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Extensions of Einstein gravity with quadratic curvature terms in the action arise in most effective
theories of quantized gravity, including string theory. This article explores the set of static, spherically
symmetric and asymptotically flat solutions of this class of theories. An important element in the analysis is
the careful treatment of a Lichnerowicz-type “no-hair” theorem. From a Frobenius analysis of the
asymptotic small-radius behavior, the solution space is found to split into three asymptotic families, one of
which contains the classic Schwarzschild solution. These three families are carefully analyzed to determine
the corresponding numbers of free parameters in each. One solution family is capable of arising from
coupling to a distributional shell of matter near the origin; this family can then match onto an
asymptotically flat solution at spatial infinity without encountering a horizon. Another family, with
horizons, contains the Schwarzschild solution but includes also non-Schwarzschild black holes. The third
family of solutions obtained from the Frobenius analysis is nonsingular and corresponds to “vacuum”
solutions. In addition to the three families identified from near-origin behavior, there are solutions that may
be identified as “wormholes,” which can match symmetrically onto another sheet of spacetime at finite
radius.
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I. INTRODUCTION: SECOND PLUS
FOURTH-ORDER GRAVITY

The inclusion of quadratic curvature terms into the
gravitational action is principally motivated by the form
of one-loop quantum corrections [1]. In 4D spacetime
there are effectively only two independent quadratic-
curvature integrated invariants, owing to the existence
of the Gauss-Bonnet topological invariant. Starting from
the correspondingly general second-plus-fourth-order
action1;

I ¼
Z

d4x
ffiffiffiffiffiffi−gp ðγR − αCμνρσCμνρσ þ βR2Þ ð1:1Þ

(in which Cμνρσ is the Weyl tensor, i.e. the traceless part
of the curvature tensor Rμνρσ), one obtains2; a renorma-
lizable system [2]. The spectrum of this theory contains
[3] a massless graviton, a massive spin-two ghost
excitation with ðm2Þ2 ¼ γ

2α, and a massive nonghost
spin-zero excitation with ðm0Þ2 ¼ γ

6β. The canonical value

of γ is 1
16πG ¼ 2

κ2
, where G is the 4D Newton constant.

The renormalizable quantum system (1.1) is also asymp-
totically free [4,5] in the sense that if one writes the
coefficients of the quadratic-curvature terms in Yang-Mills
style as 1=g22 and 1=g20, then both couplings g2 and g0 tend
to zero at large energies. This raises the question as to
whether the high-energy regime of the model (1.1) might
avoid the problems associated with the spin-two ghost in
the spectrum by effectively decoupling that excitation at
high energies. Such issues have recently been discussed in
the context of the asymptotic safety program for quantum
gravity [6], but to date there does not appear to be a
consensus on this point. A key problem in this approach is
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1Using the 4D Gauss-Bonnet theorem (1.2), the action may

also be written as

Z
d4

ffiffiffiffiffiffi−gp �
γR − 2αRμνRμν þ

�
β þ 2α

3

�
R2

�
:

2Strictly speaking, for renormalizability one should also
include a cosmological constant in (1.1). Note that the para-
metrization of the higher-derivative terms in the action (1.1)
differs from that used in Refs. [2,3]. Specifically, αhere ¼ 1

2
αRef½2�

and βhere ¼ βRef½2� − 1
3
αRef½2�.
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to obtain robust results that are not renormalization scheme
dependent. A related question, already at the classical level,
is whether the interaction structure of the theory might even
be such as to avoid the destabilization of the vacuum by
ghost-driven instabilities [7].
Gravitational theories including quadratic curvature

terms arise generically in all approaches to quantum
gravity. In particular, the Gauss-Bonnet combination

IGB ¼
Z ffiffiffiffiffiffi−gp ðRμνρσRμνρσ − 4RμνRμν þ R2Þ ð1:2Þ

is a topological invariant in four spacetime dimensions, but
not in higher dimensions, where it falls into the class of
Lovelock terms [8]. It occurs in the quantum effective
action of heterotic string theory in 10 spacetime dimensions
[9]. Various styles of dimensional compactification of (1.2)
can then yield the quadratic terms of (1.1) in a variety of
combinations.3 In dimensions D > 4, the Lovelock-Gauss-
Bonnet combination (1.2) also allows for cosmological
solutions [10]. However, in order to keep our consider-
ations clearly focused, we shall restrict our attention in this
paper purely to four-dimensional spacetime gravity derived
from (1.1) without a cosmological constant.
In this paper, we will not be concerned with difficult

questions of the full physical acceptability of the theory
(1.1) at the quantum level. Instead, we shall adopt a
working assumption that, in whatever emerges as an
acceptable quantum theory of gravity, the system (1.1)
may be a dominant part of the effective action at least for
some ultraviolet scale of energies. This might have, for
example, cosmological implications, which could in turn
indicate a scale for the quadratic-curvature term coeffi-
cients. It might also be the case that the effects of the
quadratic-curvature terms in (1.1) are also characteristic of
those of yet higher-order terms. Whatever the fate of the
negative-energy massive spin-two excitation, we shall
adopt the point of view that its effect on static classical
solutions should nonetheless be considered. Accordingly,
we shall adopt the action (1.1) as is, and shall consider the
implications of its field equations for spherically symmetric
static solutions. We shall thus treat the fourth-order terms
on an equal footing with the second-order terms, and not
just as perturbations to Einstein’s theory.
Some aspects of the classical solutions to the second-

plus-fourth-order gravity theory are well known. In

Ref. [3], an analysis was given of spherically symmetric
solutions in the linearized limit of the theory (1.1) when
coupled to point and extended sources. As one can expect
from a theory whose dynamical spectrum involves massive
spin-two and spin-zero modes as well as the massless spin-
two Einstein mode, the static solutions to the linearized
theory involve both a 1

r potential arising from massless spin-
two virtual particle exchange and e−mr

r Yukawa potentials
arising from m ¼ m2 massive spin-two and from m ¼ m0

massive spin-zero virtual exchanges. Moreover, by writing
the spherically symmetric and static spacetime metric in
Schwarzschild form

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2dθ2 þ r2sin2θdϕ2;

ð1:3Þ
assuming a Laurent expansion of AðrÞ and BðrÞ, and
carrying out a Frobenius-method analysis of the indicial
equations for the leading asymptotic behavior as r → 0 in
the radial coordinate r, it was found in Ref. [3] that the
leading asymptotic behaviors4; AðrÞ ∼ rs and BðrÞ ∼ rt can
arise in three distinct solution families: ðs; tÞ ¼ ð2; 2Þ,
ð1;−1Þ or (0, 0). At the time, an initial analysis of the
number of free parameters characterizing these indicial
families was made, but in a precomputer-algebra era, the
full picture of such parametric dependences was not
easily found.
In this paper, we return to a detailed study of the

spherically symmetric solutions to the field equations
following from the action (1.1). Although the classic
Schwarzschild solution of Einstein’s theory [which belongs
to the ð1;−1Þ family] clearly remains a solution to the
higher-derivative theory derived from the action (1.1), we
shall find that this is not a solution that arises from normal
minimal coupling to ordinary ghost-free matter. Instead, we
find that solutions that can arise from such ghost-free
matter coupling belong to the (2, 2) indicial family of
solutions. Subject to the additional assumption of asymp-
totic flatness as r → ∞ at spatial infinity, we find that such
solutions do not have a horizon, but have a naked
singularity as r → 0. This agrees fully, moreover, with
numerical calculations of such solutions made in the case
m2 ¼ m0 in Ref. [11].
If one overlooks the issue of source coupling, which in

any case has been a delicate subject in general relativity for
decades [12,13], then the “black hole” solution family
including a horizon can be investigated in its own right.
Assuming in addition asymptotic flatness at spatial infinity,
the analysis is made much simpler by a Lichnerowicz-style
“no-hair” theorem [14] for the trace of the higher-derivative
field equations, which implies that the existence of a
horizon together with the assumption of asymptotic flatness

3In the process of dimensional reduction, various massless
scalar fields are generated which combine with the D ¼ 10
dilaton. When the dimensionally reducedD ¼ 4 theory is written
in Einstein frame, scalar field prefactors appear in front of the
curvature-squared terms in the effective action. The study of
string-generated higher-derivative gravity models accordingly
requires consideration of such scalars together with the quadratic
curvature terms. In this paper, however, we shall restrict our
attention to purely geometric terms in the action.

4In context, there should be no confusion between the indicial
exponents t and s here and the coordinate t and interval s in (1.3).
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leads to the requirement that the Ricci scalar must vanish:
R ¼ 0. Analysis of the remaining traceless components of
the field equations is more subtle. In an earlier paper [15],
we reported our disagreement with the traceless-equation
analysis of Ref. [14], which would have considerably
simplified the study of the black-hole family. In the absence
of a traceless-equation Lichnerowicz theorem, an alterna-
tive option is to make a perturbative analysis of the black-
hole family of solutions starting from the classic
Schwarzschild solution. We obtain in this way a result
that the Schwarzschild solution is at least generally iso-
lated, in the sense that, for spherically symmetric static
solutions possessing a horizon, solutions perturbatively
different from Schwarzschild necessarily must violate the
condition of asymptotic flatness at spatial infinity.
The general perturbative isolation of the Schwarzschild

solution within the indicial ð1;−1Þ solution family does not
exclude the possibility of other asymptotically flat and
spherically symmetric solutions with horizons that differ
from Schwarzschild by a noninfinitesimal amount in the
ð1;−1Þ family parameter governing the “non-
Schwarzschild” structure of the solutions. Indeed, in
Ref. [15] we demonstrated that this possibility is indeed
realized: there exists a range of values for the black-hole
horizon radius r0, bounded below by a certain multiple of
the 1=m2 ¼

ffiffiffiffiffiffiffiffiffiffi
2α=γ

p
length scale, for which one obtains a

single static black-hole solution in addition to the
Schwarzschild solution. The corresponding existence of
a minimum value for r0 in comparison to the

ffiffiffiffiffiffiffiffi
α=γ

p
scale

size in the perturbative no-hair theorem dovetails with the
numerically found existence of a branch point for black-
hole solution phases. As one approaches this branch point,
clearly the perturbative isolation of the Schwarzschild
solution must break down.
We begin in Sec. II with a review of the structure of the

gravitational field equations following from the action (1.1)
when restricted to the case of spherically symmetric and
static solutions, initially without considering contributions
from sources. In particular, we discuss the reduction of the
differential order of these “almost vacuum” equations to get
a better fix on the maximum number of integration-constant
parameters determining a particular solution family. We shall
find that such almost vacuum equations reduce to a pair of
third-order ordinary but coupled and quite nonlinear differ-
ential equations for AðrÞ and BðrÞ. The full details of these
equations are given in Appendix A. Next, in Sec. III, we
complete the analysis of the parametric dependence of the
various indicial solution families begun in Ref. [3]; the
advent ofMathematica nowmakes this much more tractable.
Given that one is principally interested in solutions that

are asymptotically flat as r → ∞, in which limit, a
linearized analysis of the solution families becomes appro-
priate, in Sec. IV we next consider the spherically sym-
metric static solutions to the field equations when
linearized in AðrÞ and BðrÞ. In part, this reviews the

linearized solutions found already in Ref. [3], but with a
key addition: we now consider in some detail the matching
between an interior vacuum and the exterior solution when
matching across a shell delta-function source.
Coupling to shell delta-function sources in the full

nonlinear theory is next taken up in Sec. V. This discussion
begins with a review, in our Schwarzschild-form variables,
of the classic analyses of delta-function sources of
Refs. [12,13]. In the full nonlinear higher-derivative theory,
exact solutions are not known and so one must use
perturbative expansions within the various Frobenius indi-
cial families in order to analyze coupling to a delta-function
shell source. Identifying the “vacuum”with the nonsingular
(0, 0) indicial family and requiring this to be the solution
type occurring inside a shell source, we find that only the
(2, 2) indicial family has the correct number of free
parameters required to match the various continuity and
jump conditions needed across the delta-function source.
Linking what happens near the origin to the behavior of

solutions near spatial infinity becomes the next issue to be
considered. In Sec. VI, we generalize the result of Ref. [14]
to show that the Ricci scalar in a portion of spacetime with
Minkowski signature must vanish for any asymptotically
flat solution in the (0, 0) or ð1;−1Þ indicial families. For
these indicial families, this result is obtained regardless of
whether one considers a solution with a horizon at some
intermediate radius r0, as in Ref. [14], or considers a
solution without a horizon. Requiring R ¼ 0 correspond-
ingly reduces the number of free parameters by one in each
of these (0, 0) or ð1;−1Þ indicial cases.
For the traceless part of the higher-derivative field

equation, the situation is complicated by errors made in
the analysis of Ref. [14], as reported previously in Ref. [15].
Details of the corrected calculation are given here in
Appendix C. One consequently does not have a straightfor-
ward way to prove a complete no-hair theorem setting the
full Ricci tensor to zero in the (0, 0) or ð1;−1Þ cases.
However, for asymptotically flat solutions with a horizon,
one can still use linearized perturbation theory starting from
the Schwarzschild solution. First, in Sec. VII, we use a
Frobenius analysis about the horizon to show that such
solutions, subject also to the requirement of a vanishing
Ricci scalar as found in Sec. VI, have just three free
parameters. This parameter count identifies the correspond-
ing solution family with the indicial ð1;−1Þ family near the
origin, subject also to the requirement of asymptotic flatness
as r → ∞ and hence requiring also a vanishing Ricci scalar.
The classic Schwarzschild solution is of course itself a
member of this family, with just two free parameters
(corresponding to the horizon radius and to a trivial time-
rescaling parameter). Accordingly, the higher-derivative
theory admits just one “non-Schwarzschild” parameter
controlling deviations from the Schwarzschild solution.
Deriving a perturbative no-hair theorem for solutions

expanded to linear order in the non-Schwarzschild
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parameter is then carried out in Sec. VIII. For a given
horizon radius r0, and for asymptotically flat solutions
treated to linear order in the non-Schwarzschild parameter,
one finds that there is a range of small values of α=ðγr20Þ for
which the only asymptotically flat solution with a horizon
is the Schwarzschild solution itself. The precise range of
such values depends on optimization details of the linear-
ized no-hair theorem, but the range boundary turns out to be
quite near the phase bifurcation point for non-
Schwarzschild black hole solutions found numerically in
Ref. [15]. It may turn out that the range boundary for the
linearized no-hair theorem and the black-hole phase bifur-
cation point actually coincide.
In Sec. IX, we consider the more difficult question of

what happens more generally in between the origin and
spatial infinity. Owing to the complexity of the field
equations, this can only be approached by numerical
methods. One family of solutions at the origin that can
mesh with the structures found at spatial infinity is the (2, 2)
family. This agrees with numerical results found in
Ref. [11] for the specific theory with m2 ¼ m0 (i.e. the
theory with α ¼ 3β). Generically, such (2, 2) solutions have
six free parameters at the origin, and six parameters at
infinity, of which two combinations in each set must be
adjusted in order to kill rising exponential behavior from
the spin-two and spin-zero sectors of the theory, thus
leaving a four free-parameter set at the origin correspond-
ing to the four parameters occurring at asymptotically flat
spatial infinity. We give another illustration of such a
solution for the γR − αC2 theory (i.e. with β ¼ 0), in
which the equations simplify owing to the absence of
the spin-zero mode, then displaying a restricted match
between a three-parameter set at the origin and a three-
parameter set at asymptotically flat spatial infinity. These
(2, 2) solutions cannot have horizons, since we have
established in Secs. VI and VII that asymptotically flat
solutions with horizons must belong to the ð1;−1Þ family.
Instead, asymptotically flat solutions displaying Yukawa
massive corrections at spatial infinity track closely to the
Schwarzschild solution far out from the radius where the
Schwarzschild horizon would have been, but they then
begin to differ strongly from Schwarzschild as one comes
in toward smaller radii, failing to have a horizon but
matching instead onto the (2, 2) indicial family of solutions
near the origin, and displaying a naked singularity.
Section IX also considers the structure of the ð1;−1Þ

solution family. The conclusion one draws from
the linearized no-hair theorem of Sec. VIII is that the
Schwarzschild solution is generally isolated within the
family of ð1;−1Þ asymptotically free solutions with a
horizon, except for values of ζ ¼ α=ðγr20Þ located above
a certain value ζmax, which presumably may be identified
with the black-hole phase bifurcation point. Below this
bifurcation point, perturbation in the single non-
Schwarzschild parameter away from the Schwarzschild

solution within the ð1;−1Þ family initially can only lead to
nonasymptotically flat solutions. The linearized no-hair
theorem is thus in full agreement with the conclusions
found numerically in Ref. [15]. The ð1;−1Þ family natu-
rally contains the Schwarzschild solution itself, with non-
asymptotically flat solutions generally occurring nearby as
one adjusts the non-Schwarzschild parameter. As found in
Ref. [15], however, there do exist additional asymptotically
flat ð1;−1Þ solutions with a horizon that in general must be
distinctly separated from the Schwarzschild solution in the
value of the non-Schwarzschild parameter. Such non-
Schwarzschild solutions occur in the ζ < ζmax range for
which the perturbative no-hair theorem is applicable. This
other branch of asymptotically flat black-hole solutions
accordingly exists for horizon radii r0 greater than a certain
value rmin

