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We present a new effective-one-body (EOB) Hamiltonian with next-to-leading order (NLO) spin-spin
coupling for black hole binaries endowed with arbitrarily oriented spins. The Hamiltonian is based on the
model for parallel spins and equatorial orbits developed in [Physical Review D 90, 044018 (2014)] but
differs from it in several ways. In particular, the NLO spin-spin coupling is not incorporated by a
redefinition of the centrifugal radius rc but by separately modifying certain sectors of the Hamiltonian,
which are identified according to their dependence on the momentum vector. The gauge-fixing procedure
we follow allows us to reduce the 25 different terms of the NLO spin-spin Hamiltonian in Arnowitt–Deser–
Misner coordinates to only nine EOB terms. This is an improvement with respect to the EOB model
recently proposed in [Physical Review D 91, 064011 (2015)], where 12 EOB terms were involved. Another
important advantage is the remarkably simple momentum structure of the spin-spin terms in the effective
Hamiltonian, which is simply quadratic up to an overall square root. Moreover, a Damour–Jaranowski–
Schäfer-type gauge could be established, thus allowing one to concentrate, in the case of circular and
equatorial orbits, the whole spin-spin interaction in a single radial potential.
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I. INTRODUCTION

The increasing interest in the modeling of gravitational
waveforms from coalescing binaries, strongly motivated
by the construction of ground-based detectors such as
Virgo [1] or the now operating advanced LIGO [2] instru-
ments, has led in the last decade to a significant effort in
calculating spin effects in the post-Newtonian (PN) two-
body problem beyond the leading order (LO). The spin-orbit
coupling at the next-to-leading order (NLO) was first
derived in harmonic coordinates [3,4] and then within an
Arnowitt–Deser–Misner (ADM) formalism [5]. The ADM
approach (see especially the formalism developed in
Ref. [6]) has been quite fruitful, since it has also allowed
the calculation of the next-to-next-to-leading order (NNLO)
spin-orbit coupling [7,8] and of the NLO spin-spin1 cou-
pling [9–11]. A method based on Effective Field Theory
techniques [12] has also been able to derive the same results
(see, e.g., Ref. [13]) and is expected to complete soon the
(full, physically relevant) spin-spin coupling at the NNLO
accuracy [14].
Past work has shown that the most efficient way of using

PN-expanded results to describe the dynamics of coalesc-
ing binaries is to encode them into an effective-one-body
(EOB) model [15–19]. This objective has been pursued in
different versions of the EOB [18,20–27] for both the

spin-orbit coupling (up to NNLO) and the spin-spin
coupling (up to LO).
More recently, an EOB Hamiltonian reproducing the

correct NLO spin-spin coupling has been proposed [28–30],
where the terms in question are included by a subleading-
order modification of various squared-spin terms. An
unpleasant feature of this approach is that the so-obtained
effective squared spin acquires a momentum dependence
that cannot be removed by any gauge tuning and that greatly
complicates the analytic form of the Hamiltonian. In
addition, the momentum-dependent terms in question are
nonzero even in the most simple case of circular and
equatorial orbits, which prevents one from having a direct
insight into the dynamics bymeans of a radial potentialA, as
is the case for the models with just LO spin-spin coupling
(see, e.g., Refs. [18,20,21,25]).
Recently, Ref. [31] has proposed a new EOB description

of binary black holes with parallel spins, moving along
equatorial orbits. The EOB Hamiltonian of Ref. [31]
incorporates a reformulation of the NLO spin-spin terms
of Ref. [28] but presents some basic structural differences
with respect to Refs. [18,21,28,30]. The most important
ones are the introduction of a new variable (the centrifugal
radius rc), which plays a central role for the description of
quadratic spin effects, and a simplification of the spin-orbit
structure.
The present work is meant as an improvement of both

Ref. [30] and Ref. [31]. It will overcome the problematic
features of Ref. [30] discussed above, while staying as

1In this paper, “spin-spin” refers to any interaction quadratic in
the spins, i.e., ∝ S21, S

2
2, and S1S2.
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close as possible to the new formalism and ideas introduced
in Ref. [31]. Our final result will be an EOB Hamiltonian
describing arbitrarily oriented spinning black holes of which
the structure is physically transparent and quite close to that
of the Hamiltonian describing the dynamics of a test particle
in a Kerr background. As a bonus, our Hamiltonian will
make manifest six hidden symmetries of the NLO spin-spin
coupling, thereby allowing one to describe the latter cou-
pling by means of only nine terms (instead of the 25 terms
present in their ADM formulation).
In Sec. II, which is the core of the paper, our whole

procedure is sequentially presented until the main results
are obtained; in particular, Sec. II A revisits the Kerr
Hamiltonian and develops, from this limiting case, the basic
ideas to be applied in the EOB case; Sec. II B introduces the
EOB model from which we start, and Sec. II C defines the
transformation between the ADM and EOB coordinates;
Sec. II D discusses two possible gauge choices, eventually
opting for a single one, which leads to an identification of
some forms quadratic in the spins that must be inserted into
the EOB model to reproduce the NLO spin-spin coupling;
Sec. II E proposes a resummation of the results into a final
EOB Hamiltonian; Sec. II F provides a more detailed
description of the quadratic forms, with some details about
their eigenvalue decomposition and their positivity proper-
ties. In Sec. III, the spin-orbit sector is discussed with some
emphasis about the resummation choices of the gyro-
gravitomagnetic factors. The physical characteristics of
the last stable orbit (LSO) for equal masses and equal,
aligned spins are then computed and compared with the
predictions of other EOB models. Finally, the Appendix
briefly discusses some unexpected “symmetries” in the
coefficients of the quadratic forms. Througout the paper
we use geometrical units with G≡ c≡ 1.

II. NEW EFFECTIVE-ONE-BODY DESCRIPTION
OF THE NEXT-TO-LEADING ORDER

SPIN-SPIN COUPLING

Let us recall that one of the basic features of the EOB
formalism is to represent the Hamiltonian of a (comparable-
mass and comparable-spin) two-body system in the form

HEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μ
− 1

�s
; ð2:1Þ

where the “effective” Hamiltonian Heff is a deformed
version of the Hamiltonian describing the dynamics of a
(spinning) test particle in a Kerr background. The EOB
effective Hamiltonian is decomposed as

Heff ¼ Horb þHso; ð2:2Þ

where the spin-orbit part Hso gathers the contributions that
are odd in the spins (i.e., linear, cubic, etc.), while the

orbital partHorb gathers those that are even in the spins (i.e.,
spin independent, and then quadratic, quartic, etc.).

A. Structure of the Kerr Hamiltonian in
Cartesian-like coordinates

As an orientation toward defining a new EOB
Hamiltonian incorporating NLO spin-quadratic effects,
let us reexamine the structure of the limiting case (to
whichHeff should reduce in the extreme mass ratio limit) of
the Hamiltonian of a (nonspinning) test particle in a Kerr
background. For this Kerr dynamics, and for the special
case of equatorial orbits, Ref. [31] has highlighted the role
played by the centrifugal radius

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 þ 2Ma2

r

r
; ð2:3Þ

where r is the Boyer–Lindquist radial coordinate. In
Eq. (2.3), M denotes the mass of the considered Kerr
black hole and a its Kerr parameter. The orbital sector of
the test-particle Kerr Hamiltonian [after setting apart,
similarly to Eq. (2.2), its spin-orbit sector] takes the form
(in polar coordinates)

HKerr
orb;eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aeqðrc; aÞ

�
μ2 þ p2

r

Beqðrc; aÞ
þ p2

φ

r2c

�s
: ð2:4Þ

Here, μ denotes the mass of the test particle.2 We see in
Eq. (2.4) that the angularmomentumdependence is encoded
in the centrifugal term p2

φ=r2c, involving the centrifugal
radius rc. The construction of the EOBmodel of Ref. [31] is
based upon the idea of exploiting the role of rc. In addition, it
was suggested to incorporate NLO spin-spin effects (though
only for circular orbits) by redefining the relation between rc
and the Boyer–Lindquist-like coordinate r, by adding to a a
new, radial-dependent spin-quadratic term δa2ðrÞ. This
model can be extended without particular problems to
equatorial, noncircular orbits. For example, the missing
NLO spin-spin terms can be reproduced by a pr-dependent
term of the type

�
1þMδa2pr

r3

�
p2
r

Beq

(where δa2pr
is an appropriate quadratic combination of the

individual spin parameters a1 and a2), or alternatively by a
modification of the r − rc relation inside of Beq.
In the presentwork, our aim is to define anEOBdynamics

which is able to give the simplest possible description of

2One of the features of the EOB formalism is that, after
suitably deforming the Kerr Hamiltonian, it will be possible to
replace μ by the reduced mass of the binary system,
μ≡m1m2=ðm1 þm2Þ, to describe the two-body effective
Hamiltonian Heff entering Eq. (2.1).
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general, precessing spinning binary systems with arbitrarily
oriented spins.When both spins, as well as the orbital plane,
precess, there no longer exist useful analogs of the z-axis and
associated structures (equatorial plane, angular momentum
pφ) that motivated the emphasis on the centrifugal radius

(2.3) and the associated form (2.4) of the Kerr Hamiltonian.
This motivates us to reexamine the structure of the Kerr
Hamiltonian when it is written in (Boyer–Lindquist-
based) Cartesian-like coordinates r ¼ ðx; y; zÞ, with x ¼
r sin θ cosφ, y ¼ r sin θ sinφ, z ¼ r cos θ, namely,

