous way, but acts on
covectors (bras), i.e.

jτi → ~T; jτ� → T; both acting on jj; mi
jwi → ~T; jw� → T; both acting on hj; mj

hτjτi → Eþ 1; hwjwi → Eþ 1; ð73Þ

with

hj; mjE ¼ 2jhj; mj: ð74Þ
The matrix elements of the holonomy are easy to quantize,
except for some ordering issues with the inverse of Eþ 1.
We have two natural quatization choices

g ¼ −i
ðhτjτihwjwiÞ12 M⇝

8>>><
>>>:

M → M̂ ¼
�

− ~T− ⊗ ~Tþ þ T− ⊗ Tþ − T− ⊗ T− þ ~T− ⊗ ~T−

− ~Tþ ⊗ ~Tþ þ Tþ ⊗ Tþ − Tþ ⊗ T− þ ~Tþ ⊗ ~T−

�

g → ĝ ¼ −iffiffiffiffiffiffiffi
Eþ1

p M̂ 1ffiffiffiffiffiffiffi
Eþ1

p or − iM̂ 1
Eþ1

:

ð75Þ

The first ordering choice (symmetric in
ffiffiffiffiffiffiffiffiffiffiffiffi
Eþ 1

p
) is in a way

natural since when acting on the discrete series, we have
that ĝ11 ¼ ĝ†22 and ĝ12 ¼ ĝ†21; note however than when
acting on the continuous series, we only have that ĝ11 ¼ ĝt22
and ĝ12 ¼ ĝt21. The drawback of this ordering choice is that
we cannot obtain from it the Biedenharn-Elliott relation,
which is key to construct the quantum Hamiltonian con-
straint (cf. Sec. V C). The second choice of ordering leads

3Explicitly C�ð− 1
2
þ is; mÞ2 ¼ s2 þ 1=4 þ mðm∓1Þ > 0;

∀m ∈ M ¼ ε þ Z.
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to the Biedenharn-Elliott relation but the quantum matrix
elements are not adjoint to each other unless one renorm-
alizes4 the scalar product for the jj; mi.

III. CLASSICAL DESCRIPTION OF
LORENTZIAN 3D LQG

We recall now the standard construction of the LQG
phase space (see for example [4]), specializing it to the
SU(1,1) case. The triad and connection ðe;ωÞ are dis-
cretized into the flux and holonomy variables ðX; gÞ ∈
T�SUð1; 1Þ. More precisely we consider a graph Γ and
looking at an edge e, we associate to the vertices of the edge
of the flux, whereas the edge is associated with the
holonomy (cf. Fig. 1). The flux ~X is the flux parallel
transported through the holonomy g.
The idea behind the spinorial framework is to replace the

fluxes and holonomies by attaching a pair of spinors jτi, jτ�
at each vertex. Given an edge, the two pairs of spinors
provide the full information about T�SUð1; 1Þ, since we can
reconstruct from them the flux [cf. (34)] or the holonomy
[cf. (40)]. This is unlike the ðX; ~XÞ variables which specify
the holonomy only modulo a phase (a boost or a rotation
according to the nature of X and ~X).
The dynamics of gravity is encoded by two constraints,

the Gauss constraint and the flatness constraint. The Gauss
constraint is discretized at the vertices of Γ. The discretized
constraint corresponds to an (infinitesimal) SU(1,1) invari-
ance at the vertex. Due to the proportionality between the
fluxes and the suð1; 1Þ generators, this invariance can be
interpreted as saying that the total flux at each vertex is
zero, i.e.

X
i

Xi ¼ 0: ð76Þ

One should be aware that this is merely an accident. When
dealing with quantum groups, the invariance under the
quantum group cannot be interpreted as saying that what
plays the role of the fluxes sums up to zero [5].
Given a vertex v, we can construct a set of functions

which commute with the Gauss constraint, and as such they
will be called observables. They are defined in terms of the
spinors living on different legs of the vertex and they are
therefore SU(1,1) invariant. These functions are

fab ≡ Bðta; tbÞ ¼ hτajτb�;
~fab ≡ Bð~ta; ~tbÞ ¼ ½τajτbi;
eab ≡ Bðta; ~tbÞ ¼ hτajτbi;
~eab ≡ Bð~ta; tbÞ ¼ ½τajτb� ¼ −eba: ð77Þ

The observables fab and ~fab are not all independent when
considering some reality conditions: for example, if one
uses either of the reality conditions ~t� ¼ −t̄∓ or ~t� ¼ t̄∓
on both of the legs a and b, we get that ~fab ¼ f̄ab. If instead
we use ~t� ¼ −t̄∓ on leg a and ~t� ¼ t̄∓ on leg b (or vice

versa), we get ~fab ¼ −f̄ab.
The functions e, ~e, f and ~f satisfy the closed Poisson

relations

feab; ecdg ¼ −iðδcbead − δadecbÞ; ð78aÞ

feab; fcdg ¼ −iðδbcfad − δbdfacÞ; ð78bÞ

feab; ~fcdg ¼ −iðδad ~fbc − δac ~fbdÞ; ð78cÞ

ffab; ~fcdg ¼ −iðδcbead − δad ~ecb − δcaebd þ δbd ~ecaÞ;
ð78dÞ

ffab; fcdg ¼ f ~fab; ~fcdg ¼ 0: ð78eÞ

As it is well known now in the Euclidean case, we can use
these observables to generate the standard LQG observ-
ables, which are now expressed in terms of the observables
associated to the intertwiners. The flatness constraint is
discretized by asking that the product of the holonomies
around each face f of the graph is the identity, i.e.Y

e∈f
ge ¼ 1: ð79Þ

V. Bonzom and his collaborators realized that this con-
straint (in the Euclidean case) can be recast in a natural
constraint involving the fluxes [3] or the spinors [4],

FIG. 1. The information about fluxes is now encoded by a pair
of spinors.

