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We study how a cosmological bounce, with a type IV singularity at the bouncing point, can be generated
by a classical vacuum FðGÞ gravity. We focus our investigation on the behavior of the vacuum FðGÞ theory
near the type IV singular bouncing point and address the stability of the resulting solution by treating the
equations of motion as a dynamical system. In addition, we investigate how the scalar perturbations of the
background metric evolve, emphasizing cosmological times near the type IV singular bouncing point.
Finally, we also investigate which mimetic vacuum FðGÞ gravity can describe the singular bounce
cosmology.
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I. INTRODUCTION

The observational data that came into play during the last
20 years have consistently described a compelling theory
that can harbor all the different observationally verified
phenomena. There are two main observations that need to
be described theoretically—the late-time acceleration veri-
fied in the late 1990s [1] and the early-time acceleration.
With regards to the latter, there is much more ground to be
covered until we conclude whether inflation ever existed.
However, the latest Planck data [2] pose severe constraints
on inflationary models and indicate which features should
be included in a consistent theory of inflation. Modified
gravity theories offer a promising and solid theoretical
framework that can consistently describe late-time and
early-time acceleration; for reviews on this vast issue, see
[3]. Among the most promising are the FðRÞ theories of
gravity, which also offer the possibility to describe simul-
taneously early and late-time acceleration [4]. The FðRÞ
gravity is the simplest modification of Einstein-Hilbert
gravity since instead of having simply the Ricci scalar R in
the Lagrangian, a function of R appears. In four
dimensions, instead of this simple modification of
Einstein-Hilbert gravity, there also exist other theoretical
descriptions that are promising, such as the FðGÞ theories
of gravity, with G the Gauss-Bonnet invariant G ¼
R2 − 4RμνRμν þ RμνρσRμνρσ, where Rμν, Rμνρσ are the
Ricci tensor and the Riemann tensor, respectively.
Although, in principle, the resulting equations of motion
are expected to have fourth-order derivatives of the metric
tensor, it turns out that the theory contains only second-
order derivatives, and therefore it is rendered not too
complicated to be studied. In particular, it has been shown
that within the context of FðGÞ theory, late-time

acceleration can be achieved [5–13]. For informative
reviews on the FðGÞ theory of gravity, see [3].
On the other hand, an appealing alternative to the

standard inflationary paradigm comes from the bounce
cosmology theories [14–22]. In these kinds of theories, one
of the most severe drawbacks of the inflationary paradigm,
the initial singularity problem, is absent, and it is conceiv-
able that this feature makes them quite appealing. The
initial singularity is a crushing-type, timelike singularity,
and at the point it occurs, the geodesics cannot be
continuously extended; that is, geodesic incompleteness
occurs. The singularity theorems of Hawking and Penrose
[23] fully describe these singularities, and much work has
been devoted to studying spacelike singularities. In cos-
mology, however, most of the singularities are timelike, and
the most severe of these are the initial singularity and the
big rip [24]. With regards to the latter, it is the most severe
of the four types of finite singularities classified in [25].
Also sudden singularities were also studied in [26–29].
Among the four types of finite-time singularities, the most
mild from a phenomenological point of view, is the type IV
singularity, at which no geodesic incompleteness occurs.
For recent studies on this kind of singularity see [30–35].
The most phenomenologically interesting feature of theo-
ries with type IV finite time singularities is that the
Universe may smoothly pass through [34,35] these timelike
singularities, without any catastrophic consequences. In
some cases, there might be observational evidence or
indication of the passage of the Universe through a type
IV singularity [34], but it is important that this is not
catastrophic and it always is a smooth passage [35].
In view of the aforementioned interesting features of the

bouncing cosmologies, in this paper we aim to study a
specific bounce which contains a type IV singularity at the
bouncing point. In this way, the cosmological system is free
from the initial singularity, but at the same time we
investigate the implications of such a mild finite time*v.k.oikonomou1979@gmail.com
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singularity. Particularly, we shall investigate how such a
cosmology can be described by a classical vacuum FðGÞ
gravity, with special emphasis being given on how the
FðGÞ gravity behaves near the type IV singular bouncing
point.1 Also, we investigate how the resulting solution
behaves, by checking the stability of the resulting equa-
tions, when these are viewed as a dynamical system. In this
case we examine if the solution is the final attractor of the
system. It is conceivable of course that since the Universe
passed through the singular point smoothly, the resulting
FðGÞ gravity should not be the final attractor of the theory,
so in some sense instability of the dynamical system is
anticipated. In addition, we shall investigate how the scalar
perturbations of the background metric behave for the case
of the resulting vacuum FðGÞ, near the type IV singularity.
Finally, we shall investigate which vacuum FðGÞ gravity
generates the same singular bounce we are discussing, but
in the context of mimetic FðGÞ theory, which was devel-
oped in [36]. Again the focus will be for cosmic times near
the singular bouncing point. We believe that our work will
provide some new information on the behavior of classical
modified theories of gravity near a type IV singular
bouncing point, a study which combines bouncing cosmol-
ogy with a mild singularity at the bounce, and also a
classical description with an FðGÞ gravity.
This paper is organized as follows: In section II we

briefly review the basic features of a type IV singular
bounce cosmology, and in section III by using known
cosmological reconstruction techniques, we investigate
which vacuum FðGÞ can describe the type IV singular
bounce, by focusing on the behavior near the bouncing
point. Also, we discuss the possible connection of the
resulting FðGÞ theory with other viable FðGÞ theories. In
section IV we study the stability of the resulting solution
we found in section III, by treating the system of equations
of motion as a dynamical system. To this end, we rewrite
the system of equations of motion in terms of new
variables, which make the study more clear from a physical
point of view. In section V we investigate how the scalar
perturbations of the background metric behave, for the
vacuum FðGÞ theory we found in section III, emphasizing
again on the behavior near the type IV singular point.
Finally, in section VI we investigate which mimetic FðGÞ
gravity can describe the type IV singular bounce cosmol-
ogy, focusing again on the behavior near the type IV
singularity. The conclusions along with a discussion follow
in the end of the paper.

II. A BRIEF DESCRIPTION OF THE
SINGULAR BOUNCE

As we already mentioned, bouncing cosmology [14–22]
is an appealing alternative scenario to the standard

inflationary paradigm, with the most attractive feature of
bouncing cosmology being the fact that there is no initial
singularity, and there exists also the possibility of success-
fully describing early-time acceleration [20,22]. It has been
recently shown, however, that other types of milder
singularities [30–33,35] might occur during the cosmo-
logical evolution, without having the catastrophic conse-
quences of the crushing-type singularities, such as the big
rip [24]. In particular, in Ref. [35] it has been demonstrated
that a type IV singularity [25,31–35] may occur at the
bounce point of a general bouncing cosmology with
interesting consequences. We shall briefly describe this
possibility in this section in order to render the presentation
self-contained.
First, a cosmological bounce can be separated into two

evolution eras—the contraction era, during which the scale
factor decreases ( _a < 0), and the expansion era, during
which the scale factor increases ( _a > 0). In between the two
eras, and after the contraction era, the Universe reaches a
minimal radius, where _a ¼ 0, and this is the reason that the
bouncing scenario is free of the initial singularity. In
principle, the bouncing point, that is, the point at which
the bounce occurs, can freely be chosen, so we assume that
the bounce occurs at t ¼ ts, so when t < ts, the Hubble rate
H ¼ _a=a is negative (since _a < 0), while for t > ts it is
positive (since _a > 0). Of course, at the bounce it becomes
equal to zero, HðtsÞ ¼ 0. We shall consider the bouncing
cosmology with scale factor,

aðtÞ ¼ ef0ðt−tsÞ2ð1þεÞ
; ð1Þ

with aðtsÞ ¼ 1 and f0 an arbitrary parameter. In addition,
the parameter ε is assumed to be ε < 1, so the bouncing
cosmology of Eq. (1) is assumed to be a deformation of the
well-known symmetric bounce [37],

aðtÞ ¼ ef0ðt−tsÞ2 : ð2Þ

From Eq. (1) it easily follows that the Hubble rate is
equal to

HðtÞ ¼ 2ð1þ εÞf0ðt − tsÞ2εþ1: ð3Þ

For simplicity, we introduce the following variables,

β ¼ 2ð1þ εÞf0; α ¼ 2εþ 1; ð4Þ

so the Hubble rate becomes

HðtÞ ¼ βðt − tsÞα: ð5Þ

According to the classification of finite-time singularities,
the following types of singularities occur at t ¼ ts which is
the bouncing point:

(i) α < −1 corresponds to the type I singularity
(ii) −1 < α < 0 corresponds to the type III singularity

1From this point, when we refer to the bouncing point or the
singular point, we refer to the same point.
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(iii) 0 < α < 1 corresponds to the type II singularity
(iv) α > 1 corresponds to the type IV singularity.

The relevant case here is when α > 1, and since we want to
render the bounce of Eq. (1) a deformation of the
symmetric bounce (2), we further assume that 1 < α < 2

(or equivalently 0 < ε < 1
2
), something which implies that

the second derivative of the Hubble rate (5) diverges. As
shown in [34], this can have interesting phenomenological
consequences. Finally, we need to make sure that the
Hubble rate and the scale factor never become complex, so
the parameter α needs to be appropriately chosen, so we
make the choice α ¼ 13=11, but in general α ¼ 2n−1

2mþ1
. For a

detailed account on that, see [35].

