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We present a new effective-one-body (EOB) Hamiltonian with next-to-leading order (NLO) spin-spin
coupling for black hole binaries endowed with arbitrarily oriented spins. The Hamiltonian is based on the
model for parallel spins and equatorial orbits developed in [Physical Review D 90, 044018 (2014)] but
differs from it in several ways. In particular, the NLO spin-spin coupling is not incorporated by a
redefinition of the centrifugal radius r, but by separately modifying certain sectors of the Hamiltonian,
which are identified according to their dependence on the momentum vector. The gauge-fixing procedure
we follow allows us to reduce the 25 different terms of the NLO spin-spin Hamiltonian in Arnowitt—Deser—
Misner coordinates to only nine EOB terms. This is an improvement with respect to the EOB model
recently proposed in [Physical Review D 91, 064011 (2015)], where 12 EOB terms were involved. Another
important advantage is the remarkably simple momentum structure of the spin-spin terms in the effective
Hamiltonian, which is simply quadratic up to an overall square root. Moreover, a Damour—Jaranowski—
Schifer-type gauge could be established, thus allowing one to concentrate, in the case of circular and

equatorial orbits, the whole spin-spin interaction in a single radial potential.
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I. INTRODUCTION

The increasing interest in the modeling of gravitational
waveforms from coalescing binaries, strongly motivated
by the construction of ground-based detectors such as
Virgo [1] or the now operating advanced LIGO [2] instru-
ments, has led in the last decade to a significant effort in
calculating spin effects in the post-Newtonian (PN) two-
body problem beyond the leading order (LO). The spin-orbit
coupling at the next-to-leading order (NLO) was first
derived in harmonic coordinates [3,4] and then within an
Arnowitt—Deser—Misner (ADM) formalism [5]. The ADM
approach (see especially the formalism developed in
Ref. [6]) has been quite fruitful, since it has also allowed
the calculation of the next-to-next-to-leading order (NNLO)
spin-orbit coupling [7,8] and of the NLO spin-spin’ cou-
pling [9-11]. A method based on Effective Field Theory
techniques [12] has also been able to derive the same results
(see, e.g., Ref. [13]) and is expected to complete soon the
(full, physically relevant) spin-spin coupling at the NNLO
accuracy [14].

Past work has shown that the most efficient way of using
PN-expanded results to describe the dynamics of coalesc-
ing binaries is to encode them into an effective-one-body
(EOB) model [15-19]. This objective has been pursued in
different versions of the EOB [18,20-27] for both the

'In this paper, “spin-spin” refers to any interaction quadratic in
the spins, i.e., « S7, $3, and S, S,.
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spin-orbit coupling (up to NNLO) and the spin-spin
coupling (up to LO).

More recently, an EOB Hamiltonian reproducing the
correct NLO spin-spin coupling has been proposed [28-30],
where the terms in question are included by a subleading-
order modification of various squared-spin terms. An
unpleasant feature of this approach is that the so-obtained
effective squared spin acquires a momentum dependence
that cannot be removed by any gauge tuning and that greatly
complicates the analytic form of the Hamiltonian. In
addition, the momentum-dependent terms in question are
nonzero even in the most simple case of circular and
equatorial orbits, which prevents one from having a direct
insight into the dynamics by means of a radial potential A, as
is the case for the models with just LO spin-spin coupling
(see, e.g., Refs. [18,20,21,25]).

Recently, Ref. [31] has proposed a new EOB description
of binary black holes with parallel spins, moving along
equatorial orbits. The EOB Hamiltonian of Ref. [31]
incorporates a reformulation of the NLO spin-spin terms
of Ref. [28] but presents some basic structural differences
with respect to Refs. [18,21,28,30]. The most important
ones are the introduction of a new variable (the centrifugal
radius r.), which plays a central role for the description of
quadratic spin effects, and a simplification of the spin-orbit
structure.

The present work is meant as an improvement of both
Ref. [30] and Ref. [31]. It will overcome the problematic
features of Ref. [30] discussed above, while staying as
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close as possible to the new formalism and ideas introduced
in Ref. [31]. Our final result will be an EOB Hamiltonian
describing arbitrarily oriented spinning black holes of which
the structure is physically transparent and quite close to that
of the Hamiltonian describing the dynamics of a test particle
in a Kerr background. As a bonus, our Hamiltonian will
make manifest six hidden symmetries of the NLO spin-spin
coupling, thereby allowing one to describe the latter cou-
pling by means of only nine terms (instead of the 25 terms
present in their ADM formulation).

In Sec. II, which is the core of the paper, our whole
procedure is sequentially presented until the main results
are obtained; in particular, Sec. II A revisits the Kerr
Hamiltonian and develops, from this limiting case, the basic
ideas to be applied in the EOB case; Sec. II B introduces the
EOB model from which we start, and Sec. II C defines the
transformation between the ADM and EOB coordinates;
Sec. II D discusses two possible gauge choices, eventually
opting for a single one, which leads to an identification of
some forms quadratic in the spins that must be inserted into
the EOB model to reproduce the NLO spin-spin coupling;
Sec. I E proposes a resummation of the results into a final
EOB Hamiltonian; Sec. IIF provides a more detailed
description of the quadratic forms, with some details about
their eigenvalue decomposition and their positivity proper-
ties. In Sec. 111, the spin-orbit sector is discussed with some
emphasis about the resummation choices of the gyro-
gravitomagnetic factors. The physical characteristics of
the last stable orbit (LSO) for equal masses and equal,
aligned spins are then computed and compared with the
predictions of other EOB models. Finally, the Appendix
briefly discusses some unexpected “symmetries” in the
coefficients of the quadratic forms. Througout the paper
we use geometrical units with G =c = 1.

II. NEW EFFECTIVE-ONE-BODY DESCRIPTION
OF THE NEXT-TO-LEADING ORDER
SPIN-SPIN COUPLING

Let us recall that one of the basic features of the EOB
formalism is to represent the Hamiltonian of a (comparable-
mass and comparable-spin) two-body system in the form

Heff
HEOB:M\/1+2Z/< —1>,
M

where the “effective” Hamiltonian H®" is a deformed
version of the Hamiltonian describing the dynamics of a
(spinning) test particle in a Kerr background. The EOB
effective Hamiltonian is decomposed as

(2.1)

H = Hop + Ho, (22)

where the spin-orbit part H, gathers the contributions that
are odd in the spins (i.e., linear, cubic, etc.), while the

PHYSICAL REVIEW D 92, 124022 (2015)

orbital part H 4, gathers those that are even in the spins (i.e.,
spin independent, and then quadratic, quartic, etc.).

A. Structure of the Kerr Hamiltonian in
Cartesian-like coordinates

As an orientation toward defining a new EOB
Hamiltonian incorporating NLO spin-quadratic effects,
let us reexamine the structure of the limiting case (to
which H¢" should reduce in the extreme mass ratio limit) of
the Hamiltonian of a (nonspinning) test particle in a Kerr
background. For this Kerr dynamics, and for the special
case of equatorial orbits, Ref. [31] has highlighted the role
played by the centrifugal radius

2Ma?
re=\rr+a*+ <
r

where r is the Boyer-Lindquist radial coordinate. In
Eq. (2.3), M denotes the mass of the considered Kerr
black hole and a its Kerr parameter. The orbital sector of
the test-particle Kerr Hamiltonian [after setting apart,
similarly to Eq. (2.2), its spin-orbit sector] takes the form
(in polar coordinates)

(2.3)

Kerr eq 2 p % P 420

Horb,eq = A (rc,a) (,u +m+r—g>. (24)
Here, u denotes the mass of the test par[icle.2 We see in
Eq. (2.4) that the angular momentum dependence is encoded
in the centrifugal term pZ2/rZ, involving the centrifugal
radius .. The construction of the EOB model of Ref. [31] is
based upon the idea of exploiting the role of r.. In addition, it
was suggested to incorporate NLO spin-spin effects (though
only for circular orbits) by redefining the relation between r,.
and the Boyer—Lindquist-like coordinate r, by adding to a a
new, radial-dependent spin-quadratic term &a®(r). This
model can be extended without particular problems to
equatorial, noncircular orbits. For example, the missing
NLO spin-spin terms can be reproduced by a p,.-dependent

term of the type
(1 . M5a%,r> p_%

r3 B

(where éaf,r is an appropriate quadratic combination of the
individual spin parameters a; and a,), or alternatively by a
modification of the r — r, relation inside of B,

