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The magnetic order of the triangular lattice with antiferromagnetic interactions is described by an SOð3Þ
field and allows for the presence of Z2 magnetic vortices as defects. In this work we show how these Z2

vortices can be fitted into a local SUð2Þ gauge theory. We propose simple Ansätze for vortex configurations
and calculate their energies using well-known results of the Abelian gauge model. We comment on how
Dzyaloshinskii-Moriya interactions could be derived from a non-Abelian gauge theory and speculate on
their effect on nontrivial configurations.
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I. INTRODUCTION

Vortices play a central role in explaining many funda-
mental phenomena in condensed matter and high energy
physics. The first example of vortices in theories with local
gauge invariance was put forward by Abrikosov [1], who
showed that for an intermediate range of external magnetic
fields and in a certain region of the parameter space
(corresponding to type II superconductors) the Ginzburg-
Landau theory of superconductivity admits solutions rep-
resenting a lattice of vortices.
More than 15 years later, Nielsen and Olesen discussed

the role of vortices in a relativistic Uð1Þ Higgs model and
pointed out their relevance in string theory in the context of
high energy physics [2]. The first attempt to extend the
study of vortices to the case of non-Abelian gauge groups
can be found already in the pioneering paper of Nielsen and
Olesen, who showed how to embed the Abelian solution in
the SUð2Þ non-Abelian case using two noncollinear scalar
fields in the (three-dimensional) adjoint representation. It
was soon realized that the correct topological characteri-
zation of these configurations implies that the topological
charge is Z2, unlike the Abelian case where this charge is Z.
Topologically stable non-Abelian vortex solutions were
found in [3–5].
Many investigations followed these ideas, exploring the

properties of these types of solutions for generic SUðNÞ
groups and generalizing the Yang-Mills gauge field dynam-
ics to include Chern-Simon-like terms which are important
in connection with the statistics of elementary excitations
[4,6]. A second wave of attention to vortices in theories
with non-Abelian gauge invariance arose after the work in
Refs. [7–9] where the authors studied the role of vortexlike
solutions in models that arise from the bosonic sector of
N ¼ 2 supersymmetric QCD with the gauge group

SUðNÞ × Uð1Þ and Nf flavors of the fundamental matter
multiplets (see [9] for a complete list of references).
Vortices also play a prominent role as excitations in

magnetic systems. In a field theoretical language, these
vortices correspond to nontrivial configurations (defects) in
theories with global gauge invariance. The best-known
example is that of vortices in the XY model which
correspond to topologically nontrivial solutions of Uð1Þ
sigma models and play a fundamental role in the Kosterlitz-
Thouless transition in two-dimensional XY magnetic
systems.
It is also known that vortices with Z2 topological charge

can appear as defects in antiferromagnetic (AF) spin
systems in the triangular lattice since in that case the order
parameter manifold is SOð3Þ [10]. The magnetic behavior
in the AF triangular lattice can be described by three order
parameters (one for each of the three sublattices in which
the triangular lattice can be partitioned) which are them-
selves triplets. In a way that resembles what happens in the
XY model, a Kosterlitz-Thouless transition was shown to
take place, although in the triangular SOð3Þ case both low
and high temperature phases have exponentially decaying
correlations.
More recently, different studies of the triangular AF

model with extra interactions, including Kitaev-like [11]
or Dzyaloshinskii-Moriya (DM) terms [12], have shown
ordered phases in a magnetic field that resemble the much-
celebrated Uð1Þ Abrikosov vortex lattice, but with Z2

vortices instead. From a field theoretical point of view,
the appearance of Z2 vortices can be understood since the
magnetic behavior of the AF triangular lattice at low
energies can be described by a nonlinear sigma model
of an order parameter field in SOð3Þ [13].
The questions that naturally arise are: are these vortices

allowed in a (corresponding) local gauge theory? How are
they related to the Z2 vortices that were considered in the
high energy literature?*Also at CICBA.
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In this work we show that the vortices of the AF
magnetic system can be easily accommodated into a local
gauge theory and that, in analogy with the minimal model
containing two triplets, there are two Ansätze that can be
reduced to embeddings of the Abelian model. Using results
on the energetics of vortices of the Abelian model we are
able to identify the lowest energy one.