HKerr
orb ¼


Δðr2 þ ðn · aÞ2Þ
R4 þ Δðn · aÞ2

�
μ2 þ 1

1þ ðn·aÞ2
r2

�
p2 þ

�
Δ
r2

− 1

�
ðn · pÞ2 − ðr2 þ 2rþ ðn · aÞ2Þ

R4 þ Δðn · aÞ2 ððn × pÞ · aÞ2
��vuut ; ð2:5Þ

where r≡ rn and

Δ ¼ r2 − 2Mrþ a2 ð2:6Þ

R4 ¼ r4 þ r2a2 þ 2Mra2 ¼ r2r2c: ð2:7Þ

In this reformulation, the centrifugal term p2
φ=r2c has been

split in two parts. It is now contained in both the p2

contribution [with p2 ≡ p2
r þ p2

θ=r
2 þ p2

φ=ðr2 sin2 θÞ] and
in the term ððn × pÞ · aÞ2 (which is equal to a2p2

φ=r2 because
a ¼ jaj∂=∂z). Bringing these two parts together, and con-
sidering for simplicity equatorial orbits3 ðn · aÞ ¼ 0, the
centrifugal radius rc emerges from the identity

1

r2

�
1 −

a2

R4
ðr2 þ 2rÞ

�
¼ 1

r2c
: ð2:8Þ

The Kerr Hamiltonian written as in Eq. (2.5) will be the
starting point of the newEOBmodel; i.e., wewill look for an
EOB effective, orbital Hamiltonian Heff

orb which is the
simplest possible deformation of Eq. (2.5). Let us introduce
specific notations for the coefficients of the various con-
tributions as they appear in Eq. (2.5), namely,

HKerr
orb ¼ ½AKerrðμ2 þ BKerr

p p2 þ BKerr
np ðn · pÞ2

þ BKerr
εnp ððn × pÞ · aÞ2Þ�1=2: ð2:9Þ

We have thereby distinguished four principal sectors in
HKerr

orb . The first sector, described by the overall factor
AKerrðr; aÞ, is an anisotropic (spin-dependent) gravitational
potential which generalizes the Schwarzschild (isotropic)
potential 1 − 2M=r. It reads

AKerrðr; aÞ ¼ Δðr2 þ ðn · aÞ2Þ
R4 þ Δðn · aÞ2

¼ AKerr;eqðrcÞ
1þ ðn·aÞ2

r2

1þ Δðn·aÞ2
r2r2c

; ð2:10Þ

where AKerr;eq denotes the equatorial Kerr radial potential,
given by

AKerr;eqðrcÞ ¼
�
1 −

2M
rc

�
1þ 2M

rc

1þ 2M
r

: ð2:11Þ

As emphasized in Ref. [31], AKerr;eqðrcÞ is a small defor-
mation of 1 − 2M

rc
, even for large spins. The explicit ex-

pression of the remaining functions BKerr
p , BKerr

np , and BKerr
εnp

can be deduced by a straightforward comparison with
Eq. (2.5), for instance BKerr

p ¼ 1=ð1þ ðn · aÞ2=r2Þ.
We now take the square ðHKerr

orb Þ2 of the Kerr
Hamiltonian, which is a quadratic function of the momenta,
and investigate the momentum dependence of the spin-
quadratic terms generated by each sector (without speci-
fying the radial behavior ∼1=rn, n ≥ 3). More precisely, we
formally expand the four separate building blocks AKerr,
BKerr
p , BKerr

np , and BKerr
εnp in powers of a (keeping r fixed) and

retain only the terms quadratic in spin (spin-spin terms). We
immediately observe that:

(i) all momentum-independent terms a2 and ðn · aÞ2 are
encoded in the radial potential AKerrðr; aÞ.

(ii) the spin-spin terms contained in BKerr
p p2 and BKerr

np ðn ·
pÞ2 can only be of the types p2a2, p2ðn · aÞ2 and
ðn · pÞ2a2, ðn · pÞ2ðn · aÞ2, respectively.

(iii) as the last contribution BKerr
εnp ððn × pÞ · aÞ2 includes,

as second factor, a term quadratic in a, its spin-spin
contribution only comes from the latter factor,
namely, ððn×pÞ·aÞ2. When decomposed in elemen-
tary scalar product factors, the squared triple product
ððn × pÞ · aÞ2 is found to be a combination of six
different terms: the four terms p2a2, p2ðn · aÞ2,
ðn · pÞa2, ðn · pÞ2ðn · aÞ2 that appeared in ii), together
with two new couplings ðp · aÞ2 and ðn · pÞðn · aÞðp ·
aÞ (see Eq. (3.9) of Ref. [30]).

3Let us, however, recall in passing that rc, Eq. (2.3), continues
to play a central role even for nonequatorial orbits, modulo the
introduction of a “cos θ-dressing factor”; see Eq. (2.2) in
Ref. [31].
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The fact that every sector plays a rather individual role
suggests a natural procedure for including the NLO spin-
spin coupling into a new EOBHamiltonian. This will be the
topic of the next subsection.

B. Effective-one-body orbital Hamiltonian

The idea at the basis of our new EOB Hamiltonian is to
write the orbital part of the EOB effective HamiltonianHeff

orb
in the same form as Eq. (2.9), but with (momentum-
independent) coefficients Aðr; ν; a1; a2Þ, Bpðr; ν; a1; a2Þ,
Bnpðr; ν; a1; a2Þ, and Bεnpðr; ν; a1; a2Þ that are appropriate
deformations of the coefficients AKerrðr; aÞ, BKerr

p ðr; aÞ,
BKerr
np ðr; aÞ, and BKerr

εnp ðr; aÞ. To be fully explicit, the structure
of our new EOB Hamiltonian is given by Eq. (2.1), with
Heff of the form Eq. (2.2). In the latter equation, the spin-
orbit part is taken of the general form

Hso ¼ GSL · SþGS�L · S�; ð2:12Þ
in terms of the following symmetric combinations of the
two spin vectors:

S≡ S1 þ S2 ≡m1a1 þm2a2; ð2:13Þ

S� ≡m2

m1

S1 þ
m1

m2

S2 ≡m2a1 þm1a2: ð2:14Þ

The factors GS and GS� in Eq. (2.12) are functions of r, p,
a1, and a2 and are even in the spin vectors. They are not the
focus of the present work (see, however, below for more
discussion of them).
In the present paper, we focus on a new definition of the

spin-quadratic contribution of an effective orbital EOB
Hamiltonian Heff

orb having the following structure:

Heff
orb ¼ ½Aðr; ν; a1; a2Þðμ2 þ Bpðr; ν; a1; a2Þp2

þ Bnpðr; ν; a1; a2Þðn · pÞ2
þ Bεnpððn × pÞ · aÞ2-like termsþQ4Þ�1=2; ð2:15Þ

where the structure of the last-indicated contribution on the
rhs of Eq. (2.15) will be discussed below.
Let us start by specifying the structure that we shall

require for the dependence of the EOB potentials A, Bp, and
Bnp on themass ratio4 ν and the two individual vectorialKerr
parameters of the two black holes a1 ≡ S1=m1, a2 ≡ S2=m2.
We recall [18] that an effective orbital Hamiltonian with the
correct LO spin-spin coupling is simply obtained by
replacing the Kerr spin vector a entering Eq. (2.5) by the
following effective spin vector:

a0 ≡ a1 þ a2: ð2:16Þ

In addition to the replacement (2.16), the twomasses,M and
μ, entering the Kerr dynamics are replaced by

M ¼ m1 þm2; μ ¼ m1m2

m1 þm2

: ð2:17Þ

This suggests to look for EOB potentials A, Bp, Bnp of the
form

Aðr; ν; a1; a2Þ ¼ AνK0ðr; ν; a0Þ þ δA; ð2:18Þ

Bpðr; ν; a1; a2Þ ¼ BνK0
p ðr; ν; a0Þ þ δBp; ð2:19Þ

Bnpðr; ν; a1; a2Þ ¼ BνK0
np ðr; ν; a0Þ þ δBnp; ð2:20Þ

whereAνK0 ,BνK0
p ,BνK0

np are some ν-deformed versions of the
Kerr-like potentials defined by replacing a by a0 in the
potentialsAKerr,BKerr

p ,BKerr
np enteringEq. (2.9) andwhere δA,

δBp, δBnp are additional NLO spin-spin contributions.
Explicitly, following Ref. [31], (except for the treatment
of NLO spin-spin effects), we shall take

AνK0ðr; ν; a0Þ ¼ Aeqðrc; ν; a0Þ
1þ ðn·a0Þ2

r2

1þ Δðr;a0Þðn·a0Þ2
r2r2c

; ð2:21Þ

as the ν-deformed5, LO spin-spin, Kerr-like A potential.
Here,

Aeqðrc; ν; a0Þ ¼ Aorbðrc; νÞ
1þ 2M

rc

1þ 2M
r

; ð2:22Þ

with

Aorbðrc; νÞ≡ P1
5

�
APN
orb

�
M
rc

; ν

��
; ð2:23Þ

where P1
5½APN

orb� denotes the (1,5)-Padé resummation of the
5PN-level, Taylor-expanded orbital radial potential. More
precisely, we use Eqs. (28)–(29) in Ref. [31] together with
the exact value of ac5ðνÞ [32] and the recent calibration
ac6ðνÞ ¼ 3097.3ν2 − 1330.6νþ 81.38 [33] (instead of the
values for ac5 and a65 that were employed in Ref. [31]).

4We shall use here the conventionm1 ≥ m2 so that all the mass
ratios can be expressed in terms of ν ¼ m1m2=ðm1 þm2Þ2. E.g.,
X1≡m1=ðm1þm2Þ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1−4ν
p Þ=2, X2 ≡m2=ðm1 þm2Þ ¼

ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p Þ=2.