In the present work, our aim is to define an EOB dynamics
which is able to give the simplest possible description of

2One of the features of the EOB formalism is that, after
suitably deforming the Kerr Hamiltonian, it will be possible to
replace p by the reduced mass of the binary system,
u=mpmy/(m; + m,), to describe the two-body effective
Hamiltonian H°T entering Eq. (2.1).
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general, precessing spinning binary systems with arbitrarily
oriented spins. When both spins, as well as the orbital plane,
precess, there no longer exist useful analogs of the z-axis and
associated structures (equatorial plane, angular momentum
p,) that motivated the emphasis on the centrifugal radius
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(2.3) and the associated form (2.4) of the Kerr Hamiltonian.
This motivates us to reexamine the structure of the Kerr
Hamiltonian when it is written in (Boyer—Lindquist-
based) Cartesian-like coordinates r = (x,y,z), with x =
rsinfcos ¢, y = rsin@sin ¢, 7 = rcos 6, namely,

Kem _ (AP @) (n 1
o "\ R Aln-a) 1+

| —
S
e

™

=

[3%]
+
N\

2

where r = rn and

A=7r’-2Mr+a? (2.6)

R* = r* + r’a® + 2Mra® = r*r2. (2.7)

In this reformulation, the centrifugal term p3/r% has been
split in two parts. It is now contained in both the p?
contribution [with p? = p? + p3/r* + p2/(r*sin® §)] and
inthe term ((n x p) - @) (whichis equal toa” p, / r* because
a = |a|0/0z). Bringing these two parts together, and con-
sidering for simplicity equatorial orbits® (n-a) = 0, the
centrifugal radius r. emerges from the identity

(2.8)

The Kerr Hamiltonian written as in Eq. (2.5) will be the
starting point of the new EOB model; i.e., we will look for an
EOB effective, orbital Hamiltonian H¢ which is the
simplest possible deformation of Eq. (2.5). Let us introduce
specific notations for the coefficients of the various con-
tributions as they appear in Eq. (2.5), namely,

H(l)?;rr _ [AKerr(ﬂ2 + B%errp2 + ngerr(n p)z

+BE (n xp) -a)*)]2. (2.9)

We have thereby distinguished four principal sectors in

HXem The first sector, described by the overall factor

AKe"(r, @), is an anisotropic (spin-dependent) gravitational
potential which generalizes the Schwarzschild (isotropic)
potential 1 —2M/r. It reads

Let us, however, recall in passing that r,, Eq. (2.3), continues
to play a central role even for nonequatorial orbits, modulo the
introduction of a “cos@-dressing factor”; see Eq. (2.2) in
Ref. [31].

A
|

Jorepr -2 ) ap] ). 9

AP+ (n-a)?)
 RY+ An-a)?

1 4 (ma”
(e L

2
¢

AKerr(r,a)

(2.10)

rzr

where AKe™ed denotes the equatorial Kerr radial potential,
given by

N (=

re

2M
1424

142

(2.11)

As emphasized in Ref. [31], AXe™<4(r ) is a small defor-

mation of 1 —ZV—M, even for large spins. The explicit ex-

pression of the remaining functions B, BES™, and BE:Y
can be deduced by a straightforward comparison with
Eq. (2.5), for instance B = 1/(1 + (n-a)?/r?).

We now take the square (HX$™)2 of the Kerr
Hamiltonian, which is a quadratic function of the momenta,
and investigate the momentum dependence of the spin-
quadratic terms generated by each sector (without speci-
fying the radial behavior ~1/r", n > 3). More precisely, we
formally expand the four separate building blocks AKeT,
B BXeT and BEey in powers of a (keeping r fixed) and
retain only the terms quadratic in spin (spin-spin terms). We
immediately observe that:

(i) all momentum-independent terms a® and (n - a)? are

encoded in the radial potential AX¢™(r, a).

(i) the spin-spin terms contained in B*"p* and BXe™ (n -
p)? can only be of the types p’a®, p*(n-a)* and
(n-p)’a®, (n-p)*(n-a)?, respectively.

(iii) as the last contribution BSST ((n x p) - @)? includes,
as second factor, a term quadratic in a, its spin-spin
contribution only comes from the latter factor,
namely, ((nxp)-a)?. When decomposed in elemen-
tary scalar product factors, the squared triple product
((nxp)-a)? is found to be a combination of six
different terms: the four terms pa®, p*(n-a)?,
(n-p)a®, (n-p)*(n-a)? thatappeared in ii), together
with two new couplings (p -a)*> and (n - p)(n -a)(p -
a) (see Eq. (3.9) of Ref. [30]).

124022-3
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The fact that every sector plays a rather individual role
suggests a natural procedure for including the NLO spin-
spin coupling into a new EOB Hamiltonian. This will be the
topic of the next subsection.

B. Effective-one-body orbital Hamiltonian

The idea at the basis of our new EOB Hamiltonian is to
write the orbital part of the EOB effective Hamiltonian H¢i
in the same form as Eq. (2.9), but with (momentum-
independent) coefficients A(r,v,a;.a,), B,(r.v.a,,a,),
B,,(r.v.a,,a,), and B,,,(r.v,a;.a,) that are appropriate
deformations of the coefficients AX"(r,a), BK"(r,a),
BXe™(r,a), and BESY (r, a). To be fully explicit, the structure
of our new EOB Hamiltonian is given by Eq. (2.1), with
H®" of the form Eq. (2.2). In the latter equation, the spin-
orbit part is taken of the general form

Hy,=GgsL-S+ GgL-S*, (2.12)
in terms of the following symmetric combinations of the
two spin vectors:

S = Sl +S2 =ma, + mya,, (213)

ny nm
S* = _Sl +—SZ = mya, + ma,.

2.14
ol [ (2.14)

The factors Gg and G- in Eq. (2.12) are functions of r, p,
a, and a, and are even in the spin vectors. They are not the
focus of the present work (see, however, below for more
discussion of them).

In the present paper, we focus on a new definition of the
spin-quadratic contribution of an effective orbital EOB
Hamiltonian H¢ having the following structure:
Hgﬁ{, = [A(r’ U’al’aZ)(ﬂz + Bp(r’ U1a17a2)p2

+ Bnp(r’ v,a, 7a2)(n p)2

+ B.,,((n x p) - a)*like terms + Q,)]'/2, (2.15)

where the structure of the last-indicated contribution on the
rhs of Eq. (2.15) will be discussed below.

Let us start by specifying the structure that we shall
require for the dependence of the EOB potentials A, B,,, and
B, , onthe mass ratio’ v and the two individual vectorial Kerr
parameters of the two black holesa; = S, /m,a, = S, /m,.
We recall [18] that an effective orbital Hamiltonian with the
correct LO spin-spin coupling is simply obtained by
replacing the Kerr spin vector a entering Eq. (2.5) by the
following effective spin vector:

*We shall use here the convention m | = my so that all the mass
ratios can be expressed in terms of v = m,m,/(m; + m,)?. E.g.,
Xi=my/(mi+my)=(14+V1-4)/2, X, = my/(my +my) =
(1-v1=4v)/2.
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ay=a, +a,. (2.16)
In addition to the replacement (2.16), the two masses, M and
u, entering the Kerr dynamics are replaced by

myn,

M =m; + m,, "= (2.17)

m1+m2

This suggests to look for EOB potentials A, B,,, B, of the
form

A(r,v,a;,a,) = A% (r,v,ay) + 5A, (2.18)
B,(r.v.a,.a;) = B (r,v,ay) + 6B,, (2.19)
B,,(r.v.a;,a,) = Biy(r,v,aq) + 6B,,, (2.20)

where A¥Ko, BZK", B,”,I;“ are some v-deformed versions of the
Kerr-like potentials defined by replacing a by a, in the
potentials AKe™, BEe BEe entering Eq. (2.9) and where 84,
0B,, 6B,, are additional NLO spin-spin contributions.
Explicitly, following Ref. [31], (except for the treatment
of NLO spin-spin effects), we shall take

A¥Ko(r v,a0) = AN(r., v, a0) ————-——
1 o

as the v-deformed’, LO spin-spin, Kerr-like A potential.
Here,

1434
A% (r.,v,a9) = Ao (Fe, V) ﬁ, (2.22)
with
Ao (re,v) = Pl [Agg (1:—4 , y)} , (2.23)
where PL[APY] denotes the (1,5)-Padé resummation of the

5PN-level, Taylor-expanded orbital radial potential. More
precisely, we use Eqgs. (28)—(29) in Ref. [31] together with
the exact value of a$(v) [32] and the recent calibration

at(v) = 3097.302 — 1330.6v + 81.38 [33] (instead of the
values for a$ and ag that were employed in Ref. [31]).