FIG. 2. The flatness constraint on the triangular face is
g2g−14 g3 ¼ 1.

4We thank E. Livine for discussions on this point.
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according to the initial choice of variables on the graph.
Essentially, one projects the flatness constraints on the basis
provided by the spinors, to obtain a set of scalar constraints.
The physical interpretation is that the scalar product of two
spinors at a vertex is left invariant when parallel trans-
porting the spinors (the fluxes) along the edges around the
relevant face. Since one has different types of spinors, one
obtains different scalar constraints. Without loss of general-
ity, we can focus on a triangular face of the graph, such as in
Fig. 2. Sitting at the vertex between g2 and g3 and
proceeding clockwise (i.e. along the cycle h342i), the
constraints are then

H½i
342 ≔ ½w2jð1 − g2g−14 g3Þjτ3ihw2jτ3�;

Hhi
342 ≔ hw2jð1 − g2g−14 g3Þjτ3i½w2jτ3�;

Hh�
342 ≔ hw2jð1 − g2g−14 g3Þjτ3�½w2jτ3i;

H½�
342 ≔ ½w2jð1 − g2g−14 g3Þjτ3�hw2jτ3i: ð80Þ

The constraint (79) is actually a set of three real scalar
constraints: in fact g2g−14 g3, as a SU(1,1) group element,
is parametrized by three real parameters, so that the
constraint

1 − g2g−14 g3 ¼ 0 ð81Þ

has three (real) degrees of freedom. The four complex
constraints in (80), being proportional to the matrix
elements of (81), are equivalent to it and thus carry the
same degrees of freedom.
Using the parallel transport of the spinors, we can

simplify the expression of the previous Hamiltonian con-
straints. We can in particular express them in terms of the
vertex observables eab; fab; ~fab. For example, using (42)
for hw2jg2 and g3jτ3�, we have that

Hh�
342¼hw2jð1−g2g−14 g3Þjτ3�½w2jτ3i

¼ðhw2jτ3�− ½τ2jg−14 jw3iÞ½w2jτ3i

¼
�
hw2jτ3�− ½τ2j

�
i
jτ4i½w4j− jτ4�hw4jffiffiffiffiffiffiffiffiffiffiffiffiffihτ4jτ4i
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihw4jw4i

p �
jw3i

�
½w2jτ3i

¼ðf23− ið ~f24 ~f43− ~e24e43Þe−14 Þ ~f23
¼f32 ~f32− iðe43 ~e24− ~f43 ~f24Þe−14 ~f32; ð82Þ

where we used that hτ4jτ4i ¼ hw4jw4i ¼ e44 ≕ e4, fab ¼
−fba and ~fab ¼ − ~fba.
Different sets of constraints can be obtained by consid-

ering the other possible cycles; the general expression for
them is

H½i
abc ¼ ~facfac þ iðeab ~ebc − fabfbcÞe−1b fac;

Hhi
abc ¼ ~eaceac þ iðeab ~fbc − fabebcÞe−1b eac;

Hh�
abc ¼ fac ~fac − ið~eabebc − ~fab ~fbcÞe−1b ~fac;

H½�
abc ¼ eac ~eac − ið~eabfbc − ~fab ~ebcÞe−1b ~eac; ð83Þ

with

habci ¼ h234i; h342i; h423i: ð84Þ

The counterclockwise cycles h432i, h243i and h324i are
ignored as they yield the same constraints as their clock-
wise counterparts.
One can check by direct computation that

H½i
abc þHh�

abc −Hhi
abc −H½�

abc ¼ eaectrð1− g2g−14 g3Þ ð85Þ

by making use of the property of the trace

trðABCÞ ¼ trðCABÞ ¼ trðBCAÞ: ð86Þ

IV. RELATIVISTIC SPIN NETWORKS

We quantize the classical LQG data we have just
described. In this section, we construct the kinematical
Hilbert, given in terms of SU(1,1) spin networks. L. Freidel
and E. Livine have studied in detail spin networks defined
for a noncompact group [17]. Due to the noncompacticity
of the group, divergencies might arise, but they prescribed a
way to deal with them. They used spin networks repre-
sented as functions over the group, whereas we here are
interested in spin networks defined in terms of representa-
tions (the dual picture); we review therefore the SU(1,1)
spin networks from the representation point of view.
The SU(1,1) recoupling theory has been recalled in

Sec. I A. We mainly focus on the fundamental building
block of a spin network, namely the 3-valent intertwiner.
We also discuss the 4-valent intertwiner, as it allows one to
introduce the Racah coefficient. Finally, we recall the scalar
product we can use in our framework to equip the vector
space of spin networks with a Hilbert space structure.