5For the purpose of this article, it is not necessary to be careful
about the ν deformations of A and Bnp, since the NLO spin-spin
coupling is not affected by them. Indeed, neither A nor Bnp contain
ν-dependent terms at the 1PN level, and thus there is no coupling
of this type with the LO spin-spin part leading to NLO spin-spin
terms. However, an influence of the purely orbital
ν-deformation on the spin-spin sector is still present in the
transformation between ADM and EOB coordinates, and also
in the transformation between the effective and EOBHamiltonians.
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Here, and in the following, rc is defined as being the
following function of r and a0:

rc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a20 þ

2M
r

a20

r
: ð2:24Þ

As for the other Kerr-like EOB potentials, we take

BνK0
p ¼ 1

1þ ðn·a0Þ2
r2

; ð2:25Þ

BνK0
np ¼ 1

1þ ðn·a0Þ2
r2

�
Aeqðrc; ν; a0Þ
Dorbðrc; νÞ

r2c
r2

− 1

�
; ð2:26Þ

where Aeqðrc; ν; a0Þ was defined in Eq. (2.22) above and
where Dorbðrc; νÞ is defined by Eq. (33) of Ref. [31] with
uc ≡M=rc. Finally, the quartic-in-momenta term Q4 that
has to be added to the four main summands inside the
effective Hamiltonian is defined by Eq. (35) in Ref. [31].

C. Canonical transformation from ADM to EOB

To determine the additional, NLO spin-spin terms
δA, δBp, δBnp in Eqs. (2.18)–(2.20) [as well as the
NLO-accurate Bεnpððn × pÞ · aÞ2-like terms in Eq. (2.15)],
we need to transform the ADMNLO spin-spin Hamiltonian

HNLOðADMÞ
ss [9–11,13] into a corresponding EOB

Hamiltonian by means of a suitable canonical transforma-
tion. As in Refs. [28,30], this will be done by composing
three successive canonical transformations. The first trans-
formation G1PN

o ðr; pÞ (given by Eqs. (6.15)–(6.16) in
Ref. [15]) is of a purely orbital type and has the following
effect on spin-spin terms:

HNLO0
ss ¼ HNLOðADMÞ

ss þ fG1PN
o ; HLOðADMÞ

ss g: ð2:27Þ

It is followed by a LO spin-spin canonical transformation
GLO

ss ðr; p; S1; S2Þ (given by Eq. (5.15) in Ref. [23], see also
Eq. (3.16) of Ref. [30]) yielding a further modification of
spin-spin terms:

HNLO00
ss ¼ HNLO0

ss þ fGLO
ss ; H1PN0

o g; ð2:28Þ

where

H1PN0
o ¼ H1PNðADMÞ

o þ fG1PN
o ; HNðADMÞ

o g: ð2:29Þ

Finally, we perform a NLO spin-spin canonical transforma-
tion GNLO

ss ðr; p; S1; S2Þ (the structure of which will be
discussed below) yielding a last modification of spin-spin
terms

HNLO000
ss ¼ HNLO00

ss þ fGNLO
ss ; HNg: ð2:30Þ

HNLO000
ss must then be equal to the corresponding term in the

PN expansion of the EOB Hamiltonian we are seeking. It is
convenient to focus the attention onto the squared effective
orbital Hamiltonian ðHeff

orbÞ2, which has an intuitive struc-
ture. Because of the relation

Ĥeff ¼ 1þ ĤNR
EOB þ ν

2
ðĤNR

EOBÞ2; ð2:31Þ

where HNR
EOB ≡HEOB −M is the “nonrelativistic” EOB

Hamiltonian, and where the hat denotes a μ-scaling
Ĥ ≡H=μ, Ĝ≡G=μ, we are left with the condition

ðĤeff
orbÞ2jNLOss ¼ 2ðĤNLO000

ss þ ð1þ νÞĤNðĤLOðADMÞ
ss

þ fĜLO
ss ; ĤNgÞÞ; ð2:32Þ

where the notation on the lhs simply denotes the NLO spin-
spin part of the PN expansion of ðĤeff

orbÞ2. In other words, our
problem is to find a suitable GNLO

ss such that the rhs of
Eq. (2.32) is equal to the NLO spin-spin contribution to the
expression

ðHeff
orbÞ2 ¼ ½ðAνK0 þ δAÞðμ2 þ ðBνK0

p þ δBpÞp2
þ ðBνK0

np þ δBnpÞðn · pÞ2
þ Bεnpððn × pÞ · aÞ2-like termsþQ4Þ�1=2;

ð2:33Þ

with appropriate NLO spin-spin terms δA, δBp, δBnp and
with a suitable NLO-accurate EOB version of the
ððn × pÞ · aÞ2 term in the Kerr Hamiltonian (2.5).
We introduce at this point a change in the notation.

Since NLO spin-spin terms are more conveniently
expressed by dimensionless quantities, we will from now
on only make use of the dimensionless rescaled variables
r̂≡ r=M, r̂c ≡ rc=M, p̂≡ p=μ, χ 1 ≡ a1=m1, χ 2 ≡ a2=m2,
χ 0 ≡ a0=M, Ĥ ≡H=μ, and Ĝ≡ G=μ. However, in order to
lighten the notation, we will omit displaying the hats on the
dynamical variables r, rc, and p.
Before evaluating Eq. (2.32), it is necessary to specify

the form of the canonical transformation (2.30). In
Ref. [30], the generating function ĜNLO

ss had been chosen
in a rather general way, which involved terms cubic in the
momenta. The latter terms gave rise, in the Hamiltonian, to
NLO spin-spin terms that were quartic in the momenta. The
presence of such terms is a feature not shared by the ADM
Hamiltonian but was related to the idea of defining, in the
EOB formalism, an “effective spin” that may also depend
on p2 and ðn · pÞ2, thereby introducing higher powers of the
momenta.
In this paper, by contrast, wewant to hold the dependence

on the momenta as simple as possible. We found it possible
to end up with a squared effective EOB Hamiltonian
involving only quadratic-in-momenta spin-spin terms by
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choosing anNLOspin-spin generating function ĜNLO
ss which

is only linear in momenta (rather than cubic as in Ref. [30]).
[This fact relies on the combined structure of the LO spin-
spin canonical transformation GLO

ss [23] (going from ADM
coordinates to Boyer–Lindquist coordinates) and of the
nonlinear transformation relating the effective Hamiltonian
to the real one.] Among the 33 gauge coefficients taken into
account in Ref. [30] for ĜNLO

ss , we only need to maintain ten
of them.6 We thus consider a generating function of the
following form7:

ĜNLO
ss ¼ ðn · pÞ

r2
ðαijðχ i · χ jÞ þ βijðn · χ iÞðn · χ jÞÞ

þ 1

r2
γijðn · χ iÞðp · χ jÞ; ð2:34Þ

wherewe use the summation convention on the spin labels i,
j ¼ 1, 2, and where the coefficients αij and βij are assumed
to be symmetric, while γij ≠ γji.
The change induced by ĜNLO

ss in the Hamiltonian is

fĜNLO
ss ; ĤNg ¼ 1

r3

��
αijp2 − 3αijðn · pÞ2 − αij

r

�
ðχ i · χ jÞ

þ
�
βijp2 − 5βijðn · pÞ2 − βij þ γðijÞ

r

�

× ðn · χ iÞðn · χ jÞ þ γðijÞðp · χ iÞðp · χ jÞ
þ ð2βij − 3γijÞðn · pÞðn · χ iÞðp · χ jÞ�;

ð2:35Þ

where we have introduced the symmetrized coefficients
γðijÞ ≡ ðγij þ γjiÞ=2 in order to point out that the only term
which is not symmetric under exchange of the indices i and
j is the last one, i.e., −3γijr−3ðn · pÞðn · χ iÞðp · χ jÞ. We will
show in the next subsection why γij must contain an
antisymmetric part γ½ij� and how γ½ij� can be used to yield a
simple Heff

orb.

D. Gauge choice

One of the useful features of the EOB formalism is to use
canonical transformations as gauge transformations able
(after some gauge choice) to simplify the structure of PN-
expanded Hamiltonians. Here, we shall apply this philoso-
phy to the NLO spin-spin Hamiltonian. The original NLO
spin-spin Hamiltonian, obtained in the ADM gauge in
Refs. [9–11], contains 25 different terms in the center-of-
mass frame [see Eq. (2.9a) of Ref. [28], which accounts
for both spin(1)-spin(1) and spin(2)-spin(2) terms, and
Eq. (3.15) of Ref. [30] [spin(1)-spin(2)] for a center-of-mass
formulation]. [This is the generic number of terms for an
NLO spin-spin Hamiltonian which is at most quadratic in
momenta, as theADMspin-spinHamiltonian happens to be.]
As we have introduced in Eq. (2.34) a NLO spin-spin
transformation involving ten arbitrary parameters (αðijÞ,
βðijÞ, γðijÞ, and γ½12�), we expect to be able to end up with
a simplified EOB NLO spin-spin Hamiltonian containing at
most 15 different terms. In particular, wewish to simplify the
a priori most complicated sector of the ADM Hamiltonian
(and of its generic EOB counterpart), namely, the sector
comprising the seven different terms

ðp · χ iÞðp · χ jÞ and ðn · pÞðn · χ iÞðp · χ jÞ ð2:36Þ

appearing in the last two contributions on the rhs of
Eq. (2.35). As discussed above, in the Kerr case (with only
one χ ), these couplings came out of the decomposition of the
Kerr coupling Bεnpððn × pÞ · aÞ2 into elementary product
factors.We found it convenient to use the freedomof ĜNLO

ss to
impose that the EOB sector containing the seven different
terms (2.36) take the following maximally simplified form,