>For the purpose of this article, it is not necessary to be careful
about the v deformations of A and B,,,,, since the NLO spin-spin
coupling is not affected by them. Indeed, neither A nor B,,, contain
v-dependent terms at the 1PN level, and thus there is no coupling
of this type with the LO spin-spin part leading to NLO spin-spin
terms. However, an influence of the purely orbital
v-deformation on the spin-spin sector is still present in the
transformation between ADM and EOB coordinates, and also
in the transformation between the effective and EOB Hamiltonians.

124022-4
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Here, and in the following, r. is defined as being the
following function of r and a:

/ 2M
ro = r2+a(2)—|—7a2.

As for the other Kerr-like EOB potentials, we take

(2.24)

1
vKy
B = o (2.25)
1 A%(r, 2
BI;ZI;O . ( (rul/»a()) re _ 1>’ (226)

Dorb(rc’l/) }"2

where A®(r.,v, ay) was defined in Eq. (2.22) above and
where Dy, (r.,v) is defined by Eq. (33) of Ref. [31] with
u. = M/r,. Finally, the quartic-in-momenta term Q, that
has to be added to the four main summands inside the
effective Hamiltonian is defined by Eq. (35) in Ref. [31].

C. Canonical transformation from ADM to EOB

To determine the additional, NLO spin-spin terms
0A, 6B, 6B,, in Egs. (2.18)~(2.20) [as well as the
NLO-accurate B,,,((n x p) - a)*-like terms in Eq. (2.15)],
we need to transform the ADM NLO spin-spin Hamiltonian
HNFOAPM) [9-11,13] into a corresponding EOB
Hamiltonian by means of a suitable canonical transforma-
tion. As in Refs. [28,30], this will be done by composing
three successive canonical transformations. The first trans-
formation G!PN(r,p) (given by Egs. (6.15)—(6.16) in
Ref. [15]) is of a purely orbital type and has the following
effect on spin-spin terms:

HE;LO/ _ Hls\;LO(ADM) + {G(I)PN,HI;SO<ADM)}. (227)

It is followed by a LO spin-spin canonical transformation
GO (r,p.S,,S,) (given by Eq. (5.15) in Ref. [23], see also
Eq. (3.16) of Ref. [30]) yielding a further modification of
spin-spin terms:

HYFO" = N0 4 {GLO HIPN'Y, (2.28)

where

H]pN/ _ HIPN(ADM) + {G]pN HN(ADM)} (2 29)
o o o »1lo . .
Finally, we perform a NLO spin-spin canonical transforma-
tion GNO(r,p.S,.,S,) (the structure of which will be
discussed below) yielding a last modification of spin-spin
terms

HNFO" — gNLO" 4 (GNLO [ 3, (2.30)
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HNLO" must then be equal to the corresponding term in the

PN expansion of the EOB Hamiltonian we are seeking. It is
convenient to focus the attention onto the squared effective
orbital Hamiltonian (Hf )2, which has an intuitive struc-
ture. Because of the relation

N A U A
H =1+ Higy + 5 (Higs)*.

5 (2.31)

where HYS; = Hgop — M is the “nonrelativistic” EOB
Hamiltonian, and where the hat denotes a p-scaling
H=H/u, G=G/u, we are left with the condition

(HE)? |NLoss = 20N 4 (1 + v) Hyg (FECAPY

orb

+{GL ANY)). (2.32)
where the notation on the lhs simply denotes the NLO spin-
spin part of the PN expansion of (A )2. In other words, our
problem is to find a suitable GN© such that the rhs of
Eq. (2.32) is equal to the NLO spin-spin contribution to the

expression

(Ho)? = (A0 + 8A)(u* + (B + 5B, )p?
+ (Bip' + 8B,,)(n - p)’
+ By, ((n x p) - a)*like terms + Qy)]'/2,
(2.33)

with appropriate NLO spin-spin terms 64, 6B, 6B,, and
with a suitable NLO-accurate EOB version of the
((n x p) -a)? term in the Kerr Hamiltonian (2.5).

We introduce at this point a change in the notation.
Since  NLO spin-spin terms are more conveniently
expressed by dimensionless quantities, we will from now
on only make use of the dimensionless rescaled variables
F=r/M,7.=r./M,p=p/u, x1 =a;/my, x, =ay/my,
o =ay/M, H= H/u,and G = G/u. However, in order to
lighten the notation, we will omit displaying the hats on the
dynamical variables r, r., and p.

Before evaluating Eq. (2.32), it is necessary to specify
the form of the canonical transformation (2.30). In
Ref. [30], the generating function GQLLO had been chosen
in a rather general way, which involved terms cubic in the
momenta. The latter terms gave rise, in the Hamiltonian, to
NLO spin-spin terms that were quartic in the momenta. The
presence of such terms is a feature not shared by the ADM
Hamiltonian but was related to the idea of defining, in the
EOB formalism, an “effective spin” that may also depend
onp? and (n - p)?, thereby introducing higher powers of the
momenta.

In this paper, by contrast, we want to hold the dependence
on the momenta as simple as possible. We found it possible
to end up with a squared effective EOB Hamiltonian
involving only quadratic-in-momenta spin-spin terms by

124022-5
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choosing an NLO spin-spin generating function GN-C which
is only linear in momenta (rather than cubic as in Ref. [30]).
[This fact relies on the combined structure of the LO spin-
spin canonical transformation G5 [23] (going from ADM
coordinates to Boyer—Lindquist coordinates) and of the
nonlinear transformation relating the effective Hamiltonian
to the real one.] Among the 33 gauge coefficients taken into
account in Ref. [30] for GQ;LO, we only need to maintain ten
of them.® We thus consider a generating function of the
following form’:

GNO = (nr-zp) (a;j(xi ) + Bij(n-x;)(m-x;))

1
+ﬁ7’ij(n‘)(i)(l7'){j)a (2.34)
where we use the summation convention on the spin labels i,
J = 1,2, and where the coefficients @;; and f;; are assumed
to be symmetric, while y;; # y ;.

The change induced by GN'© in the Hamiltonian is

N A 1 aj;
{GR° Ay} = p [(aijpz —3a;;(n-p)* - T]> wi-x;)

_Bij vy
r

+ (ﬁijl’2 —5p;i(n -p)?

x(n-xi)(m-x;) +riy®e-xi)p-x;)
+ (2B = 3yij)(m-p)(n-x:)(p - x;)],
(2.35)

where we have introduced the symmetrized coefficients
Y(ij) = (vij +7;ji)/2 in order to point out that the only term
which is not symmetric under exchange of the indices i and
jisthelastone, ie., =3y;;r>(n-p)(n-x;)(p - x;). We will
show in the next subsection why y;; must contain an
antisymmetric part y|;; and how y;;; can be used to yield a

eff
orb*

simple H

®The 23 coefficients that we discard here are all those cubic in
p. Each of them leads, after the Poisson bracket with the
Newtonian Hamiltonian, to terms quartic in the momenta. An
explicit calculation easily shows that the so-obtained 23 quartic
expressions are linearly independent in the 32-dimensional space
of NLO spin-spin polynomials that are quartic in the momenta,
the basis of which is defined by scalars of the type p*(x; - x;)/ 77,
(n-p)*(x: - x;)/r* and so on. There is therefore no way of tuning
these 23 coefficients, apart from setting all of them to zero, that
prevents the transformed Hamiltonian from being quartic in the
momenta.