A. Intertwiners

Intertwiners are the morphisms in the category of (linear)
group representations, i.e. structure-preserving maps from
one representation to another. They are defined as follows:
an intertwiner between two arbitrary representations

ρ∶ SUð1; 1Þ → GLðVÞ; π∶ SUð1; 1Þ → GLðWÞ;
ð87Þ

not necessarily irreducible, is a linear map ψ∶V → W such
that
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ψ ∘ ρðgÞ ¼ πðgÞ ∘ ψ ; ∀g ∈ SUð1; 1Þ: ð88Þ

The set of all possible intertwiners from ρ to π forms a
vector space, which will be denoted by HomGðρ; πÞ,
where G ≔ SUð1; 1Þ.
We only work with intertwiners between representations

that are either irreducible or a tensor product of irreducible
ones.5 We call an intertwiner

ψ∶ ⊗
k

a¼1
Vja → ⊗

n

b¼rþ1
Vjb ð89Þ

an n-valent intertwiner and, for reasons that become clear
shortly, we say it has k incoming legs and ðn − kÞ
outgoing ones.
Of particular interest are the 3-valent intertwiners. The

vector space HomGðρj1 ⊗ ρj2 ; ρj3Þ, if the decomposition of
ρj1 ⊗ ρj2 exists, is completely specified by this decom-
position. In fact, one can show that a nonvanishing
intertwiner only exists if ρj3 appears in the decomposition;
the number of independent intertwiners equals the multi-
plicity of ρj3 in the decomposition (one or two for the
known decompositions). These basis elements will be
denoted by

ð90Þ

where we assume j3 also includes an appropriate label for multiplicities, when necessary. On the lhs we used a graphical
notation for the map, which will turn out to be very useful. It is to be read this way: incoming representations (legs) are on
the left, while outgoing ones are on the right; an arrow will be used to make the direction clear if needed.
Analogously, the basis elements for HomGðρj3 ; ρj1 ⊗ ρj2Þ are given by the intertwiners

ð91Þ

Moreover, we denote the unique intertwiner in the one-
dimensional space HomGðρj; ρjÞ by

ð92Þ

The two kinds of 3-valent intertwiners can be used as
building blocks of all the others, provided that the neces-
sary Clebsch-Gordan decomposition exists. This can be
achieved by composing intertwiners to obtain maps on
bigger representations; with our graphical notation, this
amounts to “gluing” them together.
We call any such composition of intertwiners a spin

network. Note that, when working with unitary representa-
tions, there is no way to obtain a closed spin network6 with
this gluing procedure, as the trivial representation F0 does
not appear in any recoupling of infinite-dimensional repre-
sentations. Closing a spin network by tracing, which
graphically amounts to connecting an incoming leg with
an incoming one of the same intertwiner, leads to divergen-
cies, which will have to be dealt with. In this article however
we are only interested in the nodes inside a spin network,
which would be unaffected by any regularization procedure.

B. Racah coefficients

Consider a 4-valent intertwiner ψ with three incoming
legs ρj1 ⊗ ρj2 ⊗ ρj3 and a single outgoing one ρj: it will
generally not be unique, unless one of the representations
involved is the trivial one. Two possible bases of inter-
twiners, whose linear combinations can be used to con-
struct any 4-valent one of this type can be obtained by
exploiting the associativity of tensor products, i.e.

Vj1 ⊗ Vj2 ⊗ Vj3 ≅ ðVj1 ⊗ Vj2Þ ⊗ Vj3

≅ Vj1 ⊗ ðVj2 ⊗ Vj3Þ: ð93Þ
Assuming the decomposition in irreducible representations
of Vj1 ⊗ Vj2 exists, the generic ψ can be written as a linear
combinations of the intertwiners

ð94Þ

analogously, if Vj2 ⊗ Vj3 is decomposable, the intertwiners

ð95Þ

form a basis as well. We now study how the two bases are
related to each other.6i.e. an element of HomGðF0; F0Þ.

5When speaking of products we assume none of the repre-
sentations involved is the trivial one, for obvious reasons.
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First notice that7

ð96Þ

as can be checked explicitly using the properties of Clebsch-Gordan coefficients. This equation can be glued to the basis
elements (94) to obtain

ð97Þ

Now the intertwiner

ð98Þ

having only one incoming and outgoing representation, must necessarily be proportional to the unique intertwiner between
j0 and j. Since the latter vanishes when j ≠ j0, it must be

ð99Þ

where the δ is to be considered a Dirac delta over continuous subsets in both Dðj12; j3Þ and Dðj1; j23Þ, and a Kronecker
delta otherwise. The proportionality factor in (99), which we call the Racah coefficient, is given by8


j1 j2 j12
j3 j j23

�
¼

X
m1 ;m2 ;m3
m12 ;m23

Aðm1;m23jmÞAðm2;m3jm23ÞBðm12jm1;m2ÞBðmjm12;m3Þ; ð100Þ

withm ∈ Mj; one can check using the Clebsch-Gordan recursion relations that the result does not depend on whichm one
chooses. We finally get that

ð101Þ

i.e. the Racah coefficients are the components of the elements of one basis in terms of the other. An analogous argument can
be made for the basis elements (95). With our convention for the Clebsch-Gordan coefficients, one can check that

ð102Þ

so that

7To simplify notation, the range of the js in the summation is omitted: it is implied to only assume the values for which a nonvanishing
intertwiner exists. Moreover, when a subset of labels j appears continuously in a decomposition, over that subset the sum is to be
considered an integration.

8To make the equation more readable the js were dropped. Which j goes where can be easily inferred by the subscripts on thems: for
example Aðm1;m23jmÞ≡ Aðj1; m1; j23; m23jj; mÞ.
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ð103Þ

Westress therewasnomentionof unitary representations in
our discussion of Racah coefficients. What we presented is
well defined any time the appropriate Clebsch-Gordan
decomposition exists. This means in particular that we can
consider Racah coefficients involving both unitary and
nonunitary representations. This will be relevant when
discussing the quantum version of the observables e, f and ~f.