II. Z2 VORTICES

Let us start by recovering the main results of vortices in
the Abelian Higgs model. The Lagrangian density describ-
ing the system is

L ¼ −
1

4
FμνFμν þ 1

2
ðDμΦÞ�DμΦ − VðΦÞ ð1Þ

where Φ is a complex field, Fμν ¼ ∂μAν − ∂νAμ is the
electromagnetic field tensor and Dμ ¼ ∂μ þ ieAμ is the
covariant derivative. Here e is the charge of the scalar field
(in the Ginzburg-Landau theory of superconductors this is
twice the electric charge). The potential can be written as

VðΦÞ ¼ c4ðΦ�ΦÞ2 − c2Φ�Φ: ð2Þ
As we are working in the symmetry breaking phase, we
take c2 > 0. We work with axially symmetric vortices, so
we can ignore completely the z-dependence of the fields.
We are also interested in static solutions, so we can as well
forget about the t-dependence. Then, we look for configu-
rations minimizing the energy density,

E ¼ 1

4
FijFij þ

1

2
ðDiΦÞ�DiΦþ VðΦÞ ð3Þ

where latin indices i; j take values x; y. Making the Ansatz

Φ ¼ einϕfðrÞ AðrÞ ¼ −eϕ
aðrÞ
r

ð4Þ

reduces the equations of motion to a system of coupled
radial second order equations. The energy (per unit length)
functional becomes

EAb ¼ 2π

Z
rdr

�
1

2r2

�
daðrÞ
dr

�
2

þ 1

2

�
dfðrÞ
dr

�
2

þ 1

r2
ððnþ eaðrÞÞfðrÞÞ2 þ λ

4
ðfðrÞ2 − η2Þ2 ð5Þ

where we have introduced λ ¼ 4c4 and η2 ¼ c2=ð2c4Þ.
Minimum energy configurations satisfy

d2a
dr2

−
1

r
da
dr

− eðnþ eaÞf2 ¼ 0

d2f
dr2

þ 1

r
df
dr

−
ðnþ eaÞ2

r2
f2 þ 2c2f − 4c4f2 ¼ 0 ð6Þ

with boundary conditions,

fð0Þ ¼ að0Þ ¼ 0 ð7Þ

fð∞Þ ¼
ffiffiffiffiffiffiffi
c2
2c4

r
ð8Þ

að∞Þ ¼ −
n
e
: ð9Þ

When the particular relation of coupling constants 8c4 ¼ e2

holds (λ ¼ e2=2), known as the Bogomol’nyi point, this
set of equations reduces to a simpler set of first order
differential equations [14,15]. At this point, the energy can
be shown to satisfy a bound E ¼ 2nπη2. The Bogomol’nyi
point corresponds to the case in which the scalar mass
m2

H ¼ 2λη2 (inverse of the coherence length) and the
vector mass m2

v ¼ e2η2 (inverse of the penetration length)
are equal (i.e. the limit between type I and type II
superconductors).
The simplest non-Abelian extension of the Abelian

Higgs model is that in which the gauge group is SUð2Þ.
The gauge fields Aμ then take values in the Lie algebra of

SUð2Þ, Aμ ¼ ~Aμ · ~σ=2. In order to have topologically stable
vortices, at least two noncollinear scalars in the adjoint
(three-dimensional) representation need to be included.