"We warn the reader that the nomenclature of the gauge
coefficients differs significantly from the one used in
Refs. [28,30]. In particular, the coefficients a, f, and y used
here correspond to y@, ™, and y?) in Ref. [30]. The reason
beyond these choices has been that of favoring the readability and
self-consistence of this paper over the continuity with respect to
Ref. [30].
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D. Gauge choice

One of the useful features of the EOB formalism is to use
canonical transformations as gauge transformations able
(after some gauge choice) to simplify the structure of PN-
expanded Hamiltonians. Here, we shall apply this philoso-
phy to the NLO spin-spin Hamiltonian. The original NLO
spin-spin Hamiltonian, obtained in the ADM gauge in
Refs. [9-11], contains 25 different terms in the center-of-
mass frame [see Eq. (2.9a) of Ref. [28], which accounts
for both spin(1)-spin(1) and spin(2)-spin(2) terms, and
Eq. (3.15) of Ref. [30] [spin(1)-spin(2)] for a center-of-mass
formulation]. [This is the generic number of terms for an
NLO spin-spin Hamiltonian which is at most quadratic in
momenta, as the ADM spin-spin Hamiltonian happens to be.]
As we have introduced in Eq. (2.34) a NLO spin-spin
transformation involving ten arbitrary parameters (aj;j),
Bj)» 7j)» and y[y), we expect to be able to end up with
a simplified EOB NLO spin-spin Hamiltonian containing at
most 15 different terms. In particular, we wish to simplify the
a priori most complicated sector of the ADM Hamiltonian
(and of its generic EOB counterpart), namely, the sector
comprising the seven different terms

(p-x:)p-x;) and

appearing in the last two contributions on the rhs of
Eq. (2.35). As discussed above, in the Kerr case (with only
one y), these couplings came out of the decomposition of the
Kerr coupling B,,,((n x p) -a)? into elementary product

(m-p)n-x))p-x;)  (2.36)

factors. We found it convenient to use the freedom of GN-© to
impose that the EOB sector containing the seven different
terms (2.36) take the following maximally simplified form,

By (r.ag)((n x p) - ao)?, (2.37)
differing by its Kerr counterpart [last terms on the rhs of
Eq. (2.5)] only by the replacement @ — ay = a; + a,. It is
easily checked that this requirement uniquely fixes 7 degrees
of freedom in GN°, in determining the gauge parameters
Bij) and y;; [which, as exhibited in Eq. (2.35), entered the
gauge variation of the seven terms (2.36)].

More precisely, these seven gauge parameters must take
the values

po=-(3+3)0-n e

B 1 3 5 38b

ﬂzz——<§+11/)(x2—l/> (2.38b)
1 3

P =P = —<§ +ZU>U (2.38¢)

and
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2

Y11 :Xl —IJ—VZ (2393.)
2
}/22 = X2 il Zd Z (239b)
2
v v
Yi2 = §X1 vy (2.39¢)
_ix, Y (2.39d)
721 = 12T .

Note that, in the limit m, < m; (under which X, — O,
X,—1,v - 0),wehave f;; > —1andy,; — 1, whichisa
necessary requirement for the structure of (A}Ef‘o (as dis-
cussed in Refs. [28,30]). Note also that the antisymmetric
part of y;; is fixed to the value
v

It is easily checked [using Eq. (2.35)] that this value
allows one to gauge away the antisymmetric-looking8
ADM term [11]

7 NLO(ADM)
Hss.antis.

(n-p)

X)) x2)
(2.41)

=2 (- ) (o
— (- x2)P-21)),

so as to end up with a symmetric contribution
x (n-x1)P-x2)+ (n-x2)(p-x1) of the type contained
in the expansion of the term ((n X p)-ay)?>.

Having fixed the B,,,((n x p) - a)* sector by using the
seven gauge parameters f3;; y;;, we are left with the three
gauge parameters a(;; to simplify the NLO contributions
0A, 6B, and 6B, to the remaining physical sectors of the
NLO spin-spin EOB Hamiltonian. As we started from 25
different contributions and used only seven gauge param-
eters, we would expect 6A, 6B,, and 6B,, to involve
25 — 7 = 18 different contributions, in the form of six
different quadratic forms in the two spin vectors. More
specifically, one can a priori decompose 6A, 6B,,, and 6B,,),
in the form

1
1= a2 %) )
! 0
(SBP 7 (BF)( Bp.n;() (2.43)
1
0B, = 2 (Br%w( - ng.n}() (2.44)

(where the minus signs are introduced for later conven-
ience), with six (symmetric) quadratic forms

8Note, however, that this term is symmetric under the com-
bined permutation X; <> X5, x| <> X».
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= al;(xi 1)) (2.45)

AD = a0 2)(n 1) (2.46)
B, = bl (xi-x;) (2.47)
BS ., = bl (n-x)(nx)) (2.48)
By = bl (i - %)) (2.49)
By = by (- 2:)(n - 7). (2.50)

[Note that the summation convention on the indices i, j
means that, e.g., AY = &1} +2d}, (¢ ) + A3 A
first remarkable finding is that our request of having the
simple, Kerr-like form (2.37) implies another simplification
for free. Namely, we find that the three coefficients

np.my __
b =0,

(2.51)

so that the second quadratic form, B,%,W, entering 6B,
simply vanishes. We also find that the coefficients of the
second quadratic forms A,%( and B]?,n){ entering A and 6B,
are uniquely fixed to the values

5
[1111)1{ = <21/X1 —+ 51/2> (2528.)
5
a22 = <21/X2 + 21/ > (2.52b)
3 7
ayy =ay = <§1/ - 51/2> (2.52¢)
p.ny 15 2
bll = 9I/X1 - ZI/ (2533.)
P")( 15 2
b2 WX, - (2.53b)
bP-”)( — bps’l){ = (3 9 2
=0yt = v+t (2.53c)

Let us now consider the three remaining quadratic forms
[linear in (y; - x;)] A2, BY,, and BY, ,. These three forms
are not fixed by our previous request because they depend
on the three gauge parameters qag;;), which are still free at
this stage. In view of Eq. (2.35) [keeping in mind the factor
2 in Eq. (2.32)] the effect of a gauge shift 6;; on the three

quadratic forms AX, B,%(, and B,,,,_X is
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AL = —25a,;(x;  x;) (2.54)

In view of these transformation properties, we could use the
a;;-freedom to set to zero any of the three forms A)?, B,%(,
and Br%w- Setting to zero A)? does not seem physically
appealing because Af;) has a relatively simple and intuitive
meaning as a higher-order contribution to the already
present spin-spin contribution to the radial potential
AYKoEq. (2.21). This leaves us with two natural options:
setting either BS,, or BS,,, to zero.

Let us first briefly discuss the latter option, i.e., using a;;
to set b;* =0. Explicit calculations then show that a

simple link emerges between the resulting gauge-fixed Bz%(
and the form B,?,,,), which was already fixed [and given by
Eq. (2.53)]. Indeed, we find in this case that the following
relation holds:

prit — Ly
, .

30! (2.57)

This relation means that the momentum-dependent part of
the NLO spin-spin contribution to (H°)? takes the simple
form

—b”((}(, X)) =3m-x)(m-x;)),

where we recognize a coupling between p? and a spin-spin
structure akin to the LO quadrupole potential present in the
ADM Hamiltonian

X0
n-x0)°) = ﬁpz(cos'-())-

(2.58)

A 1
LO(ADM
b2 il ):—F(Z%—%

In the last equality, 9 is the angle between n and y, and P,

is the second Legendre polynomial. Notice that a coupling

of the type ANAL™PM (which involves p2 AL PM

explicitly visible in Eq. (2.32).
The other optlon is to use the «;; freedom to set, instead,

the form B »y tO zero, ie.,

) is

PY —
bii* =0. (2.59)
In analogy to Refs. [21,25], this choice can be called a
Damour—Jaranowski—Schifer gauge. When the orbits are
circular and equatorial, the gauge choice (2.59) leads to a

very simple spin-spin structure, since in that case Af

PHYSICAL REVIEW D 92, 124022 (2015)

becomes the only quadratic form that does not vanish.
Consequently, all new NLO spin-spin information is
contained in the radial potential A. We will adopt this
gauge for the rest of the paper.

To satisfy Eq. (2.59), the ;; gauge parameters must be

taken to be
1 5 v
= X +=-+— 2.
ap <2 41/> tst5 (2.60a)
15 v
Qyy = 2 + 4IJ X2 + 2 + - (260b)
v
A1) = Oy = —5. (260C)
In the limit m, < m;, we have a;; - —3, which is a

necessary requirement for the structure of GgLO [28,30].
Solving Eq. (2.32) then leads first to

2
&, =3uX, - — (2.61a)
2
2
iy = dj b (2.61c)

and then to a remarkable result for the coefficients of

Br%w(- Namely, we find that they turn out to coincide with
the coefficients of the above-determined quadratic form

Q .
By oy, 1.€.,

b?{"” = bg:"ﬂf . (2.62)

Here, as in the case of the other possible gauge b;/* =0, a
symmetry becomes visible between b;;-type coefficients
belonging to different quadratic forms.