C. Hilbert space structure

We already mentioned that HomGðρ; πÞ is a vector
space; we show now how an inner product can be defined
naturally on it. This time we also require that the irreducible
representations are only the ones appearing in the
Plancherel decomposition.
The space of intertwiners can inherit an inner product

space by requiring that9

HomGð⊗
a
ρja ⊕⊗

b
ρjb ;⊗c

ρjcÞ

≡ HomGð⊗
a
ρja ;⊗c

ρjcÞ⊕HomGð⊗
b
ρjb ;⊗c

ρjcÞ: ð104Þ

It is then easy to convince oneself that the composition of
two intertwiners belongs to (a space isomorphic to) the
tensor product of their respective intertwiner spaces, so
that, for example,

HomGðρj1 ⊗ ρj2 ;ρj3 ⊗ ρj4Þ

¼
Z

⊕
dξðjÞHomGðρj1 ⊗ ρj2 ;ρjÞ⊗ HomGðρj;ρj3 ⊗ ρj4Þ

ð105Þ
or

HomGðρj1 ⊗ ρj2 ⊗ ρj3 ; ρjÞ

¼
Z

⊕
dξðj12ÞHomGðρj1 ⊗ ρj2 ; ρj12Þ

⊗ HomGðρj12 ⊗ ρj3 ; ρjÞ: ð106Þ
We can repeat this process until we only have sums of
products of 3-valent spaces, so that it only remains to define
the inner product on the latter. This is easily achieved:

(i) when the space is one dimensional there is only one
basis vector which we may normalize to 1;

(ii) when the space is two dimensional, i.e. there is
multiplicity, we choose the two basis elements to be
orthonormal.

One can check explicitly that this is consistent with the
possibility of using different decompositions for the same
space, e.g.

HomGðρj1 ⊗ ρj2 ⊗ ρj3 ; ρjÞ

¼
Z

⊕
dξðj23ÞHomGðρj2 ⊗ ρj3 ; ρj23Þ

⊗ HomGðρj1 ⊗ ρj23 ; ρjÞ; ð107Þ

so that the procedure is well defined.
Restricting ourselves to representations in the Plancherel

decomposition makes our construction possible, as it
guarantees that the direct sums in the Clebsch-Gordan
decomposition are orthogonal. However, one should note
that if, instead, we only use finite-dimensional representa-
tions, the same will be true and the inner product will still
be well defined.

V. 3D LORENTZIAN LQG AND LORENTZIAN
PONZANO-REGGE MODEL

In this section, we first construct the quantum version of
the spinor observables and determine their action on
intertwiners. We highlight the fact that, in some cases,
they might map unitary representations to nonunitary ones.
We then discuss some properties of the Racah coefficients,
which are defined when involving both unitary or nonuni-
tary representations. We pinpoint in particular that the
Biedenharn-Elliott relation is very general and holds even
when involving some finite-dimensional (hence nonuni-
tary) representations. Finally we show how the quantum
version of the Hamiltonian constraint has in its kernel
the Racah coefficient, which generates the Lorentzian
Ponzano-Regge model. The proof consists in showing that
the quantum Hamiltonian constraint implements a recur-
sion relation, essentially the Biedenharn-Elliott, whose
solution is the Racah coefficient.

A. Intertwiner observables

We want observables in LQG to be invariant under the
action of the gauge group SU(1,1): this is exactly what
scalar operators (tensor operators of rank 0) are. The usual
observables we consider are those built from the algebra
generators, which are essentially the components of the
vector operator V defined in (59). When acting on a product
of representations ⊗

a
ρja they are defined as

Qab ≔
ffiffiffi
3

p

2

X
μ

Að1; μ; 1;−μj0; 0ÞVa
μVb

−μ

¼ −Ja0Jb0 þ
1

2
ðJa−Jbþ þ JaþJb−Þ; ð108Þ

where Va denotes the operator acting only on representa-
tion a. Defining

9Note that it is always true that the lhs can be split in the sum of
independent subspaces on the right: what we are really requiring
is for these subspaces to be orthogonal.
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J1 ≔
1

2
ðJþ þ J−Þ≡ −iX1;

J2 ≔
1

2i
ðJþ − J−Þ≡ −iX2; ð109Þ

we get the suggestive equality

Qab ¼ ηijJai J
b
j ; η ¼ diagð−1; 1; 1Þ; ð110Þ

where i and j are space-time indices.
When working in the spinorial setting, we can construct

scalar operators by combining the two spinor operators T
and ~T. The four kinds of operators we can get are

Eab ¼ −
ffiffiffi
2

p X
μ

A

�
1

2
; μ;

1

2
;−μ

����0; 0
�
Ta
μ
~Tb
−μ

¼ Ta
− ~T

b
þ − Taþ ~Tb

−; ð111aÞ
Fab ¼ −

ffiffiffi
2

p X
μ

A

�
1

2
; μ;

1

2
;−μ

����0; 0
�
Ta
μTb

−μ

¼ Ta
−Tbþ − TaþTb

−; ð111bÞ

~Fab ¼ −
ffiffiffi
2

p X
μ

A

�
1

2
; μ;

1

2
;−μ

����0; 0
�
~Ta
μ
~Tb
−μ

¼ ~Ta
− ~T

b
þ − ~Ta

þ ~Tb
−; ð111cÞ

~Eab ¼ −
ffiffiffi
2

p X
μ

A

�
1

2
; μ;

1

2
;−μ

����0; 0
�
~Ta
μTb

−μ

¼ ~Ta
−Tbþ − ~Ta

þTb
− ≡ −Eba − 2δab1: ð111dÞ

These operators are the quantum analogues of the classical
observables (77); one should note, however, that an order-
ing factor appears in the quantization of ~eab. Just as in the
classical case, they form a closed operator algebra, with
commutation relations

