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We present a quantum model of the vacuum Bianchi-IX dynamics. It is based on four main elements.
First, we use a compound quantization procedure: an affine coherent state quantization for isotropic
variables and a Weyl quantization for anisotropic ones. Second, inspired by standard approaches in
molecular physics, we make an adiabatic approximation (Born-Oppenheimer-like approximation). Third,
we expand the anisotropy potential about its minimum in order to deal with its harmonic approximation.
Fourth, we develop an analytical treatment on the semiclassical level. The resolution of the classical
singularity occurs due to a repulsive potential generated by the affine quantization. This procedure shows
that during contraction the quantum energy of anisotropic degrees of freedom grows much slower than
the classical one. Furthermore, far from the quantum bounce, the classical recollapse is reproduced. Our
treatment is put in the general context of methods of molecular physics, which can include both adiabatic
and nonadiabatic approximations.
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I. INTRODUCTION

The Belinskii, Khalatnikov and Lifshitz (BKL) scenario
[1,2] (see [3] for numerical support for BKL) addresses the
generic solution to the Einstein equations near the cosmo-
logical singularity. The purpose of our paper is to quantize
the dynamics of the vacuum Bianchi-IX model that under-
lies the BKL scenario.
The BKL predicts that on approach to a spacelike

singularity the dynamics of gravitational field may be
significantly simplified as time derivatives in Einstein’s
equations dominate over spatial derivatives. The latter
means that the evolution of the gravitational field in this
regime is ultralocal and space splits into a collection of small
patcheswhose dynamics is approximately given by spatially
homogenous spaces, the Bianchi models (see, e.g., [4]).

Approaching the singularity the spatial curvature grows and
the space further subdivides into homogenous slices. The
size of each patch, modeled by one of the Bianchi space-
times, corresponds to the magnitude of the spatial deriva-
tives in the Einstein equations. As homogeneity of spatial
fragments holds only at some level of approximation,
dynamical evolution of the newly formed patches starts
off with slightly different initial conditions. This almost
negligible difference grows rapidly in subsequent evolution
as geometries of new patches evolve almost independently
of each other approaching the state of the so-called asymp-
totic silence [5]. The chaotic subdivisions result in the
growth of fragmentation of spacetime suggesting that it may
possess fractal structure close to the singularity [6,7].
Among the possible homogeneous models, the Bianchi-

IX model has sufficient generality to describe the evolution
of a small patch of space towards the singularity. The
dynamics of the vacuum Bianchi-IX model (i.e., the mix-
master universe) is nonintegrable. However, close enough
to the singularity, each solution can be qualitatively under-
stood as a sequence of Kasner epochs, which correspond to
the Kasner universe. The transitions between the epochs are
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described by the vacuum Bianchi-II-type evolution [8].
The Universe undergoes an infinite number of chaoticlike
transitions and eventually collapses into the singularity in a
finite proper time [1].
The imposition of quantum rules into the chaotic dynam-

ics of the Bianchi-IX model has already been studied. The
program initiated by Misner [9–11] led to the pessimistic
result that quantum mechanics does not remove the singu-
larity of theBianchi-IXmodel.Nevertheless, the exploration
of solutions to the corresponding Wheeler-DeWitt equation
continues [12–15]. Recently, some effort has been made
towards quantization of the Bianchi-type models within the
loop quantumcosmology. The authorsmake use of theDirac
quantization method and combine it with the introduction
of holonomies in place of the curvature of connection. The
results obtained for the Bianchi-IX model at semiclassical
level by Bojowald [4,16] suggest that the chaotic behavior
stops once quantum effects become important. Another
formulation taking into account holonomies has been
proposed in [17], but it has not been applied to the
examination of the dynamics. Still another proposal was
given in [18], giving support to [16]. An effective dynamics
considered recently [19] suggests a resolution of the cosmic
singularity problem as well, but within an approach quite
different from ours. In the above formulations, the search
for solutions is quite challenging leaving the near big bang
dynamics largely unexplored.
In this paper we formulate and make a quantum study of

the Bianchi-IX model by combining canonical and affine
coherent state (ACS) quantizations with a semiclassical
approach. The cosmological system consists of isotropic
variables (expansion and volume) and anisotropic ones
(distortion and shear). They are treated in a separate
manner. The canonical pair expansion volume is a half
plane. Since the symmetry of the latter is the affine group
“AX þ B” and not the Abelian R2, they are consistently
quantized by resorting to one of the two unitary irreducible
representations (UIRs) of the affine group. Within this
approach, we have found in [20] that for the Friedmann-
Robertson-Walker (FRW) models the cosmological expan-
sion squared, which plays the role of kinetic energy of the
universe, is always accompanied at the quantum level by an
extra term inversely proportional to the volume squared. As
the Universe approaches the singularity, this term grows
in dynamical significance, efficiently counterbalances the
attraction of anymatter and eventually halts the cosmological
contraction. Afterwards, the Universe rebounds and reex-
pands. In the present work (see also [21]) we confirm that the
same mechanism prevents the collapse of the Bianchi-IX
universe, suggesting its universality. Making further use of
the ACS we construct a semiclassical description of the
isotropic part of the metric, with semiclassical observables
replacing the classical ones in the phase space. In particular,
the semiclassical Hamiltonian possesses the correction term,
which regularizes the singularity.

Inspired by standard approaches in molecular physics,
we make an assumption about the quantum evolution of the
anisotropic variables based on the adiabatic approximation.
In molecules, the motion of heavy nuclei is so slow in
comparison with rapidly moving light electrons that it is
legitimate to approximate the dynamics with electronic
configurations being instantaneously and continuously
adjusted to the position of nuclei. Analogously, we consider
in our model, in its harmonic approximation, the aniso-
tropic oscillations rapid in comparison with the contraction
rate of the Universe. Within this approach, the oscillations
of the classical scenario are suppressed and the develop-
ment of chaos is blocked. Moreover, we find that while the
classical energy of the oscillations behaves in terms of the
scale factor amore or less as ∝ a−6, the respective quantum
energy behaves as ∝ a−4, i.e. it contributes on a much softer
level. Therefore, fluids with pressure equal to or higher
than that of radiation, which are likely to be present in the
early universe, will have their grasp on the cosmological
collapse.
The paper is organized as follows: Sec. II concerns the

definition of the classical model, some description of its
dynamics and the choice of phase space variables conven-
ient for our quantization. Section III is devoted to the
quantization of the Hamiltonian constraint and its sub-
sequent semiclassical approximation. Section III B explains
the semiclassical Lagrangian approach. The resulting semi-
classical dynamics is developed in Sec. IV. In Sec. V, we go
beyond the adiabatic approximation to confirm the validity
of our method. We discuss our results and conclude in
Sec. VI. In Appendix A we give an introduction to the
affine coherent states quantization together with its semi-
classical aspects. Derivations of the quantum version of the
anisotropic Hamiltonian both in harmonic and triangular
box approximations are given in Appendix B.