Thus we consider scalars Φa ¼ ~Φa · ~σ=2 (a ¼ 1;M) where
(M ≥ 2)

L ¼ −
1

4
~Fμν

~Fμν þ 1

2
Dμ

~ΦaDμ ~Φa − Vð~ΦaÞ ð10Þ

where

~Fμν ¼ ∂μ
~Aν − ∂ν

~Aμ þ e~Aμ × ~Aν ð11Þ

Dμ
~Φa ¼ ∂μ

~Φa þ e~Aμ × ~Φa: ð12Þ

The choice of the symmetry breaking potential Vð~ΦaÞ will
be discussed below.
The M ¼ 2 (two-triplets) case is the best known in the

literature. In this case, two possible Ansäzte are known, the
first one, originally proposed in [3], takes the form

~Φ1 ¼ fðrÞð− sin nθ; cos nθ; 0Þ
~Φ2 ¼ fðrÞðcos nθ; sin nθ; 0Þ
~Aθ ¼ −

�
0; 0;

aðrÞ
r

�
: ð13Þ

It was later realized that another simpler Ansatz could be
made [6,16]:
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~Φ1 ¼ fðrÞð− sin nθ; cos nθ; 0Þ
~Φ2 ¼ fðrÞð0; 0; 1Þ
~Aθ ¼ −

�
0; 0;

aðrÞ
r

�
: ð14Þ

Although in principle one could consider arbitrary n,
only vortices with odd n are topologically nontrivial, this
corresponding to a Z2 homotopy class. Also, vortices with
n ¼ �1 have lower energies. Moreover, it has been shown
in [17] that vortices corresponding to Ansatz (14) have
lower energy; hence those associated to Ansatz (13) are
unstable (they will decay into the former ones).
Vortices in the Abelian Higgs model can be considered

as the local gauge counterpart of the vortices of the XY
model, characterized by the Hamiltonian,

H ¼ −J
X
hiji

~Si · ~Sj ð15Þ

where the winding of the polar angle of the two-

dimensional spin ~S ¼ Sx~ex þ Sy~ey can be associated with
the winding of the complex scalar Φ ¼ Φ1 þ iΦ2. Unlike
the case in local gauge theories, vortices in the XY model
have a logarithmically divergent energy E ∼ logðL=aÞ
where L represents a characteristic size of the system
and a is the lattice spacing.
More sophisticated vortex structures can appear in other

magnetic systems. That is the case of the antiferromagnetic
Heisenberg model in the triangular lattice,

H ¼ J
X
hiji

~Si · ~Sj ð16Þ

where now ~S is a three-dimensional vector ~S ¼ Sx~ex þ
Sy~ey þ Sz~ez and ij denote neighbors in the triangular
lattice. Let us denote by A;B;C the corners of a plaquette
Δ; then

HΔ ¼ Jð~SA · ~SB þ ~SB · ~SC þ ~SC · ~SAÞ ð17Þ
or

HΔ ¼ ð~SA þ ~SB þ ~SCÞ2 − j~SAj2 − j~SBj2 − j~SCj2: ð18Þ

Then, as the modulus of the spins are fixed, the minimum
energy configuration is obtained when

~SA þ ~SB þ ~SC ¼ 0: ð19Þ
Thus the vacuum determines a 120 degree symmetry

structure of the spin configuration (see Fig. 1). As shown
by Kawamura and Miyashita [10], vortices can appear as
magnetic excitations in such systems and they are charac-
terized by a Z2 topological charge. They also discuss two

possible kinds of vortex configurations. In both of them,
vortices are coplanar in each point, but

(i) In type I vortices, the three vectors are always in
the same plane while they wind around the vortex
center (see Fig 2).

(ii) In type II vortices, one of the vectors is constant,
while the other two wind around the vortex center
(see Fig 3).

The energy of the vortex configurations is presented in [10]
where it is shown that type II vortices have lower energies.
Inspired by these vortices in the antiferromagnetic

triangular lattice, we consider the SUð2Þ gauge model

with the three triplets field ~Φa, so M ¼ 3 and a ¼ 1, 2, 3.

