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We have shown coherent state quantization of a particle in a maximally symmetric curved space-time i.e.
in de Sitter space. As the coherent states are eigenvectors of the lowering operators, we have constructed the
raising and lowering operators with the help of recurrence relation satisfied by the associated Legendre
polynomial. These lowering operators have been used to describe an explicit form of coherent states
followed by coherent states quantization in two-dimensional de Sitter space. Coherent states and their
quantization are also generalized in D-dimensional de Sitter space.
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I. INTRODUCTION

De Sitter space is a unique maximally symmetric curved
space-time and it has been widely discussed [1-6]. This
space is the simplest vacuum solution to the Einstein
equation with a positive cosmological constant and it is
characterized by constant positive curvature (cosmological
constant). Quantization of a particle in curved space [7-9]
is not simple because relativistic quantum theory is not
constructed as one particle theory. In fact, it is a theory of
one or more quantized fields for the system of many
particles. Various approaches for solving the quantization
problem have been proposed [10-13]. Positive frequency
solutions of the Klein-Gordon equation in the de Sitter
space-time in arbitrary dimensions for massless scalar field
and quantization using field theory approach have been
shown by Lokas [14].

Quantization associates an algebra of classical observ-
ables with an algebra of quantum observables. There
exists superposition of quantum states which have many
features analogous to their classical counterparts called
coherent states, studied by Schrodinger [15]. Later on,
further investigations of coherent states were undertaken
[16,17]. In a seminal work, Glauber [18,19] has shown
that coherent states provide an adequate means for a
quantum description of coherent laser light beams.
Coherent states in quantum physics, generalized coherent
states and their applications are widely discussed [20-22].
Quantization through coherent states and its various
generalizations have also been discussed [23-27]. In
the present study, we derived coherent states by using
the properties of the associated Legendre polynomial
and generalized these states and their quantization in
D-dimensional de Sitter space. The coherent state quan-
tization we present is equivalent to the usual construction
with the so-called Bunch-Davies vacuum [1].

The paper is organized as follows. In Sec. II, we review
the characteristics of a higher dimensional de Sitter space.
Section III is devoted to the solution of the Klein-Gordon
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equation in D-dimensional space. We obtain this equation
as the associated Legendre differential equation i.e. a
hypergeometric equation. The study of the hypergeometric
equation is important because the hypergeometric function
contains all of the orthogonal polynomials. Since each of
the orthogonal polynomials defines a complete basis in
which the wave function of any quantum mechanical
system can be expanded, the applications of these poly-
nomials are quite important in any algebraic study of a
quantum mechanical system. In Sec. IV, some recurrence
relations of the associated Legendre polynomial have been
used to construct the raising and lowering operator. The
analysis has been carried out to obtain raising and lowering
operators for the associated Legendre polynomial much
like the creation and annihilation operators for the har-
monic oscillator. Since coherent states are the eigenstates
of the lowering operator, it can be expanded in terms of a
complete set of basis. Therefore, we have used the lowering
operator to obtain coherent states for two-dimensional de
Sitter space given by the SO(2,1) symmetry group.
Explicit systems of associated Legendre polynomials
and corresponding coherent states have been shown in
Sec. V. Lorentz boosts, rotations and their coherent state
quantization have been described in Sec. VI. In Sec. VII,
we have obtained coherent states and quantization in three-
dimensional de Sitter space. Generalization of coherent
states and quantization in D-dimensional space is presented
in Sec. VIIL

II. DE SITTER SPACE

De Sitter space is a unique maximally symmetric curved
space-time. D-dimensional de Sitter space can be represented
as a hyperboloid, which is placed into (D + 1)-dimensional
Minkowski space. If ,,, = diag(1,—1,-1,...,—1) and a is
the de Sitter radius, then we have the following relation,

N, X' X1 = —a* (1)
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with metric

dsy = n,,dXPdX1. (2)