0 . At spatial infinity, such non-Schwarzschild
black holes have a 1

r e
−m2r Yukawa correction to the g00

metric component in addition to the 2M=rNewtonian term,
where M > 0 is the Arnowitt-Deser-Misner (ADM) mass.
Numerical study using the shooting method for the

horizonless (2, 2) solutions and for the non-Schwarzschild
black-hole solutions reveals another feature of the overall
spherically symmetric and asymptotically flat solution space.
Such solutions, with well-understood behaviors in each
(small r and large r) asymptotic region of the radial
coordinate r, appear to lie on separatrices between numeri-
cally found solutions with differing kinds of divergent
behavior. The implications of this separatrix structure
for the overall solution space remain to be more fully
understood.
Another type of asymptotically flat solution that emerges

from numerical study may be described as a “wormhole.”
In such a solution, which we also discuss in Sec. IX for the
β ¼ 0 theory, the inverse of the A ¼ grr component of the
metric goes to zero but the −B ¼ gtt component does not.
General Z2 symmetric solutions of this type are highly
constrained, with only two free parameters: the trivial time-
rescaling parameter and the radius r0 at which 1=A
vanishes. Numerical results show that such solutions can
achieve asymptotic flatness at spatial infinity only for a
particular value of r0, which is presumably related to theffiffiffiffiffiffiffiffiffiffi
2α=γ

p
length scale. The Z2 symmetric wormhole solution

is also found to lie on a separatrix lying between less
regular solutions.
In Sec. X, we give a brief discussion of some possible

physical implications of our results. Clearly, the physical
relevance of the present analysis depends upon fully
accepting the implications of the higher-derivative terms
in the field equations for the theory’s solutions, instead of
simply considering their effects as perturbations on the
second-order Einstein theory. It is equally important that
there be at least some range of energy/length scales at
which the fourth-order terms dominate, without their being
swamped by the effects of yet higher-order terms. Given
such assumptions, we comment on stability questions for
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the various spherically symmetric solutions, and on the possibility of phases in which the classic Schwarzschild solution
might itself turn out to be the most stable.

II. FOURTH-ORDER EQUATIONS OF MOTION

The equations of motion derived from the action (1.1) are

Hμν ≔
1ffiffiffiffiffiffi−gp δI

δgμν
ð2:1aÞ

¼ γ

�
Rμν − 1

2
gμνR

�
þ 2

3
ðα − 3βÞ∇μ∇νR − 2α□Rμν þ

1

3
ðαþ 6βÞgμν□R

− 4αRηλRμηνλ þ 2

�
β þ 2

3
α

�
RRμν þ

1

2
gμν

�
2αRηλRηλ −

�
β þ 2

3
α

�
R2

�

¼ 1

2
Tμν; ð2:1bÞ

satisfying a generalized Bianchi identity

∇νHμν ≡ 0 ð2:2Þ

and with trace

Hμ
μ ¼ 6β□R − γR ¼ 1

2
Tμ

μ; ð2:3Þ

which is of fourth order in derivatives of the metric for
β ≠ 0 and of second order for β ¼ 0. In fact the β ¼ 0
(Einstein-Weyl) theory will turn out to be of particular
interest to us. Note that in the Einstein-Weyl theory we can
identify the more desirable sign of α by linearizing around a
Minkowski background. Writing gμν ¼ ημν þ hμν, we find

− 1

3
α□

�
□ − γ

α

�
hμν ¼ 0: ð2:4Þ

And so α > 0 is required for the absence of tachyonic
instabilities.
From the study of the linearized limit of (2.1) about flat

spacetime in [3], one knows that there are massive spin-two
and spin-zero excitations with masses

m2
2 ≔

γ

2α
; ð2:5aÞ

m2
0 ≔

γ

6β
; ð2:5bÞ

so one notes that

Hμ
μ ¼ 6βð□ −m2

0ÞR: ð2:6Þ

When considering spherically symmetric static solu-
tions, we may take the metric to have the Schwarzschild
form

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2dθ2 þ r2sin2θdϕ2; ð2:7Þ

and we shall look for source-free solutions with Tμν ¼ 0 in
the bulk of spacetime.5 With this ansatz there are only two
independent equations of motion, for AðrÞ and BðrÞ. TheH
field equation tensor takes the form

Hμν ¼

0
BBBBB@

HttðrÞ 0 0 0

0 HrrðrÞ 0 0

0 0 HθθðrÞ 0

0 0 0 HθθðrÞsin2θ

1
CCCCCA
;

ð2:8Þ

the components of which are related (for θ ¼ π
2
) by the r

component of the Bianchi identity (2.2):

�
Hrr

A

�0
þ 2Hrr

Ar
þ B0Hrr

2AB
− 2Hθθ

r3
þ B0Htt

2B2
≡ 0: ð2:9Þ

Accordingly, when provided with a Tμν stress-tensor
source, the system is described by just two independent
equations

Htt ¼
1

2
Ttt; ð2:10aÞ

Hrr ¼
1

2
Trr: ð2:10bÞ

If the metric (1.3) is substituted into the Lagrangian before
performing the variation, the resulting equations of motion

5We shall address the issue of delta-function sources for
solutions in Secs. IV and V.
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are found to be equivalent to the set (2.10), i.e. the
truncation to the static spherically symmetric case is a
consistent truncation:

δI
δA

¼ −
ffiffiffiffiffiffi−gp
A2

Hrr; ð2:11aÞ

δI
δB

¼ −
ffiffiffiffiffiffi−gp
B2

Htt: ð2:11bÞ

Consistency of truncation to the metric form (1.3) is
guaranteed in the usual fashion because one is truncating
to the invariant sector under a group action—in this case
spatial rotations [16]. It should be emphasized at this point
that in this paper we are not making any additional
simplifying truncations such as setting AB ¼ constant.
Imposing such additional conditions certainly makes sol-
ution of the equations greatly simpler, but it also severely
restricts the corresponding solution set.6

From here onwards, unless otherwise stated, we will be
solving the source-free equations for r > 0

Htt ¼ 0; ð2:12aÞ

Hrr ¼ 0: ð2:12bÞ

A. Differential order

1. β ≠ 0

To find the differential order of these coupled equations,
note that Htt is a function of Að3ÞðrÞ, Bð3ÞðrÞ, Bð4ÞðrÞ and
lower-order derivatives,7 and Hrr is a function of A00ðrÞ,
B00ðrÞ, Bð3ÞðrÞ and lower-order derivatives. Let us now
analyze the differential order of these equations. Note that
α ¼ 0 and β ¼ 0 are special cases of different differential
order, so we shall first look at the generic case α ≠ 0,
α ≠ 3β, β ≠ 0. We define

XðrÞ ¼ 1

A2ðrðα − 3βÞB0 − 2ðαþ 6βÞBÞ2
× ððα − 3βÞBð2rBA0ðrðα − 3βÞB0 − 2ðαþ 6βÞBÞ
þ Að−r2ðα − 3βÞB02 − 4rðα − 3βÞBB0

þ 12ðαþ 6βÞB2ÞÞ; ð2:13aÞ

YðrÞ ¼ 2rðα − 3βÞB2

Að2ðαþ 6βÞB − rðα − 3βÞB0Þ : ð2:13bÞ

It is clear that the equations of motion are equivalent to
the pair

0 ¼ Hrr; ð2:14aÞ

0 ¼ Htt − XðrÞHrr − YðrÞ∂rHrr; ð2:14bÞ

the first of which is of third order in B and of second order
in A, and the second of which is of third order in A and of
second order in B. Details are given in Appendix A. This
reduction in order leads us to expect a total of six free
parameters in the solution. This can be more clearly seen by
eliminating BðrÞ to get an equation of sixth order in AðrÞ
alone; the detailed procedure is sketched in Appendix A.

2. β ¼ 0

In this special case, the massive scalar is absent. In the
trace of the sourceless equations of motion (2.3) with
Tμν ¼ 0, two derivatives disappear and the equation simply
states that R ¼ 0. As this suggests, the total differential
order in this case is reduced by two with respect to the
β ≠ 0 case. The equations of motion are then equivalent to
the pair

0 ¼ Hμ
μ; ð2:15aÞ

0 ¼ Hrr

α
þHμ

μ 3rBA
0 − 2AðrB0 þ BÞ þ 2A2B

3γr2AB

− ðHμ
μÞ2 A

6γ2
− ∂rðHμ

μÞ 2B − rB0

3γrB
; ð2:15bÞ

the first of which is of second order in B and of first order in
A, and the second of which is of second order in A and of
first order in B.
These two second-order equations imply that there are

four free parameters in the solution for the β ¼ 0 case.

III. SOLUTIONS NEAR THE ORIGIN AND
FROBENIUS ANALYSIS

Previously in Ref. [3], the asymptotic behavior of
solutions to the equations of motion was analyzed near
the origin, working to leading orders in r. Here we will
solve expansions to several higher orders in r in order to
improve our understanding of the parametric dependences
of solutions.
The two undetermined functions in the metric are

expanded in Frobenius series in r as

AðrÞ ¼ asrs þ asþ1rsþ1 þ asþ2rsþ2 þ � � � ;
BðrÞ ¼ btðrt þ btþ1rtþ1 þ btþ2rtþ2 þ � � �Þ; ð3:1Þ

6Indeed, in [16], among other cases, the pure CμνρσCμνρσ theory
was considered subject to such a restricted ansatz, with the result
that the only solution without conical singularities is just the
classic Schwarzschild solution. The same simplifying restriction
has been made recently in the analysis of spherically symmetric
solutions for the pure R2 theory in Ref. [17]. Our aim in the
present paper is to explore the full set of spherically symmetric
solutions without such a restriction.

7We denote derivatives of order ≥ 3 by superscripts such
as Að3Þ.
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where as, bt ≠ 0 are nonvanishing coefficients and s, t are
indices yet to be determined.
Substituting the series (3.1) into the equations of motion

(2.12) and analyzing the consistent possibilities for the
ðs; tÞ indices leads exclusively to three solution families [3]
for generic8; α ≠ 0, β ≠ 0:

• ðs; tÞ ¼ ð0; 0Þ;
• ðs; tÞ ¼ ð1;−1Þ;
• ðs; tÞ ¼ ð2; 2Þ: ð3:2Þ

In each of these families, the equations can be solved order
by order for the coefficients an, bn. Some coefficients will
be left undetermined in this process, corresponding to the
free parameters of the system in each solution family. There
will always be one free parameter in BðrÞ corresponding to
a trivial scaling of the time coordinate.
Of course, in performing asymptotic analysis of this sort,

an assumption is being made that Frobenius type expan-
sions such as those of Eqs. (3.1) with integral steps in
powers of r following the leading ðrs; rtÞ terms is adequate
to capture all possible types of asymptotic behavior for
solutions to nonlinear equations such as (2.12). One might
worry about the inclusion of terms such as expðc=rpÞ times
a Frobenius series, or of terms involving powers of
logarithms. In the case of linear systems of differential
equations, one can deal with such possibilities on the basis
of general theorems about equation systems with regular or
irregular singular points of various ranks, but a suspicion

could remain that this might not capture the full complexity
of solutions to systems such as (2.12) (written out in full
detail in Appendix A). All we can say to dispel such
concerns is that we have explicitly tried many such exotic
possibilities and the only consistent leading asymptotic
behaviors that we have found are those shown in (3.2).

A. Free-parameter counts in each of the near-origin
solution families

We have expanded and solved the equations of motion
(2.12) to at least 12 orders in r. In each family, all free
parameters have appeared by the fourth order at the latest,
and after that each new order brings two new parameters
and two new constraints. The resulting free-parameter
counts are given in Table I:

1. The ð0;0Þ family

The first few terms in the (0, 0) family are

AðrÞ ¼ 1þ a2r2 þ r4
a2b0ðb0γð2αþ 3βÞ − 36αβb2Þ þ 18a22βb

2
0ð10αþ 3βÞ − 2b2ðb0γðα − 3βÞ þ 9βb2ð2αþ 3βÞÞ
180αβb20

þOðr6Þ; ð3:3aÞ

BðrÞ
b0

¼ 1þ b2r2 þ
r4ð54a22β2 þ a2ð−αγ þ 108αβb2 þ 3βγÞ þ b2ðγðαþ 6βÞ þ 54βb2ð2α − βÞÞÞ

360αβ
þOðr6Þ: ð3:3bÞ

The three-parameter (0, 0) solution is the natural “vacuum” solution family of the higher-derivative theory, comparable to
the two-parameter spatially homogeneous flat space solution in Einstein theory. The Riemann curvature tensor Rabcd
referred to an orthonormal frame is nonsingular as r → 0 for this solution.

TABLE I. Free parameter counts for the indicial solution
families.

ðs; tÞ solution
family

Number of free
parameters

Choice of free
parameters

(0, 0) 3 b0, a2, b2
ð1;−1Þ 4 a1, b−1, a4, b2
(2, 2) 6 a2, b2, b3, b4, a5, b5

8We neglect here families of solutions appearing only at special values of α > 3β > 0:

t − 2

3
¼ s ∈ Zþ; α ¼ ðs2 þ 2sþ 2Þ2

s4
3β

and two families of solutions for α ¼ 0:

4þ 2tþ t2

4þ t
¼ s ∈ Zþ or ðs; tÞ ¼ ð0; 1Þ ðwith 1 free parameterÞ:
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2. The ð1; − 1Þ family

The first few terms in the ð1;−1Þ family are

AðrÞ ¼ a1r − a21r
2 þ a31r

3 þ a4r4 − 1

16
r5ða1ð3a1b2 þ 19a41 þ 35a4ÞÞ

þ 1

40
a21r

6ð21a1b2 þ 101a41 þ 141a4Þ þOðr7Þ; ð3:4aÞ

BðrÞ
b−1

¼ 1

r
þ a1 þ b2r2 þ

1

16
r3ða1b2 þ a41 þ a4Þ −

1

40
3r4ða1ða1b2 þ a41 þ a4ÞÞ þOðr5Þ: ð3:4bÞ

The ð1;−1Þ family is clearly the family that contains the classic Schwarzschild solution of Einstein’s theory. The
Schwarzschild solution is obviously a solution of the higher-derivative theory’s field equations because every term in (2.1)
contains Rμν or R. At the origin, the ð1;−1Þ indicial structure gives rise to a curvature singularity, with RμνρσRμνρσ going like
r−6 as r → 0 [3].

3. The ð2;2Þ family

The first few terms in the (2, 2) family are

AðrÞ ¼ a2r2 þ a2b3r3 − a2r4

6
ð2a2 þ b23 − 8b4Þ þ a5r5

þ r6

1296αβ
ð−12α2a32 − 2a22ðb23ðα2 − 603αβ − 252β2Þ þ 27αð20βb4 þ γÞÞ

þ a2ðb43ð−16α2 þ 1413αβ − 72β2Þ þ 2b4b23ð19α2 − 2223αβ þ 180β2Þ
− 36b5b3ðα2 þ 45β2Þ þ 12αb24ðαþ 162βÞÞ þ 324a5βb3ð7αþ 3βÞÞ þOðr7Þ; ð3:5aÞ

BðrÞ
b2

¼ r2 þ b3r3 þ b4r4 þ b5r5 þ
r6

216αa2
ð−12αa32 þ a22ð14b23ð2αþ 3βÞ − 24αb4Þ

þ a2ð2b43ð67α − 3βÞ þ 2b4b23ð15β − 227αÞ þ 45b5b3ð7α − 3βÞ þ 180αb24Þ þ 27a5b3ðαþ 3βÞÞ
þOðr7Þ: ð3:5bÞ

The (2, 2) indicial structure at the origin gives rise to a
curvature singularity for this solution family, with
RμνρσRμνρσ going like r−8 as r → 0 [3].