½Eab; Ecd� ¼ δcbEad − δadEcb; ð112aÞ

½Eab; Fcd� ¼ δbcFad − δbdFac; ð112bÞ

½Eab; ~Fcd� ¼ δad ~Fbc − δac ~Fbd; ð112cÞ

½Fab; ~Fcd� ¼ δcbEad − δad ~Ecb − δcaEbd þ δbd ~Eca; ð112dÞ

½Fab; Fcd� ¼ ½ ~Fab; ~Fcd� ¼ 0: ð112eÞ

Note that, when acting on the continuous class, the
operators E; F; ~F take unitary representations (in the
Plancherel decomposition) to nonunitary ones.10 As such,
they are not proper observables when acting on continuous
representations; however, one can choose quadratic func-
tions of these observables such that the representation is
sent to itself.
Due to the relation between T and ~T, the operators we

defined are not all independent. One has, in general,

Ft
ab ¼ ~Fab; Et

ab ¼ − ~Eab: ð113Þ

In particular cases the transposes can be converted to
adjoints; for example, if a and b both denote a representa-
tion in the discrete positive (negative) class Ft

ab ¼ F†
ab,

while if one is them is discrete positive and the other
discrete negative Ft

ab ¼ −F†
ab.

The operators we defined act on representations; their
action can be extended to intertwiners as follows. Let

ψ∶ ⊗
k

a¼1
jja; mai →

X
mrþ1

…
X
mn

αðm1;…; mnÞ ⊗
n

b¼kþ1
jjb; mbi

ð114Þ

be a generic n-valent intertwiner,11 where α is a function
depending on Clebsch-Gordan coefficients. The condition
for ψ to be an intertwiner is translated in terms of this
function as

(
αðm1;…; mnÞ

P
k
a¼1ma ¼ αðm1;…; mnÞ

P
n
b¼kþ1mbP

k
c¼1 C�ðjc; mcÞαðmðinÞ � δðinÞc ; mðoutÞÞ ¼ P

n
d¼kþ1 C∓ðjd; mdÞαðmðinÞ; mðoutÞ ∓ δðoutÞd Þ;

ð115Þ

where

mðinÞ ≔ ðm1;…; mkÞ; mðoutÞ ≔ ðmkþ1;…; mnÞ ð116Þ
and

δðinÞc ≔ ðδ1c;…; δkcÞ; δðoutÞd ≔ ðδkþ1;d;…; δndÞ: ð117Þ

11The operators we define will always act on a single node, i.e. n-valent intertwiner, inside a generic spin network.

10The T operators would send − 1
2
þ is to is while ~T would send it to −1þ is, both of which would not be unitary anymore.
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The intertwiner ψ can be also expressed in the form

ψ⋆ ≔
X
m1

…
X
mn

αðm1;…;mnÞ ⊗
n

b¼kþ1
jjb;mbi ⊗ ⊗

k

a¼1
hja;maj;

ð118Þ

which does indeed return the same values when acting on
⊗
a
Vja . However, (118) is not generally an element of the

Hilbert space⊗
b
VJb⊗⊗

a
V�
ja
, since it does not generally have

finite norm for infinite-dimensional representations12: it is
only to be regarded as a formal expression, similarly to the
usual way of representing the identity of a separable Hilbert
space as

X
i∈I

jiihij; ð119Þ

where fjiigi∈I is an orthonormal basis.
One can easily check, using (115), that ψ is an

intertwiner if and only if

J0ψ⋆ ¼ 0; J�ψ⋆ ¼ 0; ð120Þ

where the generators act on dual vectors as the dual
representation (see Appendix A), i.e.

J0hj; mj ¼ −mhj; mj;
J�hj; mj ¼ −C∓ðj;mÞhj; m∓1j:

ð121Þ

The action of an operator of the form

T∶ ⊗
n

b¼kþ1
Vjb ⊗ ⊗

k

a¼1
V�
ja
→ ⊗

n

b¼kþ1
Vj0b

⊗ ⊗
k

a¼1
V�
j0a

ð122Þ

is then defined by inverting transformation (118) for Tψ⋆.
One can check that the resulting map is an intertwiner if and
only if T is a scalar operator.
The E, F and ~F operators can be expressed as a sum of

operators of the form (122) by having Ta and ~Ta act as the
identity on anything but the ath leg (incoming or outgoing)
and by extending their action to dual vectors. This can be
achieved by making use of the isomorphism of represen-
tations (see Appendix A)

φj∶ hj; mj↦ ð−1Þmjj;−mi; ð123Þ

explicitly, we define

T�hj; mj ≔ φ−1
jþ1

2

T�φjhj; mj;
~T�hj; mj ≔ φ−1

j−1
2

~T�φjhj; mj:
ð124Þ

We list here the action of the scalar operators on some
3-valent intertwiners of interest, where we make use of the
notation

DðjÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
; ð125Þ

these actions are13

ð126aÞ

ð126bÞ

ð126cÞ

ð126dÞ

ð127aÞ

12This can be easily checked in the case of an intertwiner with one incoming and one outgoing leg, which is necessarily proportional
to the identity.

13Note that, by definition, Fba ¼ −Fab and ~Fba ¼ − ~Fab.
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ð127bÞ

ð127cÞ

ð127dÞ

ð128aÞ

ð128bÞ

ð128cÞ

ð128dÞ

The Racah coefficients we have used may involve
both unitary and nonunitary representations; as we
discussed in Sec. IV B, they are still well defined in
this case.