II. BIANCHI-TYPE MODELS

We consider a spacetime admitting a foliation
M ↦ Σ × R, where Σ is spacelike. Furthermore, we
assume Σ to be identified with a simply transitive three-
parameter group of motions. Such models are called
Bianchi-type models. The left-invariant vector fields are
associated with the Killing vectors and the right-invariant
ones with the basis vectors with respect to which the metric
components on Σ take constant values in space. We assume
the following line element,

ds2 ¼ −N 2ðtÞdt2 þ
X
i

qiðtÞωi ⊗ ωi; ð1Þ

where the ωis are right-invariant dual vectors. They satisfy

dωi ¼ 1

2
Ci

jkω
j∧ωk; ð2Þ
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where Ci
jk are structure constants. We consider the so-

called class A models with Ci
ik ¼ 0 (summation is

implied). The further simplification is gained for the
diagonal ones, Ci

jk ¼ nðiÞϵðiÞjk, where ϵijk is a totally
skew-symmetric symbol. For such models, the computation
of the Ricci curvature is straightforward:

R ¼ n1n2

q3
þ n1n3

q2
þ n2n3

q1
−
ðn1Þ2
2

q1
q2q3

−
ðn2Þ2
2

q2
q1q3

−
ðn3Þ2
2

q3
q1q2

: ð3Þ

The vector ðn1;n2;n3Þ ∈ R3 specifies the Bianchi-type
model (I, II, VI0, VII0, VIII, IX). Conventionally, the nis
are chosen as ni ∈ f0;�1g [22]. Special cases are ni ¼ 0
(type I) and ni > 0 (type IX). From now on, we fix ni ¼ n
for the Bianchi-IX case examined in this work. We assume
that the topology of the spatial leaf is S3 and we find its
coordinate volume as

V0 ¼
Z
S3
ω1∧ω2∧ω3 ¼ 16π2

n3
: ð4Þ

Two convenient choices are either n ¼ 1 or n ¼
ffiffiffiffiffiffiffiffiffiffi
16π23

p
.

We make use of the latter option.

A. Canonical formulation

Following the work of Arnowitt, Deser and Misner [23],
the convenient formulation of Bianchi models was derived
by Misner [9–11]. With Misner’s variables the dynamics
assumes a convenient form: motion of a particle in three-
dimensional Minkowskian spacetime and in a space-and-
time-dependent confining potential. The spatial coordinates
describe the anisotropic distortion of the shape of the
Universe and the time coordinate describes the size of the
Universe. The particle motion is ruled by a potential arising
from the Ricci curvature of spatial leaf. Let us recall that the
Hamiltonian constraint reads

H ¼ NV0e−3β0

48κ
ð− ~p2

0 þ ~p2þ þ ~p2
− − 24e6β0Rðβ0; β�ÞÞ;

ð5Þ
where the Misner configuration variables are related to the
metric components as follows,

0
B@

ln q1
ln q2
ln q3

1
CA ¼

0
B@

2 2 2
ffiffiffi
3

p

2 2 −2
ffiffiffi
3

p

2 −4 0

1
CA
0
B@

β0

βþ
β−

1
CA; ð6Þ

and where ~p0; ~pþ and ~p− are the respective momenta,
defined from the Poisson brackets in Eq. (7). V0 is the
coordinate volume and κ ¼ 8πGc−4. The momenta ~pi carry

the dimension L−1 while the positions βi are dimensionless.
Because we reduce a field theory to a mechanical system all
the canonical variables are in fact averaged over the sphere
and the Poisson brackets read as

fβ0; ~p0g ¼ fβ�; ~p�g ¼ 2κc
V0

: ð7Þ

In order to work within the standard quantum mechanical
framework, we introduce variables that are conjugated in
the usual sense, i.e. fβi; pjg ¼ δij, and so define the new
momenta pi ¼ ð2κcÞ−1V0 ~pi. The Hamiltonian of Eq. (5)
now reads

H ¼ −
NV0e−3β0

48κ

��
2κc
V0

�
2

ðp2
0 − p2þ − p2

−Þ

þ 24e6β0Rðβ0; β�Þ
�
: ð8Þ

In what follows we put V0 ¼ 2κ ¼ c ¼ 1 (in [21] we
chose κ ¼ 1). The physical constants V0, κ and c will be
eventually restored in the presentation of the final results.
Note that the averaged (isotropic) scale factor “a” is defined
as a ¼ eβ0 ¼ ðq1q2q3Þ1=6. Observe also that the usual
diffeomorphism constraints vanish identically.
In the case of Bianchi-IX geometry we find

Rðβ0; β�Þ ¼ −
n2

2
e−2β0þ4βþ

× ð½2 coshð2
ffiffiffi
3

p
β−Þ − e−6βþ�2 − 4Þ ð9Þ

¼ −
3

2
e−2β0WnðβÞ; ð10Þ

with

WnðβÞ ¼ n2
e4βþ

3
ð½2 coshð2

ffiffiffi
3

p
β−Þ − e−6βþ�2 − 4Þ; ð11Þ

where the potential Wn does not depend on the averaged
scale factor a. By putting p� ¼ 0 ¼ β� we retrieve
the closed Friedmann-Robertson-Walker model, with
Wnð0Þ ¼ −n2 giving rise to the isotropic and positive
intrinsic curvature. For n ¼ 0, we get the Bianchi-I model
with W0 ¼ 0 and vanishing intrinsic curvature.
The potentialWn is bounded from below and reaches its

minimum value, Wn ¼ −n2, at β� ¼ 0. The potential Wn
is expanded around its minimum as follows:

WnðβÞ ¼ −n2 þ 8n2ðβ2þ þ β2−Þ þ oðβ2�Þ; ð12Þ

which clearly shows its two-dimensional harmonic
approximation. The Wn is asymptotically confining except
for the following three directions (shown in Fig. 1), in
which Wn → 0:
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ðiÞ β− ¼ 0; βþ → þ∞; ðiiÞ βþ ¼ −
β−ffiffiffi
3

p ; β− → þ∞;

ðiiiÞ βþ ¼ β−ffiffiffi
3

p ; β− → −∞:

The form of the Bianchi-IX potential deserves particular
attention due to its three “open” C3v symmetry directions
(see Figs. 1–2). One can view them as three deep “can-
yons,” increasingly narrow until their respective wall edges
close up at the infinity whereas their respective bottoms
tend to zero. The motion of the Misner particle in this
potential is chaotic [24]. Though the curvature, which is
proportional to the potential, flattens with time, the confined
particle undergoes infinitely many oscillations. In the so-
called steep wall approximation, the particle is locked in the
triangular potential with its infinitely steep walls moving
apart in time. At the quantum level, the confining shape
originates a discrete spectrum. On the other hand, it is
unclear on a mathematical level whether or not the
Bianchi-IX potential also originates a continuum spectrum.
Nevertheless the following physical reasoning leads to the
conclusion that a continuous spectrum probably does not
exist. Indeed a continuous spectrum should be associated
with the eigensystem fðψkðβ−; βþÞ; ϵkÞgk∈D⊂R2 where (i) the
scattering eigenstates (not R2-Lebesgue square integrable)
ψkðβÞ represent the possibility for the system to go from
infinity to infinity in the ðβ−; βþÞ-plane; (ii) k ∈ D ⊂ R2

represents the 2D-momentum of the incoming “particles”;
(iii) k belongs to some 2D-domain D of R2 (D is not
restricted to a subset of measure 0 for the R2-Lebesgue
measure); and (iv) k ∈ D leads to an interval (generally
unbounded) of eigenvalues ϵk (the continuous spectrum). In

our case the potential only possesses three discrete open
directions at infinity; therefore the incoming momentum k
cannot belong to a 2D-domain D (a subset with a non-
vanishing R2-Lebesgue measure). Then it is reasonable to
think that a continuous spectrum does not exist.
The evolution of Bianchi IX can be viewed as a nonlinear

model of a gravitational wave in dynamical isotropic
geometry (see e.g. [10,25] and references therein). The
wave, which consists of two nonlinearly coupled compo-
nents β�, is homogenous, that is, it is a pure time oscillation.
Its wavelength is thought to be much larger than the
extension of the considered patch of the Universe with its
spatial derivatives neglected. The energy of thewave sources
the gravitational contraction. As we later show, the quan-
tization of the wave introduces important modifications
to the dynamics of thewholeUniverse. The qualitative study
of spatially homogeneous models was pioneered by
Bogoyavlensky (see [26] and references therein).

B. Redefinition of basic variables

For the purpose of ACS quantization, we redefine the
isotropic phase space variables as the canonical pair:

q ≔ e3β0=2; p ≔
2

3
e−3β0=2p0: ð13Þ

Note that ðq; pÞ lives in the half plane. The Hamiltonian (8)
now assumes the form

H ¼ −
N
24

�
9

4
p2 −

p2þ þ p2
−

q2
− 36q2=3WnðβÞ

�
: ð14Þ

FIG. 2 (color online). The plot of Vn for n ¼ 1 near its
minimum. Boundedness from below, confining aspects, and
C3v symmetry are illustrated.

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

1.0

FIG. 1 (color online). Contour plot ofWnðβÞ near its minimum.
Red lines: the three C3v symmetry axes β− ¼ 0, βþ ¼ β−=

ffiffiffi
3

p
,

βþ ¼ −β−=
ffiffiffi
3

p
.
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Let us split the potentialWn into its isotropic and anisotropic
components. The isotropic part corresponds to that part of
curvature which is independent of β�, whereas the aniso-
tropic part vanishes for β� ¼ 0:

WnðβÞ ¼ −n2 þ VnðβÞ: ð15Þ

The lapse function is not dynamical and its choice is
irrelevant for the classical dynamics as it only fixes the
magnitude and direction of the Hamiltonian flow in the
constraint surface. From now on we put the lapse
N ¼ −24. The Hamiltonian (14) now reads

H ¼ 9

4
p2 þ 36n2q2=3 − Hq; ð16Þ

where Hq is the q-dependent Hamiltonian for the aniso-
tropic variables,

Hq ≔
p2þ þ p2

−

q2
þ 36q2=3VnðβÞ: ð17Þ

C. Discussion of the constraint

The analytical expressions (16)–(17) for H remind us of
the molecular system’s Hamiltonian. The pair ðq; pÞ plays
the role of the nucleuslike dynamical variables and
ðβ�; p�Þ are electronlike dynamical variables. Quantum
molecular systems are usually considered by making use
of the Born-Oppenheimer approximation (BO) or its
“diagonal correction” named Born-Huang (BH) [27,28].
In molecular physics, the validity of these approximations
depends crucially on the ratio between nuclei and electron
masses. Namely, a nucleus mass is very large when
compared to the electron mass. In our case, Eq. (17)
indicates that q2 plays a role of mass for the anisotropic
variables, whereas Eq. (16) shows that the mass of the
isotropic variable is constant. Therefore, near the singu-
larity q ¼ 0, β�s become light degrees of freedom and q
with its constant mass may be treated as a heavy degree
of freedom. Hence, we may follow either the BO or the BH
approximation scheme in quantizing our system. This issue
is considered in more detail in the next section.
For Eqs. (16)–(17), one checks that β� ¼ 0 ¼ p� is a

solution to the Hamilton equations of motion. In this case,
the constraint H ¼ 0 reduces to

9

4
p2 þ 36n2q2=3 ¼ 0; ð18Þ

and we recover the closed vacuum FRW constraint, which
possesses the unique singular and uninteresting solution
p ¼ 0 ¼ q. Nevertheless, it makes sense to consider a
small perturbation δβ� from β� ¼ 0. The dynamical
equation for δβ� based on the harmonic approximation
of Eq. (12) is

δβ̈� ¼ −2
_q
q
δ _β� − 2

n2

q4=3
δβ�: ð19Þ

It can be demonstrated that the Friedmann model evolving
towards the singularity is not stable in the phase space of
the Bianchi-IX model. More precisely, any perturbation of
isotropy will grow and develop into an oscillatory and
chaotic behavior. The growth of isotropy is apparent from
Eq. (19) for _q=q < 0. As the shear grows, the harmonic
approximation breaks down and fully nonlinear dynamics
develops. As we show, this behavior is suppressed on the
quantum level and allows the harmonic approximation to
remain valid all the way towards the big bounce. Moreover,
we show in Sec. V that the BO approximation also survives
the bounce phase. As the shear is known to dominate over
any type of familiar matter close enough to the singularity,
we consider only the vacuum case. Then the lack of
solutions for the vacuum isotropic universe as concluded
from (18) leads to the prediction that one should take into
account the effect of the “quantum zero point energy”
generated by the quantized anisotropy degrees of freedom
of the Bianchi-IX model.