IV. COUPLING TO SOURCES IN THE
LINEARIZED THEORY

For asymptotically flat solutions, the weakening fields as
r → ∞ can reliably be analyzed using the linearized limit
of the field equations (2.1). We now set the stage for our
later discussion of source coupling in the full nonlinear
theory by studying coupling to sources in the linearized
theory, expanding somewhat the discussion given in
Ref. [3]. We first need to identify the vacuum solutions
that can occur inside a shell source.

A. Source-free solutions

In [3], the linearized equations were solved for

A ¼ 1þWðrÞ þOðW2Þ; ð4:1aÞ

B ¼ 1þ VðrÞ þOðV2Þ: ð4:1bÞ

Solving the linearized source-free equations (2.12) for r > 0
in this limit yields the general solution

V ¼ Cþ C2;0

r
þ C0−e−m0r

r
þ C0þem0r

r
þ C2−e−m2r

r

þ C2þem2r

r
ð4:2aÞ
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W ¼ −
C2;0

r
þ C0−

e−m0r

r
ð1þm0rÞ þ C0þ

em0r

r
ð1 −m0rÞ

−
1

2
C2−

e−m2r

r
ð1þm2rÞ − 1

2
C2þ

em2r

r
ð1 −m2rÞ:

ð4:2bÞ

Note here that for α < 0 or β < 0 one has pure imaginarym2

or pure imaginary m0, respectively. For pure imaginary
massesmi ¼ iμi the solutionhas, insteadof real exponentials,
suppressed oscillating terms like Ci;s

1
r sinðμirÞ and

Ci;c
1
r cosðμirÞ in V and W. However, W also has nonsup-

pressed oscillations behaving like Ci;s sinðμirÞ and
Ci;c cosðμirÞ. This precludes asymptotic flatness at spatial
infinity unless both of the constants Ci vanish, i.e. unless the
correspondingmetric solution is strictly flat. Accordingly, we
limit our consideration to cases where m2 ≥ 0 and m0 ≥ 0.
The linearized solution (4.2) clearly shows the existence

in general of six free parameters, noting that the free
parameter C corresponds to a trivial rescaling of the time
coordinate. As one approaches the origin in the linearized
solution (4.2) for generic values of the free parameters, the
Cartesian-coordinate form of the linearized curvature ten-
sor Rlin

abcd has leading r
−3 singular terms in the r → 0 limit.

The linearized Ricci scalar for the solution (4.2) is

R ¼ − 3C0−m2
0e

−m0r

r
− 3C0þm2

0e
m0r

r
ð4:3Þ

and so has leading r−1 behavior for generic values of the
free parameters.
Note that α ¼ 0 or β ¼ 0 or α ¼ 3β are special cases in

which m2 or m0 vanish or coincide. In the following, we
shall proceed for the generic case α ≠ 0, β ≠ 0, α ≠ 3β.

B. True linearized vacuum

When the general linearized solution (4.2) is extended all
the way to the origin at r ¼ 0, Hμν must in general involve
δ3ð~rÞ sources. The true vacuum solution without such delta-
function sources is the restricted three-parameter solution
family satisfying the vacuum constraints

C2;0 ¼ C2− þ C2þ ¼ C0− þ C0þ ¼ 0: ð4:4Þ

Subject to these constraints, one finds the true linearized
vacuum family

Vvac ¼ Cþ C0þ
2 sinh ðm0rÞ

r
þ C2þ

2 sinh ðm2rÞ
r

ð4:5aÞ

Wvac ¼ 2C0þ

�
sinhðm0rÞ

r
−m0 coshðm0rÞ

�

− C2þ

�
sinhðm2rÞ

r
−m2 coshðm2rÞ

�
: ð4:5bÞ

A consequence of the vacuum constraints (4.4) is that the
metric (4.1) for the true linearized vacuum family (4.5) is
nonsingular at the r ¼ 0 origin. This nonsingularity extends
as well to all components of the linearized curvature tensor
Rlin
abcd and in particular one can see from (4.3) using (4.4) that

the linearized Ricci scalar is nonsingular at the origin for the
true vacuum solution (4.5).
It is appropriate to distinguish the true vacuum solution

(4.5), with its nonsingular curvature, from other members
of the general solution family (4.2) that happen to have a
nonsingular metric as r → 0. Unlike the situation in
linearized Einstein theory, where the only spherically
symmetric solution with a nonsingular metric at r ¼ 0 is
simply flat space, with correspondingly vanishing curva-
ture, in the linearized version of the higher-derivative
theory (1.1) the family of nonsingular-metric solutions
turns out to be wider than just the vacuum solution (4.5).
This wider class of nonsingular-metric solutions includes
also the solution for a point delta-function source, which
we consider next.

C. Source examples for the linearized theory

1. Point source

In [3] the stress-tensor of a static point mass at the origin
was considered:

Tμν ¼ δ0μδ
0
νMδ3ð~xÞ: ð4:6Þ

With this source, the solution to the linearized equations of
motion is the vacuum solution plus an asymptotically flat
matter part:

VðrÞ ¼ C − M
24πγr

ðe−m0r − 4e−m2r þ 3Þ; ð4:7aÞ

WðrÞ ¼ −
M

24πγr
ðð1þm0rÞe−m0r þ 2ð1þm2rÞe−m2r − 3Þ;

ð4:7bÞ
indicating that one needs γ ¼ 1

16πG ¼ 2
κ2

in order to agree
with the Schwarzschild solution in the limit where m0 and
m2 tend to infinity.
As one can see from (4.7), V and W are actually non-

singular as r → 0. As is clear from the need for the source
(4.6), however, (4.7) cannot be considered a true vacuum
solution. This conclusion is reinforced by consideration of the
curvature Rlin

abcd as r → 0, whose components have leading

r−1 singularity, and for which the Ricci scalar is given by

R ¼ M
8πγr

m2
0e

−m0r; ð4:8Þ

which has r−1 behavior as r → 0. Note also that in the weak-
field regime with m0 finite (i.e. for β ≠ 0) a solution with a

SPHERICALLY SYMMETRIC SOLUTIONS IN HIGHER- … PHYSICAL REVIEW D 92, 124019 (2015)

124019-9



point source at r ¼ 0 always has R ≠ 0 at any nonzero value
of r.

2. Shell source

To illustrate the effects of extended sources in this theory
with no Birkhoff theorem, let us now solve again in the
linearized theory for the fields produced by various sources
of nonzero size.
First take as source a thin spherical shell of radius l

Ttt ¼
M

4πl2
δðr − lÞ; ð4:9aÞ

Trr ¼ 0: ð4:9bÞ

From the linearized ∇μTμν ¼ 0 condition, we have

Tθθ ¼ 0þOððW;VÞ2Þ: ð4:10Þ

For r < l we use the vacuum solution (4.5):

V in ¼ D − 2D0− sinhðm0rÞ
r

− 2D2− sinhðm2rÞ
r

; ð4:11aÞ

Win ¼ −2D0−
�
sinhðm0rÞ

r
−m0 coshðm0rÞ

�

þD2−
�
sinhðm2rÞ

r
−m2 coshðm2rÞ

�
; ð4:11bÞ

and for r > lwe use the source-free solution (4.2a) for Vout
and (4.2b) forWout with the rising exponentials suppressed
in order to achieve asymptotic flatness.
For α ≠ 0 and β ≠ 0, one finds that V 000ðrÞ andW00ðrÞ are

discontinuous at the location of the shell, and the solution is

Vout ¼ Dþ M
8πγ

�
1

l
− 1

r

�
þ e−m2r

r
M
6πγ

sinhðm2lÞ
m2l

− e−m0r

r
M

24πγ

sinhðm0lÞ
m0l

; ð4:12aÞ

Wout ¼ −
M

24πγr

�
ð1þm0rÞe−m0r

sinhðm0lÞ
m0l

þ 2ð1þm2rÞe−m2r
sinhðm2lÞ

m2l
− 3

�
; ð4:12bÞ

for which the Ricci scalar is

Rout ¼
M

8πγr
m2

0e
−m0r

sinhðm0lÞ
m0l

: ð4:13Þ

Thus, just as for the point source, we find in the weak-field
regime withm0 finite (i.e. for β ≠ 0) that the solution with a
shell source always has R ≠ 0 at any nonzero value of r.

Note that in the limit l → 0 of the shell-source solution,
the expressions for Vout, Wout and R correctly tend to those
of the point source.

3. Balloon source

Now let us take as source a stress tensor with internal
pressure, again expanding upon results given in [3]:

Tμν ¼

0
BBBBB@

3M
4πl3 Θðl − rÞ 0 0 0

0 PΘðl − rÞ 0 0

0 0 Tθθ 0

0 0 0 Tθθ sin2 θ

1
CCCCCA
;

ð4:14Þ

where ΘðrÞ is a Heaviside theta function.9 In order to
satisfy the linearized conservation condition for Tμν, we
need to have

Tθθ ¼ Pr2Θðl − rÞ − 1

2
Pr3δðl − rÞ: ð4:15Þ

Solving the system with this source, we find the interior
r < l solution

V inðrÞ ¼ −
2D0− sinh ðm0rÞ

r
− 2D2− sinh ðm2rÞ

r

þDþ r2ð4πl3PþMÞ
16πγl3

; ð4:16aÞ

WinðrÞ ¼ D0−
�
2m0 cosh ðm0rÞ − 2 sinh ðm0rÞ

r

�

þD2−
�
sinh ðm2rÞ

r
−m2 cosh ðm2rÞ

�
þ Mr2

8πγl3
;

ð4:16bÞ

where the three vacuum constraints 0 ¼ D2;0 ¼
D2− þD2þ ¼ D0− þD0þ have again been used to ensure
a pure-vacuum r < l internal solution without source.
(Note that the M, P source terms are proportional to r2

and do not affect these constraint requirements.) At r ¼ l
there are 5 continuity conditions, for V, V 0, V 00,W,W0, and
two step conditions

V 000
outðlþÞ ¼ V 000

inðl−Þ þ
lPðαþ 6βÞ

36αβ
ð4:17aÞ

W00
outðlþÞ ¼ W00

inðl−Þ − l2Pðα − 3βÞ
36αβ

: ð4:17bÞ

9ΘðrÞ is capitalized in order not to be confused with the
angular coordinate θ.
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Note, however, that of these seven continuity and step conditions, only six are independent (cf. the six free parameters
expected from the differential order analysis in Sec. II A). This is a general situation and will be important for us when we
consider such source couplings in the full nonlinear theory.
Implementing the continuity and step conditions, we obtain the asymptotically flat solution with a balloon source:

V in ¼ Dþ 1

48πγl

�
3MP

r2

l2
þ 2½3ð1þm0lÞM0 − 4πl3P� sinhðm0rÞ

m0r
e−m0l

− 8½3ð1þm2lÞM2 þ 2πl3P� sinhðm2rÞ
m2r

e−m2l

�
ð4:18aÞ

Win ¼
1

24πγl

�
3M

r2

l2
þ ½3ð1þm0lÞM0 − 4πl3P�

�
sinhðm0rÞ

m0r
− coshðm0rÞ

�
e−m0l

þ 2½3ð1þm2lÞM2 þ 2πl3P�
�
sinhðm2rÞ

m2r
− coshðm2rÞ

�
e−m2l

�
ð4:18bÞ

Vout ¼ Dþ 1

16πγl
ð2M0 − 8M2 þ 3M þ 4πl3PÞ − M

8πγr

þ e−m0r

24πγr

�
3M0

�
sinhðm0lÞ

m0l
− coshðm0lÞ

�
− 4πl3P

sinhðm0lÞ
m0l

�

−
e−m2r

6πγr

�
3M2

�
sinhðm2lÞ

m2l
− coshðm2lÞ

�
þ 2πl3P

sinhðm2lÞ
m2l

�
ð4:18cÞ

Wout ¼
M

8πγr
þ e−m0rð1þm0rÞ

24πγr

�
3M0

�
sinhðm0lÞ

m0l
− coshðm0lÞ

�
− 4πl3P

sinhðm0lÞ
m0l

�

þ e−m2rð1þm2rÞ
12πγr

�
3M2

�
sinhðm2lÞ

m2l
− coshðm2lÞ

�
þ 2πl3P

sinhðm2lÞ
m2l

�
ð4:18dÞ

where we have used the following notation for source-
parameter combinations:

MP ≔ M þ 4πl3P

M0 ≔
M − 4πl3P

l2m2
0

M2 ≔
M þ 2πl3P

l2m2
2

: ð4:19Þ

The main point to take away from this analysis of the
linearized solutions is that the general six-parameter sol-
ution, constrained by two requirements of vanishing
coefficients for the rising-exponential Yukawa terms as
r → ∞, has a remaining essential dependence on four
parameters. One of these is adjustable by rescaling of the
time coordinate t (corresponding to the additive parameter
D above), and will be fixed by the requirement of having an
asymptotic Minkowski metric as r → ∞. The other three
parameters will be fixed by details of the source, as
displayed in the balloon-source solution by the dependence
on l, M and P. This multiparameter dependence clearly
illustrates the absence of a Birkhoff theorem for the

higher-derivative gravity theory. One needs to start with
the full six-parameter generic solution in order to arrange a
successful coupling of the higher-derivative theory to a
standard matter source, exemplified here by these various
delta-function source constructions.