III. SINGULAR BOUNCE FROM FðGÞ GRAVITY

Having described the cosmological bounce with a type
IV singularity at the bouncing point, in this section we shall
investigate how this type of cosmological evolution can be
described in terms of a vacuum FðGÞ gravity. Special

emphasis shall be given in the FðGÞ gravity that describes
the bounce near the type IV singularity since the general
problem is rather difficult to address due to the lack of
analytic solutions of the corresponding differential
equations.
In order to find the FðGÞ gravity that describes the

bounce near the singular point, we shall use some very
well-known reconstruction techniques for FðGÞ theories of
gravity [9–11]. For a similar technique to the one we shall
use here, see [12]. The Jordan frame FðGÞ gravity action
in the absence of matter fluids [vacuum FðGÞ] is equal
to [3,9–11],

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ FðGÞÞ; ð6Þ

where κ2 ¼ 1=M2
pl, with Mpl ¼ 1.22 × 1019 GeV. By

varying with respect to the metric, the gravitational
equations read

Rμν −
1

2
gμνFðGÞ − ð−2RRμν þ 4RμρR

ρ
ν − 2Rρστ

μ Rνρστ þ 4gαρgβσRμανβRρσÞF0ðGÞ
− 2ð∇μ∇νF0ðGÞÞRþ 2gμνð□F0ðGÞÞR − 4ð□F0ðGÞÞRμν þ 4ð∇μ∇νF0ðGÞÞRρ

ν

þ 4ð∇ρ∇νF0ðGÞÞRρ
μ − 4gμνð∇ρ∇σF0ðGÞÞRρσ þ 4ð∇ρ∇σF0ðGÞÞgαρgβσRμανβ ¼ 0; ð7Þ

where the Gauss-Bonnet invariant expressed in terms of the Hubble rate equals

G ¼ 24H2ð _H þH2Þ: ð8Þ
Assuming a flat Friedmann-Robertson-Walker (FRW) background, with line element,

ds2 ¼ −dt2 þ a2ðtÞ
X
i

dx2i ; ð9Þ

the gravitational equations of Eq. (7) take the following form:

6H2 þ FðGÞ −GF0ðGÞ þ 24H3 _GF00ðGÞ ¼ 0

4 _H þ 6H2 þ FðGÞ − GF0ðGÞ þ 16H _Gð _H þH2ÞF00ðGÞ
þ 8H2G̈F00ðGÞ þ 8H2 _G2F000ðGÞ ¼ 0: ð10Þ

The reconstruction technique presented in [9,11] employs
the use of an auxiliary field denoted as ϕ, which as was
shown can be identified with the cosmic time t, that is,
ϕ ¼ t. By introducing two proper functions of t—namely,
PðtÞ andQðtÞ—the Jordan frame action of Eq. (6) becomes

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ PðtÞGþQðtÞÞ; ð11Þ

and by varying it with respect to t, we obtain

dPðtÞ
dt

Gþ dQðtÞ
dt

¼ 0: ð12Þ

Having Eq. (12) at hand, solving it with respect to t ¼ tðGÞ,
and substituting this into the following expression,

FðGÞ ¼ PðtÞGþQðtÞ; ð13Þ

we finally have the FðGÞ gravity. It is, therefore, obvious
that the functions PðtÞ and QðtÞ play an important role in
the determination of the FðGÞ gravity, so we now derive the
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differential equations that yield these functions. By com-
bining Eq. (13) and the first of the equations appearing in
Eq. (10), we obtain the following differential equation,

QðtÞ ¼ −6H2ðtÞ − 24H3ðtÞ dP
dt

; ð14Þ

and finally combining Eqs. (13) and (14), we obtain the
following differential equation:

2H2ðtÞd
2P
dt2

þ 2HðtÞð2 _HðtÞ−H2ðtÞÞdP
dt

þ _HðtÞ ¼ 0: ð15Þ

When solved, Eq. (15) determines the function PðtÞ, and
therefore QðtÞ, so upon substitution of PðtÞ in Eq. (14), we
get QðtÞ. Finally, from Eq. (12) we get the function
t ¼ tðGÞ, and by substituting that in Eq. (13), we obtain
the final form of the FðGÞ gravity. We now apply this

method in order to find the FðGÞ gravity which describes
the bounce near the bouncing point.

A. FðGÞ gravity near the bouncing point

The general problem of finding the FðGÞ gravity for the
singular bounce with Hubble rate (5) is rather difficult to
deal with analytically, so we shall focus on finding the
FðGÞ gravity near the bouncing point t ¼ ts, which is
the point where the type IV singularity occurs too.
Consequently, at some point, we shall specify our analysis
around the singularity.
For the Hubble rate of Eq. (5), the differential equa-

tion (15) that yields the function PðtÞ becomes

2β

α
ðt − tsÞ1þα d

2P
dt2

þ 4ðt − tsÞαβ þ 1 ¼ 0; ð16Þ

which can be solved analytically to yield

PðtÞ ¼ −
ðt − tsÞ1−2αððt − tsÞα − 2ðt − tsÞαα − 2βC1 þ 2αβC1Þ

2ð−1þ αÞð−1þ 2αÞβ þ C2: ð17Þ

Thus, by substituting Eq. (17) into Eq. (14), we obtain the
function QðtÞ which appears in Appendix A since it is too
complicated to include here. By using the resulting
expressions for the functions QðtÞ and PðtÞ, the final form
of Eq. (12) becomes

x−1−2αð4x3ααβ3ð11xα − 12C1βÞ −Gxðxα − 2C1βÞÞ
2β

¼ 0;

ð18Þ
where we have set x ¼ t − ts for simplicity. It is obvious
that the above equation is rather difficult to solve analyti-
cally, so we shall simplify it by keeping the dominant terms
in the limit x → 0, which corresponds to the limit t → ts.
Therefore, by taking the limit x → 0, Eq. (18) becomes

C1Gx−2α − 24C1x−1þααβ3 ¼ 0; ð19Þ
which yields

x ¼ G
1

ð3α−1Þ

ð24αβ3Þ 1
ð3α−1Þ

: ð20Þ

Then by substituting (20) in PðtÞ and QðtÞ, and by using
Eq. (13), we obtain the resulting expression for the FðGÞ
gravity near the singular point, which is

FðGÞ ¼ C2Gþ AG
2α

−1þ3α þ BG
α

−1þ3α; ð21Þ
where the coefficients A and B are given in Appendix A.
We can give, however, a simpler form by exploiting the fact

that we are interested in the limit t → ts. The Gauss-Bonnet
invariant of Eq. (8) is written in terms of the variable
x ¼ t − ts which we introduced earlier, as follows,

G ¼ 24x−1þ3ααβ3 þ 24x4αβ4; ð22Þ
from which it is obvious that as x → 0 (or equivalently
t → ts), the Gauss-Bonnet invariant tends also to zero.
Hence, by keeping the most dominant terms from the FðGÞ
gravity of Eq. (21), we get the small G limit of it,

FðGÞ≃ C2Gþ BG
α

−1þ3α: ð23Þ
Therefore, in the small G limit or, equivalently, near the
type IV singularity, which we chose to be the bouncing
point, the FðGÞ gravity that can generate the Hubble rate
(5) is approximately described by the expression of
Eq. (23). Since we are discussing cosmological times near
the bouncing point, it is worth examining how the evolution
of perturbations behave for this FðGÞ model. This will be
done in detail in a later section.

B. Connection with other viable FðGÞ gravities
and possible late-time behavior

In the previous section we investigated which FðGÞ
gravity theory can successfully describe the singular
bounce cosmology of Eq. (5), near the singular bounce.
However, the complexity of the resulting differential
equations forced us to find an approximate solution,
with the final FðGÞ being that of Eq. (23), or a further
simplification near the bouncing point,
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FðGÞ≃ BG
α

−1þ3α: ð24Þ
Now, it would be interesting to ask how the complete
classical FðGÞ gravity looks. A possible answer is that the
complete classical FðGÞ gravity description could be one of
the four possible forms of FðGÞ gravity that lead to finite-
time singularities, first studied in [10] and further inves-
tigated in [38,39]. In particular, the FðGÞ gravities that lead
to singularities are of the following form [10,38,39],

FðGÞ ¼ a1Gn þ b1
a2Gn þ b2

; ð25Þ

FðGÞ ¼ a1GnþN þ b1
a2Gn þ b2

; ð26Þ

FðGÞ ¼ a3Gnðb3Gm þ 1Þ; ð27Þ

FðGÞ ¼ Gm a1Gn þ b1
a2Gn þ b2

; ð28Þ

where the parameters ai and bi, with i ¼ 1, 2, 3, are
arbitrary real constants. Obviously, the FðGÞ gravity we
found, which for small G is given by Eq. (24), can be the
limiting case of the above FðGÞ gravities, which lead to
finite singularities for some values of the parameters. For
example, the FðGÞ gravity of Eq. (28) in the small G limit
behaves as ∼ b1

b2
Gm, which is clearly similar to the one we

obtained in Eq. (24). Note that in the large G limit, the
FðGÞ gravity (28) behaves as ∼ ∼ a1

a2
Gm, so the late-time

behavior of this FðGÞ gravity is described by a power-law
FðGÞ function and, as was shown in [5–8], such power-law
modified gravity theories can serve as models for dark
energy.
Before we close this section, we need to stress that the

absence of an analytic solution in the case of a singular
bounce is exactly due to the existence of the singularity. In
other bouncing cosmologies, for which no singularity

occurs, this lack of analyticity no longer persists as a
problem, and the exact behavior of the FðGÞ gravity can be
found, as in Ref. [37], for example.