III. QUANTIZATION

In what follows we apply a quantization based on the
Dirac method and inspired by Klauder’s approach [29]:
(i) quantizing H in kinematical phase space, (ii) finding the

semiclassical expression H
̬
of the quantum Hamiltonian Ĥ

using Klauder’s approach and our adiabatic approximation,
and (iii) implementing the Hamiltonian constraint on the

semiclassical level H
̬
¼ 0.

A. Quantum constraint

Since in Eqs. (16)–(17) we have ðq; pÞ ∈ Rþ� × R and
ðβ�; p�Þ ∈ R4, we can follow the idea of our previous
paper [20] in the realization of the step (i):

(i) for the quantization of functions (or distributions) of
the pair ðq; pÞ living in the open half plane, we apply
ACS quantization, whose principles and methods, as
part of integral quantizations (see [30] and refer-
ences therein), are explained in [20] and summarized
in Appendix A. This procedure yields p̂ ¼ −iℏ∂x
and q̂ defined as the multiplication by x, both acting
in the Hilbert space L2ðRþ; dxÞ,

(ii) for quantizing functions of the pairs ðβ�; p�Þwe can
choose either the Weyl-Heisenberg coherent state
(CS) quantization [30], which has a regularizing role,
or, directly, the canonical quantization. Due to the
simplicity of the model we follow the latter option.
Actually both yield p̂� ¼ −iℏ∂β� and the multipli-
cation operator β̂�, both acting in L2ðR2; dβþdβ−Þ.

Thus, for the quantum Hamiltonian Ĥ corresponding to
Eqs. (16)–(17) we get
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Ĥ ¼ 9

4

�
p̂2 þ ℏ2K1

q̂2

�
þ 36n2K3q̂2=3 − Ĥq̂; ð20Þ

Ĥq ≔ K2

p̂2þ þ p̂2
−

q2
þ 36K3q2=3VnðβÞ; ð21Þ

where theKi are positive and nonvanishing purely numeri-
cal constants dependent on the choice of the so-called
fiducial vector. With the choice made in our previous paper
[20], and thanks to the formula recalled in Appendix A,
we have

K1 ¼
1

4

�
1þ ν

K0ðνÞ
K1ðνÞ

�
; K2 ¼

�
K2ðνÞ
K1ðνÞ

�
2

K3 ¼
K5=3ðνÞ

K1ðνÞ1=3K2ðνÞ2=3
; ð22Þ

where ν > 0 is a free parameter and the KrðνÞ are the
modified Bessel functions [31]. Since we deal with ratios
of such functions throughout the sequel, we adopt the
convenient notation

ξrs ¼ ξrsðνÞ ¼
KrðνÞ
KsðνÞ

¼ 1

ξsr
: ð23Þ

One convenient feature of such a notation is that ξrsðνÞ ∼ 1

as ν → ∞ [a consequence of KrðνÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2νÞp

]. Thus (22)
reads

K1 ¼
1

4
ð1þ νξ01ðνÞÞ; K2 ¼ ðξ21ðνÞÞ2;

K3 ¼ ðξ5
3
1Þ1=3ðξ5

3
2Þ2=3: ð24Þ

There exist many other choices of fiducial vectors
yielding similar constants Ki. These vectors depend them-
selves on arbitrary parameters which can be suitably
adjusted. Also, the Hamiltonian (20) itself is defined up
to a multiplicative factor. It is also crucial to recall that there
exists an infinite range of values for constantsKi, for which
the symmetric Ĥ has a unique self-adjoint extension. This is
proved by making use of the reasoning previously pre-
sented in [20] and recalled in Appendix A.
Wemake an important remark that the analysis developed

in the following sections is independent of the specific
numerical values given to the coefficientsKi as long as the
bounce happens for small enough values of q in order for
the adiabatic approximation to be valid (see below). In other
words, all the following results determine the qualitative
features of the dynamics unambiguously and the numerical
coefficients pin down the dynamics quantitatively.

B. Semiclassical Lagrangian approach

Being inspired by Klauder’s approach [29], we present a
consistent framework allowing one to approximate the
quantum Hamiltonian and its associated dynamics (in the

constraint surface) by making use of the semiclassical
Lagrangian approach.

1. General setting

The quantum Hamiltonian (20) has the general form (up
to constant factors)

Ĥ ¼ N
�
p̂2 þ K

q̂2
þ Lq̂

2
3 − ĤðintÞðq̂Þ

�
; ð25Þ

where K and L are some positive constants and the q-
dependent Hamiltonian ĤðintÞðqÞ (also denoted by Ĥq in the
previous subsection) acts on Hilbert space of states for
“internal” degrees of freedom, i.e., the anisotropic ones.
The Schrödinger equation, iℏ ∂

∂t jΨðtÞi ¼ N ĤjΨðtÞi,
can be deduced from the Lagrangian:

LðΨ; _Ψ;N Þ ≔ hΨðtÞj
�
iℏ

∂
∂t −N Ĥ

�
jΨðtÞi; ð26Þ

via the variational principle with respect to jΨðtÞi. In order
to solve the Schrödinger equation, the lapse function N
should be fixed.
The quantum counterpart of the classical constraint

H ¼ 0 can be obtained as follows:

∂L
∂N ¼hΨðtÞjp̂2þK

q̂2
þLq̂

2
3− ĤðintÞðq̂ÞjΨðtÞi¼0: ð27Þ

The commonly used Dirac way of imposing a constraint,
ĤjΨðtÞi ¼ 0, implies (27) but the reciprocal does not hold
in general.
At this stage, we suppose (due to the confining character

of the potential Vn) that there exists ĤðintÞðqÞ as a self-
adjoint operator (and as a function of the c-number q) with
purely discrete spectral decomposition, which is of course
true in its harmonic approximation,

ĤðintÞðqÞ ¼
X
n

EðintÞ
n ðqÞjϕðintÞ

n ihϕðintÞ
n j: ð28Þ

To present the Klauder semiclassical procedure in the
most general situation (not restricted to Bianchi IX), we
distinguish the two cases:

(i) ϕðintÞ
n is independent of q, which allows a complete

separation of variables, and leads to the original
Born-Oppenheimer [27,28] approach;

(ii) ϕðintÞ
n is dependent on q.