Here ds?, is defined as a de Sitter metric in a D-dimensional
hyperboloid embedded in flat (D + 1)-dimensional space-
time. A convenient choice of coordinates for satisfying
Eq. (1) is
0 (1 S t .
X" =asinh| -], X' =wlacosh|(—-]), i=1,2,....D
a a
(3)

where —co <7< —oco0 and w' satisfies the following property,

S =1 )

which corresponds to

wl =cos6,, 0<0, <m;

w? =sin6, cosd,, 0<6, <r;

wP=2 =5sin6), cosh,...sinf,_scos0p_3, 0<6p_5<m;
wP~1 =sin@), cosh,...sinf,_,cos0p_;, 0<6p_, <m;
wP =sin#, cosb,...sinf,_,sinf,_;, 0<0,_ <2x.
(5)
Now, in terms of these coordinates, metric (2) becomes
t
ds? = dt* — a*cosh? (a) aQz (6)

where dQ3, | is a (D — 1)-dimensional solid angle given by

D-1 ,j-1
Qg = (H sin20,-> dg?

=1 \i1
= dO? +sin’0,d65 + - - - + sin®6);...sin’0p_,d6?,_,.

(7)

In these coordinates, dsj, looks like a (D — 1) sphere which
starts out infinitely large at # — —oo, then shrinks to a minimal
finite size at = 0 and grows again to infinite size as t — +o0.

III. SOLUTION OF THE KLEIN-GORDON
EQUATION FOR D-DIMENSIONAL
DE SITTER SPACE

The Klein-Gordon equation in D-dimensional space
[1,28,29] is given by
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O+ m)y(1.2) = 0 ®)
where D’Alembertian [ = g_:z 4 (=) ;1) tanh(%) g - C(i%;(lﬂ
in which L3 , denotes the Casimir operator of

SO (D—1), w(t,Q) = f(1)Y(Q), and Y(Q) are spherical
harmonics [30] on SP~! obeying

L3 Y(Q)+n(n+D-2)Y(Q) =0. 9)
where n denotes the eigenvalue of the angular momentum

operator. By using separation of variable in Eq. (8) and
using Eq. (9), we can write Eq. (8) as

fr(y + L= D - ) tanh (é) £(0)
+ <m2 +”(;:Tﬁ2(l)2)>f(z) =0. (10)

To find the solutions of differential equation (10), we
introduce a new independent variable x = isinh(%) and let
f(x) denote the solution of the resultant equation; then
Eq. (10) changes to

0? 0 n(n+D —2) B
{(1 —xZ)W—Dxa—mzaz —w}f(x) =0.

(11)

In order to simplify the solution of the above differential
equation, we substitute f(x) = (1 —x2)Fy(x), which
converts the differential equation (11) into an associated
Legendre equation as

— 2.2 _2)2
i(l—x2)i+D(D 2)+4m*a> (2n+D 22)
dx dx 4 4(1—-x%)
xy(x)=0. (12)

The solutions of Eq. (12) are associated Legendre functions
P}(x) and Q}(x) as

y(x) = CP(x) + C00(x) (13)

with (v + 1) = 1 (D(D - 2) 4+ 4m*a*), where the coeffi-
cients v and y are given by

_ 1 2 2,.2).
yfi(—l—l—\/(D—l) +4ma>,

u,=pu==02n+D=2). (14)

N[ =

Equation (13) contains two linearly independent solutions
P;(x) and Q}(x). The P;(x) functions are bounded within
the interval —1 < x < 1 while the Q/(x) are unbounded at
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x = +1. Divergences of Q)(x) are nonsquare integrable
ones. Therefore, we proceed with P (x) to obtain raising
and lowering operators. Thus, we have seen that the
D-dimensional Klein-Gordon equation has the solution
in the form of the associated Legendre polynomial.
Recently, recurrence relations of hypergeometric function
have been used to obtain raising and lowering operators
[31]. In what follows, we obtain raising and lowering
operators for the associated Legendre polynomial.