IV. STABILITY OF THE FðGÞ GRAVITY
SOLUTIONS NEAR THE BOUNCING POINT

The FRW equations of Eq. (10) for the FðGÞ gravity
constitute a dynamical system which determines the
behavior of solutions which satisfy these equations. The
stability of a solution of this dynamical system against
linear perturbations would mean that this solution is one of
the final attractors of the theory. On the contrary, if a
solution of the system is unstable against linear perturba-
tions, then it is obvious that this solution is not a final
attractor of the theory. The focus in this section is on the
stability of the solutions we found for the FðGÞ, near the
bouncing point, against linear perturbations of the solu-
tions. Obviously, it is expected that the solutions we found
near the bouncing point are unstable since the cosmological
evolution does not stop at the bouncing point but continues
and the Universe starts to expand. Therefore, the local
solutions we found that describe the FðGÞ gravity near the
bouncing point should be unstable against linear perturba-
tions since they do not describe the whole evolution, but a
small part of it, near the type IV singularity. In the rest of
this section, we shall use some convenient variables, and
we shall study the stability of the dynamical system of
Eq. (10) against linear perturbations.
We adopt the techniques and notation used in [12], so we

consider linear perturbations of the solution gðNÞ ¼ H2, of
the following form,

gðNÞ → gðNÞ þ δgðNÞ; ð29Þ

with the function gðNÞ satisfying the FRW equations (10).
Expressing the dynamical system of Eq. (10) in terms of the
function gðNÞ, we get

288g2ðNÞF00ðGÞ½ððg0ðNÞÞ2 þ gðNÞÞg00ðNÞ þ 4gðNÞg0ðNÞ þ 4gðNÞg0ðNÞ�
6gðNÞ þ FðGÞ − 12gðNÞðg0ðNÞ þ 2gðNÞÞF0ðGÞ ¼ 0: ð30Þ

The conditions that ensure the stability of the dynamical system (30) against linear perturbations are the following,

J2
J1

> 0;
J3
J1

> 0; ð31Þ

where we introduced the variable J1 which is equal to

J1 ¼ 288gðNÞ3F00ðGÞ; ð32Þ

while the variable J2 stands for
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J2 ¼ 432gðNÞ2ðð2gðNÞ þ g0ðNÞÞF00ðGÞ þ 8gðNÞðg0ðNÞ2 þ gðNÞð4g0ðNÞ þ g00ðNÞÞÞF00ðGÞÞ; ð33Þ

and the parameter J3 is equal to

J3 ¼ 6ð1þ 24gðNÞð−8gðNÞ2 þ 3g0ðNÞ2 þ 6gðNÞð3g0ðNÞ þ g00ðNÞÞÞF00ðGÞ
þ 24gðNÞð4gðNÞ þ g0ðNÞÞðg0ðNÞ2 þ gðNÞð4gðNÞ þ g00ðNÞÞÞF00ðGÞÞ: ð34Þ

Having these at hand, and also the stability conditions, lets
us investigate whether the solution (23) is stable towards
linear perturbations. The FðGÞ gravity of Eq. (23) can be
further simplified since α satisfies the condition 1 < α < 2,
so the most dominant term near the bouncing point (or
equivalently at the small G limit as we showed in the
previous section) is the second term in Eq. (23) and, hence,
the FðGÞ function can be approximated by

FðGÞ≃ BG
α

−1þ3α: ð35Þ
By using the latter form of the FðGÞ gravity, the variables
J1, J2, and J3 can easily be computed, and we give their
detailed form in Appendix B. Note that the function gðNÞ is
expressed in terms of the e-folding number N which is

equal to N ¼ ln a, since we have set a0 ¼ 1, so for the
Hubble rate of Eq. (5), the function gðNÞ reads

gðNÞ ¼ β2Nγ

f0
; ð36Þ

where γ ¼ 2ϵþ1
1þϵ . So, finally, the stability conditions for the

FðGÞ gravity of Eq. (35) read

J2
J1

¼ 3ðf20Nð2N þ γÞ þ 8N2γβ4γð−1þ 4N þ 2γÞÞ
2f20N

2
ð37Þ

and, moreover, J3=J1 is equal to

J3
J1

¼ −
1

Bf0αð−1þ 2αÞ 3
1þ α

1−3α4
α

1−3αN−2þγð1 − 3αÞ2β2ðγÞ2
�
N−1þ2γβ4ðγÞ

f20

� α
1−3α

×

�
1þ

2
1−α

−1þ3α3
1−2α
−1þ3αBf0N−γαð−1þ 2αÞðN−1þ2γβ4ð2NþγÞ

f2
0

Þ α
−1þ3αð8N2 − 18Nγ þ 3ð2 − 3γÞγÞ

ð1 − 3αÞ2β2ð2N þ γÞ2

−
2

1−α
−1þ3α3

1−2α
−1þ3αBαð−1þ 2αÞðN−1þ2γβ4ðγÞ

f2
0

Þ α
−1þ3αðγÞðγð−1þ 2γÞÞ

Nð1 − 3αÞ2ðγÞ2
�
: ð38Þ

Since we are interested in the behavior of J2=J1 and J3=J1
near the bouncing point, we should know what the limit
t → ts means in terms of the e-folding number N. Actually,
since when t → ts, the scale factor tends to unity, then, in
the limit t → ts, the e-folding number tends to zero.
Therefore, we shall find how J2=J1 and J3=J1 behave
for N → 0 and, taking the limit of the expressions appear-
ing in Eqs. (37) and (38), we obtain

J2
J1

¼ 3þ 3γ

2N
;

J3
J1

¼ −AN−2þγþα−2αγ
−1þ3α; ð39Þ

where the parameter A is positive and can be found in
Appendix B. As is obvious from Eq. (39), the parameter
J3=J1 is negative and, therefore, the system is unstable, as
we anticipated. This means that the solution (35) is not a
final attractor and, therefore, it can describe the system near

the bouncing point, but only for a short time, since the
system continues its evolution after that point. What now
remains is to study the evolution of scalar perturbations of
the cosmological evolution, with an emphasizing on the
description near the type IV singularity. This issue is
addressed in the next section.

V. EVOLUTION OF SCALAR PERTURBATIONS

Now that we have the qualitative behavior of the FðGÞ
gravity that generates the singular bounce, it is worth
examining how the scalar perturbations evolve, assuming
the flat FRW background of Eq. (9). So we consider scalar
linear perturbations of the flat FRW background of Eq. (9)
of the form

ds2 ¼ −ð1þ ψÞdt2 − 2aðtÞ∂iβdtdxi

þ aðtÞ2ðδij þ 2ϕδij þ 2∂i∂jγÞdxidxj; ð40Þ
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with ψ , ϕ, γ, and β being the smooth scalar perturbations.
For the perturbation study, we follow the approach and
master equation given in Ref. [40], but we specify every-
thing for the FðGÞ case, which is a special case of FðR;GÞ
gravity studied in [40]. For convenience, perturbations are
usually analyzed in terms of gauge-invariant quantities;
therefore, we shall be interested in the following gauge-
invariant quantity (the corresponding comoving curvature
perturbation), the evolution of which we study in this
section:

Φ ¼ ϕ −
Hδξ
_ξ

ð41Þ

where ξ ¼ dF
dG. In the FðGÞ gravity case, the propagating

scalar modes contain no k4 terms, so no superluminal
propagation occurs, and only the usual k2 terms appear
[40]. The perturbation equation that governs the scalar
modes in FðGÞ gravity is the following,

1

aðtÞ3QðtÞ
d
dt
ðaðtÞ3QðtÞ _ΦÞ þ B1ðtÞ

k2

aðtÞ2Φ ¼ 0; ð42Þ

where we can see the above equation has the usual form for
scalar perturbations, in which k2 terms dominate in the
evolution. It is conceivable that the speed of propagation is
determined by the term B1ðtÞ, which for FðGÞ theories of
gravity is defined as

B1ðtÞ ¼ 1þ 2 _H
H2

: ð43Þ

Moreover, the term QðtÞ, appearing in Eq. (42) for the
FðGÞ case, is equal to

QðtÞ ¼ 6ðd2FdG2Þ2 _G2ð1þ 4F00ðGÞ _GHÞ
ð1þ 6HF00ðGÞ _GÞ2 ; ð44Þ

where the prime denotes differentiation with respect to G,
while the dot as usual denotes differentiation with respect to
the cosmic time. Note additionally that we used the fact
that _ξ ¼ dF2

dG2
_G.