V. SHELL SOURCES IN THE FULL
NONLINEAR THEORY

We now progress to studying matter coupling in the full
nonlinear theory. Unlike the situation in general relativity,
where the Schwarzschild solution is known in closed form,
we have no such luxury in the higher-derivative gravity
theory. So we need to be careful in handling the continuity
and step matching conditions for solutions known only
from series expansions such as those given in Sec. III. What
we wish to establish is which of the three families ðs; tÞ ¼
ð0; 0Þ; ð1;−1Þ or (2, 2) can couple acceptably to an
ordinary matter stress-tensor source. The key to this will
be the parameter counts that we found in Sec. III.
For simple models of matter coupling, we again consider

distributional sources. As has long been clear [13] in
general relativity, however, the only sensible delta-function
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sources in generally covariant theories are sources of spatial
codimension one. So we do not consider a point source as
in the linearized theory. Instead, the simplest source that we
can consider in the full nonlinear theory is a thin spherical
shell of radius l, which can be compared to the discussion
given for the linearized theory in Sec. IV C 2. This shell
source has a conserved stress tensor

Tμν ¼

0
BBB@

Ttt 0 0 0

0 Trr 0 0

0 0 Tθθ 0

0 0 0 Tθθ sin2ðθÞ

1
CCCA; ð5:1Þ

where, as in (4.9),

Ttt ¼
M

4πl2
δðr − lÞ; ð5:2aÞ

Trr ¼ 0: ð5:2bÞ

The condition ∇μTμν ¼ ð0;∇μTμr; 0; 0Þ ¼ 0 requires

Tθθ ¼
r3B0Ttt

4B2
: ð5:3Þ

The equations of motion (2.1) expand schematically as

Htt ¼ ∼ Bð4Þ þ ∼Að3Þ þ ∼Bð3Þ þ � � � ; ð5:4aÞ

Hrr ¼ ∼Bð3Þ þ ∼A00 þ ∼B00 þ � � � ; ð5:4bÞ

Hθθ ¼ ∼ Bð4Þ þ ∼Að3Þ þ ∼Bð3Þ þ � � � ; ð5:4cÞ

suggesting that we should consider

Bð4Þ ∼ δþ Θ; ð5:5aÞ

Að3Þ ∼ δþ Θ; ð5:5bÞ

Bð3Þ ∼ Θ; ð5:5cÞ

A00 ∼ Θ: ð5:5dÞ

Then A, A0, B, B0, B00 will be continuous at r ¼ l, while A00
has a step of size

A00
outðlþÞ − A00

inðl−Þ

¼ M
8πl

A3
lðα − 3βÞB0 − 2ðαþ 6βÞB

36αβ

����
r¼l

: ð5:6Þ

We leave to Appendix B a detailed discussion of
how to arrange a satisfactory series solution of these
matching conditions in the higher-derivative theory.
However, the important part of the result is easily seen by

a parameter-counting argument as follows. The region
interior to the shell is described by the vacuum solution of
the nonlinear theory,which is the (0, 0) family as discussed in
Sec. III A 1. The (0, 0) vacuum solutions of the nonlinear
theory admit three free parameters, as shown in Table I
given in Sec. III. The coupling to the source constitutes six
continuity and matching conditions. The region exterior to
the shell is also source free, so will be described by one of
the source-free solutions of Sec. III. Finally there are
also two conditions at infinity that need to be imposed in
order to ensure asymptotic flatness, analogous to the
elimination of the rising-exponential Yukawa terms in
the linearized theory. After applying all these constraints
we expect one final free parameter to be the adjustable
parameter in the B function, corresponding to the asymp-
totic value of g00, which needs to equal−1 in order to have
asymptotic Minkowski space as r → ∞. The remaining
structure of the solutionwill be determined by the details of
the source, determined by the twoparametersM andl in the
case of the simple shell delta-function source, and deter-
mined by the three parameters M, l and P in the case of a
balloon-type source as in Sec. IV C 3. This is a total of
6þ 2þ 1 ¼ 9 conditions for asymptotically Minkowski
shell-coupled solutions, with 3 free parameters from the
(0, 0) solution inside the shell, so the solution outside the
shell must have 6 (or more) free parameters in order to be
able to satisfy the constraints. Thus the exterior solution to a
matter shellmust be of the (2, 2) family, which has precisely
6 free parameters. This is similar to the linearized source
couplings where the exterior solutions had all of their 6 free
parameters fixed by the parameters of the source,
i.e. the generic 6-parameter solution can be placed outside
the source and can satisfy the necessary constraints, but a
constrained exterior solution could not. Note that we
assume that the 9 continuity, matching and asymptotic
flatness conditions are all independent. In the linearized
theory, one can verify that the conditions are indeed
independent, but strictly speaking only a closed-form
solution could confirm that the same is true in the full
nonlinear theory.
On the other hand, trying to arrange the coupling of a

delta-function shell source to an exterior (0, 0) or ð1;−1Þ
family solution will not work, for the simple reason that
their numbers of exterior free parameters (three or four,
respectively) are not sufficient to satisfy all the nine
continuity, step, asymptotic flatness and asymptotic
Minkowskian requirements. Thus, an asymptotically flat
and asymptotically Minkowskian solution coupled to a
shell delta-function source can only be of the (2, 2) family.
This contrasts with general relativity, where the (0, 0)

vacuum family has 1 free parameter, the ð1;−1Þ family has
two free parameters, and the (2, 2) family does not exist.
The shell coupling gives two conditions, g00ðr → ∞Þ ¼
−1 gives one condition, and there are no conditions needed
to remove asymptotically nonflat terms. The solution
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exterior to a shell source is the Schwarzschild ð1;−1Þ
family, with structure determined by M and the asymptotic
Minkowskian condition, but is independent of l.

VI. TRACE-EQUATION NO-HAIR THEOREM

Having established that the solution that couples cor-
rectly to an ordinary stress-tensor source is of the (2, 2)
family, we now proceed to investigate the consequences of
the field equations in the (0, 0), ð1;−1Þ and (2, 2) solution
families without regard to sources. We will be particularly
interested in the consequences of boundary conditions at a
putative horizon or at spatial infinity. Useful tools to this
end are a set of Lichnerowicz-type “no-hair” theorems
forcing the solution to share properties with the standard
Schwarzschild solution under certain conditions. This topic
was broached in Ref. [14]. As noted in Ref. [15], we agree
in part with conclusions of that reference, namely the
trace part of the no-hair theorem, as will be discussed in
the following. Unfortunately, we do not agree with the
contentions of [14] regarding the traceless part the higher-
derivative equations of motion, which would have signifi-
cantly simplified the analysis. We present in Appendix C
our analysis of the general no-hair theorem, including an
extension to include a cosmological constant. Despite our
disagreement with Ref. [14], we still can obtain important
constraints on the solution families of the higher-derivative
theory (1.1) using no-hair type arguments. In this section,
we review the trace no-hair theorem of [14]. In Sec. VII, a
careful analysis of the parametric structure of solutions
containing a horizon will be given, and in Sec. VIII these
elements will be put together with a no-hair theorem for
linearized deviations from the classic Schwarzschild sol-
ution. In Sec. IX, solutions with a horizon that discretely
differ from the Schwarzschild solution will be discussed.
The only family of static spherically symmetric and
asymptotically flat solutions that couples properly to
ordinary stress-tensor sources, i.e. the (2, 2) family, cannot
have a horizon.
We now proceed to review the trace-equation no-hair

theorem. We do this in a different style from that of
Ref. [14] in that we present the no-hair trace-equation
argument for static solutions in terms of a timelike dimen-
sional reduction from four to three dimensions.10

The static four-dimensional metric can be written in the
form

ds2 ¼ −λ2dt2 þ habdxadxb; ð6:1Þ
where the spatial metric hab is positive definite for flat
space, and therefore, assuming asymptotic flatness, it is
positive definite everywhere between infinity and a horizon

at finite r (should one exist). Both hab and λ are assumed
to be functions only of the three spatial coordinates xa. Let
∇μ be the covariant derivative for the 4-metric gμν, and let
Da be the covariant derivative for the 3-metric hab. It
follows that

□R ≔ gμν∇μ∇νR ¼ DaDaRþ 1

λ
ðDaλÞðDaRÞ; ð6:2Þ

so the trace of the source-free equations of motion (2.3) can
be written as

0¼Hμ
μ ¼ 6β

�
DaDaRþ1

λ
ðDaλÞðDaRÞ−m2

0R

�
: ð6:3Þ

For the theory with β ¼ 0, one has R ¼ 0 directly
from the trace of the field equations (2.3), while
for β ≠ 0 the bracketed quantity in (6.3) is required to
vanish. Subject to certain assumptions, this will still
imply that R ¼ 0. To see this, multiply the bracketed
quantity in (6.3) by λR and integrate over the whole spatial
3-section

0 ¼
Z
S

ffiffiffi
h

p
d3x½λRðDaDaRÞ þ λRðDaλÞðDaRÞ −m2

0λR
2�:

ð6:4Þ

Preparing for an integration by parts, we rewrite this as

0 ¼
Z
S

ffiffiffi
h

p
d3x½DaðλRDaRÞ − λðDaRÞðDaRÞ −m2

0λR
2�:

ð6:5Þ

The first term turns into a 2-dimensional integral over two
boundaries: one at spatial infinity, and the other at some
finite radius. The contribution from the boundary at spatial
infinity vanishes subject to the assumption of asymptotic
flatness. A sufficient (though not necessary) condition for
the inner boundary term to vanish is satisfied if that
boundary is a horizon. If we take the inner integration
boundary to be such a horizon, then the boundary integral
will be proportional to λjhorizon, which vanishes, by defi-
nition. Therefore, for a solution with a horizon, (6.5)
reduces to a 3-dimensional spatial integral over the sum
of two negative semidefinite terms.11 Requiring this to
vanish therefore implies that R and DaR separately vanish
throughout the integration region, thus implying
that R ¼ 0.
In a region where R ¼ 0, the equations of motion

become10Such timelike dimensional reductions have proven to be
powerful tools in classifying black-hole solutions in a variety of
supersymmetric and nonsupersymmetric contexts [18]. 11Recall that we are requiring throughout β > 0, so m2

0 > 0.
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0 ¼ HμνjR¼0

¼ −2α
�
□Rμν þ 2Rρ

μRνρ − 2∇ρ∇μR
ρ
ν − 1

2
gμνRρσRρσ

�

þ γRμν; ð6:6Þ

which notably no longer have any dependence on β. In the
β ¼ 0 case without sources, one automatically has
Hμ

μ ¼ γR ¼ 0, and therefore (6.6) obtains everywhere.
We have accordingly shown using (6.5) that if the

boundary terms vanish on the boundaries of a given
spatial region, then the field equations in that region
reduce to the β ¼ 0 case (corresponding to the
Lagrangian density L ∼ γR − αCμνρσCμνρσ). It will be
computationally advantageous in such situations to use
the two independent β ¼ 0 equations of motion, rather than
the two β ≠ 0 equations of motion together with R ¼ 0 as a
third condition.

A. Implications for the three near-origin
solution families

We have anticipated above a main conclusion
that the asymptotically flat solutions to the higher-
derivative theory (1.1) with normal matter coupling do
not have a horizon. For a spacetime without horizon it is
natural to extend the integration region in Eq. (6.5) down to
near the origin, r → 0, where hab remains positive but we
do not yet know the behavior of the boundary term at the
inner boundary. An analysis of the equations of motion at
small r can, however, tell us how this boundary term
behaves.
We now look again at (6.5) but now with the integration

region taken to have an inner boundary located at r → 0. We
can use this discussion together with the small r behavior of
the boundary term to study the various implications of (6.5)
for the structure of the (0, 0), ð1;−1Þ and (2, 2) solution
families. Accordingly, we calculate the boundary term in
(6.5) simply taken as the dominant part

R∂rR

(where the other components of the boundary term vanish in
all cases as r → 0). To be precise about the boundary-term
contribution, recall that the boundary term actually appears
in (6.5) in the form

Z
S

ffiffiffi
h

p
½Dað

ffiffiffiffi
B

p
ðboundary termÞaÞ�d3x ð6:7Þ

which for a boundary termwith vanishing θ,ϕ components is
equal toZ

S
∂r½

ffiffiffi
h

p ffiffiffiffi
B

p
ðboundary termÞr�d3x

¼
Z
S
∂r½

ffiffiffiffiffiffiffi
AB

p
r2 sinðθÞðboundary termÞr�drdθdϕ:

ð6:8Þ
We now analyze the consequences of (6.5) in the three near-
origin solution families.

Family R∂rR
ffiffiffiffiffiffi
hB

p
R∂rR

(0, 0) 2γ
β ða2 − b2Þ2rþOðr3Þ ∼Oðr3Þ

ð1;−1Þ − 3γ
8a4

1
β
ð5
3
a1b2 − a41 − a4Þ2rþOðr3Þ ∼Oðr3Þ

(2, 2) − ða2ð14a2b3−2b33þ10b4b3−45b5Þþ27a5Þ2
9a5

2

r−5 þOðr−4Þ ∼Oðr−1Þ

For a spacetime with no horizon, we choose the
integration region of (6.5) to extend from the origin to
infinity. The boundary at infinity gives zero by the
assumption of asymptotic flatness. For the (0, 0) and
ð1;−1Þ families, as the inner integration boundary is taken
towards the origin, r → 0, the inner boundary terms also
tend to zero, and we consequently learn that if there is no
source between the origin and infinity then one must have
R ¼ 0 throughout spacetime. The (0, 0) family contains an
R ¼ 0 solution, as does the ð1;−1Þ family. For the (2, 2)
family, the boundary term blows up as r → 0 and one can
make no conclusion about the necessary vanishing of R.
Note, however, that the (2, 2) family also does contain an
R ¼ 0 solution, obtained by applying two constraints to its
six free parameters. Compare this to the expression for the
Ricci scalar in the linearized theory (4.3) and to the
analysis of the full theory given in Sec. II A 2, where we
found that the β ¼ 0 theory has four free parameters, in
order to see that the R ¼ 0 condition imposes two para-
metric constraints on generic static spherically symmetric
solutions.
The R ¼ 0 solution for the (0, 0) family is obtained if and

only if b2 ¼ a2:

AðrÞ ¼ 1þ a2

�
r2 þ r4

12αa2 þ γ

20α
þ r6

320α2a22 þ 100αa2γ þ γ2

1120α2
þOðr8Þ

�
ð6:9Þ

BðrÞ
b0

¼ 1þ a2

�
r2 þ r4

24αa2 þ γ

40α
þ r6

960α2a22 þ 144αa2γ þ γ2

3360α2
þOðr8Þ

�
ð6:10Þ
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and Rμν ¼ 0 is obtained if and only if a2 ¼ 0. Since Aðr → 0Þ → 1 for all of (0, 0) this solution must have an even number
of horizons.
The R ¼ 0 solution for the ð1;−1Þ family is obtained if and only if a4 ¼ 5

3
a1b2 − a41:

AðrÞ ¼ a1r − a21r
2 þ a31r

3 þ r4
�
5

3
a1b2 − a41

�
þ r5

�
a51 − 23

6
a21b2

�
þOðr6Þ ð6:11Þ

BðrÞ
b−1

¼ 1

r
þ a1 þ b2r2 þ

1

6
a1b2r3 − 1

5
r4a21b2 þOðr5Þ: ð6:12Þ

The free parameter a1 corresponds to the Schwarzschild
mass and the free parameter b2 controls the deviation from
the Schwarzschild solution. Specifically, one has pure
Schwarzschild, i.e. Rμν ¼ 0, if and only if b2 ¼ 0, and
inspection of the solution then shows that
a1 ¼ − 1

2
ðMSchwarzschildÞ−1, so we expect the solution to

have a horizon for a1 < 0 and to have no horizon for
a1 > 0.
The (2, 2) family (which does not appear in general

relativity) has a four-parameter family of R ¼ 0 solutions
but cannot have Rμν ¼ 0 for all r, because, e.g., in the (2, 2)
family one has Rrr ¼ 3r−2 þOðr−1Þ.
A summary of boundary structure and parameter counts

for the three near-origin solution families are given in
Table II.

VII. EXPANSION AROUND A NONZERO
RADIUS r0

We can refine our understanding of the various forms of
solutions by expanding now around an arbitrary radius r0.
This will be easier to do in a slightly different set of
variables:

ds2 ¼ −BðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
2; ð7:1Þ

related to the usual Schwarzschild variables (1.3)
by AðrÞ ¼ 1=fðrÞ.
We can use a Frobenius ansatz for the expansion about r0

similar to our expansion (3.1) about r ¼ 0:

f ¼ fwðr − r0Þw þ fwþ1ðr − r0Þwþ1 þ � � � ð7:2aÞ

B
bt

¼ ðr − r0Þt þ btþ1ðr − r0Þtþ1 þ � � � ð7:2bÞ

for some exponents w and t, not confusing these unde-
termined ðw; tÞ exponents with the undetermined ðs; tÞ
exponents used earlier in the expansion (3.1) around r ¼ 0.
We shall find various Frobenius solution families and also
some non-Frobenius families of solutions. However,
detailed discussion of all of these is beyond the scope of
this paper. In Sec. VII B we shall present a summary and
discussion of all the solutions that we have found. For the
purposes of the main thread of our discussion the situation
where the space-time has a horizon will be of most interest
to us and we turn to it now.