IV. RAISING AND LOWERING OPERATORS FOR
THE ASSOCIATED LEGENDRE POLYNOMIAL

Raising and lowering operators for associated Legendre
polynomials play the same role for this system as the
Hermite polynomials for the standard boson oscillator.
With the help of recursion relations for the associated
Legendre polynomials [32], we can determine the raising
and lowering operators. We obtain the following recursion
relation for associated Legendre polynomials,

AP, = \/(1/ +u+)v-—p+ 1)Pf+];
AZ+2P5+1 =Vw+p+1)(v—p+1)P (15)

pv—p)!
(v+u)! .
Legendre polynomial, and A, and AI 4, are raising and

lowering operators with respect to v, defined as

where P! = Py is the normalized associated

d
A, = (zz—l)d—z+(v+1)z;

. d
A==+ @+ Dz (16)

The vacuum state of a system is the state with the lowest
energy, and can be calculated by using the definition of the
annihilation operator. The annihilation operator defined in
Eq. (16) yields a differential equation for the vacuum state as

@) 1)4

0> =0, (17)

which gives the following vacuum state

(1)

0) =C(-1)~. (18)

where C is a normalization constant.

Our goal is to describe coherent states with the help of
the associated Legendre polynomial. We can see from
Eq. (15) that p is fixed and v is changing. Therefore, we
expand coherent states in terms of y; to do this we need the
lowering operator independent of u. Therefore, consider

operators a, and a; such that these satisfy the following
properties [33,34],
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a,=AU;",  a) =UA] (19)
where U, is the unitary operator obeying

UUI;/; g e_ie(’lwl—lu)l_)/:jj (20)

with 4, =v(v+ 1) and e being real number. By using
Egs. (19)-(20), we see that the lowering operator given in
Eq. (15) satisfies the following relation:

ay+1P_’J = \/(1/+y -Hv—pu+ l)eie(ﬂy—lb_,)P/Ij—l‘ (21)

If we consider u € N and P,™" = |u) then Eq. (21)
becomes

ayiln) =/ (—1)Q2v—p+ Delh=r) |y — 1), (22)

Here a, | denotes the lowering operator for u. We use this
relation to determine the coherent states for our system in
the next section.

V. COHERENT STATES USING THE ASSOCIATED
LEGENDRE POLYNOMIAL

Coherent states are defined as eigenvectors of the low-
ering operator, i.e. for a coherent state |a) we have

ay1fa) = ala) (23)

where a can be any complex number. To find the coherent
states, i.e. the solution of Eq. (23), let us expand the state
|r) in terms of the basis |u) as

[Se]

DA (24)

H(pn)=Ho

o) =

where ¢, = (u|a). Applying the annihilation operator a,
to Eq. (24) and using Eq. (23), we get

. r'2v - Hnr(2 1
Cy = Coaﬂe_leep ( Vo BTt ) ( v+t ) (25)
T +1)

where e, = (4, —4,_;). Thus, we have an eigenstate of
annihilation operator a,; as
)

(26)

, e I'2v - 1
|a> = C()\/F(zy —+ 1)6_166‘/ Z ot M

H(pn)=Ho F(,u—l— 1)

For simplicity let us assume ¢, = 1. Coherent states are not
orthogonal but it is possible to expand coherent states in
terms of a complete basis. The completeness relation con-
dition for coherent state is given by
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/ do(a))a)(a] = 1 27)

where do(a) is the weight function which is determined
below. In the coherent state quantization method [35], a
quantum operator is defined by

£ Af) = / do(@f(@)a)a.  (28)

Let do(a) = o(r)drdf and a = re'. If |f) and (g| are two
arbitrary vectors, then we can write Eq. (27) as
(o) = [ otaraoisia)alg).  (29)
Now using |a) from Eq. (26), Eq. (29) becomes
FQv—p+1)
=2al(2 1 r2
(flg) = 22T (2w + >Z/ ardr )
X (flu)(ulg)- (30)
To determine o(r), we must have
24T(20 + 1)/ Pro(rydr = —LEFD gy
T2v—p+1)

The explicit form of ¢(r) is determined with the help of the
following relation [32],

/ I"AJBQJ"

where Jp(2r) is the Bessel function of the first kind.
Choosing A = 2u —2v and B = 2v + 1 in Eq. (32) we get

(1+A+B)

( —A+B) (32)

C(p+1)

2 [T ey, (2r)dr = . (33
| A naenar = 5 o)

Thus comparing Eq. (31) and Eq. (33), we obtain the desired
function o(r) as

J21/+1 (2r)r_2y
== 34
o(r) al'(2v+1) (34)
With the help of coherent state |a) given in Eq. (26) and using
Eq. (28), we describe quantization in two-dimensional de
Sitter space in the next section.