It is conceivable that finding an analytic solution of
Eq. (42) is rather difficult, so either a numerical study or an
approximate solution is required. We shall choose the latter
approach and seek an approximate solution near the
bouncing point. Before continuing, we rewrite the differ-
ential equation (42) as follows:

aðtÞ3QðtÞΦ̈þ ð3aðtÞ2 _aQðtÞ þ aðtÞ3 _QðtÞÞ _Φ
þ B1ðtÞQðtÞaðtÞk2Φ ¼ 0: ð45Þ

After some tedious calculations, by using the resulting
FðGÞ gravity near the bouncing point—namely, the one
appearing in Eq. (23)—and by keeping the most dominant
terms near the bouncing point, the differential equation that
governs the evolution of perturbations near t ¼ ts reads

ðt − tsÞ1þαΩ4Φ̈ − ðt − tsÞαΩ2
_ΦþΩ1Φ ¼ 0; ð46Þ

where the parameters Ωi (i ¼ 1, 2, 4) are given in
Appendix D. Note that we omitted a term
∼Ω3

_Φðt − tsÞ2α, which is subdominant compared to the
term ðt − tsÞαΩ2

_Φ. The parameter Ω3 can also be found in
AppendixD. Then, by solving the differential equation (45),
we obtain the following analytic solution which describes
the evolution of scalar perturbations near the singular
point t ¼ ts,

ΦðtÞ ¼ Δ1x
μ

2ð−1þαÞJμðζx1−α
2 Þ þ Δ2x

μ
2ð−1þαÞJ−μðζx1−α

2 Þ; ð47Þ

where x ¼ t − ts and the constants μ and ζ depend on the
parameters Ωi, with their full detailed form appearing in
Appendix D. The function JμðyÞ is the Bessel function of
the first kind, and, in addition, the parameters Δi, i ¼ 1, 2
are given as follows:

Δ1 ¼
�
−1þ 1

α

�
μ

αμΩ−μ
2

1 Ω
μ
2

4C3Γ
�

α

−1þ α
þ Ω2

ð−1þ αÞΩ4

�
;

Δ2 ¼
�
−1þ 1

α

�
3μ

αμΩ−μ
2

1 Ω
μ
2

4C4Γ
�

Ω2

Ω4 − αΩ4

þ 2Ω4

Ω4 − αΩ4

−
αΩ4

Ω4 − αΩ4

�
: ð48Þ

Note that in the parameters Δi, i ¼ 1, 2 appear the
constants C3 and C4, which are arbitrary constants of
integration that result after solving the differential equa-
tion (45) without any initial conditions. Therefore, the
solution of Eq. (47) is a general solution, and the constants

of integration of this general solution are the parameters C3

and C4, appearing in the parameters Δi, i ¼ 1, 2 of
Eq. (48). Since we are considering the limit x → 0, we
can further approximate the solution by using the limit of
the Bessel function for small arguments, which is
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JμðyÞ≃ yμ2−μ

Γ½1þ μ� ; ð49Þ

so the approximate evolution of the scalar perturbations
(47) near the type IV singularity behaves as follows:

ΦðtÞ≃ Δ2

2−μζμ

Γ½1þ μ� x
ð2−2αþα2Þμ
2ð−1þαÞ : ð50Þ

The resulting expression for the evolution of perturbations in
the absence of matter fluids is described by a power-law
function of the variable x ¼ t − ts. It is worthwhile to further
investigate the power spectrum and check whether it is scale
invariant. Note, however, that we already are within an
approximation and, therefore, we should stress that our
results should be considered only approximate and also
that the full FðGÞ solution is needed in order to answer
the problem in a consistent way. Nevertheless, near the
bouncing point, it is still interesting to find out how the power
spectrum behaves within the context of the classical FðGÞ
theory. Thismay indicate how the full quantum description of
the bounce theory will remedy any problematic issues.
We start from the gauge-invariant variable Φ given in

Eq. (41), which was shown in [40] to satisfy the following
second-order perturbed action,

Sp ¼
Z

dx4aðtÞ3Qs

�
1

2
_Φ −

1

2

c2s
aðtÞ2 ð∇ΦÞ2

�
; ð51Þ

where Qs ¼ 4
κ2
QðtÞ, and QðtÞ appears in Eq. (44).

Following the standard approach in perturbation theory
[41–43], the power spectrum of curvature perturbations for
the scalar field Φ is

PR ¼ 4πk3

ð2πÞ3 jΦj
2
k¼aH: ð52Þ

It is straightforward to show that the power spectrum is not
scale invariant by simply looking at the forms of Ωi, Δ2,
and ζ from Appendix D. As it can be seen, the wave
number k is contained only in the parameters Ω1, Δ2 and in
the parameter ζ, since the latter depends explicitly on the
parameter Ω1 implicitly via Ω1. These have the following
functional dependence with respect to k,

Ω1 ∼ k2; ζ ∼
ffiffiffiffiffiffi
Ω1

p
; Δ2 ∼Ω−μ

2

1 ; ð53Þ

and since the power spectrum depends on the combination
Δζμ, it follows from Eq. (53) that

PR ∼ k3jC4ðt − tsÞ
ð2−2αþα2Þμ
2ð−1þαÞ j2k¼aH: ð54Þ

However, we cannot determine at this point if the spectrum
is scale invariant since the parameter C4, which is the
constant of integration appearing inΔ2 in Eq. (48), depends
on k, and its exact form will depend on the initial conditions

of the vacuum form of ΦðtÞ. In addition, the term

ðt − tsÞ
ð2−2αþα2Þμ
2ð−1þαÞ also has a dependence on k since the power

spectrum is computed at k ¼ aH, that is, at the horizon
crossing. So let us calculate these in detail.
Before we start, it is worth recalling that we are working

in cosmological times for which t − ts → 0, and, hence, the
conformal time τ, defined as dτ ¼ a−1ðtÞdt, is approxi-
mately equal to t since for t − ts → 0, the scale factor
appearing in Eq. (1) behaves as a≃ 1. Also, since a ∼ 1 for
t − ts → 0, we have that k≃H at the horizon crossing, and
this means that

βðt − tsÞα ≃ k; ð55Þ

which, by solving with respect to ðt − tsÞ, yields

t − ts ≃
�
k
β

�1
α

: ð56Þ

Hence, Eq. (56) shows how t − ts behaves as a function of
the wave number k near the horizon crossing. We now
proceed to find the k dependence of C4. To do so, we shall
introduce the canonical variable u ¼ zsΦ, which is very
frequently used in the literature [41,42], with
zs ¼ QðtÞaðtÞ, and since aðtÞ≃ 1 for ðt − tsÞ → 0, we
have that zs ≃QðtÞ and, therefore,

u ∼ ΦQðtÞ; ð57Þ

withQðtÞ as defined in Eq. (44). In terms of u, the action of
Eq. (51) near the bounce becomes

Su ≃
Z

d3dτ

�
u0

2
−
1

2
ð∇uÞ2 þ z00z

zs
u2
�
; ð58Þ

where the prime indicates differentiation with respect to the
conformal time, which as we demonstrated earlier is
approximately identical to the cosmological time t, for
ðt − tsÞ → 0. In addition, the action of Eq. (58) is defined
modulo a factor of a−1, which is approximately equal to
one near the time instance t≃ ts. The vacuum state of the
canonical field u is the Bunch-Davies quantum fluctuating
vacuum [42] at exactly t ¼ ts, hence, u ∼ e−ikτffiffi

k
p . Note that the

imaginary phase will disappear when we compute the norm
of the comoving curvature jΦðt ¼ tsÞj2, so the relevant
form of u for the k dependence issue of C4 is u ∼ 1ffiffi

k
p . As a

result of Eq. (57), we obtain

Φðt ¼ tsÞ ∼ C4 ∼
1ffiffiffi

k
p

QðtÞ : ð59Þ

By using the fact that FðGÞ for ðt − tsÞ → 0 is approxi-
mated by Eq. (24), we get that the function QðtÞ is
approximately equal to
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QðtÞ≃ 2−5þ
6α

−1þ3α3−1þ
2α

−1þ3αB2ðt − tsÞ−4αð1 − 2αÞ2ðαβ3Þ 2α
−1þ3α

ð1 − 3αÞ4β6 ;

ð60Þ

and since ðt − tsÞ is given by Eq. (56), we get

QðtðkÞÞ≃ Z1k
−4α
α ¼ Z1k−4; ð61Þ

where Z1 stands for

Z1 ¼
2−5þ

6α
−1þ3α3−1þ

2α
−1þ3αB2ð1 − 2αÞ2ðαβ3Þ 2α

−1þ3α

ð1 − 3αÞ4β6β1=α : ð62Þ

By substitutingQðtÞ from Eq. (61) into Eq. (59), we finally
obtain that C4 behaves as

C4 ≃ 1

Z1

1ffiffiffi
k

p
k−4

∼ k
7
2: ð63Þ

So combining Eqs. (63), (56), and (54), we finally get that
the k dependence of the power spectrum PR is of the form