BKerr
εnp ðr; a0Þððn × pÞ · a0Þ2; ð2:37Þ

differing by its Kerr counterpart [last terms on the rhs of
Eq. (2.5)] only by the replacement a → a0 ≡ a1 þ a2. It is
easily checked that this requirement uniquely fixes 7 degrees
of freedom in ĜNLO

ss , in determining the gauge parameters
βðijÞ and γij [which, as exhibited in Eq. (2.35), entered the
gauge variation of the seven terms (2.36)].
More precisely, these seven gauge parameters must take

the values

β11 ¼ −
�
1

2
þ 3

4
ν

�
ðX1 − νÞ ð2:38aÞ

β22 ¼ −
�
1

2
þ 3

4
ν

�
ðX2 − νÞ ð2:38bÞ

β12 ¼ β21 ¼ −
�
1

2
þ 3

4
ν

�
ν ð2:38cÞ

and

6The 23 coefficients that we discard here are all those cubic in
p. Each of them leads, after the Poisson bracket with the
Newtonian Hamiltonian, to terms quartic in the momenta. An
explicit calculation easily shows that the so-obtained 23 quartic
expressions are linearly independent in the 32-dimensional space
of NLO spin-spin polynomials that are quartic in the momenta,
the basis of which is defined by scalars of the type p4ðχ i · χ jÞ=r2,
ðn · pÞ4ðχ i · χ jÞ=r2, and so on. There is therefore no way of tuning
these 23 coefficients, apart from setting all of them to zero, that
prevents the transformed Hamiltonian from being quartic in the
momenta.

7We warn the reader that the nomenclature of the gauge
coefficients differs significantly from the one used in
Refs. [28,30]. In particular, the coefficients α, β, and γ used
here correspond to γðχÞ, γðnÞ, and γðnpÞ in Ref. [30]. The reason
beyond these choices has been that of favoring the readability and
self-consistence of this paper over the continuity with respect to
Ref. [30].
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γ11 ¼ X1 − ν −
ν2

4
ð2:39aÞ

γ22 ¼ X2 − ν −
ν2

4
ð2:39bÞ

γ12 ¼
ν

2
X1 −

ν2

4
ð2:39cÞ

γ21 ¼
ν

2
X2 −

ν2

4
: ð2:39dÞ

Note that, in the limit m2 ≪ m1 (under which X2 → 0,
X1→1, ν → 0), we have β11 → − 1

2
and γ11 → 1, which is a

necessary requirement for the structure of ĜNLO
ss (as dis-

cussed in Refs. [28,30]). Note also that the antisymmetric
part of γij is fixed to the value

γ½ij� ¼
ν

4
ðXi − XjÞ: ð2:40Þ

It is easily checked [using Eq. (2.35)] that this value
allows one to gauge away the antisymmetric-looking8

ADM term [11]

ĤNLOðADMÞ
ss;antis: ¼ 3

4
ν
ðn · pÞ
r3

ðX1 − X2Þððn · χ 1Þðp · χ 2Þ
− ðn · χ 2Þðp · χ 1ÞÞ; ð2:41Þ

so as to end up with a symmetric contribution
∝ ðn · χ 1Þðp · χ 2Þ þ ðn · χ 2Þðp · χ 1Þ of the type contained
in the expansion of the term ððn × pÞ · a0Þ2.
Having fixed the Bεnpððn × pÞ · aÞ2 sector by using the

seven gauge parameters βðijÞ γij, we are left with the three
gauge parameters αðijÞ to simplify the NLO contributions
δA, δBp, and δBnp to the remaining physical sectors of the
NLO spin-spin EOB Hamiltonian. As we started from 25
different contributions and used only seven gauge param-
eters, we would expect δA, δBp, and δBnp to involve
25 − 7 ¼ 18 different contributions, in the form of six
different quadratic forms in the two spin vectors. More
specifically, one can a priori decompose δA, δBp, and δBnp

in the form

δA ¼ 1

r4
ðAQ

χ − AQ
nχÞ ð2:42Þ

δBp ¼ 1

r3
ðBQ

p;χ − BQ
p;nχÞ ð2:43Þ

δBnp ¼ 1

r3
ðBQ

np;χ − BQ
np;nχÞ ð2:44Þ

(where the minus signs are introduced for later conven-
ience), with six (symmetric) quadratic forms

AQ
χ ¼ aχijðχ i · χ jÞ ð2:45Þ

AQ
nχ ¼ anχij ðn · χ iÞðn · χ jÞ ð2:46Þ

BQ
p;χ ¼ bp;χij ðχ i · χ jÞ ð2:47Þ

BQ
p;nχ ¼ bp;nχij ðn · χ iÞðn · χ jÞ ð2:48Þ

BQ
np;χ ¼ bnp;χij ðχ i · χ jÞ ð2:49Þ

BQ
np;nχ ¼ bnp;nχij ðn · χ iÞðn · χ jÞ: ð2:50Þ

[Note that the summation convention on the indices i; j
means that, e.g., AQ

χ ¼ aχ11χ
2
1 þ 2aχ12ðχ 1 · χ 2Þ þ aχ22χ

2
2.] A

first remarkable finding is that our request of having the
simple, Kerr-like form (2.37) implies another simplification
for free. Namely, we find that the three coefficients

bnp;nχij ¼ 0; ð2:51Þ

so that the second quadratic form, BQ
np;nχ , entering δBnp

simply vanishes. We also find that the coefficients of the
second quadratic forms AQ

nχ and BQ
p;nχ entering δA and δBp

are uniquely fixed to the values

anχ11 ¼
�
2νX1 þ

5

2
ν2
�

ð2:52aÞ

anχ22 ¼
�
2νX2 þ

5

2
ν2
�

ð2:52bÞ

anχ12 ¼ anχ21 ¼
�
3

2
ν −

7

2
ν2
�

ð2:52cÞ

bp;nχ11 ¼
�
9νX1 −

15

4
ν2
�

ð2:53aÞ

bp;nχ22 ¼
�
9νX2 −

15

4
ν2
�

ð2:53bÞ

bp;nχ12 ¼ bp;nχ21 ¼
�
3νþ 9

4
ν2
�
: ð2:53cÞ

Let us now consider the three remaining quadratic forms
[linear in ðχ i · χ jÞ] AQ

χ , B
Q
p;χ , and BQ

np;χ . These three forms
are not fixed by our previous request because they depend
on the three gauge parameters αðijÞ, which are still free at
this stage. In view of Eq. (2.35) [keeping in mind the factor
2 in Eq. (2.32)] the effect of a gauge shift δαij on the three

quadratic forms AQ
χ , B

Q
p;χ , and BQ

np;χ is
8Note, however, that this term is symmetric under the com-

bined permutation X1 ↔ X2, χ 1 ↔ χ 2.
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δAQ
χ ¼ −2δαijðχ i · χ jÞ ð2:54Þ

δBQ
p;χ ¼ 2δαijðχ i · χ jÞ ð2:55Þ

δBQ
np;χ ¼ −6δαijðχ i · χ jÞ: ð2:56Þ

In view of these transformation properties, we could use the
αij-freedom to set to zero any of the three forms AQ

χ , B
Q
p;χ ,

and BQ
np;χ . Setting to zero AQ

χ does not seem physically
appealing because AQ

χ has a relatively simple and intuitive
meaning as a higher-order contribution to the already
present spin-spin contribution to the radial potential
AνK0 , Eq. (2.21). This leaves us with two natural options:
setting either BQ

p;χ or BQ
np;χ to zero.

Let us first briefly discuss the latter option, i.e., using αij
to set bnp;χij ≡ 0. Explicit calculations then show that a

simple link emerges between the resulting gauge-fixed BQ
p;χ

and the form BQ
p;nχ which was already fixed [and given by

Eq. (2.53)]. Indeed, we find in this case that the following
relation holds:

bp;χij ¼ 1

3
bp;nχij : ð2:57Þ

This relation means that the momentum-dependent part of
the NLO spin-spin contribution to ðHeffÞ2 takes the simple
form

p2

r3
bp;χij ððχ i · χ jÞ − 3ðn · χ iÞðn · χ jÞÞ;

where we recognize a coupling between p2 and a spin-spin
structure akin to the LO quadrupole potential present in the
ADM Hamiltonian

ĤLOðADMÞ
ss ¼ −

1

2r3
ðχ 20 − 3ðn · χ 0Þ2Þ ¼

χ 20
r3

P2ðcosϑÞ:
ð2:58Þ

In the last equality, ϑ is the angle between n and χ 0, and P2

is the second Legendre polynomial. Notice that a coupling

of the type ĤNĤ
LOðADMÞ
ss (which involves p2ĤLOðADMÞ

ss ) is
explicitly visible in Eq. (2.32).
The other option is to use the αij freedom to set, instead,

the form BQ
p;χ to zero, i.e.,

bp;χij ≡ 0: ð2:59Þ

In analogy to Refs. [21,25], this choice can be called a
Damour–Jaranowski–Schäfer gauge. When the orbits are
circular and equatorial, the gauge choice (2.59) leads to a
very simple spin-spin structure, since in that case AQ

χ

becomes the only quadratic form that does not vanish.
Consequently, all new NLO spin-spin information is
contained in the radial potential A. We will adopt this
gauge for the rest of the paper.
To satisfy Eq. (2.59), the αij gauge parameters must be

taken to be

α11 ¼ −
�
1

2
þ 5

4
ν

�
X1 þ

ν

2
þ ν2

2
ð2:60aÞ

α22 ¼ −
�
1

2
þ 5

4
ν

�
X2 þ

ν

2
þ ν2

2
ð2:60bÞ

α12 ¼ α21 ¼ −
ν

2
: ð2:60cÞ

In the limit m2 ≪ m1, we have α11 → − 1
2
, which is a

necessary requirement for the structure of ĜNLO
ss [28,30].