A. Solution family around a horizon

We now focus on the properties of spherically symmetric
solutions with horizons. We saw in Sec. VI that in a static
asymptotically flat spacetime the presence of a horizon
implies that the Ricci scalar must vanish and consequently
the system becomes equivalent to Einstein-Weyl gravity,
with Lagrangian

e−1L ¼ γR − αCμνρσCμνρσ: ð7:3Þ

Using the metric (7.1) the equations of motion
then imply

0 ¼ r2ðBð2fB00 þ B0f0Þ − fB02Þ þ 4BðrfB0 þ Bðrf0 þ f − 1ÞÞ ð7:4aÞ

0 ¼ αðr3fB0½−BB0f0 þ fB02 − 2B2f00� − 2B2fðr2B0f0 − 2Bðr2f00 − rf0 þ 2ÞÞ − Bf2ð3r2B02 þ 8B2Þ
− rB3f0ð3rf0 − 4ÞÞ þ 2γr2B2ðrfB0 þ Bðf − 1ÞÞ: ð7:4bÞ

The Schwarzschild metric itself is of course still a solution to Eqs. (7.4), with

BðrÞ ¼ fðrÞ ¼ 1 − r0
r
: ð7:5Þ
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In the higher-derivative theory we do not have a general
solution in closed form but a Frobenius analysis performed
around the horizon can reveal its relation to the
Schwarzschild solution. We consider solutions in the
neighbourhood of a horizon, assumed to be at r ¼ r0.
By definition, the metric function BðrÞ vanishes at a
horizon so we look for solutions of the form12 (7.2) with
t > 0. Using the expansions of B and f as given in (7.4b)
shows that w ≤ 3

2
. In (7.4a), for w < 3

2
it is the first term that

contributes the leading-order term in ðr − r0Þ, and the

reader can easily check that these vanish only if t ¼ 2 − w.
Using t ¼ 2 − w in (7.4b) then shows that the first term
contributes the leading order term in ðr − r0Þ and this then
vanishes only if w ¼ t ¼ 1. Thus both B and f must be
linear in ðr − r0Þ at the horizon, as in the
Schwarzschild case.
The solution to the equations of motion then is found to

have three free parameters: b1, f1, r0. The other coefficients
bn, fm can be solved for in terms of these:

f ¼ f1ðr − r0Þ þ
�
3γ

8α
− 3γ

8αf1r0
þ −2f1

r0
þ 1

r20

�
ðr − r0Þ2 þOððr − r0Þ3Þ; ð7:6aÞ

B
b1

¼ ðr − r0Þ þ
�
− γ

8αf1
þ γ

8αf21r0
þ 1

f1r20
− 2

r0

�
ðr − r0Þ2 þOððr − r0Þ3Þ; ð7:6bÞ

and so on. The parameter b1 is trivial, as we have seen, in
the sense that it can be absorbed into a rescaling of the time
coordinate. Note that the Schwarzschild solution corre-
sponds to the case where f1 ¼ 1=r0, with the same time
coordinate as for Schwarzschild if one also chooses
b1 ¼ 1=r0.
This count of the free parameters tells us which of the

three families near the origin corresponds to asymptotically
flat solutions with horizons. Consider the ðs; tÞ ¼ ð1;−1Þ
family of Table II. As we have seen in Sec. VI, for
asymptotically flat solutions this family must have R ¼
0 and its equations of motion accordingly must become
equivalent to the β ¼ 0 theory as considered in this section.
In the β ¼ 0 theory, one accordingly has three free
parameters as shown in Table II. The theory thus contains
the two-parameter Schwarzschild solution, together with a
one-parameter family of deviations from Schwarzschild.
Nearby the Schwarzschild solution within this one-
parameter family of deviated solutions, we would

certainly expect the horizon still to be present. So we
expect the ð1;−1Þ family to be a three-parameter family, in
which a three-dimensional volume of that parameter space
has a horizon. Therefore in the β ¼ 0 theory we identify the
ðs; tÞ ¼ ð1;−1Þ indicial solution family obtained from
expansion near the origin with the solution family con-
taining horizons.
One needs to be careful with the logic here. Although we

say that asymptotic flatness implies R ¼ 0 for the ðs; tÞ ¼
ð1;−1Þ solution family, and therefore its equivalence to
solutions of the Einstein-Weyl theory, the converse is not
necessarily true. It is likely that not all ð1;−1Þ solutions of
Einstein-Weyl gravity are asymptotically flat, and in fact
the loss of asymptotic flatness is a natural guess for the
consequence of turning on the “non-Schwarzschild”
parameter measuring the deviation from Schwarzschild.
In Sec. VIII, we will further explore such deviations from
general relativity in Einstein-Weyl gravity and the impli-
cations for their asymptotic behavior through a linearized
expansion in the non-Schwarzschild parameter.

B. Summary of expansion behaviors around
a nonzero radius r0

The Frobenius ansatz (7.2) has three solution families.
The first is simply the (0, 0) family, corresponding to no

TABLE II. Trace no-hair boundary structure and solution parameter counts (including the trivial time-rescaling
parameter).

Number of free parameters

ðs; tÞ solution family
ffiffiffiffiffiffiffi
AB

p
r2R∂rR Generic theory β ¼ 0 theory

(0, 0) Oðr3Þ 3 2
ð1;−1Þ Oðr3Þ 4 3
(2, 2) Oðr−1Þ 6 4

12Note that an expansion of the form (7.7) for an asymptoti-
cally flat solution with a horizon, i.e. a ð3

2
; 1
2
Þ ffiffiffiffiffiffiffi

r−r0p expansion in
the notation of Table III, is not possible, as one must have
vanishing Ricci scalar for asymptotically flat solutions and such
an expansion does not then exist.

H. LÜ et al. PHYSICAL REVIEW D 92, 124019 (2015)

124019-16



special radius. Its main value is reinforcing our conclusions
about the generic number of free parameters of the theory.
The second is the (1, 1) family already discussed, describ-
ing a horizon. The third is the (1, 0) family, which we shall
describe as a wormhole in Sec. IX.
As mentioned in our Sec. III discussion of expansions

around the origin, a natural concern is that there might be
other solution behaviors not captured by the integral-step
Frobenius expansion. We cannot check all alternative
expansions exhaustively, but we have tried a variety of
non-Frobenius expansions and have found two other
solution families. Both of these non-Frobenius families
involve half-integer as well as integer powers of ðr − r0Þ.
As before, we denote Frobenius families by bracketed pairs
of indices ðw; tÞ, and we shall denote the new series
similarly but with a subscript: ðw; tÞ ffiffiffiffiffiffiffi

r−r0p , where they go as

f ¼ f0ðr − r0Þw þ f1ðr − r0Þwþ1
2 þ f2ðr − r0Þwþ1 þ � � �

ð7:7aÞ
B
b0

¼ðr − r0Þt þ b1ðr − r0Þtþ1
2 þ b2ðr − r0Þtþ1 þ � � �

ð7:7bÞ

We shall not give a detailed analysis of all five solution
families in this paper, but we summarize our findings in
Table III.
Note that the ð3

2
; 1
2
Þ ffiffiffiffiffiffiffi

r−r0p solution family does not occur in

the β ¼ 0 theory. The (1, 0) solution family is a subset of
the ð1; 0Þ ffiffiffiffiffiffiffi

r−r0p family, obtained by setting the coefficient of
odd powers of

ffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p
to zero while holding the coef-

ficients of even powers at finite values.

VIII. NO-HAIR THEOREM FOR A LINEARIZED
DEVIATION FROM SCHWARZSCHILD

We saw in Sec. VI that by considering the trace of the
field equations for gravity with general quadratic curvature
terms added, one can derive a no-hair theorem that shows
that the Ricci scalar must vanish in any asymptotically flat
black hole solution. Unfortunately, similar arguments

applied to the full set of field equations fail to establish
a more powerful result that one might have hoped to
demonstrate, namely the vanishing of the full Ricci tensor
for all asymptotically flat spherically symmetric solutions
with horizons. Had one been able to obtain such a result,
this would have shown the Schwarzschild solution to be the
unique static spherically symmetric asymptotically flat
black-hole solution in theories of gravity with curvature-
squared corrections.
Indeed, as we found in Ref. [15], there are non-

Schwarzschild black-hole solutions to be found numeri-
cally, so the failure of a full Lichnerowicz-type no-hair
theorem including the traceless components of the field
equations (2.1) is now seen to have been quite indicative.
Nonetheless, one may still obtain useful information about
the set of solutions with horizons from a no-hair theorem
analysis carried out to linearized order in the non-
Schwarzschild parameter discussed in the last section.
As we shall see, the upshot from this analysis is that,
provided the curvature-squared terms have sufficiently
small coefficients in comparison to the scale size of the
black hole, then there can be no well-behaved static and
spherically symmetric black holes that are perturbatively
close to the Schwarzschild solution. So in this restricted
sense, one can show that the Schwarzschild solution is
generally an isolated solution, discretely separated from
other asymptotically flat solutions with horizons.
We may consider solutions of the equations (7.4) that are

infinitesimally close to Schwarzschild by writing

BðrÞ ¼ 1 − r0
rð1þ ϵZBðrÞÞ

1

AðrÞ ¼ fðrÞ ¼ 1 − r0
rð1þ ϵZAðrÞÞ

; ð8:1Þ

and keeping only terms of order ϵ. From the two coupled
equations of motion in ZA and ZB, a single third-order
ordinary differential equation purely for ZAðrÞ can be
obtained by eliminating ZBðrÞ:

TABLE III. General expansion behaviors around a nonzero radius r0.

Number of free parameters

ðw; tÞ solution family
ffiffiffiffiffiffiffi
AB

p
r2R∂rR Generic theory β ¼ 0 theory

(0, 0) Oð1Þ 6 4
(1, 1) Oðr − r0Þ 4 3
(1, 0) Oð ffiffiffiffiffiffiffiffiffiffiffiffi

r − r0
p Þ 3 2

ð1; 0Þ ffiffiffiffiffiffiffi
r−r0p Oð1Þ 6 4

ð3
2
; 1
2
Þ ffiffiffiffiffiffiffi

r−r0p Oð ffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p Þ 3 N/A
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ZBðrÞ − ðr − r0ÞZB
0ðrÞ

¼ ZAðrÞ þ
αð−8r2 þ 16rr0 − 9r20Þðr − r0Þ
2γr4 − 2γr3r0 − 4αrr0 þ 5αr20

Z0
AðrÞ

þ 2αrð2r − 3r0Þðr − r0Þ2
2γr4 − 2γr3r0 − 4αrr0 þ 5αr20

Z00
AðrÞ: ð8:2Þ

In fact, the resulting equation in ZA involves only Z0
A, Z

00
A

and Z000
A terms, and consequently we have a second-order

ordinary differential equation for Z0
A. It is useful to

introduce a new variable YðrÞ, defined by

ZAðrÞ ¼
Z

r

r0

Yð~rÞωð~rÞd~r; ð8:3Þ

where ωðrÞ ¼ 1 for now but this will be revised later. The
lower limit in (8.3) is chosen to be r0 in order to ensure that
ZAðrÞ vanishes on the horizon.13 Using the abbreviation

ζ ¼ αðγr20Þ−1; ð8:4Þ

the second-order ordinary differential equation for YðrÞ is
then

h0Y þ h1Y 0 þ h2Y 00 ¼ 0; ð8:5Þ

where one has

h0 ¼ 2r7 − 2r0r6 − 8r20r
5ζ þ 16r30r

4ζ − 5r40r
3ζ − 32r50r

2ζ2 þ 44r60rζ
2 − 20r70ζ

2;

h1 ¼ 4r2ð2r − 3r0Þr20ζðr3 − r0r2 þ r30ζÞ;
h2 ¼ −2r2ðr − r0Þr20ζð2ðr − r0Þr3 þ r30ð5r0 − 4rÞζÞ: ð8:6Þ

One can easily see from (8.5) that at large r the two solutions to the field equations go like

Y ∼ a1ð1þm2rÞe−m2r þ a2ð1 −m2rÞem2r ð8:7Þ

wherem2 ¼
ffiffiffiffiffiffiffiffiffiffi
γ=2α

p
as before. For r close to the horizon at r ¼ r0, one can once again use the Frobenius method to find the

r → r0 asymptotic behavior of the two independent solutions Y1 and Y2. We find that they take the asymptotic forms

Y1 ¼ 1þ c1ðr − r0Þ þ c2ðr − r0Þ2 þ c3ðr − r0Þ3…; ci ¼ ciðα; r0Þ for i ≥ 1;

Y2 ¼ Y1 logðr − r0Þ þ
b−1
r − r0

þ b1ðr − r0Þ þ b2ðr − r0Þ2 þ b3ðr − r0Þ3 þ � � � ;

with b−1 ¼ − α

r0
; bi ¼ biðα; r0Þ for i ≥ 1: ð8:8Þ

Thus, in order for the metric perturbation ZAðrÞ to be
nonsingular at large r we must have a2 ¼ 0, while for
nonsingular behavior near r ¼ r0 the overall coefficient of
the Y2 solution must be zero. We shall now attempt to show
that no such solution Y that interpolates between these
limiting forms can exist.
To do this, we take the Y equation (8.5), multiply it by

uðrÞYðrÞ for some chosen uðrÞ and then integrate the result
from r ¼ r0 (the horizon) out to infinity. First, we note that

0 ¼ ðh0Y þ h1Y 0 þ h2Y 00ÞuY
¼ uh0Y2 − uh2Y 02 þ ðuh1 − u0h2 − uh20ÞYY 0

þ ðuh2YY 0Þ0: ð8:9Þ

We now choose uðrÞ so that the coefficient of YY 0 vanishes,
by solving

uh1 − u0h2 − uh20 ¼ 0: ð8:10Þ

This gives, up to a constant factor that we may take to be 1,

uðrÞ ¼ ðr − r0Þ
ð2ðr − r0Þr4 þ r30ð5r0 − 4rÞrζÞ2 : ð8:11Þ

Integrating (8.9) from r0 out to infinity, we thus obtain

Z
∞

r0

drðuh0Y2 − uh2Y 02Þ ¼ 0: ð8:12Þ

Note that we can drop the total derivative term, since we
have established that an acceptable solution for Y must
satisfy Y ∼ const near r ¼ r0 and Y ∼ e−mr near infinity. If
we can show that uh0 and −uh2 are both non-negative in

13The third linearly independent solution of the third-order
ordinary differential equation for ZAðrÞ itself is ZAðrÞ ¼ const,
which, as can be seen from (8.1), just describes a perturbation that
shifts the mass of the Schwarzschild solution by an infinitesimal
constant.
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the interval r0 ≤ r ≤ ∞, then we will have shown that no
acceptable solution Y can exist.
The function uðrÞ obtained in (8.11) is manifestly non-

negative in the range r0 ≤ r ≤ ∞. It is then evident from
(8.6) that showing the non-negativity of uh0 and −uh2 is
equivalent to showing that h0 and H2, given by

h0 ¼ 2r7 − 2r0r6 − 8r20r
5ζ þ 16r30r

4ζ − 5r40r
3ζ

− 32r50r
2ζ2 þ 44r60rζ

2 − 20r70ζ
2;

H2 ¼
h2

−2r2ðr − r0Þr20ζ
¼ 2ðr − r0Þr3 þ r30ð5r0 − 4rÞζ

ð8:13Þ

are non-negative in the interval r0 ≤ r ≤ ∞, for some range
of ζ ≥ 0.
It is easy to see that H2 is non-negative in the whole

interval if and only if

0 ≤ ζ ≤
27

8
: ð8:14Þ

The non-negativity of h0 provides a stronger condition on
ζ. Setting r ¼ r0, we see that h0ðr0Þ ¼ r70ð3 − 8ζÞζ, and so
we must certainly have 0 ≤ ζ ≤ 3

8
. An easy way to inves-

tigate the bound on ζ under which h0ðrÞ is non-negative in
the entire range r0 ≤ r ≤ ∞ is to write

r ¼ r0ð1þ xÞ; ζ ¼ ζmax

1þ y
; ð8:15Þ

since then the ranges r0 ≤ r ≤ ∞ and 0 ≤ ζ ≤ ζmax are
mapped into the positive quadrant 0 ≤ x ≤ ∞, 0 ≤ y ≤ ∞.
We then bring the expression for h0 over a common
denominator [which is the manifestly positive quantity
ð1þ yÞ2], and examine the numerator, which is a multi-
nomial in x and y i.e. it is of the form

XN
n

XM
m

Cn;mxnym ð8:16Þ

where the Cn;m are functions of r0 and ζmax. The condition
Cn;m ≥ 0 for all n, m is clearly sufficient (but may not be
necessary) for non-negativity of h0 in r0 ≤ r ≤ ∞. This
condition easily yields the bound

0 ≤ ζ ≤
3

8
: ð8:17Þ

Conversely, as we have seen, if ζ exceeds this bound then
h0 will be negative at r ¼ r0.
The upshot from this discussion is that, provided ζ is

bounded from above by (8.17), then there cannot exist a
regular infinitesimal perturbation of the metric away from

the Schwarzschild solution. For ζ exceeding this bound, we
can gain no information from this discussion.
One can actually improve the upper bound on ζ by

making a different choice of ωðrÞ in (8.3), and by repeating
the previous steps. For example, if we take
ωðrÞ ¼ ðcr0 þ rÞ−1, where c > −1 is a constant to be
chosen, the optimal bound ζmax is the largest positive root
of the sextic