The final result is remarkable: the information stored in
the nine coefficients a/( a,"j{ , and b"7 " is sufficient, once
inserted in the EOB Harmltoman to reproduce the whole
NLO spin-spin coupling (which initially involved 25
different terms). The EOB has not only exploited the full
power of the gauge transformations, involving ten param-
eters, but has also revealed six additional and unexpected
symmetries (see the Appendix for a further discussion of
these symmetries). Notice that the EOB Hamiltonian
proposed in Ref. [30] involved 12 different terms. A
symmetry similar to (2.51) was present, but there was
no equivalent to (2.57) or (2.62).

To summarize the results so far, the effective orbital
Hamiltonian has the form

124022-8



NEW EFFECTIVE-ONE-BODY HAMILTONIAN WITH NEXT- ...

PHYSICAL REVIEW D 92, 124022 (2015)

1

(r* +2r + (n-x0)*)

I:I?)ﬁ{): A<1+Bpp2+Bnp<n'p)2_

Here, the quantities entering the ((r x p) - a,)? term are

A=r=2r+y} (2.64)
RY = r* + r2xd + 2rxd. (2.65)

with the dimensionless effective spin
Xo = X1 + Xoxo. (2.66)

On the other hand, we obtained above explicit, but non-
resummed, expressions for the NLO-spin-spin accurate

potentials A, B,,, and B,,,. In our preferred (Bg_)( = 0) gauge,

and in view of the remarkable cancellation of B,%],nx, they
have the form

1
A(r.v.x.x2) = A% +ﬁ(A;(Q —A,%), (2.67)

|

B,(r.v.x1.0) = By — ~B%. (2.68)
1

Bnp(ryl/,xlyxZ) :BZIP(O +ﬁBX (269)

Here, AvKo, B’,’,KO, BZ’;" have been defined in Egs. (2.21),
(2.25), (2.26), while the four remaining NLO spin-spin
quadratic forms entering our results (here and henceforth we

simplify the notation by suppressing the index p on B,%W
and the index np on B,?N) take the following explicit form:

1/2 1/2
A = <3IJX1 — 3>x% + <3yx2 - 3> Ve

+ v =) (x1 - x2) (2.70)

5 5
A,%( = (21/X1 =+ 51/2> (n ')(1)2 + <2I/X2 =+ El/2> (l’l ')(2)2

+ Bu=T)(nx1)(n - x2) (2.71)
15 15
B;(Q = <9Z/X1 — ZI/2>X% + <9IJX2 —ZZ/Z)X%
9
+ <61/+21/2> 01 x2) (2.72)

L oE ROt A )

((nxp)-x0)* + Q4>- (2.63)

[
15 15
Br%( = <9Z/X1 - Zl/z) (n 'Zl)z + <91/X2 _ZUZ) (l’l 'X2)2

9
+ <61/ + 21/2> (n-x)(n-x). (2.73)
Note again the remarkable fact, found above, Eq. (2.62),
that the coefficients of B,%( coincide with the coefficients of
B)? [i.e., B,% is obtained from B)? simply by replacing
(i 'Xj) = (n-x;)(n 'Xj)]'

E. Resummation options

We wish to discuss now various options for incorporat-
ing the NLO spin-spin contributions r~#(A2 —A2),
—r3B2 and r3B? in a somewhat resummed manner,
within the v-deformed Kerr-like basic contributions A*Ko,
BY%°, and B4S". Let us first consider the contributions o« A2,
and BS, which are quadratic in (n - y;). The presence in
A¥Ko Eq. (2.21), of a factor 1 + (n - x,)2/r* and in BY",
Eq. (2.25), of a factor (1+ (n-x()*/r*)~" suggests to
incorporate the quadratic forms r~*A%, and r—BY as
additive modifications of the term r~2(n - y,)?. This leads
to the forms

1l Ay
_ e ., R R o
Alrv.yox0) = A% (re,v. (- 2)) 1+A(:lz-—r20)2
(2.74)
and
1
B,(r.v. i) = 27

(nx0)® | BY
1 + rz r3

We recall that, in this work, the centrifugal radius is defined

as
2 2
re =1/ r? +){(2) + ﬂ. (2.76)
r
In Eq. (2.74) we have introduced the notation

A%(r,v, (x; - x;)) for an equatorial potential [remaining
in the limit (n-y,;) — 0] which should incorporate, in a
combined manner, both the Kerr-like equatorial potential
(2.22) and the purely radial NLO spin-spin correction
r‘4AZQ . There are two main possibilities for doing so:

124022-9
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(i) a full factorization

1+2 A2
A s ) = Aalreet) 15 (1455 ).

rC
(2.77)
(i) a semiadditive inclusion
[
1+242%
AN(re v, (xi - X)) EAorb(rc’lOlizc
T
(2.78)

Here, A,y (7., v) denotes the Padé-resummed orbital poten-
tial (2.23), which entered the Kerr-like equatorial potential
(2.22). Note that the option ii) is equivalent to replacing the
factor 1+ AZ/r* of option i by 14+ AZ/(r* +2r3). As a
consequence, the second option reduces the effect of A)?
compared to the first option. In addition, let us recall that
the factor (1 +2/r.)/(1 4+ 2/r)in A%(r,) is smaller than 1
and embodies the attractive nature of the extra coupling
linked to the combined effect of the quadrupole deforma-
tions and of the spin(1)-spin(2) interaction
4+ 5

] =22
1+2 r§.+

(2.79)

We then see that the main effect, for equatorial orbits, of
NLO spin-spin effects is to reduce the attractive character
of the LO spin-spin coupling by adding a repulsive
coupling +A;? /r*. [We will see in the next subsection
that, in most cases, A)? is positive.]

Alternative versions ib and iib of the above options can be
obtained by using the Boyer—Lindguist radius instead of the
centrifugal one, thus substituting A9 /4 with AZ/r*. Among
these four options, we choose in the following the semi-
additive inclusion ii, given by Eq. (2.78), as our standard one.

Let us finally consider various ways of incorporating the
correction r‘3BXQ in the Kerr-like basic potential BZI;O,
Eq. (2.26). A simple way is to modify the fraction r2/r* as
it appears in Eq. (2.26). We choose here to do it by defining

Bnp : 2 (AB (rC) & —Z - - 1)’
1+ (nxo) D r

2

(2.80)

where we used a “bare” version A3'(r.) of the equatorial
radial potential (i.e., a version which does not contain the

insertion of A)?), namely,

AR (re, v, ap) EAorb(l"c,I/)J. (2.81)

F. Quadratic forms

To have a feeling for the physical effects of the various
NLO spin-spin quadratic forms AZ, AZ,, B entering our
results, we investigate here their magnitudes and their signs

PHYSICAL REVIEW D 92, 124022 (2015)

as functions of the two spins. The structure of each of the
three quadratic forms AZ, A,%(, B)? is described by a
symmetric 2 X 2 matrix, say ¢;;. Let us first mention that
all the matrix elements g;; happen to be positive (which
does not, however, imply the positive-definite character of
the corresponding quadratic form). By considering the
(orthogonal) eigendirections and the eigenvalues of g;;,
we see that, in the case of a form of the type

QW1 x2) = 4ij i x;)-

there must be an angle ¢ € [-5.%) such that

(2.82)

O = A1 (x1 cosp +xp sinh)* + A (—x; sing + x5 cos ¢)*
(2.83)

[and analogously for a form of the type g,;(n - x;)(n - x;)].
Here, for definiteness, 4; denotes the larger eigenvalue, i.e.,
A1 = A, When v = 1/4, because of the symmetry under
exchange of the spins y; and y,, the only allowed combi-
nations are cos ¢ = £ sin ¢, and thus ¢p(v = 1/4) = £ /4
in the interval [—z/2, z/2). By contrast, the behavior of ¢ in
the test-mass limit v — 0 does not follow a general rule.
As shown in Fig. 1, the eigenvalues 4;, 4, of the EOB

quadratic forms AZQ, A,%( (and therefore the forms

T B B S S

0.6 C )\2 .
04 v dlradl

02 E 4

0.0 f S = =

ok v v e

0.6 F et

0.4 4

0.2:- ,/_:

00 = —— — — =

15 F X E
Lo b ;
05F e

oK -

0.00 0.05 0.10 0.15 0.20 0.25

FIG. 1 (color online). The eigenvalues 4;, 4, and the rotation
angle ¢ are plotted as a function of v for the quadratic forms A9,
A,%, and Bf . The information relative to the form B,% is equivalent
to the one provided by the plot of B;?. Notice that ¢(1/4) =
/4 ~0.79 for all forms.
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v=10"3 v =20.25
T T T T T T T T T T T T 7
0.75 | \ Ag —K — 0.75
Q
¢ <0 %%
0.25 | - 0.25
o B
(a\l 2 (a\l
12 % 12
—0.25 —0.25
-0.0001
—0.75 —0.75
0.75 0.75
0.25 0.25
N N
1< 1<
—0.25 —0.25
—0.75 —0.75
0.75 0.75
0.25 0.25
~ ~
< <
—0.25 —0.25
—0.75 —0.75

FIG. 2 (color online). Contour plots of AXQ , A,%, and B;?, each quadratic form corresponding to a row. The two columns correspond to
the values v = 1073 and v = 0.25 for which the forms are evaluated. In the case of A)? and B)?, aligned or antialigned spins are assumed,
and the scalar parameters j; have to be interpreted as y; = +|y;|, with 717> = (¥ - X2). On the other hand, y; = (n - x;) in the contour

plots of A,%(. The figures appear to be inclined with respect to a configuration symmetric under reflection of the coordinate axes. The
measure of such a rotation (in the anticlockwise direction) is nothing but the angle ¢ introduced in Eq. (2.83) and plotted in Fig. 1.

themselves) are positive in most of the range of interest. For ~ with A, crossing zero at vy = 2/17 = 0.12, which corre-

sufficiently small v, the smaller eigenvalues A, are negative,  sponds to a mass ratio m;/m, ~ 6.34. For circular, equa-
and the forms are indefinite. On the other hand, for larger  torial orbits, v > v, implies that the new NLO spin-spin
values of v, A;(Q and A,% are both positive definite. terms are always repulsive. By contrast, for v < v there are

More specifically, the eigenvalues of A)? are given by special configurations of the spins where their effect is

slightly attractive.
The smallest eigenvalue of A,%( crosses zero when

v = (13— /145)/8 ~ 0.12. By contrast with AZ and AS,

Mo = . . . . .
1.2 B)? is never positive definite. However, its largest eigenvalue

(3—ui 13—401/+1/2), (2.84)

NS NN
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is always positive and, most of the time, much larger than 4,.
As we shall see later, this implies that B;? is positive for most
spin configurations. Note also that BQ becomes degenerate
(4, = 0) exactly in the case of equal masses (v = 1/4).

In the two-dimensional parameter space measuring
either the projected spins (n - y;), or the algebraic magni-
tudes of two parallel spins y|x», the contour lines of Q
define ellipses, hyperbolas, or straight lines, depending on
whether 4, is positive, negative, or equal to zero, respec-
tively. A graphical visualization of them is given in Fig. 2.

The eigenvalue decomposition (2.83) does not provide a
direct handle on the extremal points of the quadratic forms.
To investigate them, one must resort to other arguments.
Since all coefficients in Eqgs. (2.70)—(2.72) are positive for
every v e (0,1/4], it is clear that the global maxima
Q" (y) are reached when y? =yx3 = (y;-x,) =1 (in
the case of A? and B?), or (n-y,) = (n-y,) =1 (in
the case of A,%

For investigating the minima, let us rewrite

q12 2 ‘1%2
Ox1.22) = 911 ()h +q—)(2) + (6122 —q—>X%-
1

(2.85)

If 1, <0, then also (g —q3,/q11) < 0. In this case,
provided that ¢;,/¢;; <1 [which is indeed true for all
quadratic forms (2.70)—(2.72)], the global minimum
Q™n(y) is reached for the antialigned configuration

(2.86)

Otherwise, if 4, > 0, the minimum is met in the trivial
casey; = x» = 0. Analogous spin configurations, obtained
substituting y; with (r - x;) in Eq. (2.86), define the minima
of the forms of the type g;;(n-x;)(n-x;). As a conse-
quence, the extremal values of B)? and of B,% coincide.

Figure 3 provides complete information about the range
of values that can be taken by each quadratic form. Let us
remark, in passing, a peculiar feature: although the coef-
ficients of A}? and of A,%( could have seemed to be
unrelated, they satisfy the identity

Z Za (5-2v)v
ij

Consequently, as is visible on the figure, the maximal

curves A2™ (1) and AZ™(v) are exactly the same.
Among the whole range of v, their overall maximum is

given by AZ™(1/4) = AZ™(1/4) = 9/8. The overall
minimum of A){Q is approximately equal to —0.011 and is

(2.87)

reached at v~ 0.061, while for A,% it is reached at v =
0.059 and is nearly equal to —0.033. Moreover,
B; ™ (1/4) = 57/16, while the overall minimum B; ™" ~
—0.083 corresponds to v = 0.146.

PHYSICAL REVIEW D 92, 124022 (2015)
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FIG. 3 (color online). The curves Q™*(v) and Q™"(v) are
plotted for the quadratic forms AZ, A%, and BY. The region
between the two curves represents all possible values that can be
taken by the corresponding quadratic form.

An order-of-magnitude estimate of the maximal change
introduced in Al by AQ [see Eq. (2.78)] can be made by
setting r. ~2 and AZ max ~ 1, leading to a deviation of

+0.06 with respect to the LO term 2/r. ~ 1. By contrast,

the change in the special configurations where Af is

negative is smaller (in absolute value) than 1073, since

in this case AZ™" ~ —1/100.

III1. SPIN-ORBIT SECTOR AND THE LAST
STABLE CIRCULAR ORBIT

In this last section, we investigate some predictions of
the new EOB Hamiltonian proposed here concerning the
characteristics of the LSO, considered for parallel spins,
and circular, equatorial orbits.

At first, it is necessary to fix the spin-orbit sector HS,
that enters the whole effective Hamiltonian as an additive
contribution,

AT = A+ A (3.1)
Several different versions of the EOB spin-orbit effective
coupling H" have been proposed in the literature [18,
20-23,25,26,31]. Here, we shall follow the recent approach
[31], generalizing it to the general, nonequatorial case.
Explicitly, we take

1 Aln-x)"\ 7' . 1. X
2(14‘7 gsffl'erﬁgSffl-;(.

c c

[’_‘Ieff _
(3.2)
Here, I=r xp =L/(uM) is the (dimensionless) rescaled

orbital angular momentum, and y and y* are the symmetric
spin combinations (2.13)—(2.14), namely,
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S +8;

=— =X + X} 3.3
Z (ml + m2)2 1)( 1 2%2 ( )
LS, +S,
X =T = v ), (3:4)
(my + my)?
while ¢&f and ¢¥f are two dimensionless gyro-
gravitomagnetic factors.” The post-Newtonian expansions
of ¢ and ¢¢f are fully known up to NNLO order

[18,21,25,26], and one knows both the test-mass limit of
¢ff 23] and its first gravitational self-force correction [34].
Here, we shall use, as a fiducial spin-orbit coupling, the
nonresummed, Taylor-expanded NNLO-accurate expan-
sions of ¢&t and ¢&if [25,26], expressed in the Damour—
Jaranowski—Schifer gauge, and (following Ref. [31]) using
r. as radial variable. This means that we use

@ —2—%% PP - 2 (1+7)(np)’
()= (%)s
8)r2

(3.5)

3
eff _ =
s+ 3

+

15 9 , (9 3\ 1
_(8 4”><”'P> _<8+4y>rc

35 5 45 . (69 9 57,
(16+2”+1—6”><" L2 (1_6_1”+1_6”>

(n-p)?* (27 39 3 ,\1
. TR T

We are aware of the fact that such Taylor-expanded gyro-
gravitomagnetic factors have the property of changing sign
in the strong-field region, thereby turning the repulsive
(for spins parallel to the orbital angular momentum) spin-
orbit interaction into an attractive coupling. To avoid this
change of sign, Ref. [31] used an inverse Taylor resum-
mation of the gyro-gravitomagnetic factors [of the type

&t =2/(1 —l—‘r—i—l- -+, ete.].