B. Biedenharn-Elliott relation and symmetries of the
Racah coefficients

1. Symmetries

In order to proceed with our calculations, we are going to
need some properties of the Racah coefficients, valid
when at least one of ρj1 , ρj2 and ρj3 is the finite-dimensional
representation F1

2
. The proof of these symmetries is

straightforward, and can be checked by inserting explicitly
the Clebsch-Gordan coefficients from Table I in (100).
These symmetries are

j1

1
2

k1
j2 J k2

�
¼ ð−1Þj1þj2−k1−k2

Dðk1ÞDðk2Þ
Dðj1ÞDðj2Þ



k1

1
2

j1
k2 J j2

�
;

ð129aÞ


 1
2

j1 k1
J j2 k2

�
¼ ð−1Þj1þj2−k1−k2

Dðk1ÞDðj2Þ
Dðj1ÞDðk2Þ


 1
2

k1 j1
J k2 j2

�
;

ð129bÞ



J j1 j2
1
2

k2 k1

�
¼ ð−1Þj1þk2−k1−j2

Dðk1ÞDðk2Þ
Dðj1ÞDðj2Þ



J k1 k2
1
2

j2 j1

�
:

ð129cÞ
Note that the numbers on the exponents are always in Z=2:
for example, in the first equation, it must be ki ∈ Dð1

2
; jiÞ

so that ji − ki ¼ � 1
2
.

2. Biedenharn-Elliott

Racah coefficients, regardless of the representation classes
involved, satisfy the so-called Biedenharn-Elliott relation or
pentagon identity. This can be represented graphically as in
Figure 3: one can go from the leftmost representation to the
rightmost one by repeated Racah transformations in two
possible ways. By equating the Racah coefficients appearing
in the two transformations one gets that

FIG. 3. The pentagon identity.
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P
j23



j1 j2 j12
j3 j123 j23

�

j1 j23 j123
j4 j j234

�

j2 j3 j23
j4 j234 j34

�
¼



j1 j2 j12
j34 j j234

�

j12 j3 j123
j4 j j34

�
: ð130aÞ

Analogously, one can repeat the process starting from one of the other four intertwiners to get the remaining identities

P
j123



j12 j3 j123
j4 j j34

�

j1 j2 j12
j3 j123 j23

�

j1 j23 j123
j4 j j234

�
¼



j2 j3 j23
j4 j234 j34

�

j1 j2 j12
j34 j j234

�
; ð130bÞ

P
j12



j1 j2 j12
j34 j j234

�

j12 j3 j123
j4 j j34

�

j1 j2 j12
j3 j123 j23

�
¼



j1 j23 j123
j4 j j234

�

j2 j3 j23
j4 j234 j34

�
; ð130cÞ

P
j34



j2 j3 j23
j4 j234 j34

�

j1 j2 j12
j34 j j234

�

j12 j3 j123
j4 j j34

�
¼



j1 j2 j12
j3 j123 j23

�

j1 j23 j123
j4 j j234

�
; ð130dÞ

P
j234



j1 j23 j123
j4 j j234

�

j2 j3 j23
j4 j234 j34

�

j1 j2 j12
j34 j j234

�
¼



j12 j3 j123
j4 j j34

�

j1 j2 j12
j3 j123 j23

�
: ð130eÞ

One can equivalently obtain all relations from the first one by repeatedly applying the Racah coefficient orthogonality
relations

P
j12



j1 j2 j12
j3 j j23

�

j1 j2 j12
j3 j j023

�
¼ δðj23; j023ÞDðj1; j2jj12ÞDðj2; j3jj23Þ; ð131aÞ

P
j23



j1 j2 j12
j3 j j23

�

j1 j2 j012
j3 j j23

�
¼ δðj12; j012ÞDðj1; j2jj12ÞDðj2; j3jj23Þ; ð131bÞ

where

Dðj1; j2jj12Þ ≔
�
1 if j12 ∈ Dðj1; j2Þ
0 if j12 ∈Dðj1; j2Þ: ð132Þ

C. Recovering the Lorentzian Ponzano-Regge model
from the Hamiltonian constraint

We have now all the tools to discuss the quantum
Hamiltonian constraint and the Lorentzian Ponzano-Regge
model [18,19]. The classical Hamiltonians given in (83) can
be quantized using the quantum observables E, F and ~F. As
discussed in Sec. II C 3, we quantize hτbjτbi as Eb þ 1;
moreover, we choose the ordering exactly as it appears in the
classical equations. The quantum Hamiltonians are given by

Ĥ½i
abc ¼ ~FacFac þ iðEab

~Ebc − FabFbcÞ
Fac

Eb þ 1
;

Ĥhi
abc ¼ ~EacEac þ iðEab

~Fbc − FabEbcÞ
Eac

Eb þ 1
;

Ĥh�
abc ¼ Fac

~Fac − ið ~EabEbc − ~Fab
~FbcÞ

~Fac

Eb þ 1
;

Ĥ½�
abc ¼ Eac

~Eac − ið ~EabFbc − ~Fab
~EbcÞ

~Eac

Eb þ 1
; ð133Þ

with habci ¼ h234i; h342i; h423i. Note that there is no
ordering ambiguity in the fractional term, as

½Fac;Eb�¼ ½ ~Fac;Eb�¼ ½Eac;Eb�¼ ½ ~Eac;Eb�¼0 ð134Þ

when a ≠ b ≠ c.
We show that the Lorentzian Ponzano-Regge amplitude,

given by the Lorentzian Racah coefficient, is actually a
solution of this constraint. To prove thiswe restrict ourselves
to a triangular subgraph, given by the spin network

ð135Þ

we made explicit only the dependence on j2, j3 and j4 as
these are the only legs that can be changed by Ĥabc.
We consider the particular quantum Hamiltonian con-

straint given by

Ĥh�
342 ¼ F32

~F32 − ið ~E34E42 − ~F34
~F42Þ

~F32

E4 þ 1
; ð136Þ

all the other cases can be treated in the same way. We want

to show that ψ is annihilated by the operator Ĥh�
342. The
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proof essentially consists in showing that the action of Ĥh�
342

on ψðj2; j3; j4Þ provides a recursion relation for the Racah
coefficient which is essentially the Biedenharn-Elliott
relation. This was already discussed at length, for the
(undeformed and deformed) vector case [3,5] and the
spinor case [4] in the Euclidean case. We show here that
this is also happening in the Lorentzian case. The main

difficulty is that one needs to deal with both unitary and
nonunitary representations. However, as we have dis-
cussed, all these difficulties have been addressed in the
previous sections. We can use our different results to prove

that the spin network ψðj2; j3; j4Þ is in the kernel of Ĥh�
342.