VI. ROTATION AND BOOST IN
TWO-DIMENSIONAL DE SITTER SPACE

If we consider two-dimensional de Sitter space, which
is embedded in three-dimensional Minkowski space, the
symmetry group is SO(2, 1) with the following spherical
coordinates:
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t
X° = asinh (—> :
a

t
X! = acosh <—> cos 0,
a
t
X? = acosh (—) sin 6. (35)
a
In this case, the de Sitter generators are given by

t
Jy =ap,cosf — tanh(—) sin Opy;
a

t
J, = ap,sinf + tanh <> cosOpy;
a
Jo = po- (36)

where J; and J, represent boosts and J|, represents rotation
in two-dimensional de Sitter space. In this case, the metric
tensor has the form

ds? = d? — aPcosh? H d6”. (37)
a

This metric provides the constraints ¢*“p,p, —m?>=0.
Therefore, with the help of Eq. (36), this constraint
provides the following relation,

ST+ B-T3-2=0 (38)

where 1 = ma. If we consider r = /J} + 4%, then we can
write Eq. (38) as follows:

t
(ap;)* + tanh? (E) ps=J5+ 22 =r. (39)

— (ap,) — Jo
If we define cosf = TR cosf = \/m
0+ p = ¢, it gives Eq. (36) in a simplified form as
Jy =rcos(0+ ) = rcos¢;
rsin(0 + ) = rsin ¢;

~
[§)
|

To=Vr =2 (40)

From Eq. (40), we see that Eq. (38) defines a circle of
radius r. Jy, J, and J, form a hyperboloid and satisfy
following relations:

B+B=22+Ji=r. (41)
Now we quantize J;, J, and J, with the help of coherent

states given in Eq. (26). By using the definition (28) and
taking € — 0, we can obtain
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A(rei?) = = > VD) Qv—p) |u)(p+11;
H(p)=Ho

A(re7it)= = > VWwr—p+ 1)) u-1i;
(ﬂn) =Ho

(42)

where J. = J; £ J,. Equation (42) provides

[Se]

A1) A = =2 D (u=v)lud(ul = =2A.(Jo),

win)=Ho

(43)

and from Egs. (26), (28), (42), and (43), one can obtain the
following commutation relation of the observables

[Ae(Jl)’Ae(JZ)] = _iAe(JO);
[A (JO)’Ae(Jl)] = _iAe(JZ);
[Ae(JO)’Ae(JZ)] = iAe(Jl)' (44)

o

In the next section, we follow the same steps to obtain
the quantization in three-dimensional de Sitter space.
Subsequently we generalize quantization of rotations and
boosts for D-dimensional de Sitter space.

VII. QUANTIZATION IN THREE-DIMENSIONAL
DE SITTER SPACE

Three-dimensional de Sitter space embedded in four-

dimensional space satisfies the following relation,

X2+ X3+ X:-Xi=4a2 (45)

where X, X;, X,, X3 represent the coordinates of four-
dimensional space. We choose these coordinates as global
coordinates given by

Xy = asinh

N
Q| ~
~——

X, = acosh cosOy;

X, = acosh sin 0, cos {;

Q= Q~

\/\_/\_/

sin @ sin (. (46)

/\/—\/—\

X3 = acosh| —
a

In these coordinates, the metric tensor has the form

PHYSICAL REVIEW D 92, 124032 (2015)

ds?® = dt* — a*cosh? [ ] (dO7+ sin®0,d?).  (47)
Boosts and rotations are given by

My, = acosb,p, —sin 0, tanh< >p91,

1
My, = asin@; cos {p, — tanh (—)
a

sin{
—cosf :
X <sin 9, pe — cos 0 cos Cp9]>

t
My = asin@; sin{p, + tanh (—)
a

cos( .
X cos @, sin ;
<sin 0, De+ S 51’91)

M, = cos{py, — cotl; sin{p;;

M3 = sin{py, + cotO; cos{p;;