Each field ~Φa has three components. In the gauge theory
language, these are internal indices in the Lie algebra while
in the magnetic model they refer to components in space.
In order to impose on the vacuum a 120 degree symmetry
structure, we take a potential of the form

VC ¼ λ1ð~Φ1 · ~Φ1 − η21Þ2 þ λ2ð~Φ2 · ~Φ2 − η22Þ2

þ λ3ð~Φ1 · ~Φ1 − η23Þ2 þ Vmixð~ΦaÞ ð20Þ

where

Vmixð~ΦaÞ ¼ μ2ð~Φ1 þ ~Φ2 þ ~Φ3Þ2 þ λ4ð~Φ1 þ ~Φ2 þ ~Φ3Þ4:
ð21Þ

It is clear that if we take λi > 0, μ2 > 0 and η1 ¼ η2 ¼
η3 ≡ η, then the vacuum corresponds to jΦij ¼ η2 and
~Φ1 þ ~Φ2 þ ~Φ3 ¼ 0 (for this last condition that ensures the
120° structure we do need μ2 > 0). The first term in Vmix is

FIG. 1 (color online). Vacuum configuration for the AF
triangular lattice. The three order parameters (denoted with
different colors and numbers) are coplanar and form a 120
degree structure in the triangular lattice.
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analogous to the Heisenberg interaction in antiferromag-
nets. We have included the term with λ4 as it is compatible
with renormalization and does not change the main results
of our work. A possible vacuum configuration is illustrated

in Fig. 2, which is exactly the same as in the triangular
lattice.
In order to find vortex configurations in the SUð2Þ gauge

model, we need to solve the field equations arising from
Lagrangian (10),

Dα ~Fαμ ¼ eDμ
~Φi × ~Φi ð22Þ

DμDμ ~Φi ¼ −
δV

δ~Φi

: ð23Þ

The idea is to propose an Ansatz and determine whether
the field equations can be reduced to a simpler, self-
consistent system of ordinary differential equations.
Inspired by the (global) vortices of the antiferromagnetic
triangular lattice and the vortices of the SUð2Þ, M ¼ 2
model described above we propose the following type I
Ansatz,

~Φ1 ¼ fðrÞð− sin nθ; cos nθ; 0Þ
~Φ2 ¼ fðrÞ

�
− sin

�
nθ þ 2π

3

�
; cos

�
nθ þ 2π

3

�
; 0

�

~Φ3 ¼ fðrÞ
�
− sin

�
nθ þ 4π

3

�
; cos

�
nθ þ 4π

3

�
; 0

�

~Aθ ¼ −
�
0; 0;

aðrÞ
r

�
ð24Þ

with n ∈ Z. Notice that this Ansatz implies that

~Φ1ðr; θÞ þ ~Φ2ðr; θÞ þ ~Φ3ðr; θÞ ¼ 0: ð25Þ
At each point, the three triplets are then at 120 degrees

and they are always in the same plane while they wind
around the origin of the vortex (the origin). The main
differences with the type I magnetic vortex are of course
that now we have a gauge field which we have chosen in the
third direction, and that the moduli of the triplets are
constant only at infinity, where they tend to a minimum of
the potential. We have made a schematic representation of
the solutions in Fig. 2.
Notice that no terms arising from Vmix appear in the field

equations since δVmix=δΦi is a polynomial in powers of

ð~Φ1 þ ~Φ2 þ ~Φ3Þ so that it vanishes. One then has

δV

δ~Φa

¼ 4λfðrÞðf2 − η2Þ~Φa ð26Þ

so that the equations of motion for the scalar fields

□~Φa − 2e
a
r
~Φa − e2

a2

r2
~Φa ¼ −

δV

δ~Φa

ð27Þ

reduce to the radial equation

FIG. 2 (color online). Schematic top view of a type I vortex. In
this Ansatz the three triplets (blue, red, green) are coplanar (in the
XY plane) and wind around the core of the vortex (represented as
a disk).

FIG. 3 (color online). Three-dimensional view of a type II
vortex. The three triplets (blue, red, yellow) are tangent to
cylinders that have the center at the core of the vortex. We have
represented the region of intense chromomagnetic field with a
darker color.