9600ζ6max þ 8624ζ5max − 9360ζ4max − 4461ζ3max

þ 1216ζ2max þ 1116ζmax − 48; ð8:18Þ

which is approximately given by ζmax ∼ 0.617292. This is
achieved by choosing the constant c to be given by

c ¼ −36ζ2max þ 19ζmax þ 2

20ζ2max − 9ζmax − 2
∼ 0.164789: ð8:19Þ

A slight improvement on this can be achieved by taking
instead ωðrÞ ¼ ðcr30 þ r3Þ−1=3. We then find 0 ≤ ζ ≤ ζmax
with ζmax the largest positive root of

28160ζ4max þ 12176ζ3max − 43374ζ2max

þ 19179ζmax − 2322 ¼ 0; ð8:20Þ

which is ζmax ∼ 0.6262615, attained when the constant c is
chosen to be given by

c ¼ 3 − 4ζmax

8ζmax − 3
∼ 0.2462346: ð8:21Þ

The condition of Cn;m ≥ 0 in (8.16) is a sufficient
condition, and the necessary bound on ζ may be better.
Trying different functions ωðrÞ could presumably improve
the bound further. The best one could hope to achieve by
this method is the bound (8.14) [valid for any function
ωðrÞ] arising from the need for H2 to be non-negative also.
In any case, we have established that, provided ζ is
sufficiently small, there is a linearized no-hair theorem
that rules out regular black holes that are close to the
Schwarzschild solution.
The treatment of the traceless components of the field

equation by such a linearized perturbative approach estab-
lishes, for ζ appropriately bounded, that the Schwarzschild
solution is isolated: there can be no other nearby asymp-
totically flat solutions with horizons. The notion of
“nearby” solutions is made clear by our general analysis
of the parametric dependence of solutions with horizons.
From the parameter count summarized in Sec. VI A 1, we
presented an argument in Sec. VII for identifying the
3-parameter family of solutions with horizons with the
3-parameter ð1;−1Þ family of solutions around the origin.
The classic 2-parameter Schwarzschild solution is clearly
contained in this family. It is in terms of the single
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remaining parameter of the ð1;−1Þ family that one can
characterize the “distance” of other nearby solutions with
horizons from the Schwarzschild solution.
The need to make such a cautious statement about the

isolation of the Schwarzschild solution, however, clearly
raises questions as to whether there might exist other
asymptotically flat solutions with horizons that are not
“near” to Schwarzschild. From Ref. [15], we know this in
fact to be the case. In the next section, we give a brief
overview of what can be said about such solutions from
numerical studies.

IX. NUMERICAL ANALYSIS

The detailed nonlinear field equations (given in
Appendix A) for our Schwarzschild-coordinate spherically
symmetric system in the general α, β, γ theory (1.1) are
clearly not very amenable to a closed-form solution.
Having studied the asymptotic behavior of solutions at
the origin, at spatial infinity and at a horizon in Secs. III, IV
and VII, we now need to consider what happens in between
these various limiting regions. This is only approachable by
numerical study. We do not purport to give an exhaustive
treatment of numerical solutions to the theory (1.1) here,
but some review of what is already known and what can be
obtained by Mathematica experimentation is in order [19].

A. (2, 2) solutions

First, let us consider solutions that could be obtained
from coupling to a positive-energy shell source as dis-
cussed in Sec. V. Only the (2, 2) indicial family has the full
count of six parameters that are required to satisfy the six
continuity and jump conditions across a shell source. After
such matching, two parameters must implicitly be used to
guarantee the absence of rising exponential behavior at
spatial infinity, corresponding to the rising spin-two and
spin-zero Yukawa terms of the linearized theory. It is not
known, however, which combinations of free parameters

near the origin, given in Table I, need to be tuned so as to
eliminate the rising behavior at spatial infinity. In order to
match a (2, 2) family solution onto asymptotically flat
behavior at infinity, one procedure is to start with a series-
expanded solution near the origin and integrate outwards
numerically, and also to start from an asymptotically flat
solution at spatial infinity and integrate inwards, then to
adjust parameters so as to make the two numerical solutions
match at an intermediate radius. Such a procedure was
carried out in Ref. [11] for the theory withm2 ¼ m0, which
in the notation of this paper means α ¼ 3β. Owing to the
trace no-hair theorem as presented in Sec. VI, any asymp-
totically flat solution that has any amount of falling spin-
zero e−m0r

r Yukawa behavior near spatial infinity cannot have
a horizon; as one can see from Eq. (4.8), such solutions
necessarily have R ≠ 0 in the r → ∞ asymptotic region.
Indeed, the asymptotically flat (2, 2) family solution found
in Ref. [11] displays a dominant 1=r Schwarzschild-type
behavior as r → ∞, but it also displays a falling Yukawa
correction and deviates strongly from Schwarzschild at
smaller r. It does not encounter a horizon at intermediate r
values, but limits to (2, 2) family behavior near the origin.
The calculation of Ref. [11] was made for a normal
positive-sign mass M (given [20] by 8π times the coef-
ficient of 1=r in gtt as r → ∞ for a theory with γ ¼ 1).
A similar calculation can be made in the γR − αC2

theory with β ¼ 0, in which a vanishing Ricci scalar,
R ¼ 0, is naturally guaranteed. Accordingly, this theory
benefits from a further reduction of the set of third-order
nonlinear field equations as given in Appendix A down to a
pair of second-order equations. These are equivalent to the
system (7.4) for the f ¼ 1=A and B variables. This β ¼ 0
theory also has asymptotically flat, limiting to (2, 2)
indicial, solutions without a horizon. A representative
numerical solution with positive massM is shown in Fig. 1.
The numerically obtained asymptotically flat (2, 2)

solution shown in Fig. 1 was obtained for a positive
ADM mass M but with a negative C2− falling asymptotic

FIG. 1. Horizonless asymptotically flat solution at spatial infinity limiting to a (2, 2) indicial family solution at the origin. The right-
hand plot for − lnAðrÞ and lnBðrÞ shows the relation to the Schwarzschild solution.
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Yukawa coefficient. Comparing to linearized theory sol-
utions obtained with various sorts of distributional matter
coupling as discussed in Sec. IV, one sees that this relative
sign between M and C2− differs from that obtained for a
point source in (4.7). Recall, however, that for the higher-
derivative theory (1.1) there is no Birkhoff theorem, and
one does not have any expectation of a universal sign
relation between M and C2−. Comparing instead to the
linearized theory with the “balloon” source (4.18), one
finds that C2− can have either sign compared to M, so the
sign found for C2− in the Fig. 1 solution poses no particular
puzzle.
While in Ref. [11] the method was to combine a

shooting-out calculation from the origin with a shooting-
in calculation from large radius, in order to find solutions
like that of Fig. 1 we employed a simpler method of just
integrating inwards from a large radius using initial con-
ditions taken from an asymptotically flat solution of the
linearized theory. In general, this leads to divergent
behavior for AðrÞ or BðrÞ at small radii, but one should
take care to notice that there are two kinds of divergent
behavior that can occur. Holding the linearized-theory’s
coefficient C2;0 ∼ −M fixed in (4.2) while varying the
falling Yukawa coefficient C2−, one finds ranges of C2−
values for which AðrÞ → ∞ while BðrÞ → 0 as r → 0, but
then one finds a different range of C2− values for which
AðrÞ → 0 while BðrÞ → ∞. In between these ranges one
finds (subject to numerical accuracy) a value of C2− for
which both AðrÞ → 0 and BðrÞ → 0: this is a (2, 2) solution
as shown in Fig. 1.
This procedure for finding asymptotically flat (2, 2)

solutions such as that of Fig. 1 reveals another feature of the
overall solution space that calls for further study. If the
(2, 2) indicial family solution lies on a separatrix in
parameter space between two other kinds of more generic
solution, what are these other kinds of solution? One
of these other kinds of solution may be viewed as
“wormholes,” to which we turn our attention next.

B. Wormholes

Another type of solution that can be found numerically
may be described as a wormhole.14 Such solutions are
characterized by the existence of a zero for fðrÞ ¼ 1=AðrÞ
but with BðrÞ ¼ −gtt ≠ 0. We have seen in Sec. VII that
solutions with BðrÞ vanishing at some radius r0 must also
have fðrÞ vanishing at r0 as well. However, the converse is
not necessarily true. Integrating inwards from an asymp-
totically flat solution at spatial infinity, one finds such
solutions starting from a linearized solution (4.2) with
chosen values of C2;0 and C2−. In this way, one finds
solutions with either sign of M ¼ −8πC2;0 and either sign
of the large r spin-two Yukawa coefficient C2−.

Another way to investigate such solutions with fðr0Þ¼ 0
but Bðr0Þ ≠ 0 is again to use Frobenius asymptotic analysis
to find the possible behavior as r → r0 and then to integrate
outwards, looking for asymptotically flat solutions.
Asymptotic analysis indeed shows, as one can see from
the existence of the ðw; tÞ ¼ ð1; 0Þ and ðw; tÞ ¼ ð1; 0Þ ffiffiffiffiffiffiffi

r−r0p

solution families shown in Table III, that there can be
solutions for which fðrÞ vanishes at some radius r0 but
where BðrÞ remains at some nonzero value. We have
studied this in particular in the γR − αC2 theory with
β ¼ 0.
As we have seen above in Sec. VII B and summarized in

Table III, asymptotic analysis as r → r0 for fðr0Þ ¼ 0 but
with Bðr0Þ ≠ 0 turns up the following situation. The
leading term in fðrÞ is always linear in ðr − r0Þ and the
leading term in BðrÞ is always, by assumption, a constant.
Since we are also by assumption considering the first zero
of fðrÞ as r comes in from infinity, without BðrÞ having yet
crossed zero (which would have constituted a horizon as we
saw in Sec. VII), the Bðr0Þ ¼ b0 constant must be positive.
It is at this point that the half-integral-step expansions of
type ðw; tÞ ¼ ð1; 0Þ ffiffiffiffiffiffiffi

r−r0p from Table III become relevant. If
half-integral steps are allowed, then one finds an expansion
with four free parameters, which is the generic number of
free parameters for spherically symmetric solutions in the
γR − αC2 theory, which has two second-order field equa-
tions [equivalent to those given in (7.4)] for fðrÞ
and BðrÞ.15
Assuming instead integral steps in powers of ðr − r0Þ

after an initial zero at r0 leads to a more constrained
solution system with only two free parameters: the trivial
rescaling parameter affecting B ¼ −gtt (which may be
realized as b0) and r0 itself. Numerically integrating out-
wards in r, one then generally finds rapidly divergent
behavior as r → ∞, but this behavior can be of two
different types, similarly to the two types of divergent
behavior surrounding the asymptotically flat (2, 2) sol-
utions discussed in Sec. IX A: one type has fðrÞ → ∞ and
BðrÞ → 0, and a different one has fðrÞ → 0 and BðrÞ → ∞.
In between these behaviors, by tuning r0 one can find a
solution that becomes asymptotically flat for a specific
value r0 ¼ r⋆. Such a solution is shown in Fig. 2.
Comparing the r → ∞ asymptotic behavior obtained by
numerical calculation to the asymptotically flat case of the
linearized theory solution (4.2) with β ¼ 0, one finds such
an integral-step solution corresponding to M ∼ −C2;0 < 0

and C2− < 0.

14Wormholes have also recently been considered in the pure R2

theory in Ref. [21].

15A confirmation of this analysis may be observed in numeri-
cal solutions shooting inwards from asymptotically flat space-
time. For fðr0Þ ¼ 0 but Bðr0Þ > 0, there is an apparent
divergence in the gradient of B as one approaches r0, where f
has a zero, agreeing with an expansion structure fðrÞ ¼ f1ðr −
r0Þ þ f3=2ðr − r0Þ3=2 þ � � � and BðrÞ¼b0þb1=2ðr−r0Þ1=2þ���.
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To see why such a solution may be described as a
wormhole, consider fðr0Þ ¼ 0 and Bðr0Þ ¼ b0 > 0 and
expand in ðr − r0Þ:

fðrÞ ¼ ðr − r0Þf0ðr0Þ þ � � � ;
BðrÞ ¼ b0 þ B0ðr0Þðr − r0Þ þ � � � :

As one can see from the left-hand calculated plot in Fig. 2,
both B0ðr0Þ and f0ðr0Þ are positive. Now make a coordinate
change in the radial coordinate according to

r − r0 ¼
1

4
ρ2; ð9:1Þ

after which one has the asymptotic form of the metric

ds2 ¼ −
�
b0 þ

1

4
B0ðr0Þρ2

�
dt2 þ dρ2

f0ðr0Þ

þ
�
r20 þ

1

2
r0ρ2

�
dΩ2 þ � � � : ð9:2Þ

Since this solution is an even function of ρ, it is naturallyZ2

symmetric in ρ and can be extended to the full range
−∞ < ρ < þ∞. Geodesics in the ρ > 0 patch match
smoothly onto geodesics for ρ < 0 and so continue on
naturally through to negative ρwithout hitting a singularity.
The interpretation as wormholes of the more general

non-Z2-symmetric solutions with fðr0Þ ¼ 0, Bðr0Þ ¼
const arising from asymptotic expansions with half-integral
steps in ðr − r0Þ, i.e. in the ðw; tÞ ¼ ð1; 0Þ ffiffiffiffiffiffiffi

r−r0p family, is
less clear. As we have seen, such solutions have four
parameters in the expansion about r0, which is the generic
number for spherically symmetric solutions in the γR −
αC2 theory. This could allow tuning of one parameter
combination so as to ensure asymptotic flatness at spatial
infinity, even for an arbitrary value of r0. The expansion in
half-integral powers of ðr − r0Þ, however, leads to odd

powers of ρ after making the coordinate change (9.1). This
destroys the Z2 symmetry of the r0-tuned solution and
invites the question whether one will then have B → 0,
and consequently a horizon, at some value rhor of the
radius. Accordingly, the interpretation of such general
Z2-asymmetric solutions as wormholes is not so clear as
for the Z2 symmetric solutions.

C. Schwarzschild and non-Schwarzschild black holes

Turning now to asymptotically flat solutions including a
horizon, we know from the trace equation no-hair theorem
of Sec. VI that all such solutions must have vanishing Ricci
scalar, R ¼ 0. Accordingly, the analysis of such solutions
can be restricted to the γR − αC2 theory, since the field
equations of the general γ, α, β theory (1.1) reduce to those
of the β ¼ 0 theory when R ¼ 0. Furthermore, the results
of Secs. VII and VIII show that the Schwarzschild solution
is in general isolated in the sense that the linearized
no-hair theorem of Sec. VIII does not permit, for
0 < ζ ¼ αðγr20Þ−1 < ζmax, where r0 is the horizon radius,
any solution infinitesimally deviating from Schwarzschild
in the single non-Schwarzschild parameter allowed by
parametric analysis near the horizon, as explained in
Sec. VII. As presented in Ref. [15], however, the qualified
nature of the linearized no-hair theorem led to a suspicion
that there might in fact be other asymptotically flat
solutions with horizons that are in general distinctly
separated from Schwarzschild in the value of their non-
Schwarzschild parameter. In the notation of Ref. [15],
the non-Schwarzschild parameter may be taken to be δ,
defined by

fðrÞ ¼ 1

AðrÞ ¼ f1ðr − r0Þ þOðr − r0Þ2

f1 ¼
1þ δ

r0
: ð9:3Þ
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FIG. 2. Z2 symmetric wormhole solution with fðrÞ → 0 as r → r0 (dashed line) and BðrÞ → const (solid line). The left plot shows the
small-scale structure near r0 ≃ 0.57 and the right plot shows larger-scale structure.
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The limiting value ζmax of the linearized no-hair theorem
suggests the existence of a branch point in the value of the
horizon radius r0 ¼ rmin

0 at which infinitesimal values of δ
can give rise to non-Schwarzschild asymptotically flat
solutions with horizons. As found in Ref. [15], for r0 >
rmin
0 such non-Schwarzschild solutions do exist, but they lie
outside the linear validity range of the δ parameter
expansion. So, except at the rmin

0 branch point, the
Schwarzschild solution must be isolated.
Numerical calculations reveal the properties of the

various black-hole phases. The phase structure [15] in
terms of black-hole massGM (as above, given [20] by 1

2
the

coefficient of 1=r in gtt as r → ∞ for a theory with γ ¼ 1) is
shown in Fig. 3.
Joining the non-Schwarzschild r > r0 solution outside

the horizon to the r < r0 interior solution, one obtains the
result shown in Fig. 4. The deviation from a Schwarzschild
black hole is shown by the fact that fðrÞ ¼ 1=AðrÞ ≠ BðrÞ;
however, the approach as r → 0 shows this solution can
still fit naturally into the ð1;−1Þ indicial family. Another
piece of information obtained from the calculation produc-
ing Fig. 4 is the sign of the C2− coefficient of the falling
e−m2r

r spin-two Yukawa term. Both for positive and negative
GM ¼ − 1

2
C2;0, the sign of C2− appears to be negative for

such solutions. For M > 0, this sign is opposite to that

which would have been expected from the linearized
γR − αC2 theory coupled to a positive-energy shell
delta-function source, as shown in (4.7a) or (4.12a).
The numerical results presented in this section are clearly

only an initial foray into the perhaps rich phase structure of
the solution space of theories derived from the action (1.1),
and this subject clearly requires more careful numerical
analysis.