Solving Eq. (2.32) then leads first to

aχ11 ¼ 3νX1 −
ν2

2
ð2:61aÞ

aχ22 ¼ 3νX2 −
ν2

2
ð2:61bÞ

aχ12 ¼ aχ21 ¼ ν −
ν2

2
ð2:61cÞ

and then to a remarkable result for the coefficients of
BQ
np;χ . Namely, we find that they turn out to coincide with

the coefficients of the above-determined quadratic form
BQ
p;nχ , i.e.,

bnp;χij ¼ bp;nχij : ð2:62Þ

Here, as in the case of the other possible gauge bnp;χij ≡ 0, a
symmetry becomes visible between bij-type coefficients
belonging to different quadratic forms.
The final result is remarkable: the information stored in

the nine coefficients aχij, a
nχ
ij , and bp;nχij is sufficient, once

inserted in the EOB Hamiltonian, to reproduce the whole
NLO spin-spin coupling (which initially involved 25
different terms). The EOB has not only exploited the full
power of the gauge transformations, involving ten param-
eters, but has also revealed six additional and unexpected
symmetries (see the Appendix for a further discussion of
these symmetries). Notice that the EOB Hamiltonian
proposed in Ref. [30] involved 12 different terms. A
symmetry similar to (2.51) was present, but there was
no equivalent to (2.57) or (2.62).
To summarize the results so far, the effective orbital

Hamiltonian has the form
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Ĥeff
orb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

�
1þ Bpp2 þ Bnpðn · pÞ2 − 1

1þ ðn·χ 0Þ2
r2

ðr2 þ 2rþ ðn · χ 0Þ2Þ
R4 þ Δðn · χ 0Þ2

ððn × pÞ · χ 0Þ2 þQ4

�vuut : ð2:63Þ

Here, the quantities entering the ððn × pÞ · a0Þ2 term are

Δ ¼ r2 − 2rþ χ 20 ð2:64Þ

R4 ¼ r4 þ r2χ 20 þ 2rχ 20; ð2:65Þ

with the dimensionless effective spin

χ 0 ¼ X1χ 1 þ X2χ 2: ð2:66Þ

On the other hand, we obtained above explicit, but non-
resummed, expressions for the NLO-spin-spin accurate
potentialsA,Bp, andBnp. In our preferred (B

Q
p;χ ¼ 0) gauge,

and in view of the remarkable cancellation of BQ
np;nχ , they

have the form

Aðr; ν; χ 1; χ 2Þ ¼ AνK0 þ 1

r4
ðAQ

χ − AQ
nχÞ; ð2:67Þ

Bpðr; ν; χ 1; χ 2Þ ¼ BνK0
p −

1

r3
BQ
nχ ; ð2:68Þ

Bnpðr; ν; χ 1; χ 2Þ ¼ BνK0
np þ 1

r3
BQ
χ : ð2:69Þ

Here, AνK0 , BνK0
p , BνK0

np have been defined in Eqs. (2.21),
(2.25), (2.26), while the four remaining NLO spin-spin
quadratic forms entering our results (here and henceforth we
simplify the notation by suppressing the index p on BQ

p;nχ

and the index np on BQ
np;χ) take the following explicit form:

AQ
χ ¼

�
3νX1 −

ν2

2

�
χ 21 þ

�
3νX2 −

ν2

2

�
χ 22

þ ð2ν − ν2Þðχ 1 · χ 2Þ ð2:70Þ

AQ
nχ ¼

�
2νX1 þ

5

2
ν2
�
ðn · χ 1Þ2 þ

�
2νX2 þ

5

2
ν2
�
ðn · χ 2Þ2

þ ð3ν − 7ν2Þðn · χ 1Þðn · χ 2Þ ð2:71Þ

BQ
χ ¼

�
9νX1 −

15

4
ν2
�
χ 21 þ

�
9νX2 −

15

4
ν2
�
χ 22

þ
�
6νþ 9

2
ν2
�
ðχ 1 · χ 2Þ ð2:72Þ

BQ
nχ ¼

�
9νX1 −

15

4
ν2
�
ðn · χ 1Þ2 þ

�
9νX2 −

15

4
ν2
�
ðn · χ 2Þ2

þ
�
6νþ 9

2
ν2
�
ðn · χ 1Þðn · χ 2Þ: ð2:73Þ

Note again the remarkable fact, found above, Eq. (2.62),
that the coefficients of BQ

nχ coincide with the coefficients of
BQ
χ [i.e., BQ

nχ is obtained from BQ
χ simply by replacing

ðχ i · χ jÞ → ðn · χ iÞðn · χ jÞ].

E. Resummation options

We wish to discuss now various options for incorporat-
ing the NLO spin-spin contributions r−4ðAQ

χ − AQ
nχÞ,

−r−3BQ
nχ and r−3BQ

χ in a somewhat resummed manner,
within the ν-deformed Kerr-like basic contributions AνK0 ,
BνK0
p , and BνK0

np . Let us first consider the contributions∝ AQ
nχ

and BQ
nχ , which are quadratic in ðn · χ iÞ. The presence in

AνK0 , Eq. (2.21), of a factor 1þ ðn · χ 0Þ2=r2 and in BνK0
p ,

Eq. (2.25), of a factor ð1þ ðn · χ 0Þ2=r2Þ−1 suggests to
incorporate the quadratic forms r−4AQ

nχ and r−3BQ
nχ as

additive modifications of the term r−2ðn · χ 0Þ2. This leads
to the forms

Aðr; ν; χ 1; χ 2Þ≡ Aeqðrc; ν; ðχ i · χ jÞÞ
1þ ðn·χ 0Þ2

r2 − AQ
nχ

r4

1þ Δðn·χ 0Þ2
r2r2c

ð2:74Þ

and

Bpðr; ν; χ 1; χ 2Þ≡ 1

1þ ðn·χ 0Þ2
r2 þ BQ

nχ

r3

: ð2:75Þ

We recall that, in this work, the centrifugal radius is defined
as

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ χ 20 þ

2χ 20
r

r
: ð2:76Þ

In Eq. (2.74) we have introduced the notation
Aeqðrc; ν; ðχ i · χ jÞÞ for an equatorial potential [remaining
in the limit ðn · χ iÞ → 0] which should incorporate, in a
combined manner, both the Kerr-like equatorial potential
(2.22) and the purely radial NLO spin-spin correction
r−4AQ

χ . There are two main possibilities for doing so:
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(i) a full factorization

Aeqðrc; ν; ðχ i · χ jÞÞ≡ Aorbðrc; νÞ
1þ 2

rc

1þ 2
r

�
1þ AQ

χ

r4c

�
:

ð2:77Þ
(ii) a semiadditive inclusion

Aeqðrc; ν; ðχ i · χ jÞÞ≡ Aorbðrc; νÞ
1þ 2

rc
þ AQ

χ

r4c

1þ 2
r

:

ð2:78Þ
Here, Aorbðrc; νÞ denotes the Padé-resummed orbital poten-
tial (2.23), which entered the Kerr-like equatorial potential
(2.22). Note that the option ii) is equivalent to replacing the
factor 1þ AQ

χ =r4c of option i by 1þ AQ
χ =ðr4c þ 2r3cÞ. As a

consequence, the second option reduces the effect of AQ
χ

compared to the first option. In addition, let us recall that
the factor ð1þ 2=rcÞ=ð1þ 2=rÞ in AeqðrcÞ is smaller than 1
and embodies the attractive nature of the extra coupling
linked to the combined effect of the quadrupole deforma-
tions and of the spin(1)-spin(2) interaction

1þ 2
rc

1þ 2
r

≈ 1 −
χ 20
r3c

þ � � � ð2:79Þ

We then see that the main effect, for equatorial orbits, of
NLO spin-spin effects is to reduce the attractive character
of the LO spin-spin coupling by adding a repulsive
coupling ∝ þAQ

χ =r4. [We will see in the next subsection
that, in most cases, AQ

χ is positive.]
Alternative versions ib and iib of the above options can be

obtained by using the Boyer–Lindquist radius instead of the
centrifugal one, thus substitutingAQ

χ =r4c withA
Q
χ =r4. Among

these four options, we choose in the following the semi-
additive inclusion ii, given byEq. (2.78), as our standard one.
Let us finally consider various ways of incorporating the

correction r−3BQ
χ in the Kerr-like basic potential BνK0

np ,
Eq. (2.26). A simple way is to modify the fraction r2c=r2 as
it appears in Eq. (2.26). We choose here to do it by defining

Bnp ≡ 1

1þ ðn·χ 0Þ2
r2

�
Aeq
B ðrcÞ
Dorb

r2c þ BQ
χ

r

r2
− 1

�
; ð2:80Þ

where we used a “bare” version Aeq
B ðrcÞ of the equatorial

radial potential (i.e., a version which does not contain the
insertion of AQ

χ ), namely,

Aeq
B ðrc; ν; a0Þ≡ Aorbðrc; νÞ

1þ 2M
rc

1þ 2M
r

: ð2:81Þ

F. Quadratic forms

To have a feeling for the physical effects of the various
NLO spin-spin quadratic forms AQ