Different semiclassical approximations result depending
on these choices.1

1We first present case (i), which is simple, and later introduce
the more complicated case (ii), being applied to the Bianchi-IX
model.
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2. Semiclassical Lagrangian approximations

(i) ϕðintÞ
n independent of q.—In this case, a family of exact

solutions of the time-dependent Schrödinger equation
iℏ ∂

∂t jΨðtÞi ¼ ĤjΨðtÞi can be introduced in the form of
the tensor product

jΨðtÞi ¼ jϕðtÞi ⊗ jϕðintÞ
n i; ð29Þ

where jϕðtÞi is solution to the reduced time-dependent
Schrödinger equation

iℏ
∂
∂t jϕðtÞi ¼ N

�
p̂2 þ K

q̂2
þ Lq̂

2
3 − EðintÞ

n ðq̂Þ
�
jϕðtÞi

≕ N Ĥred
n jϕðtÞi ð30Þ

where EðintÞ
n is the eigenvalue of ĤðinÞ. The tensor product

jΨðtÞi of Eq. (29) is precisely the Born-Oppenheimer-like
solution [32]. Equation (30) may be derived from a
variational principle applied to the quantum Lagrangian

Lredðϕ; _ϕ;N Þ ≔ hϕðtÞj
�
iℏ

∂
∂t −N Ĥred

n

�
jϕðtÞi: ð31Þ

Following Klauder [29], we assume that jϕðtÞi is in fact an
affine coherent state. We assume in the following that the
fiducial vector ψ has been chosen such that c0ðψÞ ¼ c−1ðψÞ
in order to obtain the canonical rule ½Aq; Ap� ¼ iℏ.
Furthermore, we need to apply a rescaling jqðtÞ; pðtÞi →
jλqðtÞ; pðtÞi in order to ensure hλqðtÞ; pðtÞjAqjqðtÞ; pðtÞi ¼
qðtÞ and hλqðtÞ; pðtÞjApjqðtÞ; pðtÞi ¼ pðtÞ. The parameter
λ is uniquely defined by the choice of the fiducial vector,
namely λ ¼ 1=c−3ðψÞ (see Appendix A).
Therefore we replace jΨðtÞi in L of Eq. (26) by

jΨðtÞi ¼ jλqðtÞ; pðtÞi ⊗ jϕðintÞ
n i; ð32Þ

where qðtÞ and pðtÞ are some time-dependent functions.
Then the Lagrangian (26) or (31) turns to assume the
semiclassical form

Lscðq; _q; p; _p;N Þ ¼ hλqðtÞ; pðtÞj
�
iℏ

∂
∂t −N Ĥred

n

�
× jλqðtÞ; pðtÞi

¼ −q _p −N hλqðtÞ; pðtÞjĤred
n jλqðtÞ; pðtÞi

ð33Þ

¼ −
d
dt

ðqpÞ þ _qp −N hλqðtÞ;
pðtÞjĤred

n jλqðtÞ; pðtÞi: ð34Þ

The appearance of the first term −q _p in the rhs of this
equation results from the derivative of (A12) with respect to
parameters q and p leading to (A31).

The semiclassical expression for the Hamiltonian is the
lower symbol

H
̬ red
n ðq; pÞ ≔ hλq; pjĤred

n jλq; pi: ð35Þ
It is defined by the “frozen” quantum eigenstate “n” of the
internal degrees of freedom.
From this reduced Hamiltonian one derives the equations

of motion together with the constraint

_q ¼ N
∂
∂pH

̬ red
n ðq; pÞ; ð36Þ

_p ¼ −N
∂
∂qH

̬
red
n ðq; pÞ ð37Þ

0 ¼ H
̬ red
n ðq; pÞ: ð38Þ

These equations will allow us to set up Friedmann-like
equations with quantum corrections for q and p.

(ii) ϕðintÞ
n dependent of q.—Let us examine the general case

in which the eigenstates jϕðintÞ
n i depend on q. We start again

from the spectral decomposition

ĤðintÞðqÞ ¼
X
n

EðintÞ
n ðqÞjϕðintÞ

n ðqÞihϕðintÞ
n ðqÞj; ð39Þ

and we pick some other q-independent orthonormal basis

jeðintÞn i of the internal Hilbert space HðintÞ. This change of
basis is associated with the introduction of the q-dependent
unitary operator

UðqÞ ≔
X
n

jϕðintÞ
n ðqÞiheðintÞn j; ð40Þ

which allows one to deal with the analogue of the
Hamiltonian (28):

~HðintÞðqÞ¼U†ðqÞĤðintÞðqÞUðqÞ¼
X
n

EðintÞ
n ðqÞjeðintÞn iheðintÞn j:

ð41Þ

The quantum Hamiltonian (25) now has the general form

Ĥ ¼ N
�
p̂2 þ K

q̂2
þ Lq̂

2
3 −Uðq̂Þ ~HðintÞðq̂ÞU†ðq̂Þ

�
: ð42Þ

The difference between the Hamiltonians of cases (i) and
(ii) is the presence in (ii) of the unitary operator Uðq̂Þ that
introduces a quantum correlation (entanglement) between
the internal degrees of freedom (anisotropy) and the
“external” one (the scale factor). As a consequence, any
solution jΨðtÞi of the time-dependent Schrödinger equation
iℏ ∂

∂t jΨðtÞi ¼ ĤjΨðtÞi cannot be factorized as a tensor
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product like jϕðtÞi ⊗ jϕðintÞðtÞi, contrarily to case (i). In
our case we wish to follow Klauder’s approach to build
some semiclassical Lagrangian analoguous to Eq. (31). We
use the previous case (i) as a starting point (as a guide) to
build approximate possible forms of jΨðtÞi.
It is interesting to notice that the Hamiltonian Ĥ of

Eq. (42) is unitarily equivalent to the one that occurs in
quantum electrodynamics. For this purpose let us introduce
the q-dependent operator ÂðqÞ acting on the Hilbert space
HðintÞ of internal degrees of freedom as

ÂðqÞ ¼ iℏ
dU
dq

ðqÞU†ðqÞ: ð43Þ

As a matter of fact, ÂðqÞ is self adjoint, and the
Hamiltonian Ĥ of Eq. (42) reads as

Ĥ ¼ NUðq̂Þ
�
ðp̂ − Âðq̂ÞÞ2 þ K

q̂2
þ Lq̂

2
3 − ~HðintÞðq̂Þ

�
U†ðq̂Þ:

ð44Þ

The form (44) [i.e. modulo the unitary transformation
Uðq̂Þ] is the most general form of the Hamiltonian of a
particle moving on a half line and minimally coupled to an
external field. This form is also most general on the grounds
of the so-called shadow principle [33]. According to the
principle, at any fixed time the state of an interacting
particle should be indistinguishable from the state of a free
particle and the Galilean addition rule of velocities should

be preserved. In particular, if we interpret ~HðintÞðqÞ as a q-
dependent electromagnetic energy (despite all the
differences) and ÂðqÞ as a gauge field, the problem appears
(up to a unitary transformation) similar to the one of a
charged particle in interaction with an electromagnetic field.
Now, using (42) and taking into account the analysis

of the previous case (i), one can define different possible
expressions of jΨðtÞi:
(a) In the first approach we keep the tensor product

expression of (i), but insert the q dependence of
eigenstates. This corresponds to a Born-Oppenheimer-
like approximation:

jΨðtÞi ≈ jλqðtÞ; pðtÞi ⊗ jϕðintÞ
n ðqðtÞÞi: ð45Þ

(b) The second strategy consists in introducing some
(minimal) entanglement between q and internal
(anisotropy) degrees of freedom. This corresponds
to a Born-Huang-like approximation:

jΨðtÞi ≈Uðq̂ÞðjλqðtÞ; pðtÞi ⊗ jeðintÞn iÞ: ð46Þ

(c) In the third method one keeps the tensor product
approximation, but includes a general time-dependent
state for the internal degrees of freedom:

jΨðtÞi ≈ jλqðtÞ; pðtÞi ⊗ jϕðintÞðtÞi: ð47Þ

(d) The fourth strategy is the most general one. It consists
in merging (b) and (c):

jΨðtÞi ≈Uðq̂ÞðjλqðtÞ; pðtÞi ⊗ jϕðintÞðtÞiÞ: ð48Þ

Building now the semiclassical Lagrangian in agreement
with the procedure defined in (i), we can distinguish two
categories in the approximations listed above.
(1) (a)–(b) are completely manageable on the semi-

classical level: they involve q and p as dynamical
variables, while the anisotropy degrees of freedom
are frozen in some eigenstate; (a) and (b) correspond
typically to adiabatic approximations.

(2) (c)–(d) are more complicated: they mix a semi-
classical dynamics for ðq; pÞ and a quantum dy-
namics for the anisotropy degrees of freedom. This
corresponds to “vibroniclike” approximations, well
known in molecular physics and quantum chemistry
[34]. In our case this means that different quantum
eigenstates of the anisotropy degrees of freedom
are involved in the dynamics: during the evolution
excitations and decays are possible, with an ex-
change of energy with the “classical degree of
freedom” ðq; pÞ.

The Bianchi-IX Hamiltonian belongs to the general case
(ii). So the different approximations (a)–(d) presented above
can be tested. In this paper we restrict ourselves to the
presentation of the simplest cases (a)–(b). We postpone the
study of themore complicated cases (c)–(d) to future papers.

C. Semiclassical constraint

We now proceed to the spectral analysis of the operator
Ĥ by making use of BO-like and BH-like approximations,
presented in a general form in Sec. III B, and to its
semiclassical analysis through affine coherent states.

1. Born-Oppenheimer approximation

In this approximation we assume that the anisotropy
degrees of freedom are frozen in some eigenstate

jϕðintÞ
n ðqðtÞÞi, evolving adiabatically, of the q-dependent

Hamiltonian Ĥq given by (21). If we denote by ENðqÞ the
eigenenergies of Ĥq, the reduced Hamiltonian Ĥred

N of
Eq. (30) reads

Ĥred
N ¼ 9

4

�
p̂2 þ ℏ2K1

q̂2

�
þ 36n2K3q̂2=3 − ENðq̂Þ: ð49Þ

Due to the harmonic behavior of Vn near its minimum, i.e.,

VnðβÞ ¼ 8n2ðβ2þ þ β2−Þ þ oðβ2�Þ; ð50Þ
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the harmonic approximation to the eigenenergies ENðqÞ is
manageable (N ¼ 0; 1;…), giving

ENðqÞ≃ 24ℏ

q2=3
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K2K3

p
ðN þ 1Þ: ð51Þ

In fact N ¼ nþ þ n−, n� ∈ N. More details, including a
discussion of another common approximation made for the
anisotropy potential, are given in Appendix B.
We remark that the harmonic form of ENðqÞ is an

increasingly rough approximation for large values of N,
since Vn is highly nonharmonic far from its minimum. But
for small values of N, this expression is valid for any value
of q. The steep wall approximation (see Appendix B) is
able to give a better expression for the eigenenergies as
their values go to infinity. However, both approximations
do not change the main line of reasoning in what follows.
Taking into account the rescaling of affine coherent

states (see Sec. III B 2), the semiclassical expression H
̬ red
N

involved in Eq. (35) is defined as

H
̬ red
N ðq; pÞ ¼ hλq; pjĤred

N jλq; pi; ð52Þ

where λ ≔ ξ02ðνÞ is chosen to get the exact correspondence
(see Sec. III B 2)

hλq; pjq̂jλq; pi ¼ q; hλq; pjp̂jλq; pi ¼ p: ð53Þ

Finally, we obtain

H
̬ red
N ðq; pÞ ¼ 9

4

�
p2 þ ℏ2K4

q2

�
þ 36n2K5q2=3

−
24ℏ

q2=3
K6nðN þ 1Þ; ð54Þ

where the three new constants Ki ¼ KiðνÞ are given by

K4 ¼ ðξ10Þ2
�
ν2

16
þ ν

4
ξ21 þ

3ν

8
ξ10 þ ξ20

�
;

K5 ¼ ξ2
3
1

�
ξ5
3
0

�
1=3
�
ξ5
3
2

�
2=3

;

K6 ¼
ffiffiffi
2

p
ðξ10Þ4=3ðξ20Þ5=3

�
ξ5
3
1

�
1=2

: ð55Þ

For large values of ν (typically ν≳ 20) we get

K4 ≃ ν2

16
; K5 ≃ 1; K6 ≃

ffiffiffi
2

p
: ð56Þ

2. Born-Huang approximation

In the Born-Huang approximation framework (see
Sec. III B 2), we also assume that the anisotropy degrees
of freedom are frozen in some eigenstate, but it is an
eigenstate jeðintÞn i of the Hamiltonian ~HðintÞðqÞ introduced in