DANIEL CABRA, GUSTAVO S. LOZANO, and FIDEL A. SCHAPOSNIK PHYSICAL REVIEW D 92, 124033 (2015)

124033-4



f00 þ 1

r
f0 −

1

r2
ðnþ eaÞ2f ¼ 4λfðrÞðf2 − 1Þ ð28Þ

which coincides, apart from a numerical factor in the rhs,
with the radial equation for the Abelian Higgs model scalar
equation of motion.
Concerning the scalar current, once the Ansatz is inserted

it takes the simple form

~Jθ ¼ eDθ
~Φa × ~Φa ¼ −

e
r
f2ðnþ eaÞð0; 0; 1Þ ð29Þ

so that the gauge field radial equation of motion also
reduces to the Abelian model one.
The conditions to ensure finite-energy configurations are

fð0Þ ¼ 0 að0Þ ¼ 0

lim
r→∞

fðrÞ ¼ η lim
r→∞

aðrÞ ¼ −
n
e
: ð30Þ

Finally, the energy of static configurations satisfying the
Ansatz (24) is given by

E ¼
Z

d2x

�
1

4
~Flm · ~Flm þ 1

2
Dl

~Φi ·Dl
~Φi þ V

�
ð31Þ

or

E ¼
Z

d2x

�
1

2r2
ð∂raðrÞ

�
2

þ 3

2

�
∂rfðrÞ2 þ

1

r2
ððnþ eaðrÞÞfðrÞ

�
2

þ 3
λ

4
ðf2 − η2Þ2: ð32Þ

Redefining r ¼ κρ we end up with

E ¼ 2π
1

κ2

Z �
1

2ρ2
ð∂ρaðρÞÞ2

þ 3κ2

2

�
∂ρhðρÞ2 þ

1

ρ2
ðnþ eaðρÞÞ2hðρÞ

�
2

þ 3κ4λ

4
ðf2 − η2Þ2: ð33Þ

Thus, choosing κ2 ¼ 1=3, the energy functional which we
shall denote Eð1Þ becomes, apart from a factor, identical to
the Abelian one, Eq. (5), but with λ → λ=3:

EðIÞ ¼ 3EAbðλ=3; e; n; ηÞ: ð34Þ

We can next take an Ansatz inspired in the type II
vortices. We then consider

~Φ1 ¼ ð0; 0; ηÞ
~Φ2 ¼

1

2
ð

ffiffiffi
3

p
fðrÞ sinðnθÞ;

ffiffiffi
3

p
fðrÞ cosðnθÞÞ;−ηÞ

~Φ3 ¼
1

2
ð−

ffiffiffi
3

p
fðrÞ sinðnθÞ;−

ffiffiffi
3

p
fðrÞ cosðnθÞÞ;−ηÞ

~Aθ ¼ −
�
0; 0;

aðrÞ
r

�
: ð35Þ

As before, Eq. (25) holds and the triplets are at

120 degrees. In this case the field ~Φ1 does not contribute

to the energy and Dμ
~Φa is projected into the (1,2) plane.

Within this Ansatz, for each point, the triplets live in the
tangent plane of a cylinder with its center at the vortex core,
and one of the triplets is everywhere constant (see Fig. 2).
As before, one can see that inserting the Ansatz in the
equations of motion reduces them to a system of coupled
ordinary differential equations, which after scaling can
be related to the Abelian model ones. As for the energy,
plugging the Ansatz into the energy functional one obtains

E ¼
Z

d2x

�
1

2r2
ð∂raðrÞÞ2

þ 3

4
ð∂rfðrÞ2 þ

1

r2
ððnþ eaðrÞÞfðrÞÞ2

þ 2
λ

4
ðf2 − η2Þ2 ð36Þ

which, after the rescaling r ¼ κρ, becomes

E ¼ 2π
1

κ2

Z �
1

2ρ2
ð∂ρaðρÞ

�
2

þ 3κ2

4

�
∂ρhðρÞ2 þ

1

ρ2
ðnþ eaðρÞÞ2hðρÞ

�
2

þ 2κ4λ

4
ðf2 − η2Þ2: ð37Þ

Thus, choosing,

κ2 ¼ 2=3 ð38Þ

one finally gets

E ¼ 2π
3

2

Z �
1

2ρ2
ð∂ρaðρÞ

�
2

þ 1

2

�
∂ρhðρÞ2 þ

1

ρ2
ðnþ eaðρÞÞ2hðρÞ

�
2

þ 2λ

9
ðf2 − η2Þ2 ð39Þ

leading to
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EðIIÞ ¼ 3

2
EAb

�
8

9
λ; e; n; η

�
: ð40Þ

In order to compare the energies of these two Ansätzewe
can borrow some results from the Abelian model. First, the
energy is an increasing function of n. As in theM ¼ 2 case,
there is only one class of topologically nontrivial configu-
rations that we consider, n ¼ �1. Second, a simple dimen-
sional analysis shows that