PR ∼ k
7
2
þ3þð2−2αþα2Þμ

2ð−1þαÞ ; ð64Þ
and hence we conclude that the power spectrum is not scale
invariant. We can use the approximate value for the power
spectrum of primordial curvature perturbations given in
Eq. (64) in order to calculate the spectral index of
primordial curvature perturbations ns as follows:
Combining the expression for μ given in Eq. (D2), and
also the values of Ω2 and Ω4 given in Eq. (D1), we get that
μ becomes μ ¼ 11=ð1 − αÞ. Therefore, the spectral index of
primordial curvature perturbations is equal to

ns − 1≡ d lnPR

d ln k
¼ 7

2
þ 3þ 2 − 2αþ α2

2ðα − 1Þ μ

¼ 1 −
11

2ðα − 1Þ2 : ð65Þ

Thus, the spectral index can be in agreement with the latest
observational constraints on ns [2] for two values of α: one
which satisfies α < −1 and one which satisfies α > 1. The
α < −1 case leads to a big rip singularity, while the α > 1
case leads to a type IV singularity, which is the case we
studied in this paper. However, the value of αwould need to
be quite large, and so it would be a large deformation of a
symmetric bounce, which we assumed in this paper.
Therefore, this result does not appear to be very physical.
Still we need to correctly interpret this result since what

we have at hand is that the classical approximation of the
FðGÞ theory that describes the singular bounce (5) near the
bouncing point fails to produce a scale-invariant spectrum.
This could be a strong motivation to use a Loop Quantum
Cosmology-corrected FðGÞ gravity theory [44] and

investigate whether the same picture persists with quantum
corrections added. If the answer lies in the affirmative, then
this would probably mean that this effect is a feature of the
type IV singularity, which needs to be further investigated.
However, if we use more physical values of α in the

range 1 < α < 2, this would yield a very red spectrum, and
one would strongly doubt that quantum corrections, e.g.,
from LQC corrected FðGÞ gravity, could adjust this to
a nearly scale-invariant spectrum. This argument is very
rigid and solid and, therefore, should be investigated to
explicitly demonstrate its validity, a task that we defer for a
future work.

A. Discussion

Before we close this section, we need to discuss in detail
the physical results we obtained in this section. As we
demonstrated, the power spectrum of primordial curvature
perturbations is not scale invariant when evaluated for
cosmic times near the bouncing point at t ¼ ts, which is
also the point at which the type IV singularity occurs.
However, we need to discuss the physical implications of
this result. To this end, let us recall some fundamental
issues for the dynamics of perturbations and related issues,
but in the context of bouncing cosmology. Recall that the
problem of initial conditions in the standard big bang
cosmology was due to the fact that the Universe appears to
be nearly flat and homogeneous in large scales, which
cannot have causally communicated in the past. Therefore,
a successful bouncing cosmology should, in some way,
provide an elegant solution to these problems.
Before we see what happens in the bouncing cosmology

we studied in this paper, it is worth presenting what
happens in inflationary theories, so that we can compare
the inflationary picture to the bouncing cosmology picture.
In the inflationary cosmology picture, the primordial
curvature perturbations2 which are of interest at present
time—during inflation at subhorizon scales, with “horizon”
usually referring to the Hubble radius 1=aðtÞHðtÞ—freeze
once they exit the horizon, which happens when the
contracting horizon becomes comparable to their wave-
length. Subsequently, these freezed perturbations become
classical superhorizon perturbations which re-enter the
horizon as the horizon expands again during the Hubble
evolution of the Universe, after the reheating. Eventually,
the gravitational collapse of the frozen superhorizon
perturbations leads to the formation of the large-scale
structure of the Universe, and the cosmic microwave
background anisotropies correspond to superhorizon
modes which were initially subhorizon during inflation
but froze after the horizon crossing. Moreover, anisotropies
are due to modes which have reentered the horizon, but still

2We are referring to the comoving curvature of Eq. (41), so
these are fluctuating vacuum scalar perturbations.
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these modes have the same origin on subhorizon scales
during inflation.
At this point, a more concise presentation is needed so

that we gain deeper insights into the full picture. The novel
feature of the inflationary description is that, during
inflation, the Hubble radius, to which we refer as the
horizon, actually shrinks dramatically. So at the initial
singularity, the horizon was very large, and the primordial
perturbations were actually subhorizon scales since their
comoving wave number was at subhorizon scales, that is,

k ≫ HðtÞaðtÞ: ð66Þ
Note that, in principle, perturbations are created at all
length scales, but the most relevant are those whose wave
number is at subhorizon scales. Also note that we switched
our description by using the wave number, but it is
equivalent to using the wavelength, in which case
Eq. (66) would be λ ≪ ðHðtÞaðtÞÞ−1. During the infla-
tionary era, the Hubble radius (the horizon) shrinks, so at
some point the cosmologically relevant perturbations of
wave number k satisfying Eq. (66) exit the horizon and
freeze, meaning that these become classical. So these
become superhorizon perturbations, in which case, their
wave number satisfies

k ≪ aðtÞHðtÞ: ð67Þ
Once the horizon crossing occurs, the comoving curvature
perturbations corresponding to the wave number k cease to
be of quantum nature, and the corresponding quantum
expectation value of the comoving curvature perturbation is
practically the classical ensemble stochastic average of a
classical stochastic field. This is what we mean by the
“freezing” of these modes. The conservation of the average
value of the comoving curvature perturbation in super-
horizon scales is what actually enables us to relate the
predictions corresponding to the time that the horizon is
crossed, which actually corresponds to high energies, to the
observable quantities corresponding to the horizon reentry
of the modes after reheating, which in turn corresponds to
low energies. Note that the era between the horizon exit and
reentry is an era that is not fully understood, even now. In
addition, this issue may appear also in bouncing cosmol-
ogy, since in some cases what is needed is a quantum
bounce description followed by some other model; see, for
example, [45]. We shall discuss this issue in more detail
later on in this section. Coming back to the inflationary
picture, at present time we are able to compute the infla-
tionary observable quantities because the subhorizon wave-
lengths froze out at the horizon exit and evolved in a
classical way until nearly the present time era, after
reheating and after reentering the horizon. Note that, in
principle, the primordial perturbations may freeze out well
before the inflationary era ends, so these correspond to an
expanding quantum era. Hence, the primordial curvature

perturbations corresponding to the expanding quantum era
may be directly related to the cosmic microwave back-
ground observables and also to other present-time observ-
ables since the quantum fluctuations freeze after the
horizon exit.
Let us now turn our focus to the singular bouncing

cosmology of Eq. (5). In this case, the Hubble radius as a
function of the cosmological time is equal to

rHðtÞ ¼
e−

ðt−tsÞ1þαβ
1þα ðt − tsÞ−α

β
; ð68Þ

where for notational simplicity we denoted the Hubble
radius as rHðtÞ ¼ 1

aðtÞHðtÞ. As is obvious from Eq. (68), in

the case of a type IV singularity, since α > 1, the Hubble
radius at the bouncing point, which is also chosen to be the
singularity point, diverges due to the existence of the term
∼ðt − tsÞ−α. Hence, all the cosmologically relevant modes
are in subhorizon scales, since k ≫ HðtsÞaðtsÞ ¼ 0 at that
point. Equivalently, at the singularity point, the cosmo-
logically relevant modes are inside the Hubble radius which
is infinite at that point, so the wavelength of these modes
satisfies λ ≪ rH. Immediately after the bouncing point, the
Hubble radius drops and starts to shrink as the time evolves.
This can also be seen in Fig. 1, where we can see that the
Hubble radius drops after the bouncing point in a radical
way. In the left plot, we plotted until t≃ 10−20 sec, and in
the right plot, until t≃ 10−10 sec, and as can be seen, the
Hubble radius rH fraction corresponding to the two cases is

of the order rHð10−20Þ
rHð10−10Þ ≃ 1012. Subsequently, as the Hubble

radius shrinks, the cosmologically relevant modes will
eventually exit the horizon, when the Hubble radius
becomes of the order of their wavelength λ ∼ rH. But
which modes can be cosmologically relevant in the singular
bounce at hand? In principle, the time era near the bouncing
point is governed by the quantum theory of gravity, so after
the bouncing point we may still have the quantum era
primordial modes. But to which cosmological time does the
“near the bounce” expression refer? Since we assume that
ts ≃ 10−35 sec, then near the bouncing point, from a
mathematical point of view, corresponds to cosmological
times of the order t≃ 10−10 sec, which can also be
considered as being near the bounce since what we
assumed in the calculation of the spectrum of the primor-
dial curvature perturbations is that t − ts → 0. Thereby, in
inflationary terms these cosmic times correspond to times
after the exit from the inflationary era, so the relevant
modes today have already exited the horizon well before
t≃ 10−10 sec. Hence, for the singular bounce, the modes
we took into account in the calculation of the spectrum of
the primordial curvature perturbations are actually the
cosmologically relevant ones today—the quantum modes.
Therefore, in the singular bounce case, the modes with
wavelengths of the order of the horizon corresponding to
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cosmic times near the bouncing point are the cosmologi-
cally relevant ones since these can reveal the quantum era
of primordial expansion. After these modes exit the Hubble
radius, freeze out and the quantum expectation value of the
comoving curvature perturbation are described by the
classical ensemble stochastic average of a classical sto-
chastic field. Practically, the conservation of the average
value of the comoving curvature perturbation at super-
horizon scales will eventually enable us to relate the
horizon crossing predictions (high-energy ones) to the
late-time ones, which correspond to the horizon reentry
era (low-energy).
However, we need to explicitly demonstrate that in the

case of the singular bounce we studied in this paper, the
comoving curvature perturbations are conserved after the
modes exit the horizon. This is important since it is not
granted that the comoving curvature perturbations will be
conserved, as in the inflationary cosmology, for example.
The matter bounce cosmology case [41] is an example of
when the comoving curvature perturbations grow after the
modes exit the horizon. We will now study the evolution of
the comoving curvature perturbations in the context of the
singular bounce. We are interested in the cosmological
times for which the Hubble rate and scale factor satisfy
k ≪ aðtÞHðtÞ, so times much later than the horizon cross-
ing. Note that this does not mean that t corresponds to late
times, or t ≫ 1, but the cosmic time is t ≫ tH, with tH the
time at which the horizon crossing occurs. Since
k ≪ aðtÞHðtÞ, this means that the last term in the differ-
ential equation of Eq. (42) can be neglected, so the
differential equation becomes