Eq. (41). In the case of Bianchi IX, thanks to the harmonic
approximation of VnðβÞ, we can find an approximation

for ~HðintÞðqÞ and the corresponding unitary operatorUðqÞ in
Eq. (40). We get

UðqÞ≃ e
2i
3
ðln qÞD̂; ð57Þ

with

D̂ ¼ D̂þ þ D̂−; D̂� ¼ 1

2ℏ
ðp̂�β̂� þ β̂�p̂�Þ: ð58Þ

The gauge field ÂðqÞ given in Eq. (43) becomes

ÂðqÞ ¼ −
2ℏ
3q

D̂: ð59Þ

As it is shown in Appendix B, the harmonic approxima-

tion implies that the eigenstates jeðintÞn i depend in fact on

two positive integers n� (we use the notation jeðintÞn� i). It
results in

heðintÞn� jD̂jeðintÞn� i ¼ 0;

heðintÞn� jD̂2jeðintÞn� i ¼ 1

2
ðn2þ þ n2− þ nþ þ n− þ 3Þ: ð60Þ

Therefore, the expectation value hΨðtÞjĤjΨðtÞi of

the Hamiltonian Ĥ, as defined in (44), for jΨðtÞi ¼
Uðq̂ÞðjλqðtÞ; pðtÞi ⊗ jeðintÞn� iÞ corresponding to the case
III C 2 (Born-Huang-like approximation), reads

hΨðtÞjĤjΨðtÞi¼ hλqðtÞ;pðtÞj
�
9

4

�̂
p2þℏ2ðK1þ χðnþ;n−ÞÞ

q̂2

�

þ36n2K3q̂2=3−ENðq̂Þ
�
jλqðtÞ;pðtÞi;

ð61Þ

with

N ¼ nþ þ n−; and

χðnþ; n−Þ ¼
2

9
ðn2þ þ n2− þ nþ þ n− þ 3Þ: ð62Þ

Hence, up to the modification K1 ↦ K1 þ χðnþ; n−Þ, we
recover the previous expression of Eq. (49) for the Born-
Oppenheimer-like case III C 1. From Eq. (54) we deduce
the final expression of the semiclassical Hamiltonian [in the
harmonic approximation of VnðβÞ]
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H
̬ red
n� ðq; pÞ ¼

9

4

�
p2 þ ℏ2ðK4 þK0

4χðnþ; n−ÞÞ
q2

�

þ 36n2K5q2=3 −
24ℏ

q2=3
K6nðN þ 1Þ; ð63Þ

where K0
4 ¼ ðξ10Þ2ξ20.

IV. SEMICLASSICAL DYNAMICS

The quantum-corrected constraint H
̬
red
N ðq; pÞ ¼ 0 may

be interpreted as a semiclassical version of the Friedmann
equation. The anisotropic degrees of freedom, averaged at
the quantum level, give rise to the isotropic radiation energy
density. This energy gravitates like common matter and
fuels the contraction. It leads to a supplementary term in the
Friedmann equation, shown below.

A. Effective Friedmann-like equation

Rewritten in terms of the scale factor a, the constraint

H
̬

avðq; pÞ ¼ 0 reads

_a2

a2
þ k

c2

a2
þ c2l−2 K4

a6
¼ 8πG

3c2
ρðaÞ; ð64Þ

where, using the Planck area aP ¼ 2πGℏc−3,

k¼K5n2

4
; l¼ V0

aP
; ρðaÞ ¼ nV−1

0 K6

ℏcðN þ 1Þ
a4

:

ð65Þ

The classical constraint (18) is recovered for ℏ → 0. The
main features of this quantum-corrected model are the
following:

(i) The value of the isotropic curvature, kc2a−2, present
in closed FRW models, is dressed by the quantiza-
tion with a constant K5, which is close enough to 1
to be ignored in qualitative considerations.

(ii) The repulsive potential term proportional to a−6,
absent in classical FRW/BIX models, is generated
by the affine CS quantization.

(iii) The energy of the anisotropic oscillations is turned
at the quantum level into the radiation energy, ρðaÞ.
The expression for ρðaÞ in terms of the quantum
number N becomes a poor approximation for high
values of N, due to the breakdown of harmonic
approximation. Nevertheless, the dimensional analy-
sis shows that the dependence ρðaÞ ∝ nV−1

0 ℏca−4 is
correct for a → 0.

B. Comparing classical with semiclassical constraint

The classical Friedmann equation generalized to
Bianchi-IX geometry reads

_a2

a2
þ 1

6
3R −

1

6
Σ2 ¼ 0; ð66Þ

where 3R and Σ2 are respectively the curvature and shear of
the spatial sections. The Bianchi-IX curvature (9) may be
split into isotropic and anisotropic parts and the shear may
be expressed in Misner’s canonical variables as follows:

3R ¼ 3
1 − VðβÞ

2a2
; Σ2 ¼ p2þ þ p2

−

24a6
; ð67Þ

where the anisotropic part of curvature potential VðβÞ,
defined by (11) and (15), reads explicitly as

VðβÞ ¼ e4βþ

3
ððe−6βþ − 2 coshð2

ffiffiffi
3

p
β−ÞÞ2 − 4Þ þ 1:

This way we arrive at the following form of (66):

_a2

a2
þ 1

4a2
¼ 1

6

p2þ þ p2
−

24a6
þ VðβÞ

4a2
: ð68Þ

The left-hand side of (68) contains only the isotropic
variables, whereas the right-hand side contains all the
anisotropic terms. The first and the second term of (64),
namely _a2a−2 and kc2a−2, correspond to the first and
second term of (68), i.e. to _a2a−2 and ð2aÞ−2, respectively.
The third term in (64), c2l−2K4a−6, has no corresponding
term in the classical equation. It is a purely quantum effect
induced by the affine CS quantization. The right-hand side
of (64) describes the quantized anisotropic energy, which
depends on the scale factor as a−4. It corresponds to the
energy of anisotropy oscillations in the rhs of (68), which
depends on the scale factor roughly as a−6. This difference
between the right-hand sides of (64) and (68) in depend-
ence on a is another purely quantum effect.
Concerning the curvaturelike term K5n2c2ð2aÞ−2 in the

semiclassical Eq. (64), we note that it reproduces the
classical recollapse in the evolution of the vacuum
Bianchi-IX model, which results from S3 topology of this
model [35]. The recollapse is included in the plots of Fig. 3.
The fact that our semiclassical procedure reproduces this
particular classical feature can be viewed as the confirma-
tion of the consistency of our approach.
Furthermore, from the semiclassical Lagrangian

approach developed in Sec. III B, we note that any effective
matter term FðqÞ ¼ ρðq2=3Þ with ρðaÞ ¼ Ka−n may be
incorporated in the Lagrangian of Eq. (25), leading after the
action minimization of Eq. (27) to a supplementary matter
term ~ρðaÞ ¼ ξKa−n ¼ ξρðaÞ, (ξ > 0), in the rhs of
Eq. (64). Therefore adding an effective radiative matter
term like ρ0a−4 (where ρ0 is a positive constant) into the
rhs of (64) would bring only a quantitative change in the
semiclassical dynamics as it scales exactly as quantized
anisotropy.
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C. Singularity resolution