χ , A
Q
nχ , B

Q
χ entering our

results, we investigate here their magnitudes and their signs

as functions of the two spins. The structure of each of the
three quadratic forms AQ

χ , AQ
nχ , BQ

χ is described by a
symmetric 2 × 2 matrix, say qij. Let us first mention that
all the matrix elements qij happen to be positive (which
does not, however, imply the positive-definite character of
the corresponding quadratic form). By considering the
(orthogonal) eigendirections and the eigenvalues of qij,
we see that, in the case of a form of the type

Qðχ 1; χ 2Þ ¼ qijðχ i · χ jÞ; ð2:82Þ

there must be an angle ϕ ∈ ½− π
2
; π
2
Þ such that

Q ¼ λ1ðχ 1 cosϕþ χ 2 sinϕÞ2 þ λ2ð−χ 1 sinϕþ χ 2 cosϕÞ2
ð2:83Þ

[and analogously for a form of the type qijðn · χ iÞðn · χ jÞ].
Here, for definiteness, λ1 denotes the larger eigenvalue, i.e.,
λ1 ≥ λ2. When ν ¼ 1=4, because of the symmetry under
exchange of the spins χ 1 and χ 2, the only allowed combi-
nations are cosϕ ¼ � sinϕ, and thus ϕðν ¼ 1=4Þ ¼ �π=4
in the interval ½−π=2; π=2Þ. By contrast, the behavior ofϕ in
the test-mass limit ν → 0 does not follow a general rule.
As shown in Fig. 1, the eigenvalues λ1, λ2 of the EOB

quadratic forms AQ
χ , AQ

nχ (and therefore the forms

FIG. 1 (color online). The eigenvalues λ1, λ2 and the rotation
angle ϕ are plotted as a function of ν for the quadratic forms AQ

χ ,
AQ
nχ , andB

Q
χ . The information relative to the formBQ

nχ is equivalent
to the one provided by the plot of BQ

χ . Notice that ϕð1=4Þ ¼
π=4 ≈ 0.79 for all forms.
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themselves) are positive in most of the range of interest. For
sufficiently small ν, the smaller eigenvalues λ2 are negative,
and the forms are indefinite. On the other hand, for larger
values of ν, AQ

χ and AQ
nχ are both positive definite.

More specifically, the eigenvalues of AQ
χ are given by

λ1;2 ¼
ν

2

�
3 − ν�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13 − 40νþ ν2

p �
; ð2:84Þ

with λ2 crossing zero at ν0 ¼ 2=17 ≈ 0.12, which corre-
sponds to a mass ratio m1=m2 ≈ 6.34. For circular, equa-
torial orbits, ν > ν0 implies that the new NLO spin-spin
terms are always repulsive. By contrast, for ν < ν0 there are
special configurations of the spins where their effect is
slightly attractive.
The smallest eigenvalue of AQ

nχ crosses zero when
ν ¼ ð13 − ffiffiffiffiffiffiffiffi

145
p Þ=8 ≈ 0.12. By contrast with AQ

χ and AQ
nχ ,

BQ
χ is never positive definite. However, its largest eigenvalue

FIG. 2 (color online). Contour plots of AQ
χ , A

Q
nχ , and B

Q
χ , each quadratic form corresponding to a row. The two columns correspond to

the values ν ¼ 10−3 and ν ¼ 0.25 for which the forms are evaluated. In the case of AQ
χ and BQ

χ , aligned or antialigned spins are assumed,
and the scalar parameters ~χi have to be interpreted as ~χi ≡�jχ ij, with ~χ1 ~χ2 ¼ ðχ 1 · χ 2Þ. On the other hand, ~χi ≡ ðn · χ iÞ in the contour
plots of AQ

nχ . The figures appear to be inclined with respect to a configuration symmetric under reflection of the coordinate axes. The
measure of such a rotation (in the anticlockwise direction) is nothing but the angle ϕ introduced in Eq. (2.83) and plotted in Fig. 1.
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is always positive and, most of the time, much larger than λ2.
As we shall see later, this implies thatBQ

χ is positive for most
spin configurations. Note also that BQ

χ becomes degenerate
(λ2 ¼ 0) exactly in the case of equal masses (ν ¼ 1=4).
In the two-dimensional parameter space measuring

either the projected spins ðn · χ iÞ, or the algebraic magni-
tudes of two parallel spins χ 1∥χ 2, the contour lines of Q
define ellipses, hyperbolas, or straight lines, depending on
whether λ2 is positive, negative, or equal to zero, respec-
tively. A graphical visualization of them is given in Fig. 2.
The eigenvalue decomposition (2.83) does not provide a

direct handle on the extremal points of the quadratic forms.
To investigate them, one must resort to other arguments.
Since all coefficients in Eqs. (2.70)–(2.72) are positive for
every ν ∈ ð0; 1=4�, it is clear that the global maxima
QmaxðνÞ are reached when χ 21 ¼ χ 22 ¼ ðχ 1 · χ 2Þ ¼ 1 (in
the case of AQ

χ and BQ
χ ), or ðn · χ 1Þ ¼ ðn · χ 2Þ ¼ 1 (in

the case of AQ
nχ).

For investigating the minima, let us rewrite

Qðχ 1; χ 2Þ ¼ q11

�
χ 1 þ

q12
q11

χ 2

�
2

þ
�
q22 −

q212
q11

�
χ 22:

ð2:85Þ
If λ2 < 0, then also ðq22 − q212=q11Þ < 0. In this case,
provided that q12=q11 ≤ 1 [which is indeed true for all
quadratic forms (2.70)–(2.72)], the global minimum
QminðνÞ is reached for the antialigned configuration

χ 1 ¼ −
q12
q11

χ 2; and χ 22 ¼ 1: ð2:86Þ

Otherwise, if λ2 ≥ 0, the minimum is met in the trivial
case χ 1 ¼ χ 2 ¼ 0. Analogous spin configurations, obtained
substituting χ i with ðn · χ iÞ in Eq. (2.86), define the minima
of the forms of the type qijðn · χ iÞðn · χ jÞ. As a conse-

quence, the extremal values of BQ
χ and of BQ

nχ coincide.
Figure 3 provides complete information about the range

of values that can be taken by each quadratic form. Let us
remark, in passing, a peculiar feature: although the coef-
ficients of AQ

χ and of AQ
nχ could have seemed to be

unrelated, they satisfy the identity
X
ij

aχij ¼
X
ij

anχij ¼ ð5 − 2νÞν: ð2:87Þ

Consequently, as is visible on the figure, the maximal
curves AQ;max

χ ðνÞ and AQ;max
nχ ðνÞ are exactly the same.

Among the whole range of ν, their overall maximum is
given by AQ;max

χ ð1=4Þ ¼ AQ;max
nχ ð1=4Þ ¼ 9=8. The overall

minimum of AQ
χ is approximately equal to −0.011 and is

reached at ν ≈ 0.061, while for AQ
nχ it is reached at ν ≈

0.059 and is nearly equal to −0.033. Moreover,
BQ;max
χ ð1=4Þ ¼ 57=16, while the overall minimum BQ;min

χ ≈
−0.083 corresponds to ν ≈ 0.146.

An order-of-magnitude estimate of the maximal change
introduced in Aeq by AQ

χ [see Eq. (2.78)] can be made by
setting rc ∼ 2 and AQ;max

χ ∼ 1, leading to a deviation of
þ0.06 with respect to the LO term 2=rc ∼ 1. By contrast,
the change in the special configurations where AQ

χ is
negative is smaller (in absolute value) than 10−3, since
in this case AQ;min

χ ∼ −1=100.

III. SPIN-ORBIT SECTOR AND THE LAST
STABLE CIRCULAR ORBIT

In this last section, we investigate some predictions of
the new EOB Hamiltonian proposed here concerning the
characteristics of the LSO, considered for parallel spins,
and circular, equatorial orbits.
At first, it is necessary to fix the spin-orbit sector Heff

so ,
that enters the whole effective Hamiltonian as an additive
contribution,

Ĥeff ¼ Ĥeff
orb þ Ĥeff

so : ð3:1Þ
Several different versions of the EOB spin-orbit effective
coupling Ĥeff

so have been proposed in the literature [18,
20–23,25,26,31]. Here, we shall follow the recent approach
[31], generalizing it to the general, nonequatorial case.
Explicitly, we take

Ĥeff
so ¼ 1

rr2c

�
1þ Δðn · χ 0Þ2

r2r2c

�−1
geffS l · χ þ 1

r3c
geffS� l · χ

�:

ð3:2Þ
Here, l≡ r × p≡ L=ðμMÞ is the (dimensionless) rescaled
orbital angular momentum, and χ and χ � are the symmetric
spin combinations (2.13)–(2.14), namely,

FIG. 3 (color online). The curves QmaxðνÞ and QminðνÞ are
plotted for the quadratic forms AQ

χ , A
Q
nχ , and BQ

χ . The region
between the two curves represents all possible values that can be
taken by the corresponding quadratic form.
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χ ≡ S1 þ S2
ðm1 þm2Þ2