X. CONCLUSION

In this paper, we have carried out an analysis of the static
spherically symmetric solutions of the field equations
derived from the action (1.1). This extends older results
[3] by a full asymptotic analysis of the indicial ðs; tÞ ¼
ð0; 0Þ; ð1;−1Þ and (2, 2) solution families near the origin,
together with a careful count of the parameters occurring in
each family. The difficult question is then what happens in
the intermediate 0 ≪ r ≪ ∞ region before one reaches
spatial infinity, near which the assumption of asymptotic
flatness once again allows for a closed-form study of
solutions via the linearized version of the field equations
derived from (1.1).
In Sec. VI, we reviewed the no-hair theorem for the trace

of the higher-derivative theory’s field equations, agreeing
with this part of the results of [14]. This implies that
asymptotically flat solutions containing a horizon must
have R ¼ 0 throughout the whole extra-horizon spacetime.
Consequently, one knows that asymptotically flat solutions
displaying a spin-zero Yukawa term (i.e. with a nonzero
coefficient C0−) cannot have a horizon, since
C0− ≠ 0 ⇒ R ≠ 0. Study of solutions with vanishing
Ricci scalar R, and hence without such a spin-zero
Yukawa term, reduces to the somewhat simpler case of
the γR − αC2 theory with β ¼ 0. In this restricted context,
the field equations can be reduced to a system of two
coupled equations with at most second derivatives in ∂

∂r.
Although there is no general no-hair theorem for the trace-
free components of the field equations, one still does have a
linearized no-hair theorem for the traceless field equations
as derived in Sec. VIII. This implies that the Schwarzschild
solution is generally isolated within the family of ð1;−1Þ
solutions, which is controlled by a single non-
Schwarzschild parameter, provided the horizon radius r0
is larger than a certain bound

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α=ðγζmaxÞ

p
. As one moves

away infinitesimally from the Schwarzschild solution
within the ðs; tÞ ¼ ð1;−1Þ family, the only thing that
can generally happen for solutions with a horizon is that
asymptotic flatness is lost.
What happens outside the domain of validity of the

linearized no-hair analysis is another matter, however, and
in Ref. [15] asymptotically flat non-Schwarzschild black-
hole solutions were indeed found. Except near the r0 ≳ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α=ðγζmaxÞ

p
horizon radius bound for the linearized no-

hair theorem, such non-Schwarzschild black holes can only

1 2 3 4
r

1.5

1.0

0.5

0.5

(B(r),f(r))

FIG. 4. Non-Schwarzschild black hole for GM ∼ 0.276 with a
horizon at r ¼ 1. The dashed line denotes BðrÞ and the solid line
denotes fðrÞ ¼ 1=AðrÞ.
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FIG. 3. Phase structure of the Schwarzschild (dashed line) and
non-Schwarzschild (solid line) black holes in a theory with α ¼ 1

2
,

sketched for a theory with G ¼ ð16πγÞ−1 ¼ 1. The Schwarzs-
child mass is given by GM ¼ 1

2
r0.
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exist owing to nonlinear dependence on the ð1;−1Þ family
non-Schwarzschild parameter. Numerical evidence points
to the r0 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α=ðγζmaxÞ

p
horizon radius coinciding with a

branch point in the black-hole solution space, at which the
non-Schwarzschild black holes first occur (cf. Fig. 3). This
is clearly consistent with a breakdown of the linearized no-
hair theorem for that radius, because just above such a
branch point the non-Schwarzschild black holes should
indeed be obtainable by linearized perturbation away from
the Schwarzschild solution.
The general structure of the solution space for the higher-

derivative (1.1) theory is still not completely clear, but we
have found evidence of a rather rich phase structure for the
static spherically symmetric and asymptotically flat sol-
utions of this theory. We have seen from analysis of shell
continuity and jump conditions that only the ðs; tÞ ¼ ð2; 2Þ
solution family (without horizons) of Sec. IX A can couple
to a standard distributional matter shell, but this need not
imply that the (2, 2) family is the only equilibrium endpoint
of gravitational collapse. In addition to the (2, 2) family,
one has the Schwarzschild/non-Schwarzschild black-hole
solutions of Sec. IX C plus the wormhole solutions of
Sec. IX B. When the latter are Z2 symmetric, they lead
cleanly through to a second sheet of spacetime, as in
Eq. (9.2). The asymptotically flat (2, 2) solutions, both
Schwarzschild and non-Schwarzschild black holes, and
also the Z2 wormhole solution all appear as separatrices
between more generic singular solutions found numeri-
cally. The nature and interpretation of the latter remain to be
better understood.

A. Stability issues for black holes

Going beyond the static spherically symmetric ansatz
(1.3) is outside the scope of the present paper. But one can
contemplate what could happen dynamically once time
dependence is allowed. A full stability analysis of the
various phases of the static solution space would be desired,
but in the meantime one can extract some partial stability
information from various quasinormal mode studies of the
stability of the Schwarzschild solution itself, considered as
a solution of the higher-derivative (1.1) theory. This has
been studied, e.g., in Ref. [22]. It was found there that the
Schwarzschild solution is stable in the γRþ βR2 theory
with α ¼ 0. This is not surprising, because that theory is
equivalent [3,23] to ordinary general relativity coupled to a
positive-energy massive scalar field.
In Ref. [22] it was also suggested that the Schwarzschild

solution could become unstable, for nontachyonic values of
ðm2Þ2 ¼ γ

2α, for sufficiently small values of

μW ¼ Mm2

M2
Pl

; ð10:1Þ

whereMPl is the Planck mass. Reference [22] then went on
to claim, nonetheless, that detailed analysis of the quasi-
normal modes of the theory (1.1) showed no such insta-
bility. This conclusion has, however, been challenged more
recently in Ref. [24], where it is claimed that Ref. [22] erred
in considering only a static S-wave potential instability.
Instead, the analysis of Ref. [24] does find Schwarzschild
S-wave instabilities for μW ≲ 1 by treating the Ricci tensor
Rμν as an effective massive field. This instability is
compared to Schwarzschild instabilities found in massive
theories of gravity [25].
Instability of the Schwarzschild solution for small black

holes (i.e. small μW) raises the question whether a stable
sector of the static solution space exists, and whether one or
another of the non-Schwarzschild solutions we have dis-
cussed could then represent a stable final phase. Clearly, the
relation between μW and the branch point in the black-hole
solution space could be an important issue in this regard.
The analysis of time-dependent gravitational collapse can,
however, be quite involved, as indeed it is already for the
apparently simpler case of Brans-Dicke theory [26].
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APPENDIX A: REDUCED NONLINEAR
FIELD EQUATIONS

The reduced field equations of maximal third order
(2.14) as derived in Sec. II A for spherically symmetric
solutions written in Schwarzschild coordinates are given in
detail as follows, where Að3Þ and Bð3Þ are third derivatives.
For Eq. (2.14a) we have
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24r4A3B4Hrr ¼ 8r3A2B2Bð3Þðrðα − 3βÞB0 − 2ðαþ 6βÞBÞ
− 4r2AB2A00ðr2ðα − 3βÞB02 − 4rðαþ 6βÞBB0 þ 4ðα − 12βÞB2Þ
− 4r4ðα − 3βÞA2B2B002

− 4r2ABB00ð2rBA0ðrðα − 3βÞB0 − 2ðαþ 6βÞBÞ
þ Að3r2ðα − 3βÞB02 − 12rðαþ 3βÞBB0 þ 8ðαþ 6βÞB2ÞÞ
þ 7r2B2A02ðr2ðα − 3βÞB02 − 4rðαþ 6βÞBB0 þ 4ðα − 12βÞB2Þ
þ 2r2ABA0B0ð3r2ðα − 3βÞB02 − 4rð2αþ 3βÞBB0 þ 4ðαþ 24βÞB2Þ
þ 24A3B3ðγr3B0 þ Bðγr2 − 12βÞÞ
þ A2ð7r4ðα − 3βÞB04 − 4r3ð5αþ 12βÞBB03

− 4r2ðα − 48βÞB2B02 þ 32rðαþ 6βÞB3B0 − 16ðα − 21βÞB4Þ
þ 8A4B4ð2α − 6β − 3γr2Þ; ðA1Þ

while for Eq. (2.14b), using the definitions of XðrÞ and YðrÞ as given in (2.13), we have

2r4A5B2ðαrB0 − 3βrB0 − 2αB − 12βBÞ2ðHtt − XðrÞHrr − YðrÞ∂rHrrÞ
¼ 72αβr3A2Að3ÞB4ðrðα − 3βÞB0 − 2ðαþ 6βÞBÞ
þ 36αβr2AB3A00ð13rBA0ð2ðαþ 6βÞB − rðα − 3βÞB0Þ
− 2Að−r2ðα − 3βÞB02 þ rðαþ 6βÞBB0 þ 2ðαþ 6βÞB2ÞÞ
þ 12βr4ðα − 3βÞA3B2B002ððαþ 6βÞB − rðα − 3βÞB0Þ
þ 4r3A2BB00ð3βBA0ðr2ðα − 3βÞ2B02 þ rðα2 − 15αβ þ 36β2ÞBB0 − 6αðαþ 6βÞB2Þ
− 3βAB0ð−r2ðα − 3βÞ2B02 − 6αrðα − 3βÞBB0 þ 2ð7α2 þ 48αβ þ 36β2ÞB2Þ
þ γð−rÞðα − 3βÞA2B2ð2ðαþ 6βÞB − rðα − 3βÞB0ÞÞ
þ 504αβr3B4A03ðrðα − 3βÞB0 − 2ðαþ 6βÞBÞ
− 3βr2AB2A02ðr3ðα − 3βÞ2B03 þ 3r2ð17α2 − 57αβ þ 18β2ÞBB02

− 60αrðαþ 6βÞB2B0 − 4ð23α2 þ 150αβ þ 72β2ÞB3Þ
− 6βrA2BA0ðr4ðα − 3βÞ2B04 þ r3ð11α2 − 39αβ þ 18β2ÞBB03 − 4r2ð8α2 þ 51αβ þ 18β2ÞB2B02

þ 4rð11α2 − 12αβ þ 18β2ÞB3B0 − 16ð4α2 þ 21αβ − 18β2ÞB4Þ
þ A3ð−4rðα − 3βÞB4B0ð12βð5αþ 3βÞ þ rðα − 3βÞA0ðγr2 − 12βÞÞ
− 2r2B3B02ð6βðα2 þ 66αβ þ 36β2Þ þ γr3ðα − 3βÞ2A0Þ
− 8ðαþ 6βÞB5ð−6βð5αþ 3βÞ − rA0ð2αðγr2 − 6βÞ þ 3βð12β þ γr2ÞÞÞ
− 3βr5ðα − 3βÞ2B05 þ 3βr4ð−19α2 þ 51αβ þ 18β2ÞBB04 þ 12βr3ð13α2 þ 84αβ þ 36β2ÞB2B03Þ
− 8A5B4ðrðα − 3βÞB0ðαðγr2 − 6βÞ þ 6βð3β þ γr2ÞÞ
þ ðαþ 6βÞBðαð6β − 2γr2Þ − 3βð6β þ γr2ÞÞÞ
− 2A4B2ðγr5ðα − 3βÞ2B03 − 6r2ðα − 3βÞBB02ðαðγr2 − 4βÞ þ 3βð4β þ γr2ÞÞ
þ 4rðα − 3βÞB2B0ðαðγr2 − 24βÞ þ 6βðγr2 − 6βÞÞ þ 4ð2α2 þ 15αβ þ 18β2ÞB3ð12β þ γr2ÞÞ: ðA2Þ

From these two coupled third-order differential equations, one anticipates that the solution will depend in general on a
total of six integration constants. For a pair of linear differential equations, this can be demonstrated straightforwardly by
reducing the system to a single sixth-order differential equation for just one function, e.g., AðrÞ, by repeatedly
differentiating and substituting between equations so as to eliminate BðrÞ and its derivatives. In the present highly

SPHERICALLY SYMMETRIC SOLUTIONS IN HIGHER- … PHYSICAL REVIEW D 92, 124019 (2015)

124019-25



nonlinear equation system (A1), (A2), this is not feasible to do explicitly because this would involve the inversion of
polynomials of order > 4. However, the idea can be outlined as a sequence of operations on Eqs. (A1), (A2) as follows:

ðA.1Þ∶ 0 ¼ f1ðr; A; B; A0; B0; A00; B00; B000Þ
ðA.2Þ∶ 0 ¼ g1ðr; A; B; A0; B0; A00; B00; A000Þ

∂rðA.2Þ∶ 0 ¼ ∂rg1ðr; A; B; A0; B0; A00; B00; A000Þ
¼ g2ðr; A; B; A0; B0; A00; B00; A000; B000; Að4ÞÞ

∴B000 ¼ g−12 ðr; A; B; A0; B0; A00; B00; A000; Að4ÞÞ
sub intoðA.1Þ∶ 0 ¼ f2ðr; A; B; A0; B0; A00; B00; A000; Að4ÞÞ

∴B00 ¼ f−12 ðr; A; B; A0; B0; A00; A000; Að4ÞÞ
sub intoðA.2Þ∶ 0 ¼ g3ðr; A; B; A0; B0; A00; A000; Að4ÞÞ

∴B0 ¼ g−13 ðr; A; B; A0; A00; A000; Að4ÞÞ
subf−12 and g−13 intoðA.2Þ∶ 0 ¼ g4ðr; A; B; A0; A00; A000; Að4ÞÞ

∴B ¼ g−14 ðr; A; A0; A00; A000; Að4ÞÞ
sub intoðA.2Þ∶ 0 ¼ g5ðr; A; A0; A00; A000; Að4Þ; Að5Þ; Að6ÞÞ: ðA3Þ

APPENDIX B: COUPLING OF A SHELL SOURCE
TO THE HIGHER-DERIVATIVE THEORY

1. Coupling an (0, 0) vacuum inside the shell to a (2, 2)
solution outside

One can carry out a successful coupling of a thin-shell
delta-function stress-tensor source to the full nonlinear
higher-derivative theory in a fashion similar to the cou-
plings in the linearized theory as discussed in Sec. IV.
As we saw in Sec. V, it is only with an exterior (2, 2) family
solution combined with an interior (0, 0) family vacuum
solution that the count of available interior plus exterior
solution parameters is sufficient to satisfy the nine con-
tinuity, step, asymptotic flatness and asymptotic
Minkowskian requirements. In this appendix, we discuss
in more detail how these coupling requirements can be met.
Coupling a thin shell source to an external (2, 2) family

solution faces a number of challenges. Principal among
these is the lack of a closed-form expression for the (2, 2)
family of solutions, so one is limited to carrying out the
coupling using series solutions as given in Sec. III. There is
also an awkwardness arising from the choice of the
Schwarzschild form (1.3) for the metric. Such difficulties
were already noted in the classic treatment of delta-function
couplings in general relativity given in Ref. [12]. Such
difficulties might be alleviated by working in other than
Schwarzschild coordinates, but we have not explored this
possibility in detail. The difficulty with the in ↔ out
matching in the series-expanded theory is a leading-term
matching problem in A: the inner solution has Að0Þ ¼ 1

and so wewould naively expect Aðl−Þ ≈ 1þOðl2Þ but the
outer solution has AðlþÞ ≈ c2l2 þOðl3Þ, while A is
continuous so Aðl−Þ and AðlþÞ need to be equal for
arbitrary l. The l → 0 limit is particularly interesting
because this will give us the field of a point source in
the higher-derivative theory. In order to make this work for
arbitrary small l we need to elevate the free parameters of
the solution to functions of l.
Let us first illustrate the method with general relativity,

where such dependence on the shell size is well
known [12].