EAbðλ; e; ηÞ ¼ η2ϵðλ=e2Þ: ð41Þ

Now, as is well known, for generic values of λ=e2 there is
no analytical result for ϵðλ=e2Þ except at the Bogomol’nyi
point, for which ϵð1=2Þ ¼ 2π. For other λ=e2 values, a
numerical calculation is required. We can use the accurate
result of the variational calculation presented in [18]

ϵ ¼ 2.38π

�
λ

e2

�
α

ð42Þ

with α ¼ 0.195…. Using this value for the case at hand
we find for the ratio of EI and EII energies as given by
Eqs. (34), (40)

EðIÞ

EðIIÞ ¼ 1.65… ð43Þ

Then, as in the global case [19] and in the SUð2Þ gauge
theory with the two Higgs scalar model discussed in [16],
the Ansatz containing one “constant” Higgs scalar leads to
the solution having the lowest energy.
Note that the first term in the energy integral (33) can

be interpreted as the radial component of magnetic field
defined as

B≡ 1

2
εijk

~Φ3

η
· ~Fjk ¼ ∂raðrÞ=r: ð44Þ

In view of the boundary conditions (9) the resulting vortex
magnetic magnetic flux FB is quantized in units of 2π=e,

FB ≡
Z

d2xB ¼ −
2π

e
n; n ∈ Z: ð45Þ

Since the invariant group of the vacuum associated to
Ansätze (24) and (35) is Z2, the relevant homotopy group
is Π1ðSUð2Þ=Z2Þ ¼ Z2. The corresponding topological
charges can be calculated via the Wilson loop

Q ¼ 1

2
Tr exp

�
i
I
C∞

Aμdxμ
�

ð46Þ

with Tr the SUð2Þ trace and C∞ a closed curve at infinity.
Both in the case of type I and type II vortices this gives

Q ¼ 1

2
Tr exp

�
i
2

I
S1
dθaðr ¼ ∞; θÞσ3

�

¼ 1

2
Tr expðiπnσ3Þ ¼ ð−1Þn: ð47Þ

Hence we conclude that there are two topologically
inequivalent configurations, the “trivial” Q ¼ 1 ones
(n ¼ 2k) and those with Q ¼ −1 for the “non-trivial” ones
(n ¼ 2kþ 1). Notice that the fact of being topologically
nontrivial does not ensure stability. Indeed we have shown
that the type I Ansatz is topologically nontrivial but
unstable towards decay into a type II Ansatz.
Following Kawamura and Miyashita [10] we can also

define the vector chirality

~κ ¼ 2

3
ffiffiffi
3

p ðΦ
̬

1 × Φ
̬

2 þ Φ
̬

2 × Φ
̬

3 þ Φ
̬

3 × Φ
̬

1Þ ð48Þ

with

Φ
̬

i ¼
Φi

jΦij
: ð49Þ

For type I vortices, this gives

~κ ¼ ð0; 0; 1Þ ð50Þ
while for type II vortices one has

~κ ¼ ð− cos θ; sin θ; 0Þ: ð51Þ
We see that in the type I vortex the chirality vector is fixed
and perpendicular to the plane where the 120 degree
structure lies while in the type II case vector ~κ rotates
around the vortex core.