¼ X2
1χ 1 þ X2

2χ 2 ð3:3Þ

χ � ≡
m2

m1
S1 þ m1

m2
S2

ðm1 þm2Þ2
¼ νðχ 1 þ χ 2Þ; ð3:4Þ

while geffS and geffS� are two dimensionless gyro-
gravitomagnetic factors.9 The post-Newtonian expansions
of geffS and geffS� are fully known up to NNLO order
[18,21,25,26], and one knows both the test-mass limit of
geffS� [23] and its first gravitational self-force correction [34].
Here, we shall use, as a fiducial spin-orbit coupling, the

nonresummed, Taylor-expanded NNLO-accurate expan-
sions of geffS and geffS� [25,26], expressed in the Damour–
Jaranowski–Schäfer gauge, and (following Ref. [31]) using
rc as radial variable. This means that we use

geffS ¼ 2 −
27

8
νðn · pÞ2 − 5ν

8

1

rc
þ 5

8
νð1þ 7νÞðn · pÞ4

þ
�
−
21

2
νþ 23

8
ν2
� ðn · pÞ2

rc
−
�
51

4
νþ ν2

8

�
1

r2c
ð3:5Þ

geffS� ¼ 3

2
−
�
15

8
þ 9

4
ν

�
ðn · pÞ2 −

�
9

8
þ 3

4
ν

�
1

rc

þ
�
35

16
þ 5

2
νþ 45

16
ν2
�
ðn · pÞ4 þ

�
69

16
−
9

4
νþ 57

16
ν2
�

×
ðn · pÞ2

rc
−
�
27

16
þ 39

4
νþ 3

16
ν2
�

1

r2c
: ð3:6Þ

We are aware of the fact that such Taylor-expanded gyro-
gravitomagnetic factors have the property of changing sign
in the strong-field region, thereby turning the repulsive
(for spins parallel to the orbital angular momentum) spin-
orbit interaction into an attractive coupling. To avoid this
change of sign, Ref. [31] used an inverse Taylor resum-
mation of the gyro-gravitomagnetic factors [of the type
geffs ¼ 2=ð1þ ~c1

rc
þ � � �Þ, etc.].

We compare in Fig. 4 the radial behavior of the total
dimensionless effective gyro-gravitomagnetic factors
r3Gtot ≡ r3ð 1

rr2c
geffS þ 1

r3c
geffS� Þ defined by using either

Taylor-expanded geffS , geffS� or inverse Taylor-expanded ones.
As the main purpose of this subsection is to compare the
effect of our new way to incorporate NLO spin-spin
coupling to previous suggestions [28,30,33], it will be
convenient for us to use the simple Taylor-expanded
prescriptions (3.5)–(3.6) because they ensure the existence

of an LSO for arbitrary values of the spins. By contrast,
when using inverse-resummed gyro-gravitomagnetic fac-
tors, the constantly repulsive character of the spin-orbit
interaction allows (for large, parallel spins) the sequence of
circular orbits to continue existing as the angular momen-
tum decreases, without encountering a loss of stability at
some radius.
This is illustrated in Fig. 5 which displays the effective

Hamiltonian as a function of radius, for parallel spins equal
to χ1 ¼ χ2 ¼ 0.65, and for three different values of the
orbital angular momentum: l ¼ 2.7 (left panel), l ¼ 2.55
(central panel), and l ¼ 2.4 (right panel). This figure
contrasts models which exhibit an LSO for large spins
(such as tar14 [35] and models using Taylor-expanded
gyro-gravitomagnetic factors, such as our present model,
Eq. (2.78), or a version of nag15 [33] in which geffS and geffS�

are replaced by their Taylor-expanded form) with models
that do not, because there exists a continuous sequence of
shrinking circular orbits of smaller and smaller radii (such
as nag15 [33]). In particular, it is instructive to compare in
Fig. 5 the three different versions of the model nag15:
(i) the version nag15_TaylSO (with Taylor-expanded geffS
and geffS� ) has an LSO and is quite close to our model
[Eq. (2.78)]; (ii) the version nag15_NoCal (which differs
from Ref. [33] by turning off the numerical-relativity-
calibrated NNLO spin-orbit parameters) displays the
strongly repulsive character of the spin-orbit coupling at
small radii; and (iii) the original model nag15, which
contains extra spin-orbit parameters having the property of

FIG. 4 (color online). The quantity r3Gtot is plotted against r for
circular orbits. Equal masses and equal spins χ1 ≡ χ2 ≡ 0.65 are
assumed. The curve InvCal corresponds to the model described in
Ref. [31], with the NNNLO calibration of c3 described in
Ref. [33]. The curve Inv makes use of the same (inverse)
resummation of InvCal but only includes terms up to NNLO
(i.e., it contains neither the calibrated term c3 nor the two purely
Schwarzschild, spinning-particle coefficients that enter into c�30
and c�40; see Eqs. (46), (53), and (54) in Ref. [31]). Finally, Tayl
expands the gyro-gravitomagnetic factors of Inv in a Taylor
series. In other words, Tayl is built with the factors geffS and geffS� as
given by Ref. [25], but with rDN14

c (the centrifugal radius defined
in Ref. [31]) instead of the Boyer–Lindquist-like radius r. The
usage of rDN14

c for Tayl has the only goal of allowing a more
straightforward comparison against Inv and InvCal.

9The gyro-gravitomagnetic factors geffS and geffS� used here
correspond to 2ĜS and 3

2
ĜS� in Ref. [31].

NEW EFFECTIVE-ONE-BODY HAMILTONIAN WITH NEXT- … PHYSICAL REVIEW D 92, 124022 (2015)

124022-13



FIG. 5 (color online). The effective Hamiltonian is plotted as a function of r for circular, equatorial orbits, for parallel spins equal to
χ1 ¼ χ2 ¼ 0.65 and for three different values of the orbital angular momentum: l ¼ 2.7 (left panel), l ¼ 2.55 (central panel), and l ¼ 2.4
(right panel). The curves tar14 and nag15 denote the calibrated Hamiltonians of Ref. [35] and of Ref. [33], respectively (see the
discussion about Fig. 6 for some more details); nag15_NoCal is obtained from nag15 setting to zero the spin-orbit calibration, as well as
the two purely Schwarzschild, spinning-particle coefficients that enter into c�30 and c�40 (see Eqs. (46), (53), and (54) in Ref. [31]).
Moreover, nag15_TaylSO is obtained from nag15_NoCal by Taylor expanding its (NNLO) gyro-gravitomagnetic factors. Notice that
the spin-orbit sectors of nag15, nag15_NoCal, and nag15_TaylSO exactly correspond to the curves InvCal, Inv, and Tayl of Fig. 4,
respectively. Finally, AQ

add_TaylSO corresponds to the spin-spin model developed in this paper, with a Taylor-expanded NNLO spin-orbit
sector and with the same purely orbital terms of nag15.

FIG. 6 (color online). Gauge invariant quantities (top panels: dimensionless total Kerr parameter χJ; central panels: dimensionless
orbital frequency ω̂; bottom panels: dimensionless binding energy ê) at the LSO are plotted as a function of the spin χ ≡ χ1 ≡ χ2. Equal
masses are assumed.
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reducing (without cancelling) the strongly repulsive char-
acter of the spin-orbit coupling.
As a consequence, the effective potential of nag15

exhibits (especially for l ¼ 2.4) a small “bump,” as if
the system would still be trying to develop an LSO. After
this pseudo-LSO, the system rolls down to a further stable
minimum, the existence of which is ensured by the strong
positive spin-orbit barrier. For sufficiently large spins, the
bump ceases to show up, leading therefore to a continuous
sequence of circular orbits. In that case, as for the
uncalibrated curve nag15_NoCal in Fig. 5, the strength
of the spin-orbit barrier is such as to completely absorb the
region where the LSO would have formed.
The top panels of Fig. 6 display a plot of the dimension-

less Kerr parameter of the binary system

χJ ≡ 1

ν

jtot
Ĥ2

EOB

; ð3:7Þ

evaluated at the LSO, where

jtot ≡ lþm1

m2

χ1 þ
m2

m1

χ2 ð3:8Þ

is the dimensionless total angular momentum.
If it were measured after the whole merger-ringdown

process, χJ would correspond to the dimensionless spin of
the final black hole and would therefore be expected to stay
always smaller than 1. At the LSO, however, the system
still has to radiate away energy and angular momentum. It
is therefore not worrying to find values χLSOJ that (slightly)
exceed 1 for large spins χ ≳ 0.6.
The central panels plot the dimensionless angular fre-

quency

ω̂≡ ∂
∂l ĤEOB; ð3:9Þ

and the bottom panels plot the dimensionless binding
energy10

ê ¼ νĤEOB − 1; ð3:10Þ

both evaluated at the LSO. As in Fig. 5, nag15 denotes the
calibrated Hamiltonian of Ref. [33]. We recall that, in this
model, the spin-orbit sector is complete up to NNLO and
calibrated at the next-to-next-to-next-to-leading order
(NNNLO) level, together with the inclusion of two addi-
tional, purely Schwarzschild spinning-particle terms.
Furthermore, the purely orbital coupling is complete at
4PN and is calibrated at 5PN. Among all models shown in
the figure, this is the only one for which the gyro-
gravitomagnetic factors are inversely resummed. The

interruption of the nag15 curves (near χ ≃ 0.65) marks
the end of the region where an LSO exists. Just before
reaching that point, a rather strong deviation from the
Taylor-spin-orbit curves is clearly visible.
The curves labeled by AQ

add_TaylSO denote the spin-spin
model developed in this paper, with Taylor expanded,
NNLO, rc-dependent gyro-gravitomagnetic factors, while
the orbital order is the same as in nag15. Moreover, LOss
represents the curves that are obtained from AQ

add_TaylSO
by setting AQ

χ to zero. The AQ
add_TaylSO and LOss curves

are always quite close to each other. This shows that the
difference introduced by the NLO spin-spin coupling is
therefore rather small, and by far less important than the
effects due to the type of spin-orbit resummation. The
repulsive character of the NLO spin-spin terms, already
remarked in Sec. II F, is clearly visible on all plots. Indeed,
the total Kerr parameter is smaller than in the LOss, which
means that the system radiates away more angular momen-
tum before reaching the end of the inspiral. Similarly, a
larger orbital frequency and binding energy are the signs of
a more bound system and thus imply the existence of an
additional repulsive effect preventing the plunge to happen
too early.
For completeness, we also show the prediction of the

uncalibrated NLO spin-spin Hamiltonian bal14 described
in Ref. [30]. It is important to remark that bal14 differs from
the model of this paper in various aspects, and in particular,
it involves a different resummation of both spin-orbit and
spin-spin couplings.
Finally, tar14 represents the calibrated model of

Ref. [35], that encodes the NNLO spin-orbit and LO
spin-spin couplings, with a calibration at the NNNLO
and NLO levels, respectively. The orbital order is included
up to 4PN. A first aspect to be noticed is the proximity of
tar14 with nag15 in the range of negative spins, that can be
considered as a qualitative check of the effectiveness of two
different calibrations. For positive spins, the comparison is

TABLE I. Dimensionless total Kerr parameter χJ, orbital
frequency ω, and binding energy ê at the LSO for some values
of the spins. Both semiadditive (Add) and factorized (Fact)
resummations of AQ

χ are shown, together with the case where
AQ
χ is set to zero (LO).