1

aðtÞ3QðtÞ
d
dt
ðaðtÞ3QðtÞ _ΦÞ ¼ 0; ð69Þ

which can be easily solved and the solution is

ΦðtÞ ¼ C1 þ C2

Z
1

aðtÞ3QðtÞ dt; ð70Þ

with QðtÞ being defined in Eq. (44). In order to see if the
comoving curvature perturbations are conserved after the
horizon crossing, we need to examine the behavior of the
integral term in Eq. (70). Obviously, the key point to
determine the behavior of the comoving curvature pertur-
bations is to determine QðtÞ, and therefore to find which
FðGÞ gravity describes the cosmological evolution at the
cosmological times for which k ≪ aðtÞHðtÞ. In order to
proceed, we need to classify the problem into two subcases
or scenarios, more preferably, which we list below:
(1) In the first scenario, which we call scenario I, the

cosmic times for which the relation k ≪ aðtÞHðtÞ,
satisfy t ≫ ts, and also t ≪ 1, where ts the time at
which the type IV singularity occurs. This is the
most plausible scenario, from a physical point of
view, and it could be realized like this: Suppose that
ts ¼ 10−35 sec and the time long after the horizon
crossing is at t ¼ 10−15 sec. Hence, in this case, the
time t is 1020 times larger than ts and also satisfies
t ≪ 1. Note that the time at which horizon crossing
occurs, is somewhere in between ts and t, that
is, ts < tH < t.

(2) In the second scenario, which we call scenario II, we
have again t ≫ ts, but t > 1.

Scenario I is much more likely to occur since the time for
which k ≪ aðtÞHðtÞ holds true is after the horizon cross-
ing, which for inflationary cosmology is (possibly) of the
order 10−30 sec, so this is the most appealing case and we
start our analysis with scenario I. For completeness, we also
deal with scenario II later on.
So in the context of scenario I, the cosmic time satisfies

t ≫ ts, but still t ≪ 1 and, consequently, in this case
t − ts → 0. Therefore, the FðGÞ gravity that is responsible
for the cosmological evolution at the time t, is still given by
Eq. (24) and, therefore, the function QðtÞ can easily be
calculated to yield

QðtÞ≃ Z2t−4α; ð71Þ
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FIG. 1 (color online). The Hubble radius rH ¼ 1
aðtÞHðtÞ as a function of time, for ts ¼ 10−35 sec, α ¼ 13=11, β ¼ 0.001 ðsecÞ−α−1.

As can be seen from the left and right plot, the Hubble radius rH fraction corresponding to t≃ 10−20 sec and

t≃ 10−10 sec is of the order rHð10−20Þ
rHð10−10Þ ≃ 1012.
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where in Eq. (71) we kept the most dominant term, and also
we used the fact that t − ts ≃ t ≪ 1. Therefore, since
aðtÞ≃ ef0t

αþ1

for the singular bounce [see Eq. (1)], the
term 1

aðtÞ3QðtÞ, behaves as follows:

1

aðtÞ3QðtÞ ∼
t4α

ef0t
αþ1 : ð72Þ

Clearly, the exponential dominates, so the integral term
decays as t increases, that is,

Z
1

aðtÞ3QðtÞ → 0; ð73Þ

and, hence, the comoving curvature perturbation is
approximately equal to

ΦðtÞ ¼ C1; ð74Þ

which means that the comoving curvature perturbation for
scenario I is conserved after the horizon crossing.
Now we turn our focus to scenario II, for which t ≫ ts

and t > 1. As we already mentioned, this scenario probably
corresponds to an era much later than the bounce, and
possibly much later than the horizon crossing, so it is rather
less physically appealing. Regardless, we shall study this
scenario for completeness. It is conceivable that the FðGÞ
gravity which describes the cosmological evolution is no
longer given by the one appearing in Eq. (24) since ðt − tsÞ
is not small anymore. Therefore, we need to find the FðGÞ
gravity that describes the cosmological evolution. This is,
however, a formidable task since by employing the
reconstruction method we used in the previous sections,
we end up at the following differential equation,

2tαþ1P̈ðtÞ − 2t1þ2ααβ4 _PðtÞ þ 1 ¼ 0; ð75Þ

which is very difficult to solve analytically. So, in order to
proceed, we speculate about the possible behavior of the
FðGÞ gravity. If, for example, the FðGÞ gravity has
polynomial form, that is FðGÞ ∼ BGγ, then, since for large
t the Gauss-Bonnet invariant becomes approximately equal
to G ∼ t4α, the resulting expression for QðtÞ is

QðtÞ≃ Z3t−2þ8αþ8αγ; ð76Þ

with Z3 being equal to

Z3 ¼ 212þ6γ32þ2γB2α2β8þ8γ: ð77Þ

Therefore, the term ∼1=ðaðtÞ3QðtÞÞ is equal to

1

aðtÞ3QðtÞ ∼
1

ef0t
αþ1

t−2þ8αþ8αγ
: ð78Þ

Hence, even in the case that γ is a large negative real
number, the exponential in the expression appearing in
Eq. (78) dominates and, thereby, the integral in Eq. (70)
decays and becomes subdominant. Hence, in this case too,
the comoving curvature perturbations after the horizon
crossing are conserved since ΦðtÞ ¼ C1.
In the case that the FðGÞ is such that QðtÞ dominates

over the exponential scale factor, then the integral in
Eq. (70) dominates the evolution and possibly the comov-
ing curvature perturbations grow as time passes. For
example, if FðGÞ ∼ e−G

γ
, then the function QðtÞ becomes

approximately equal to

QðtÞ ∼ e−A1t4αγ t−2þ8α; ð79Þ

with A1 ¼ 21þ3γ3γβ4γ, and therefore the term
∼1=ðaðtÞ3QðtÞÞ becomes approximately equal to

1

aðtÞ3QðtÞ ∼
eA1t4αγ

ef0t
αþ1

t−2þ8α
; ð80Þ

which clearly does not decay. So the integral in the
expression (70) dominates the evolution of the comoving
curvature perturbations after the horizon crossing, and the
perturbations grow as the time grows larger. Therefore, in
the case of scenario II, the curvature perturbations depend
strongly on the form of the FðGÞ gravity. However,
scenario II is rather unlikely to occur, since the requirement
t > 1 sec means that the Universe is at the lepton epoch,
which is much later than the timewhen the horizon crossing
occurred. At the time t > 1, it is possible that the singular
bounce does not describe the Universe anymore since
another description must be found to generate the
Hubble radius expansion, because the Hubble radius
decreases in the context of the singular bounce. It is highly
likely that a scenario like the one used in [45] will take
place and describe the Universe’s evolution. Work is in
progress for realizing such a scenario, but it is worth
analyzing this a bit more.
The problem with the singular bouncing cosmology

occurs because there exists no mechanism to make the
Hubble radius eventually increase unless we assume that
the singular bounce governs early times and, after some
time, the evolution is described by another scale factor, as
in Ref. [45] for example; see also [46] for an FðRÞ
description of the model of Ref. [45]. In the case of the
model studied in Ref. [45], the quantum radiation era was
followed by a perfect fluid evolution; see [45]. So in the
singular bouncing case, it is necessary to find another
scenario that will describe the evolution of the Universe
after the quantum bouncing era, for which the new
scenario, the reentering of the modes in the expanding
horizon, will be possible. However, the time in between the
two horizons era leaves a gap in our description, and, as we
noted, this also occurs in the standard inflationary
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cosmology. This task exceeds the purposes of this paper,
but we hope in a future work to provide a model with two or
more phases, for which a successful cosmological descrip-
tion may be achieved. However, this will not be in the
context of FðGÞ gravity since, as we demonstrated, the
spectrum of primordial curvature perturbations is not scale
invariant, and this is a rather discouraging feature, but
perhaps the LQC-corrected FðGÞ gravity may have more
appealing features.