My = p¢; (48)
where M5, M5 and M,5 are rotations and M, My, M3

are boosts. The metric equation (47) provides the following
constraint,

t 1
a’p? — p3 sech? <> - pgsech2< )cosec 0, —2=0
! a a
(49)
where 1 = ma. From Eq. (47) and Eq. (49), we can see that

M(Z)l +M%2 +M(2)3 - (M%z +M%3 +M%3) =22 (50)

Equation (50) can be viewed as a sphere whose radius is
22+ (M3, + M3, + M3;). If we redefine My, Mg, by Y,
Y, and M3, + M3, + M3, — M}, by Y§ then Eq. (50)
becomes

Y21 V2-Y2 =22 (51)
If Y, Y, and Y, are defined in such a way,

Y, = Rsin Y, sin ¢;
Y, = Rsin 8, cos ¢;

Yo=VR>=2% (52)

This represents a circle of radius R sind; and we can write
this circle in complex form as a = Rsin,e'?. With the
help of Eq. (27) and using the value of @, we obtain the
weight factor do(a) as
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Jo42(2R)R™%¥25in 9,d9, dRdyp
()*°0(2v +1)

do(a) = (53)

Using Egs. (52)-(53), the quantization in three-dimensional
de Sitter space is done by following the same procedure as
defined in Sec. VI and we get

A.(Rsind,e?) = Z

H(pn)=to

A (Rsind e %) Z

(ﬂn ) =Ho

Qv —p)(p+1) 1) (u +

H2v = p+ 1) |u) (= 1.
(54)

We can see that this is the same quantization as obtained in
two-dimensional de Sitter space. Furthermore, we general-
ize such a quantization in D-dimensional de Sitter space in
the next section.

VIII. GENERALIZATION OF QUANTIZATION IN
D-DIMENSIONAL DE SITTER SPACE

Let us consider a D-dimensional de sitter space
embedded in (D + 1)-dimensional Minkowski space which
has the symmetry group SO(D, 1). In this space we have

bo-1) (g_” rotations and D boosts. Keeping in mind the metric

given in Eq. (6) and constraint ¢**p, p, — m? = 0, boosts
and rotations in D-dimensional de Sitter space form a circle
with radius (R sind; sin9,...sindp_;). Such a generaliza-
tion in D-dimensional space is represented by

Y,P = Rsind,sind,...
Y2D = Rsin191 sin192...

sin dp_; sin @;

sin d9p_; cos ¢;

Yo? = \/(Rsind, sin0,...5in 8,12 = 22, (55)

which forms a circle as

2 2
<YID> +<YZD> = (Rsind; sind,...sindp_;)%, (56)

or = (Rsind;sind,...sind,_;)e”. In D-dimensional
space we have weight factor
do(a) = 6(R) sin9p_,.

nP29,d8p_,...d9,d9,dedR.

(57)
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Now with the definition of coherent states given in Eq. (26)
and the weight factor given in Eq. (57), we can determine
the o(R) by the following relation:

2(n) (2w 4 1) A " R¥6(R)dR = %

(58)

With the help of Egs. (32) and (58), we get the generalized
6(R) in D-dimensional de Sitter space as

_ (D-2)
J2u+%<2R)R 20452
()T 2w +1)

o(R) = (59)

Now, using the definition of quantization given in Eq. (28),
and the coherent states in Eq. (26) along with Egs. (58)—(59)
we get

A (Rsind; sin 9,...

A0 = Y VW D )t 1l

W) =Ho
A (Rsind; sin9,...

sin9p_,e'?)

sin §p,_,e™)

S VR R D1l (60)

H(pn)=to

where Y2 = Y| +iY, and Y2 = Y| — iY,. Thus we can see
that these relations are the same as we obtained in
two- and three-dimensional de Sitter space. It shows that
we have the same quantization in any arbitrary dimen-
sional space.

To conclude, starting with some recurrence relations
satisfied by the associated Legendre Polynomial, we have
described the raising and lowering operator. Since coherent
states are the eigenstates of the annihilation operator, with
the help of these operators we have obtained coherent states
in two-dimensional de Sitter space which is embedded in
three-dimensional Minkowski space and generalized in
D-dimensional de Sitter space. Coherent state quantization
in D-dimensional space has also been generalized.
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