χ χJ ω̂ ê

LO −1 0.5169 0.04841 −0.01078
Add … 0.5154 0.04877 −0.01083
Fact … 0.5148 0.04893 −0.01085
LO 0.5 0.9735 0.1441 −0.02544
Add … 0.9709 0.1456 −0.02572
Fact … 0.9689 0.1472 −0.02598
LO 1 1.136 0.1723 −0.03326
Add … 1.127 0.1762 −0.03450
Fact … 1.118 0.1812 −0.03587

10Notice that ê ¼ HEOB=M − 1 when expressed in terms of the
nonreduced EOB Hamiltonian HEOB given by Eq. (2.1).
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affected by the different behavior of nag15 for what
concerns the LSO.
In Table I we complement the information contained in

Fig. 6 by giving a quantitative comparison of the two
different resummation options (2.77)–(2.78) of the A
potential, for several values of the spin (namely, −1,
þ0.5, and þ1). The table confirms the expectation (see
Sec. II E) that the factorized (Fact) resummation is stronger
than the semiadditive (Add) one. For example, for extremal
spins, the increase in the angular frequency at the LSO due
to AQ

χ is ≃þ 2% for Add and ≃þ 5% for Fact, while the
binding energy increase is ≃þ 4% (in agreement with the
order-of-magnitude estimation done in Sec. II F) and
≃þ 8%, respectively.

IV. CONCLUSIONS

In this paper, we have proposed a new EOB Hamiltonian
for spinning, precessing black hole binaries. Explicitly, our
Hamiltonian is of the form (2.1)–(2.2), with an orbital part of
the effectiveHamiltonian obtained by combiningEqs. (2.63),
(2.70)–(2.76), (2.77) [or (2.78)], (2.80), and (2.81) and a spin-
orbit part defined by combining Eqs. (3.2)–(3.6). In particu-
lar, we have included spin-spin effects at NLO accuracy by
quadratic-in-spin modifications of the building blocks
Aðr; ν; a1; a2Þ, Bpðr; ν; a1; a2Þ, Bnpðr; ν; a1; a2Þ that are
present in the Hamiltonian as coefficients of (part of the)
momentum-dependent terms. Our new approach has several
simplifying features with respect to previous works. First, it
maintains a momentum dependence of the squared effective
orbital Hamiltonian ðHeff

orbÞ2 which is no more than quadratic
(for the spin-spin terms). Second, we found that it
was possible to choose a spin gauge where the most
complicated NLO spin-spin couplings ∝ ðp · aiÞðp · ajÞ
and ðn · pÞðn · aiÞðp · ajÞ could be absorbed in a simple
Kerr-like coupling ∝ ððn × pÞ · a0Þ2, where a0 ≡ a1 þ a2
(with a1 ≡ S1=m1 and a2 ¼ S2=m2) denotes the spin combi-
nation describing the LO spin-spin coupling in a Kerr way.
This feature should lead to a simple description of the general
precessing spin (and precessing orbital angular momentum)
dynamics because of the privileged role of the single basic
Kerr-like vectorial spin parameter a0 ≡ a1 þ a2.
A further tuning allowed us to impose a Damour–

Jaranowski–Schäfer-type gauge, that has the useful property
of confining all new spin-spin terms into the radial potential
Aðr; ν; a1; a2Þ as soon as the spins are aligned and the orbits
circular. The NLO spin-spin deformation of the above-
mentioned sectors is then encoded into quadratic-in-spin
forms AQ

χ , A
Q
nχ , B

Q
χ , and BQ

nχ , see Eqs. (2.70)–(2.73), which
are ourmain results.A remarkable fact is that the coefficients
of BQ

χ and of BQ
nχ are exactly the same. Therefore, the 25

independent coefficients that define the NLO spin-spin
Hamiltonian in ADM coordinates shrink down to only nine
in the EOB description. A further, minor symmetry property
lies in the fact that the sum of all the coefficients ofAQ

χ and of

AQ
nχ are equal. These features correspond to a notable

improvement with respect to the model developed in
Ref. [30], where the momentum structure of spin-dependent
terms is by far less simple (for instance, the squared effective
orbital Hamiltonian of Ref. [30] does not show a polynomial
dependence on the momenta, and furthermore no Damour–
Jaranowski–Schäfer-type gauge could be imposed) and
where the number of independent NLO spin-spin coeffi-
cients to be inserted in the EOB description amounts to 12.
The quadratic forms we have found here have positive

coefficients only. However, as quadratic forms, they are
either indefinite (with a positive eigenvalue and a negative
one), degenerate (with one eigenvalue being strictly pos-
itive and the other zero), or positive definite, depending on
the value of the symmetric mass ratio ν. For sufficienly low
ν, the smaller eigenvalue is negative, and the form is
negative valued for particular configurations of antialigned,
or nearly antialigned, spins. By contrast, aligned configu-
rations always lead to positive values, that are moreover
much larger (by a factor ∼50− 100) than the negative
minima. For what concerns circular, equatorial orbits, one
can conclude that the NLO spin-spin effects are repulsive in
most cases, apart from very small, attractive effects that
only show up for mass ratios m1=m2 ≥ 6.34 and for
(nearly) antialigned spins. This repulsive character is
clearly visible when comparing the total angular momen-
tum, angular frequency, and binding energy at the LSO
with the corresponding prediction of the Hamiltonian
without the NLO spin-spin inclusion. We propose two
different options for resumming the quadratic form AQ

χ , a
semiadditive and a factorized one. The ultimate choice of
the best resummation option can only be done with a
systematic comparison against numerical relativity simu-
lations. We expect our new Hamiltonian, once calibrated, to
mark a new step toward an accurate description of the
coalescence of two precessing, spinning black holes.
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APPENDIX: HIDDEN SYMMETRY OF THE NLO
SPIN-SPIN COUPLING

We have seen in the text that the (effective) EOB
Hamiltonian was exhibiting six remarkable cancellations
and/or coincidences among the spin-quadratic forms
describing the NLO spin-spin coupling. Namely, in our
preferred gauge fixing, these six remarkable symmetries
amounted to the equations (i, j ¼ 1, 2)

bnp;nχij ≡ 0; bnp;χij ≡ bp;nχij : ðA1Þ
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These six symmetries, together with the appropriate use of
the ten NLO gauge parameters contained in ĜNLO

ss , have
allowed us to end up with a final EOB Hamiltonian
containing only nine different coefficients to describe the
NLO spin-spin sector, when starting from the ADM spin-
spin Hamiltonian which contained 25 different NLO spin-
spin coefficients. In this Appendix, we trace the origin of
these six symmetries in the original ADMHamiltonian. Let
us denote themomentum-dependent part of aNLOspin-spin
Hamiltonian as

ĤNLO
ss jp-dep ¼

1

r3
½ðcij1 p2 þ cij2 ðn · pÞ2Þðχ i · χ jÞ

þ ðcij3 p2 þ cij4 ðn · pÞ2Þðn · χ iÞðn · χ jÞ
þ cij5 ðp · χ iÞðp · χ jÞ þ cij6 ðn · pÞðp · χ iÞðn · χ jÞ�:

ðA2Þ

Because of the variation structure described by Eq. (2.35),
under a canonical transformation

~̂H
NLO
ss ¼ ĤNLOðADMÞ

ss þ fĜNLO
ss ; ĤNg; ðA3Þ

one can easily check that the combinations 3cij1 þ cij2 , 5c
ij
3 þ

cij4 and −2cij3 þ 3cij5 þ cðijÞ6 are gauge invariant. We can
further check (from the explicit expressions of the ADM
coefficients) that the six following gauge-invariant combi-
nations of coefficients happen to vanish:

3cij1 þ cij2 þ cij3 þ cij4
5

¼ 0 ðA4aÞ

3cij1 þ cij2 þ cij3 −
3

2
cij5 −

cðijÞ6

2
¼ 0: ðA4bÞ

One can consider that the six identities (A4) constitute the
hidden origin of the six (more manifest) relations (A1) found
in their EOB transcription. In that sense, one can say that the
EOB formulation is useful in revealing, andmakingmanifest,
symmetries that existed, in a hidden way, as six relations
between the 25 original ADM coefficients, so that, finally,
there is, as expected, a conservation of linearly independent
NLO spin-spin coefficients, with 9 ¼ 25 − 10ðgaugeÞ−
6ðrelationsÞ.
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