III. CONCLUSIONS

In this work we have analyzed vortex solutions in a non-
Abelian SUð2Þ gauge model with three matter fields in the
adjoint representation (triplets). Our original motivation
was to determine whether the global vortices of the
triangular antiferromagnetic lattice [10] can be conven-
iently fitted into a local gauge theory. We have shown that
this is indeed the case and the vortex solutions that we have
constructed share many similarities to those of the minimal
theory with two triplets that have been considered for many
years in the context of high energy models.
Vortices in a local SUð2Þ gauge theory with M ¼ 3

matter fields have also been recently considered in the
context of QCD [20]. Notice however that our model and
Ansätze are different: in [20] the triplets determine a frame
of three orthogonal vectors and a different potential is
chosen. Our model bears also many similarities to those
discussed in the case of three-component superconductors,
although in those systems the three order parameters are
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complex fields (rather than triplets) and the gauge field is
Abelian [21].
Coming back to the original motivation of the magnetic

analogy, let us point out that the antiferromagnetic triangu-
lar lattice has been recently the focus of attention in
connection to the existence of vortex and Skyrmion lattices
[11,12]. As shown in numerical simulations of the
Heisenberg model in this lattice, the inclusion of Kitaev
type and DM interactions can induce vortex and Skyrmion
lattice phases in some region of the parameter space. In the
continuum description of the Heisenberg model in the
square lattice and for certain choices of the DM vectors,
the DM interaction corresponds to a term in the energy of
the form

EM ¼ DϵijkΦi∇jΦk ð52Þ

where in the magnetic case, Φi corresponds to the compo-
nents of the order parameter living in S2 [22].
Notice that a term of this kind naturally arises in a theory

with non-Abelian gauge fields. Indeed, consider the covar-
iant derivative energy density part of the energy functional,

Ecd ¼ jð∇i
~Φþ e~Ai × ~ΦÞj2 ð53Þ

Ecd ¼ j∇i
~Φj2 þ je~Ai × ~Φj2 þ 2e∂i

~Φ · ð~Ai × ~ΦÞ: ð54Þ
The last term is

2e∇i
~Φ · ð~Ai × ~ΦÞ ¼ 2e∇iΦlϵlmnAimΦn: ð55Þ

Thus, if we choose, Aim ¼ γδim (in Aim the first subindex
denotes the space index and the second the Lie algebra
component),

2e∇i
~Φ · ð~Ai × ~ΦÞ ¼ −2eγ∇iΦlϵnilΦn: ð56Þ

This is exactly the Moriya term with D ¼ −2γ. The second
term in (54) is just an irrelevant quadratic factor e2γ2ΦlΦl.
Thus, the Moriya term appears as a result of a

constant SUð2Þ background vector potential. Notice that
a constant vector potential is not trivial in a non-Abelian
theory. Indeed, for our purposes it is enough to take
A11 ¼ γ ¼ A22, thus giving it a constant magnetic field
B33 ¼ eγ2 which is in the third direction in the Lie algebra

and in the z-direction of space. Thus a Moriya term can be
incorporated by choosing a constant chromomagnetic field
(it is the equivalent of the Landau problem for a non-
Abelian theory). Interestingly, a similar argument is used to
introduce Rashba interactions for triplets in the context of
cold atoms [23] where non-Abelian gauge fields can be
engineered using laser beams.
Notice that the Moriya type term can be easily gener-

alized to the case of a theory containing three triplets
(a ¼ 1, 2, 3),

Eð1Þ
M ¼ D1ϵijkΦia∇jΦka: ð57Þ

One could also include a term of the form

Eð2Þ
M ¼ D2ϵijkϵabcΦiaΦjbΦkc ð58Þ

which preserves the global SOð3Þ invariance of the theory.
Of course, one could combine these two terms in a non-
Abelian Chern-Simons type term if one were willing to

interpret ~Φa as a vector field.
Our work could be extended in many directions. One

direct generalization would be to include a non-Abelian

Chern-Simons term for the ~Ai field. Such a term is
interesting since it alters the statistics of excitations and
binds “chromoelectric” charge to the vortices. Is is easy to
show that the Ansätze that we have presented work equally
fine for this case, although the analysis of the energetics of
the different Ansätze might require some numerical work.
Another interesting issue is to determine the role of terms

like those in Eqs. (57)–(58) in the properties of the
solutions. If the magnetic analogy would carry through
the local gauge theory, then one would expect that these
types of terms play a fundamental role in the appearance of
vortex and Skyrmion lattices. We expect to report on these
issues on a future work.
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