Using the symmetries of the Racah coefficients and the
actions of the E, F and ~F operators from Sec. VA, one finds

F32
~F32ψðj2; j3; j4Þ ¼ Dðj2Þ2Dðj3Þ2

"
j1 j2 j3

1
2

j3 − 1
2

j2 − 1
2

#
2

ψðj2; j3; j4Þ: ð137Þ

Analogously, for the other two parts of H342 we have (note that each operator is acting on a different node)

~E34E42

~F32

E4 þ 1
ψðj2; j3; j4Þ ¼ −iDðj2Þ2Dðj3Þ2

Dðj4 þ 1
2
Þ2

Dðj4Þ2


j1 j2 j3
1
2

j3 − 1
2

j2 − 1
2

�

j2 1

2
j2 − 1

2

j4 þ 1
2

j6 j4

�

×



j3 1

2
j3 − 1

2

j4 þ 1
2

j5 j4

�
ψ

�
j2 −

1

2
; j3 þ

1

2
; j4 −

1

2

�
ð138Þ

and

~F34
~F42

~F32

E4 þ 1
ψðj2; j3; j4Þ ¼ iDðj2Þ2Dðj3Þ2

Dðj4 − 1
2
Þ2

Dðj4Þ2


j1 j2 j3
1
2

j3 − 1
2

j2 − 1
2

�

j2

1
2

j2 − 1
2

j4 − 1
2

j6 j4

�

×



j3

1
2

j3 − 1
2

j4 − 1
2

j5 j4

�
ψ

�
j2 −

1

2
; j3 −

1

2
; j4 −

1

2

�
: ð139Þ

By using the definitions of the Racah coefficients (101) and the fact that, as a consequence of (18b), when
j; j0 ∈ Dðj1; j2Þ

ð140Þ

we see that

ð141Þ

Moreover, one can prove, using one of the Biedenharn-Elliott relations and the symmetries of Racah coefficients,
that



j1 j2 j3
1
2

J3 J2

�

j1 j2 j3
j4 j5 j6

�
¼

X
J4

DðJ4Þ2
Dðj4Þ2



j2 1

2
J2

J4 j6 j4

�

j1 J2 J3
J4 j5 j6

�

j3 1

2
J3

J4 j5 j4

�
: ð142Þ

Substituting these results in the action of the Hamiltonian, it
follows that

Ĥh�
342ψðj2; j3; j4Þ ¼ 0: ð143Þ

VI. RELATIONSHIP WITH SU(2) THEORY

The framework we have constructed automatically
describes the Euclidean case as well. Mathematically, this
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is a consequence of the fact that SU(2) and SU(1,1) are two
real forms of the complex Lie group SLð2;CÞ, i.e.

SUð2ÞC ≅ SUð1; 1ÞC ≅ SLð2;CÞ: ð144Þ

As a consequence, the complex representations of the
two groups coincide; in particular, SU(1,1) representations
theory contains as a subcase all the finite-dimensional
representations of SU(2) used in Euclidean LQG. In our
description, every notion at the representation theory level
(spinor operators, Racah coefficients, etc.) has by design
not been restricted to unitary representations, instead
allowing for any irreducible one. The only exception is
the definition of the Hilbert space structure, which however,
as we noted, is still valid if we restrict to finite-dimensional
representations alone. Consequently, everything at the
quantum level can be used to described the Euclidean case
as well, by using intertwiners between finite-dimensional
representations.
The same is true at the classical level. In fact, it is easy

to see that for the finite-dimensional representations the
spinor operators satisfy T� ¼ ∓ ~T†∓. By using the equiv-
alent reality condition t̄� ¼ ∓~t∓ for classical spinors the
group elements (40) become

g ¼ −iffiffiffiffiffiffiffiffiffiffihτjτip ffiffiffiffiffiffiffiffiffiffiffiffihwjwip �
w−tþ þ w̄þt̄− w̄þt̄þ − w−t−
wþtþ − w̄−t̄− −w̄−t̄þ þ wþt−

�
:

ð145Þ

Since

hτjτi ¼ jt−j2 þ jtþj2 ≥ 0; ð146Þ

we have

g22 ¼ ḡ11; g21 ¼ −ḡ12; ð147Þ

which makes g an element of SU(2). The suð2Þ Poisson
brackets are recovered by letting x� → −ix�; the
same transformation, at the quantum level, makes the
finite-dimensional representations unitary [as SU(2)
representations].