VI. SINGULAR BOUNCE FROM MIMETIC
FðGÞ GRAVITY

As a final study, we shall investigate which FðGÞ gravity
can generate the singular bounce of Eq. (5), but in the
context of mimetic FðGÞ gravity. For a detailed account on

this issue, see [36]. The mimetic FðGÞ gravity approach
uses the same action as the one appearing in Eq. (6), but the
Jordan frame metric is parametrized as follows [47–50]:

gμν ¼ −ĝρσ∂ρϕ∂σϕ: ð81Þ

Upon varying the metric tensor, we get

δgμν ¼ ĝρτδĝτωĝωσ∂ρϕ∂σϕĝμν − ĝρσ∂ρϕ∂σϕδĝμν

− 2ĝρσ∂ρϕ∂σδϕĝμν;

and upon variation of the Jordan frame action (6), with
respect to the redefined metric ĝμν, and with respect to the
mimetic scalar ϕ, we obtain the following equations of
motion:

Rμν −
1

2
Rgμν þ 8

�
Rμρνσ þ Rρνgσμ − Rρσgνμ − Rμνgσρ þ Rμσgνρ þ

R
2
ðgμνgσρ − gμσgνρÞ

�
∇ρ∇σFG þ ðFGG − FðGÞÞgμν

þ ∂μϕ∂νϕ

�
−Rþ 8

�
−Rρσ þ

1

2
Rgρσ

�
∇ρ∇σFG þ 4ðFGG − FðGÞÞ

�
¼ Tμν þ ∂μϕ∂νϕT; ð82Þ

withFG standing for FG ¼ dFðGÞ=dG. Moreover, upon variation of the action (6) with respect to the mimetic scalar field ϕ,
we get

∇μ

�
∂μϕ

�
−Rþ 8

�
−Rρσ þ

1

2
Rgρσ

�
∇ρ∇σFG þ 4ðFGG − FðGÞÞ − T

��
¼ 0: ð83Þ

Since the following relation holds true [36],

gμν∂μϕ∂νϕ ¼ −1; ð84Þ

and owing to the fact that the mimetic scalar ϕ depends
only on the cosmic time, we get the constraint ϕ ¼ t.
Hence, the ðt; tÞ component of the expression appearing in
Eq. (82) becomes

2 _H þ 3H2 þ 16Hð _H þH2Þ dFG

dt
þ 8H2

d2FG

dt2

− ðFGG − FðGÞÞ ¼ −p: ð85Þ

Upon integration of Eq. (83), we get

− Rþ 8

�
−Rρσ þ

1

2
Rgρσ

�
∇ρ∇σFG

þ 4ðFGG − FðGÞÞ þ ρ − 3p ¼ −
C
a3

; ð86Þ

which can be rewritten as follows:

_H þ 2H2 þ 4H2
d2FG

dt2
þ 4Hð2 _H þ 3H2Þ dFG

dt

þ 2

3
ðFGG − FðGÞÞ þ ρ

6
−
p
2
¼ −

C
a3

; ð87Þ

where C is an arbitrary constant.
The combination of Eqs. (85) and (87) results in

_H þ 4H2
d2FG

dt2
þ 4Hð2 _H −H2Þ dFG

dt
¼ −

1

2
ðρþ pÞ − C

a3
:

ð88Þ

For convenience, we introduce the function gðtÞ, which is
defined as

gðtÞ ¼ dFG

dt

and satisfies the following equation:

4H2
dgðtÞ
dt

þ 4Hð2 _H −H2ÞgðtÞ ¼ − _H −
1

2
ðρþ pÞ − C

a3
:

ð89Þ
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The general form of the solution of the differential
equation (89) is

gðtÞ ¼ g0

�
H0

H

�
2

exp

�Z
t

0

Hdt

�

þ 1

4H2

Z
t

0

dt1Bðt1Þ exp
�Z

t

t1

HðτÞdτ
�
; ð90Þ

where BðtÞ ¼ − _H − 1
2
ðρþ pÞ − C

a3 and, in addition, g0 is an
integration constant, whileH0 ¼ Hð0Þ. Having Eq. (90) for
a given cosmological evolution in terms of the Hubble rate,
we can easily obtain the function gðtÞ. Consequently, the
function FðtÞ reads

FGðtÞ ¼
Z

gðtÞdt:

Then by exploiting the expression (8), and solving with
respect to t, we have the function t ¼ tðGÞ. By substituting
this into FGðtÞ, and by integrating with respect to G, we
easily obtain the FðGÞ function. Let us apply this method
for the case of the singular bounce of Eq. (5). By
substituting the Hubble rate of Eq. (5) in Eq. (90), and
by keeping the most dominant terms, we obtain

gðtÞ ¼ ef0ðt−tsÞ1þα
g0H2

0ðt − tsÞ−2α
f20ð1þ αÞ2

þ ðt − tsÞ−2αð− Ct2
2
− pt2

4
− t2ρ

4
Þ

4f20ð1þ αÞ2 : ð91Þ

Integrating this with respect to t, we obtain the approximate
form of the function FGðtÞ near the bouncing point which is

FGðtÞ ¼
ðt − tsÞ1−2αð−16g0H2

0ð3 − 5αþ 2α2Þ þ ðt2s þ tðts − 2tsαÞ þ t2ð1 − 3αþ 2α2ÞÞð2Cþ pþ ρÞÞ
16f20ð−1þ αÞð1þ αÞ2ð−3þ 2αÞð−1þ 2αÞ

þ f
− 3
1þα

0 g0H2
0Γ½ 3

1þα�
ð1þ αÞð2 − 5αþ 2α2Þ : ð92Þ

Using (8), and also Eq. (20), we obtain the function FGðGÞ, so upon integration with respect to G we finally get

FðGÞ≃ −24f30αð1þ αÞ3ða7G− 3α
1−3αÞ þ −24f30αð1þ αÞ3a1

a6
G

1þα
−1þ3α

�
a2 þ 3þ a4

�
ts þ 24

1
1−3αG

1
−1þ3α

�
−

1

f30αð1þ αÞ3
� 1

−1þ3α

��

þ −24f30αð1þ αÞ3ð2Cþ pþ ρÞa5a1G 1þα
−1þ3α

a6

�
ts þ 24

1
1−3αG

1
−1þ3α

�
−

1

f30αð1þ αÞ3
� 1

−1þ3α

�
2

; ð93Þ

where the parameters ai; i ¼ 1; 2;…7 are given in
Appendix C. Since we are considering the limit t → ts,
which meansG → 0 as we explained earlier, by keeping the
most dominant term in Eq. (93), we get

FðGÞ ¼ −
24f30αð1þ αÞ3ð2Cþ pþ ρÞt2sa5a1

a6
G

1þα
−1þ3α:

ð94Þ

It is conceivable that the resulting mimetic FðGÞ gravity of
Eq. (94) is different for the vacuum FðGÞ gravity of
Eq. (23), but we need to further analyze this issue. In
the context of the mimetic FðGÞ gravity, some extra
conformal degrees of freedom arise in the FRW equations
of motion. Therefore, in the context of mimetic FðGÞ
gravity, we have a new reconstruction method in which we
can choose the internal degrees of freedom and a specific
FðGÞ gravity so that some fixed cosmological evolution is

generated. This is different from the ordinary vacuum FðGÞ
gravity case since in this case no internal degrees of
freedom are taken into account. The FðGÞ gravity that
can generate the same Hubble rate as the mimetic FðGÞ is,
in principle, different from the resulting expression of the
mimetic FðGÞ gravity. Of course, in both cases we are
using approximations, so one should be cautious when
dealing with both theories. Finally, let us note that in the
mimetic FðGÞ gravity, much more freedom is offered for
successfully generating various cosmological scenarios;
see for example [50]. This is because of the presence of
these internal conformal degrees of freedom. It is then easy
to reconstruct any cosmology by suitably adjusting these
degrees of freedom and, in some approaches, the potential
and the Lagrange multiplier. It is questionable, however, if
these results can be trusted because the resulting picture is
complicated. If simplicity is to be an important feature of a
physical theory, then probably these theories are of math-
ematical importance only. However, concordance with
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observations is an appealing feature, and therefore these
theories can be valuable from a physical point of view.
Since this discussion should be addressed in more detail,
we defer it to a future work. Regardless of the differences,
in both cases, the FðGÞ gravity that can realize the singular
bounce of Eq. (5) is described by a power-law function. In
our opinion, however, the vacuum FðGÞ is conceptually a
simpler theory, so from this aspect it offers a more
appealing physical description of the singular bounce.

VII. CONCLUSIONS

In this paper, we studied a bounce cosmology with a type
IV singularity at the bouncing point in the context of
classical FðGÞ gravity. In particular, we investigated which
classical pure (vacuum) FðGÞ gravity can generate the type
IV singular bounce cosmology, emphasizing cosmic times
near the bouncing point. As we explicitly demonstrated, the
resulting FðGÞ gravity has the form FðGÞ∼C2GþBG