We compare in Fig. 4 the radial behavior of the total
dimensionless effective gyro-gravitomagnetic  factors
PGy =r (rr g+ = Lgdl) defined by using either

Taylor-expanded ¢&if, ggff or inverse Taylor-expanded ones.

As the main purpose of this subsection is to compare the
effect of our new way to incorporate NLO spin-spin
coupling to previous suggestions [28,30,33], it will be
convenient for us to use the simple Taylor-expanded
prescriptions (3.5)—(3.6) because they ensure the existence

°The gyro-gravitomagnetic factors ¢ and g5

correspond to ZGS and %GS in Ref. [31]

used here
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FIG. 4 (color online). The quantity r>G,,, is plotted against r for
circular orbits. Equal masses and equal spins y; = y, = 0.65 are
assumed. The curve InvCal corresponds to the model described in
Ref. [31], with the NNNLO calibration of c; described in
Ref. [33]. The curve Inv makes use of the same (inverse)
resummation of InvCal but only includes terms up to NNLO
(i.e., it contains neither the calibrated term c¢3 nor the two purely
Schwarzschild, spinning-particle coefficients that enter into c%,
and cj,; see Eqgs. (46), (53), and (54) in Ref. [31]). Finally, Tayl
expands the gyro-gravitomagnetic factors of Inv in a Taylor
series. In other words, Tayl is built with the factors ¢ and g&f as
given by Ref. [25], but with rPV1# (the centrifugal radius defined
in Ref. [31]) instead of the Boyer—Lindquist-like radius r. The
usage of rPN14 for Tayl has the only goal of allowing a more
straightforward comparison against Inv and InvCal.

of an LSO for arbitrary values of the spins. By contrast,
when using inverse-resummed gyro-gravitomagnetic fac-
tors, the constantly repulsive character of the spin-orbit
interaction allows (for large, parallel spins) the sequence of
circular orbits to continue existing as the angular momen-
tum decreases, without encountering a loss of stability at
some radius.

This is illustrated in Fig. 5 which displays the effective
Hamiltonian as a function of radius, for parallel spins equal
to y; = y» = 0.65, and for three different values of the
orbital angular momentum: [ = 2.7 (left panel), [ = 2.55
(central panel), and [ =2.4 (right panel). This figure
contrasts models which exhibit an LSO for large spins
(such as tarl4 [35] and models using Taylor-expanded
gyro-gravitomagnetic factors, such as our present model,
Eq. (2.78), or a version of nag15 [33] in which ¢§" and g§f
are replaced by their Taylor-expanded form) with models
that do not, because there exists a continuous sequence of
shrinking circular orbits of smaller and smaller radii (such
as nagl5 [33]). In particular, it is instructive to compare in
Fig. 5 the three different versions of the model nagl5:
(i) the version nagl5_TaylSO (with Taylor-expanded ¢&if
and ¢&f) has an LSO and is quite close to our model
[Eq. (2.78)]; (ii) the version nagl5_NoCal (which differs
from Ref. [33] by turning off the numerical-relativity-
calibrated NNLO spin-orbit parameters) displays the
strongly repulsive character of the spin-orbit coupling at
small radii; and (iii) the original model nagl5, which
contains extra spin-orbit parameters having the property of
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FIG. 5 (color online).
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The effective Hamiltonian is plotted as a function of r for circular, equatorial orbits, for parallel spins equal to

x1 = x> = 0.65 and for three different values of the orbital angular momentum: / = 2.7 (left panel), [ = 2.55 (central panel), and [ = 2.4
(right panel). The curves tarl4 and nagl5 denote the calibrated Hamiltonians of Ref. [35] and of Ref. [33], respectively (see the
discussion about Fig. 6 for some more details); nagl5_NoCal is obtained from nag15 setting to zero the spin-orbit calibration, as well as
the two purely Schwarzschild, spinning-particle coefficients that enter into c3, and cj}, (see Eqgs. (46), (53), and (54) in Ref. [31]).
Moreover, nagl5_TaylSO is obtained from nagl5_NoCal by Taylor expanding its (NNLO) gyro-gravitomagnetic factors. Notice that
the spin-orbit sectors of nagl5, nagl5_NoCal, and nagl5_TaylSO exactly correspond to the curves InvCal, Inv, and Tayl of Fig. 4,

respectively. Finally, _TaylSO corresponds to the spin-spin model developed in this paper, with a Taylor-expande spin-orbit
ively. Finall A%dTISO ds to the spin-spi del developed in thi ith a Tayl ded NNLO spin-orbi

sector and with the same purely orbital terms of nagl5.
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FIG. 6 (color online).

—-0.8

Gauge invariant quantities (top panels: dimensionless total Kerr parameter y;; central panels: dimensionless

orbital frequency @; bottom panels: dimensionless binding energy ¢) at the LSO are plotted as a function of the spin y = y| = y,. Equal

masses are assumed.
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reducing (without cancelling) the strongly repulsive char-
acter of the spin-orbit coupling.

As a consequence, the effective potential of nagl5
exhibits (especially for / =2.4) a small “bump,” as if
the system would still be trying to develop an LSO. After
this pseudo-LSO, the system rolls down to a further stable
minimum, the existence of which is ensured by the strong
positive spin-orbit barrier. For sufficiently large spins, the
bump ceases to show up, leading therefore to a continuous
sequence of circular orbits. In that case, as for the
uncalibrated curve nagl5_NoCal in Fig. 5, the strength
of the spin-orbit barrier is such as to completely absorb the
region where the LSO would have formed.

The top panels of Fig. 6 display a plot of the dimension-
less Kerr parameter of the binary system

1 thl
X =7 ) (3-7)
v Hiop
evaluated at the LSO, where
. m m
JtotEl+_1)(1 +_2)(2 (3-8)
my my

is the dimensionless total angular momentum.

If it were measured after the whole merger-ringdown
process, y; would correspond to the dimensionless spin of
the final black hole and would therefore be expected to stay
always smaller than 1. At the LSO, however, the system
still has to radiate away energy and angular momentum. It
is therefore not worrying to find values ¥55© that (slightly)
exceed 1 for large spins y = 0.6.

The central panels plot the dimensionless angular fre-
quency

Hgop, (3.9)

SRS

o=

and the bottom panels plot the dimensionless binding
energy'’

& =vHgop — 1, (3.10)
both evaluated at the LSO. As in Fig. 5, nagl5 denotes the
calibrated Hamiltonian of Ref. [33]. We recall that, in this
model, the spin-orbit sector is complete up to NNLO and
calibrated at the next-to-next-to-next-to-leading order
(NNNLO) level, together with the inclusion of two addi-
tional, purely Schwarzschild spinning-particle terms.
Furthermore, the purely orbital coupling is complete at
4PN and is calibrated at SPN. Among all models shown in
the figure, this is the only one for which the gyro-
gravitomagnetic factors are inversely resummed. The

""Notice that & = Hgop/M — 1 when expressed in terms of the
nonreduced EOB Hamiltonian Hggg given by Eq. (2.1).
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TABLE 1. Dimensionless total Kerr parameter y;, orbital
frequency w, and binding energy e at the LSO for some values
of the spins. Both semiadditive (Add) and factorized (Fact)
resummations of A)? are shown, together with the case where

A)? is set to zero (LO).

A~ ~

X X % €
LO -1 0.5169 0.04841 —0.01078
Add 0.5154 0.04877 —0.01083
Fact 0.5148 0.04893 —0.01085
LO 0.5 0.9735 0.1441 —0.02544
Add . 0.9709 0.1456 —0.02572
Fact 0.9689 0.1472 —0.02598
LO 1 1.136 0.1723 —0.03326
Add 1.127 0.1762 —0.03450
Fact 1.118 0.1812 —0.03587

interruption of the nagl5 curves (near y = 0.65) marks
the end of the region where an LSO exists. Just before
reaching that point, a rather strong deviation from the
Taylor-spin-orbit curves is clearly visible.