2. Shell coupling in general relativity

To set the stage for the more involved coupling problem
in the higher-derivative theory, we first review the analo-
gous coupling problem for distributional sources in general
relativity. Some classic references for this are [12] and [13].

a. Shell-source coupling using the closed-form
Schwarzschild solution

Consider general relativity with a thin-shell source as in
(5.1)–(5.3), with Ttt ¼ M

4πl2 δðr − lÞ. It is convenient to
define the length scale LM ≔ 2GM ¼ Mð8πγÞ−1. Coupling
the source to the equations of motion, one can show that B
is continuous while A has a step:

BoutðlþÞ ¼ Binðl−Þ;

AoutðlþÞ − Ainðl−Þ ¼
LMAinðl−Þ2

lBðlÞ − LMAinðl−Þ
: ðB1Þ
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In terms of these parameters the field of a spherical shell is

Ain ¼ 1; ðB2aÞ

Bin ¼ b; ðB2bÞ

Aout ¼
1

1 − LM
br

; ðB2cÞ

Bout ¼
b

1 − LM
bl

�
1 − LM

br

�
; ðB2dÞ

where the exterior solution has the form of the
Schwarzschild solution

Aout ¼
1

1 − rs
r

; ðB3aÞ

Bout ¼ k2
�
1 − rs

r

�
; ðB3bÞ

provided the interior free parameter b scales and the
Schwarzschild radius rs is related to the source length
LM via the l-dependent expressions

b ¼ k2
�
1 − rs

l

�
; ðB4aÞ

LM ¼ k2
�
1 − rs

l

�
rs: ðB4bÞ

Before proceeding with the core of our discussion, the signs
here need a comment. For the case 0 < l < rs a horizon
exists and M and b are negative. It is familiar fact that we
have −þþþ signature outside the Schwarzschild horizon
(r > rs), and signature þ −þþ inside the Schwarzschild
horizon (l < r < rs). At the shell source (r ¼ l), the
function B is continuous and nonvanishing so it is therefore
positive inside and out. The function A, however, has a step
at r ¼ l. Outside the source (for l < r < rs), A is of course
negative, but inside the shell source (for r < l) the
equations of motion in the Schwarzschild-coordinate met-
ric ansatz (where the angular part of the ds2 metric is just
r2dΩ2) require A ¼ 1. As a consequence, the signature
inside the shell isþþþþ. The fact that the source massM
has opposite sign to that of the Schwarzschild radius rs is
not unexpected—the source is static in a region where t is
spacelike, i.e. the source is of tachyonic sign. In the higher-
derivative case this peculiarity will not arise, because we
shall find that there is no horizon in the source-coupled
solution, and the metric components A and B are continu-
ous across the shell source. We thus anticipate a −þþþ
signature for all r in the higher-derivative theory.
A key point in the above analysis is the fact that in

general relativity the interior free parameter b has to blow

up as l−1 as the shell is shrunk down to a point. We shall
find that the higher-derivative case also requires poles at
l ¼ 0 in the free parameters of the interior solution.

b. The Schwarzschild solution from a series-solution
point of view

To set the scene for analysis of coupling in the higher-
derivative theory, where series solutions will be all that we
have available, let us now repeat the above coupling
discussion for the Einstein-theory Schwarzschild solution
using only a series solution. The interior series vacuum
solution is of (0, 0) structure:

Að0;0Þ ¼ 1þ � � � ðB5aÞ

Bð0;0Þ ¼ bþ � � � ðB5bÞ

and the solution exterior to the source is of ð1;−1Þ
structure:

Að1;−1Þ ¼ xr − x2r2 þ x3r3 − x4r4 þOðr5Þ ðB6aÞ

Bð1;−1Þ ¼
y
r
þ xyþ � � � : ðB6bÞ

To implement the matching conditions, we need to elevate
the free parameters (x, y, b) to functions of l: (xðlÞ,
yðlÞ, bðlÞ).
In order for the solution exterior to the source to be of the

ð1;−1Þ family, we let the free parameters be expressed as
Taylor series:

xðlÞ ¼ xð0Þ þ lx0ð0Þ þ 1

2
l2x00ð0Þ þ � � � ðB7aÞ

yðlÞ ¼ yð0Þ þ ly0ð0Þ þ 1

2
l2y00ð0Þ þ � � � : ðB7bÞ

For the interior free parameter b, however, we need to use a
Laurent series—i.e. we allow l−n poles:

b ¼ laðb0 þ b1lþ b2l2 þ b3l3 þ � � �Þ: ðB8Þ

Then, in order for yðlÞ to remain finite in the l → 0 limit,
we find that we need to scale LM (i.e. we scale the massM)
as well:

LM ¼ ldðL0 þ lL1 þ l2L2 þ l3L3 þ � � �Þ: ðB9Þ

We find that the suitable poles have a ¼ −1, d ¼ −1.
The solution is

yðlÞ ¼ −LMðlÞðlxðlÞ − l2xðlÞ2 þOðl3ÞÞ
¼ −L0xð0Þ þ lðL0ðxð0Þ2 − x0ð0ÞÞ − L1xð0ÞÞ
þOðl2Þ ðB10aÞ
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bðlÞ ¼ −LMðlÞxðlÞ þOðl3Þ

¼ −
L0xð0Þ

l
þ ð−L0x0ð0Þ − L1xð0ÞÞ

þ 1

2
lð−L0x00ð0Þ − 2L1x0ð0Þ − 2L2xð0ÞÞ

þOðl2Þ; ðB10bÞ

which matches the analytic solution (where we hold rs
fixed, something we do not know how to do in a series
solution) for small l upon renaming xð0Þ ¼ − 1

rs
and

LMð0Þ ¼ −k2r2s , and which also can be solved by matching
for all l, producing xðlÞ ¼ − 1

rs
and LMðlÞ ¼ k2ð1 − rs

lÞrs.

c. Shell-source coupling in the
higher-derivative theory

Now we consider the coupling of a thin-shell stress-
tensor source of the form (5.1)–(5.3) to the higher-
derivative theory (1.1). Inside the shell source, we require
a (0, 0) vacuum solution, and outside the shell we consider
a (2, 2) solution with the following notation:

A ¼ r2w2 þ
r3v3w2

v2
− r4ðw2ð2v2ðv2w2 − 4v4Þ þ v23ÞÞ

6v22
þ r5w5 þOðr6Þ; ðB11aÞ

B ¼ r2v2 þ r3v3 þ r4v4 þ r5v5 þOðr6Þ: ðB11bÞ

The form (for at least n ≤ 14) of the (0, 0) solution is

A ¼ 1þ a2r2 þ
X

n;p;q;m

Xn;p;m;qrn
�
γ

β

�n
2
−p
am2 b

p−m
2

�
β

α

�
q

ðB12aÞ

B
b0

¼ 1þ b2r2 þ
X

n;p;q;m

Yn;p;m;qrn
�
γ

β

�n
2
−p
am2 b

p−m
2

�
β

α

�
q

ðB12bÞ

where the Xn;p;m;q and Yn;p;m;q are rational numbers and the
n, p, q, m sums are taken over n ¼ 4; 6; 8;…; 1 ≤ p ≤ n

2
;

0 ≤ q ≤ n
2
− 1 and 0 ≤ m ≤ p.

Similarly to the method used for general relativity, (B7a),
(B7b), (B8) and (B9), we elevate the free parameters to
functions of l in the following scheme:

b0 ¼ l2H0ðlÞ; w2 ¼ w2ðlÞ;
a2 ¼ l−2G2ðlÞ; v2 ¼ v2ðlÞ;
b2 ¼ l−2F2ðlÞ; v3 ¼ v3ðlÞ;

v4 ¼ v4ðlÞ;
w5 ¼ w5ðlÞ;

M ¼ ldμðlÞ; v5 ¼ v5ðlÞ; ðB13Þ

where we have factored out the poles so the remaining
functions are Taylor series in l.
To carry out matching across the source shell, we need to

have Ainðl−Þ ¼ AoutðlþÞ, where

Ainðl−Þ ¼ 1þG2ðlÞ þ
X

k;n;q;m

lk

�
γ

β

�1
2
k
Xn;n−k

2
;m;qG2ðlÞmF2ðlÞn−k2 −m

�
β

α

�
q
; ðB14Þ

where the sum is taken over k¼0;2;4;6;…; kþ2≤n¼
4;6;8;…; 0 ≤ q ≤ n

2
− 1 and 0 ≤ m ≤ n−k

2
. Gathering

powers of l, we have Ainðl−Þ∼l0þ∼l1þ∼l2þ��� and
AoutðlþÞ ∼ l2 þ � � �, so the leading-term matching problem
in A is now displayed in the vanishing of the interior l0 term,
where one has for A0 (the l0 term in Ain)

A0 ¼ 1þG2ð0Þ þ
X
n;q;m

Xn;n
2
;m;qG2ð0ÞmF2ð0Þn2−m

�
β

α

�
q
;

ðB15Þ

where the sum is taken for n ¼ 4; 6; 8;…; 0 ≤ q ≤ n
2
− 1 and

0 ≤ m ≤ n
2
. The higher terms in (B15) need to decrease in

amplitude with n so that the sum converges, and its limiting
value as n → ∞ must vanish so as to match the structure of
Aout. We have not carried out an exhaustive analysis of the

convergence properties of the resulting series, but we may
consider the structure in the simplifying limit β ≪ α. In this
limit, the q ≥ 1 terms are suppressed and we need only
considerXn;n

2
;m;0. In this limit, the numbersXn;n

2
;n
2
;0 are equal to

1 for all n while the other Xn;n
2
;m≤n

2
−1;0 grow at most linearly

with n (for at least n ≤ 14). If we rename t ¼ 1
2
n, Xn;n

2
;m;0 ¼

Xt;m and G2ð0Þ ¼ ζF2ð0Þ and take the sum only out to T
terms, we have

A0 ¼
X

t¼1;2;3;4;…T
0≤m≤t

Xt;mζ
mF2ð0Þt: ðB16Þ

Given the at most linear growth in t of Xt;m, one gets an
estimate of the sumA0 by lettingXt;m ¼ aþ bt, for which an
estimate sum ~A0 can be carried out:
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~A0 ¼
X

t¼1;2;3;4;…T

ðaþ btÞ 1 − ζtþ1

1 − ζ
F2ð0Þt; ðB17Þ

for which the ratio of successive terms at large t is

aþ bþ bt
aþ bt

F2ð0Þtþ1

F2ð0Þt
1 − ζtþ2

1 − ζtþ1
∼ F2ð0Þ: ðB18Þ

Accordingly, convergence is obtained in the β ≪ α limit.
Convergence is expected when the β ≪ α limit is relaxed as
well.
Once the l0 terms are matched inside and out, the

matching of lN≥1 terms and the matching of A0ðlÞ, BðlÞ,
B0ðlÞ, B00ðlÞ, A00ðlÞ should follow suit with less difficulty.
The final result will describe the interior and exterior
metrics in terms of α, β, γ, LMðlÞ and three other free
parameters p1ðlÞ, p2ðlÞ, p3ðlÞ.

APPENDIX C: ON HIGHER-DERIVATIVE
NO-HAIR THEOREMS

In this appendix, we present a recalculation of the
argument of Ref. [14] including a cosmological constant.
Unfortunately, this corrects the calculation of [14] in a way
that voids its conclusion about the no-hair consequences of
the nontrace part of the higher-derivative gravity field
equation.
The discussion of [14] can be generalized to the case

with a cosmological constant. Take as Lagrangian

I¼
Z

d4x
ffiffiffiffiffiffi−gp ðγðR−2ΛÞ−αCμνρσCμνρσþβR2Þ: ðC1Þ

The equation of motion (2.1) gains a term

Hμν → Hμν þ γΛgμν; ðC2Þ

making the trace

Hμ
μ ¼ 6βð□R −m2

0ðR − 4ΛÞÞ ðC3Þ

¼ 6βð□S −m2
0SÞ; ðC4Þ

where we have defined

S ¼ R − 4Λ: ðC5Þ
For the trace no-hair theorem, the discussion proceeds
from this point on just as in the case without a cosmological
constant as reviewed in Sec. VI, obtaining finally

0 ¼
Z
S

ffiffiffi
h

p
d3x½DaðλSDaSÞ − λðDaSÞðDaSÞ − λm2

0S
2�:
ðC6Þ

The outer boundary contribution vanishes if DaS ¼ DaR
falls off appropriately fast at infinity. Consequently, we
deduce that

S ¼ 0 ⇔ R ¼ 4Λ ðC7Þ
if the inner boundary term vanishes, which is ensured if the
inner boundary is at a horizon.
The argument for the traceless part of the higher-

derivative no-hair theorem runs into trouble, however.
Define the shifted quantities

Sμν ¼ Rμν − gμνΛ;

S ¼ gμνSμν ¼ R − 4Λ: ðC8Þ

Letting ð3ÞR denote the Ricci scalar of the spatial part of the
metric hab, we also define the shifted quantity

ð3ÞS ¼ ð3ÞR − 2Λ ðC9Þ
and finally we define m2ðΛÞ such that m2ð0Þ ¼ m2

m2ðΛÞ2 ≔
γ þ 8

3
Λð3β − αÞ
2α

; ðC10Þ

thus obtaining the equations of motion

0 ¼ Hμν

−2α
����
S¼0

¼ □Sμν −m2ðΛÞ2Sμν þ 2SρμSνρ

− 2∇ρ∇μS
ρ
ν − 1

2
gμνSρσSρσ; ðC11Þ

which smoothly analytically continue from Λ ¼ 0 to Λ
finite. Note that the contracted Bianchi identity in this
case is

∇μRμν ¼
1

2
∇νR; ðC12Þ

∴∇μSμν ¼ 0 for S ¼ 0; ðC13Þ
∇μSμi ¼ 0 ¼ DjSij þ

1

λ
SijDjλþ

ð3ÞS
2λ

Diλ: ðC14Þ

At this point, we can contract (C11) with λSμν,
dimensionally reduce on the t coordinate, and integrate
over three-dimensional space while using (C7) to
obtain
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0 ¼
Z
S

ffiffiffi
h

p
d3x

�
λSμν

Hμν

−2α
����
S¼0

�
ðC15aÞ

¼
Z
S

ffiffiffi
h

p
d3x

�
Di

�
λ

4
ð3ÞSDið3ÞSþ λSklDiSkl − 2λSklDkSli − λð3ÞSDjSji

�
ðC15bÞ

−
λ

4
Dið3ÞSDi

ð3ÞSþ 2λDið3ÞSDjSji − λDiSjk½DiSjk − 2DjSki� ðC15cÞ

− λ
ð3ÞS2

4
ðm2ðΛÞ2 þ ð3ÞSÞ − λSijSijðm2ðΛÞ2 − 2SÞ

�
: ðC15dÞ

Unfortunately, owing to the fact that the squared terms in the middle line (C15c) of the integrand are of nonuniform sign,
it is not possible in the case of higher-derivative gravity to say that the assumption of a horizon and suitable boundary
conditions at infinity imply that Sμν vanishes, even for large m2ðΛÞ. This continues smoothly to Λ ¼ 0, where (C15) with a
horizon and asymptotic flatness unfortunately does not imply that Rμν vanishes, even for large m2.
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