VII. OUTLOOK

We have constructed the generalization of the spinor
approach to the 3D Lorentzian case, using tensor operators
as the technical tool. This generalization has been possible
thanks to the recent results of Ref. [13], which generalized
the Wigner-Eckart theorem to the SU(1,1) case. As
explained in the previous section, our framework allows
one to recover the SU(2) case as well: this amounts to

choosing a different reality condition at the classical level,
while at the quantum level we recover directly the standard
spinors. The Lorentzian case has nevertheless several key
differences with the Euclidean case, essentially due to
the fact that the SU(1,1) representation theory is more
complicated than the one for SU(2): for example the
spinor observables can send an intertwiner defined in
terms of unitary representations to an intertwiner defined
in terms of nonunitary representations. As such, they are
not properly observables14; however, one still uses them
to construct proper observables, such as the ones arising
from the flux operator. They are still good enough to
generate a solvable Hamiltonian constraint, which is not
self adjoint [nor is it in the SU(2) case]. This should not
be seen as an issue (since we care only about its kernel)
but more as a consequence of the parametrization of the
constraint using complex variables. This constraint has
the Lorentzian Ponzano-Regge amplitude in its kernel, as
we would expect. We have followed here the method
described in Ref. [4], and focus on a tetrahedral spin
network. Clearly this should be extended to more general
graphs. There are two other main lines of future
research.
Extension to the 4D case. This 3D example we

considered gave insights regarding the 4D case. In order
to use the spinor (or twistor) formalism one needs first to
determine the Wigner-Eckart theorem for SLð2;CÞ, which
amounts to finding the recoupling theory between finite-
dimensional nonunitary representations and the infinite-
dimensional unitary ones. The techniques developed in
Ref. [13] should prove to be useful in this case as well. Just
like for the SU(1,1) and SU(2) common description, one
can expect that the spinor/twistor formalism for SLð2;CÞ
will be also useful to describe the Euclidean case given by
SO(4).
Introduction of a nonzero cosmological constant. 3D

gravity is often considered “too” simple when the
cosmological constant vanishes. When Λ ≠ 0 new inter-
esting features appear, such as the Bañados-Teitelboim-
Zanelli (BTZ) black hole in the Lorentzian case. It would
therefore be interesting to generalize our spinor formal-
ism along the lines of Ref. [20], to investigate if new
light is shed on the interesting physics happening when
Λ is nonzero.
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APPENDIX A: DUAL REPRESENTATION

Let ρ∶G → GLðVÞ be a representation of a Lie group G
on an Hilbert space V. We define its dual representation
ρ�∶G → GLðV�Þ on the (continuous) dual space V� ≅ V
by requiring

hρ�ðgÞα; ρðgÞvi ¼ hα; vi; ∀g ∈ G; ∀v ∈ V; ∀α ∈ V�;

ðA1Þ

where h·; ·i is the natural pairing between V and V� given
by hα; vi ≔ αðvÞ. Equation (A1) is equivalent to

ρ�ðgÞ ¼ ðρðg−1ÞÞ�; ∀g ∈ G; ðA2Þ

where for a linear map f∶ V1 → V2 we define its dual
map15 f�∶ V�

2 → V�
1 by

f�ðαÞ ≔ α∘f; ∀α ∈ V�
2: ðA3Þ

By differentiating (A2) we get at the Lie algebra level

ρ�ðXÞ ¼ −ðρðXÞÞ�; ∀X ∈ g; ðA4Þ

where with an abuse of notation we still use ρ to denote the
associated Lie algebra representation.
In the specific case of SU(1,1), all continuous and finite-

dimensional representations are self dual,” i.e. isomorphic
to their dual,16 while the dual of a discrete positive
representation is isomorphic to the discrete negative rep-
resentation with the same Casimir and vice versa. A
possible isomorphism which works with all representation
classes is

φ∶hj;mj ∈ V�
j ↦ ð−1Þmjj;−mi ∈ Vj� ; ðA5Þ

where j� denotes the same representation as j if it is
continuous or finite dimensional, and switches between
positive and negative for discrete ones.

APPENDIX B: A QUICK OVERVIEW OF THE
PROOF OF THE WIGNER-ECKART THEOREM

We provide here a summary of the proof of the Wigner-
Eckart theorem. First notice that the recoupling theory
of Fγ ⊗ ρj is known for j of any class: the proof for
the infinite-dimensional classes can be found in [13].
Assuming the decomposition exists, we can define for
any j00 ∈ Dðγ; jÞ the vectors

jψ j00;m00 i ≔
X
μ;m

Aðγ; μ; j; mjj00; m00ÞTγ
μjj; mi;

m00 ∈ Mj00 : ðB1Þ
Using the definition of tensor operators and the Clebsch-
Gordan recursion relations, one can show that�

J0jψ j00;m00 i ¼ m00jψ j00;m00 i
J�jψ j00;m00 i ¼ C�ðj00; m00Þjψ j00;m00�1i; ðB2Þ

so that jψ j00;m00 i ∝ jj00; m00i. The proportionality factor

Nðj00; m00Þ ≔ hj00; m00jψ j00;m00 i ðB3Þ

does not depend on m00: in fact, one has

hj00;m00 þ1jJþjψ j00;m00 i¼Cþðj00;m00ÞNðj00;m00 þ1Þ ðB4Þ

and, at the same time,

hj00; m00 þ 1jJþjψ j00;m00 i
¼ Nðj00; m00Þhj00; m00 þ 1jJþjj00; m00i
¼ Cþðj00; m00ÞNðj00; m00Þ ðB5Þ

for every m00. Equation (B1) can be inverted to obtain

Tγ
μjj; mi
¼

X
j00∈Dðγ;jÞ

X
m00∈Mj00

Nðj00ÞBðj00; m00jγ; μ; j; mÞjj00; m00i;

ðB6Þ

however, since the range of Tγ
μ lies in Vj0 , it must

necessarily be

Nðj00Þ ¼ 0 ∀j00 ≠ j0; ðB7Þ
so that ultimately

hj0; m0jTγ
μjj; mi ¼ hj0∥Tγ∥jiBðj0; m0jγ; μ; j; mÞ; ðB8Þ

with

hj0∥Tγ∥ji ≔ Nðj0Þ: ðB9Þ
15Also known as transpose in the literature.
16As representations, i.e. there is an invertible intertwiner

between them.
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