α
−1þ3α,

so it is a power-law modified gravity theory. Since this
result holds true only near the singularity point, we
discussed the possibility that this FðGÞ gravity is the
limiting case of some viable FðGÞ gravity, in which case
the full solution would also be interesting since the late-
time and early-time acceleration could be simultaneously
described by the same theory. We also discussed the
stability of the resulting FðGÞ theory, from a dynamical
point of view, examining if it can be the final attractor of the
theory. As we anticipated, the answer to this question does
not lie in the affirmative and, hence, instability of the
solution cannot be avoided. This feature is welcome since
the cosmological evolution does not stop at the bouncing
point and, therefore, the resulting FðGÞ gravity is not
anticipated to be a stable solution of the cosmological
system. Moreover, we investigated how the scalar cosmo-
logical perturbations of the background flat FRW metric
behave near the bouncing point, and we explicitly calcu-
lated the spectrum of primordial curvature perturbations.
As we showed, the spectrum is not scale invariant, and as
we claimed in the main text, this result should be further
investigated. This is due to the fact that we cannot be sure if
it is a universal feature of the theory that owes its existence
to the type IV singularity or an artifact of the approxima-
tions we made to obtain the resulting FðGÞ gravity. The
latter seems more plausible; however, this feature has to be

thoroughly addressed. Another important point that we
need to stress, with regards to the nonscale invariance of the
spectrum of primordial curvature perturbations, is that since
we are studying a classical theory near the bouncing point,
it might be possible that at these cosmic time scales,
quantum effects take place. So, effectively, the lack of
scale invariance in the power spectrummight be an effect of
the classical approach to the problem, so the same problem
should be addressed in the context of loop quantum
cosmology [51] and, especially, in the context of FðGÞ
LQC, which was developed in [44]. We also studied which
mimetic FðGÞ gravity can describe the singular bounce
near the bouncing point by adopting the formalism of [36]
and the resulting FðGÞ gravity that has a power-law
functional form.
Finally, with regards to the classical FðGÞ gravity

approach, since the FðGÞ gravity is a special case of the
most general class of FðR;GÞ theory [10,11,40,52,53], the
same problem we investigated in this problem should be
addressed in the context of FðR;GÞ theory. Actually, this
problem should also be compared with the FðR;GÞ gravity
inflation properties, as was done in [53], but this time by
using a type IV singular bounce. In addition, a compelling
task is to include matter fluids in the theory and investigate
how the physical picture is affected by the presence of
matter. Moreover, as was demonstrated in Ref. [34], a type
IV singular bounce may play a crucial role in the graceful
exit from inflation, but the study was focused on scalar field
models. It is worth examining the effect of the type IV
singularity on the Jordan frame FðGÞ theories but also on
the FðRÞ and FðTÞ theories. With regards to the latter, see
[54]. We hope to address these projects in a future work.
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APPENDIX A: ANALYTIC FORM
OF QðtÞ AND OF A;B

In this appendix we quote the exact form of the function
QðtÞ and of A;B appearing in Eqs. (17) and (21). In
particular, the function QðtÞ reads
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QðtÞ ¼ −2ðt − tsÞ−1þ2ααβ2 − 72ðt − tsÞ−1þ3ααβ3
�
−
ðt − tsÞ1−2αððt − tsÞ−1þαα − 2ðt − tsÞ−1þαα2Þ

2ð−1þ αÞð−1þ 2αÞβ

−
ðt − tsÞ−2αð1 − 2αÞððt − tsÞα − 2ðt − tsÞαα − 2C1β þ 2C1αβÞ

2ð−1þ αÞð−1þ 2αÞβ
�

× 24ðt − tsÞ3αβ3
�
−
ðt − tsÞ−2αð1 − 2αÞððt − tsÞ−1þαα − 2ðt − tsÞ−1þαα2Þ

ð−1þ αÞð−1þ 2αÞβ

−
ðt − tsÞ1−2αððt − tsÞ−2þαð−1þ αÞα − 2ðt − tsÞ−2þαð−1þ αÞα2Þ

2ð−1þ αÞð−1þ 2αÞβ

þ ðt − tsÞ−1−2αð1 − 2αÞαððt − tsÞα − 2ðt − tsÞαα − 2C1β þ 2C1αβÞ
ð−1þ αÞð−1þ 2αÞβ

�
: ðA1Þ

Also, the exact analytic form of the coefficients A and B appearing in Eq. (21) is the following:

A ¼ 1124
2α

1−3αβ2ðαβ3Þ 2α
1−3α

B ¼
ð241−2α

1−3αC1 − 24
1−2α
1−3αC1α − 2

−1þ3ð1−2αÞ
1−3α 3

1−2α
1−3α

β þ 24
1−2α
1−3αα
β Þðαβ3Þ1−2α1−3α

1 − 3αþ 2α2
− 241þ α

1−3αC1G
α

−1þ3αβ3ðαβ3Þ α
1−3α: ðA2Þ

APPENDIX B: EXACT FORM OF THE PARAMETERS J1;J2;J3 AND OF A

Here we quote the exact form of the parameters J1; J2; J3 and of A. In particular, the parameter J1 is

J1 ¼
21þ

2α
−1þ3α3

α
−1þ3αBNγα2β2ðN

γβ2ð2Nγβ2

f0
þN−1þγ β2γ

f0
Þ

f0
Þ

α
−1þ3α

f0ð−1þ 3αÞ2ð2Nγβ2

f0
þ N−1þγβ2γ

f0
Þ2

−
21þ

2α
−1þ3α3

α
−1þ3αBNγαβ2ðN

γβ2ð2Nγβ2

f0
þN−1þγβ2γ

f0
Þ

f0
Þ

α
−1þ3α

f0ð−1þ 3αÞð2Nγβ2

f0
þ N−1þγβ2γ

f0
Þ2

; ðB1Þ

while J2 is

J2 ¼
1

f20
432N2γβ4

 
Nγβ2ð2Nγβ2

f0
þ N−1þγβ2γ

f0
Þ

f0

!−2þ α
−1þ3α

0
B@12−2þ

α
−1þ3αBαð−1þ α

−1þ3αÞð2N
γβ2

f0
þ N−1þγβ2γ

f0
Þ

−1þ 3α

þ
2−1þ

2α
−1þ3α3−2þ

α
−1þ3αBNγαð−1þ α

−1þ3αÞβ2ðN
−2þ2γβ4γ2

f2
0

þ Nγβ2ð4N−1þγβ2γ
f0

þN−2þγ β2ð−1þγÞγ
f0

Þ
f0

Þ
f0ð−1þ 3αÞ

1
CA; ðB2Þ

and finally J3 is

J3 ¼ 62−1þ
2α

−1þ3α3−1þ
α

−1þ3αBNγα

�
−1þ α

−1þ 3α

�
β2

 
Nγβ2ð2Nγβ2

f0
þ N−1þγβ2γ

f0
Þ

f0

!−2þ α
−1þ3α

×

0
B@1þ

�
4Nγβ2

f0
þ N−1þγβ2γ

f0

��
N−2þ2γβ4γ2

f2
0

þ Nγβ2ð4Nγβ2

f0
þN−2þγ β2ð−1þγÞγ

f0
Þ

f0

�
f0ð−1þ 3αÞ

þ
�
− 8N2γβ4

f2
0

þ 3N−2þ2γβ4γ2

f2
0

þ 6Nγβ2ð3N−1þγβ2γ
f0

þN−2þγβ2ð−1þγÞγ
f0

Þ
f0

�
f0ð−1þ 3αÞ

1
CA: ðB3Þ
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Also the parameter A which appears in Eq. (39) is equal to

A ¼
31þ α

1−3α4
α

1−3αf0ð1 − 3αÞ2γðβ4γf2
0

Þ1þ α
1−3α

Bαð−1þ 2αÞβ2 : ðB4Þ

APPENDIX C: DETAILED FORM OF THE
PARAMETERS a1;a2;a3;a4;a5;a6;a7

The detailed form of the parameters ai, i ¼ 1; 2;…7 that
appear in Eq. (93) are

a1 ¼
�
24

1
1−3α

�
−

1

f30αð1þ αÞ3
� 1

−1þ3α

�
1þα

;

a2 ¼ −16g0H2
0ð18 − 15α − 10α2 þ 5α3 þ 2α4Þ

a3 ¼ t2sð11 − 6αþ 3α2Þ;
a4 ¼ tsð5 − 6α − 9α2 þ 2α3Þ
a5 ¼ ð2 − 3α − 4α2 þ 3α3 þ 2α4Þ;
a6 ¼ 16f20ð1þ αÞ3ð−1þ 2αÞð−2þ αþ α2Þ

× ð−9þ 3αþ 2α2Þ

a7 ¼
f
− 3
1þα

0 g0H2
0ð24

1
1−3αð− 1

f3
0
αð1þαÞ3Þ−

1
1−3αÞ3αΓ½ 3

1þα�
6α − 9α2 − 9α3 þ 6α4

: ðC1Þ

APPENDIX D: THE PARAMETERS Ω1, Ω2, Ω3, Ω4,
μ AND ζ

Here we quote the detailed form of the parameters
Ω1, Ω2, Ω3, Ω4 and Δi, i ¼ 1, 2, μ and ζ. In particular,
the parameters Ω1, Ω2, Ω3, Ω4 appearing in Eq. (46) are
equal to

Ω1 ¼
2−4þ

6α
−1þ3α3−1þ

2α
−1þ3αB2k2ð1 − 2αÞ2αðαβ3Þ 2α

−1þ3α

ð1 − 3αÞ4β7 ;

Ω2 ¼ −
2−3þ

6α
−1þ3α3−1þ

2α
−1þ3αB2ð1 − 2αÞ2αðαβ3Þ 2α

−1þ3α

ð1 − 3αÞ4β6 ;

Ω3 ¼
2−5þ

6α
−1þ3α3

2α
−1þ3αB2ð1 − 2αÞ2αðαβ3Þ 2α

−1þ3α

ð1 − 3αÞ4ð1þ αÞβ5 ;

Ω4 ¼
2−5þ

6α
−1þ3α3−1þ

2α
−1þ3αB2ð1 − 2αÞ2ðαβ3Þ 2α

−1þ3α

ð1 − 3αÞ4β6 : ðD1Þ

In addition, the parameters μ and ζ appearing in Eq. (47) are
equal to

μ ¼ Ω2 þΩ4

ð−1þ αÞΩ4

;

ζ ¼ 2
ffiffiffiffiffiffi
Ω1

p
ð−1þ 1

αÞα
ffiffiffiffiffiffi
Ω4

p : ðD2Þ
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