The curves labeled by Aand_TaylSO denote the spin-spin
model developed in this paper, with Taylor expanded,
NNLO, r.-dependent gyro-gravitomagnetic factors, while
the orbital order is the same as in nagl5. Moreover, LOss

represents the curves that are obtained from A%d_TaylSO

by setting A)? to zero. The A%d_TayISO and LOss curves
are always quite close to each other. This shows that the
difference introduced by the NLO spin-spin coupling is
therefore rather small, and by far less important than the
effects due to the type of spin-orbit resummation. The
repulsive character of the NLO spin-spin terms, already
remarked in Sec. II'F, is clearly visible on all plots. Indeed,
the total Kerr parameter is smaller than in the LOss, which
means that the system radiates away more angular momen-
tum before reaching the end of the inspiral. Similarly, a
larger orbital frequency and binding energy are the signs of
a more bound system and thus imply the existence of an
additional repulsive effect preventing the plunge to happen
too early.

For completeness, we also show the prediction of the
uncalibrated NLO spin-spin Hamiltonian bal14 described
in Ref. [30]. It is important to remark that bal14 differs from
the model of this paper in various aspects, and in particular,
it involves a different resummation of both spin-orbit and
spin-spin couplings.

Finally, tarl4 represents the calibrated model of
Ref. [35], that encodes the NNLO spin-orbit and LO
spin-spin couplings, with a calibration at the NNNLO
and NLO levels, respectively. The orbital order is included
up to 4PN. A first aspect to be noticed is the proximity of
tar14 with nagl5 in the range of negative spins, that can be
considered as a qualitative check of the effectiveness of two
different calibrations. For positive spins, the comparison is
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affected by the different behavior of nagl5 for what
concerns the LSO.

In Table I we complement the information contained in
Fig. 6 by giving a quantitative comparison of the two
different resummation options (2.77)—(2.78) of the A
potential, for several values of the spin (namely, —1,
+0.5, and +1). The table confirms the expectation (see
Sec. II E) that the factorized (Fact) resummation is stronger
than the semiadditive (Add) one. For example, for extremal
spins, the increase in the angular frequency at the LSO due
to A)? is = 4 2% for Add and = + 5% for Fact, while the
binding energy increase is = + 4% (in agreement with the
order-of-magnitude estimation done in Sec. II[F) and
= 4 8%, respectively.

IV. CONCLUSIONS

In this paper, we have proposed a new EOB Hamiltonian
for spinning, precessing black hole binaries. Explicitly, our
Hamiltonian is of the form (2.1)—(2.2), with an orbital part of
the effective Hamiltonian obtained by combining Eqgs. (2.63),
(2.70)—(2.76), (2.77) [or (2.78)], (2.80), and (2.81) and a spin-
orbit part defined by combining Egs. (3.2)—(3.6). In particu-
lar, we have included spin-spin effects at NLO accuracy by
quadratic-in-spin modifications of the building blocks
A(r,v.a,,ay), B,(r.v.a,.a,), B,,(r.v.a;,a,) that are
present in the Hamiltonian as coefficients of (part of the)
momentum-dependent terms. Our new approach has several
simplifying features with respect to previous works. First, it
maintains a momentum dependence of the squared effective
orbital Hamiltonian (H )2 which is no more than quadratic
(for the spin-spin terms). Second, we found that it
was possible to choose a spin gauge where the most
complicated NLO spin-spin couplings « (p-a;)(p - a;)
and (n-p)(n-a;)(p-a;) could be absorbed in a simple
Kerr-like coupling « ((n X p) - ay)?, where ay =a, +a,
(witha, = 8,/m, anda, = S,/m,) denotes the spin combi-
nation describing the LO spin-spin coupling in a Kerr way.
This feature should lead to a simple description of the general
precessing spin (and precessing orbital angular momentum)
dynamics because of the privileged role of the single basic
Kerr-like vectorial spin parameter ay = a; + a,.

A further tuning allowed us to impose a Damour—
Jaranowski—Schifer-type gauge, that has the useful property
of confining all new spin-spin terms into the radial potential
A(r,v,a,,a,) as soon as the spins are aligned and the orbits
circular. The NLO spin-spin deformation of the above-
mentioned sectors is then encoded into quadratic-in-spin
forms A2, AZ, B2, and BS,, see Eqgs. (2.70)~(2.73), which
are our main results. A remarkable fact is that the coefficients
of B}? and of B,% are exactly the same. Therefore, the 25
independent coefficients that define the NLO spin-spin
Hamiltonian in ADM coordinates shrink down to only nine
in the EOB description. A further, minor symmetry property

lies in the fact that the sum of all the coefficients of AZQ and of
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A,% are equal. These features correspond to a notable
improvement with respect to the model developed in
Ref. [30], where the momentum structure of spin-dependent
terms is by far less simple (for instance, the squared effective
orbital Hamiltonian of Ref. [30] does not show a polynomial
dependence on the momenta, and furthermore no Damour—
Jaranowski—Schifer-type gauge could be imposed) and
where the number of independent NLO spin-spin coeffi-
cients to be inserted in the EOB description amounts to 12.
The quadratic forms we have found here have positive
coefficients only. However, as quadratic forms, they are
either indefinite (with a positive eigenvalue and a negative
one), degenerate (with one eigenvalue being strictly pos-
itive and the other zero), or positive definite, depending on
the value of the symmetric mass ratio v. For sufficienly low
v, the smaller eigenvalue is negative, and the form is
negative valued for particular configurations of antialigned,
or nearly antialigned, spins. By contrast, aligned configu-
rations always lead to positive values, that are moreover
much larger (by a factor ~50 — 100) than the negative
minima. For what concerns circular, equatorial orbits, one
can conclude that the NLO spin-spin effects are repulsive in
most cases, apart from very small, attractive effects that
only show up for mass ratios m;/m, > 6.34 and for
(nearly) antialigned spins. This repulsive character is
clearly visible when comparing the total angular momen-
tum, angular frequency, and binding energy at the LSO
with the corresponding prediction of the Hamiltonian
without the NLO spin-spin inclusion. We propose two
different options for resumming the quadratic form A2 a
semiadditive and a factorized one. The ultimate choice of
the best resummation option can only be done with a
systematic comparison against numerical relativity simu-
lations. We expect our new Hamiltonian, once calibrated, to
mark a new step toward an accurate description of the
coalescence of two precessing, spinning black holes.
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APPENDIX: HIDDEN SYMMETRY OF THE NLO
SPIN-SPIN COUPLING

We have seen in the text that the (effective) EOB
Hamiltonian was exhibiting six remarkable cancellations
and/or coincidences among the spin-quadratic forms
describing the NLO spin-spin coupling. Namely, in our
preferred gauge fixing, these six remarkable symmetries
amounted to the equations (i, j =1, 2)

np.ny
bij™* =0, ij

biP = b, (A1)
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These six symmetries, together with the appropriate use of
the ten NLO gauge parameters contained in GN-°, have
allowed us to end up with a final EOB Hamiltonian
containing only nine different coefficients to describe the
NLO spin-spin sector, when starting from the ADM spin-
spin Hamiltonian which contained 25 different NLO spin-
spin coefficients. In this Appendix, we trace the origin of
these six symmetries in the original ADM Hamiltonian. Let
us denote the momentum-dependent part of a NLO spin-spin
Hamiltonian as

A 1 ii ii
H2L0|p—dep = F [(Cljpz + CZJ(n p)2)(;(1 Z])
+ (P + ¢ (n-p)H)(n-2)(n 1)
+espexi)p-x;)+cg(n-p)p-xi)(n-x;)l-
(A2)
Because of the variation structure described by Eq. (2.35),
under a canonical transformation

2 NLO
ss

ANOAPM) L (GNLO Frd (A3)
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one can easily check that the combinations 3c2j + c;j , 5céj +
¢ and —2¢7 + 3¢ 4+ ) are gauge invariant. We can
further check (from the explicit expressions of the ADM

coefficients) that the six following gauge-invariant combi-
nations of coefficients happen to vanish:

ij

3¢ 4 ¢ + ¢ + %“ =0 (Ada)
T ST )
3ei +ef + i —Sef - 67 =0. (Adb)

One can consider that the six identities (A4) constitute the
hidden origin of the six (more manifest) relations (A1) found
in their EOB transcription. In that sense, one can say that the
EOB formulation is useful in revealing, and making manifest,
symmetries that existed, in a hidden way, as six relations
between the 25 original ADM coefficients, so that, finally,
there is, as expected, a conservation of linearly independent
NLO spin-spin coefficients, with 9 =25 — 10(gauge)—
6(relations).
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