Equation (64) implies

kc2 þ c2l−2K4

a4
−
8πG
3c2

a2ρðaÞ ≤ 0; ð69Þ

which defines the allowed values assumed by a. The
inequality (69) can be satisfied only for

ðN þ 1Þ2 ≥ 9

16

K4K5

K2
6

; ð70Þ

or ðN þ 1Þ2 ≥ fðνÞ with

fðνÞ ≔ 9

32
ðξ02Þ4ðξ10Þ1=3ξ2

3
1

�
ν2

16
þ ν

4
ξ21 þ

3ν

8
ξ10 þ ξ20

�
:

ð71Þ

The function fðνÞ is strictly increasing, from 0 toþ∞, with
fðνÞ≃ 9

512
ν2 in the limit ν → ∞. Therefore for each value

of N, there exists a bounded interval �0; νmðNÞ� for which
the condition (71) holds true, with fðνmðNÞÞ ¼ ðN þ 1Þ2.
For large values of N, we have νmðNÞ≃ 16

ffiffi
2

p
3

ðN þ 1Þ,
and νmðNÞ ≥ νmð0Þ≃ 7.4. Thus, for ν ∈�0; νmð0Þ½ and for
all N ≥ 0, the condition (69) is satisfied. We find that
a ∈ ½a−; aþ�, where

a2� ¼ 8aP
3nV0

K6

K5

ðN þ 1Þ

0
B@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

fðνÞ
ðN þ 1Þ2

s 1
CA: ð72Þ

Therefore, the semiclassical trajectories turn out to be
periodic, and a is bounded from below by a−. This
demonstrates that the system does not have the singularity
that occurs at the classical level of the FRW/BIX model.
We note that a� is dimensionless as nV0 ∝ n−2 is homo-
geneous to an area. Moreover, the volume of the Universe,
a3V0, is independent of n. This proves that our result is
physical.
In Fig. 3 we plot a few trajectories in the half plane

ða;HÞ. The classical closed FRW model is recovered at
ℏ ¼ 0 and large values of ν.
Some remarks are appropriate:
(i) The product a−aþ is only dependent on ν,

a−aþ ¼ 2aP
nV0

ffiffiffiffiffiffi
K4

K5

s
: ð73Þ

(ii) Specifying N and ν ¼ νmðNÞ, the relation a− ¼ aþ
holds true so we have an unusual feature of a
stationary universe with finite radius.

(iii) For N ¼ 0 and ν ∈�0; νmð0Þ½, the model shows the
effect of the quantum zero point energy of the
anisotropy degrees of freedom.

(iv) For ν ∈�0; νmð0Þ½ and all N ≥ 0, the oscillation
period T of the Universe is

T ¼ 4

nc
ffiffiffiffiffiffi
K5

p a−E

�
1 −

�
aþ
a−

�
2
�
; ð74Þ

where E is the complete elliptic integral of the
second kind [31].

V. BEYOND ADIABATIC APPROXIMATION

Aswe have seen in Sec. II, when the isotropy of the closed
FRW universe is perturbed, the Universe acquires the
Bianchi-IX geometry and a small perturbation inevitably
develops in the chaotic regime, first described in Ref. [1]. To
see whether such behavior is possible at the quantum level,
we now go beyond the adiabatic approximation and allow
the number of particlesN to grow as the Universe contracts,
bounces and reexpands. We assume that the scale factor is a
c-number, which evolves according to the semiclassical
constraint (64) for N ¼ 0. The anisotropy degrees of free-
dom are quantized as before but with the possibility to be
excited by the time-dependent background.
We resort to the well-known fact about the harmonic

oscillator that its classical and quantum dynamics of the
basic variables are in one-to-one correspondence and we
work in the Heisenberg picture by solving classical equa-
tions of motion. First, we find the semiclassical evolution of

1 2 3 4 5 6 7

40

20

0

20

40

Scale factor a

H
ub

bl
e

ra
te

H

FIG. 3 (color online). Three periodic semiclassical trajectories
in the half plane ða;HÞ from Eq. (64). They are smooth plane
curves. We use standard units aP ¼ c ¼ ℏ ¼ 1 and choose ν ¼ 3,
V0 ¼ 1 [so n ¼ ð16π2Þ1=3], blue dotted curve for N ¼ 0, green
dot dashed for N ¼ 1 and red dashed for N ¼ 2. Each plot
includes the quantum bounce (at small a) and classical recollapse
(at large a).
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a in suitable time parameter, τ. Thenwe use this evolution to
define our wave in the time-dependent background in terms
of an oscillator with “time-dependent mass.” Finally, we
perform numerical computations.

A. Evolution of scale factor

The semiclassical constraint (64) may be written as

H2 þ Λ1

a6
þ Λ0

a2
¼ Λ2

a4
: ð75Þ

In what follows we set Λ0 ¼ 0. This simplification removes
the classical recollapse; the Universe expands forever now.
This is a good approximation as we are not interested in
the classical phase but in the quantum one during which
the isotropic intrinsic curvature is assumed negligible.
Moreover, we may work in natural units in which Λ1 ≃
Λ2 as both terms originate from quantum theory.
We find from (75)

dt ¼ 1ffiffiffiffiffiffi
Λ2

p a2daffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − Λ1

Λ2

q ð76Þ

where t is the cosmological time.
The dynamics of anisotropy is given by the background-

dependent Hamiltonian:

H� ¼ 1

2
p2
� þ 144n2a4ðτÞβ2� ð77Þ

which is a part of the Hamiltonian constraint (16)–(17) if
the lapse is set to N ¼ −12a3. The idea of the subsequent
calculations is to treat aðτÞ as a fixed function of time. To
obtain the correct solution aðτÞ, we need to adjust (76) for
the choice of lapse N . We find

dτ ¼ dt
N

¼ −
1

12
ffiffiffiffiffiffi
Λ2

p da

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − Λ1

Λ2

q

¼ 1

12
ffiffiffiffiffiffi
Λ2

p d

"
arcsin

 ffiffiffiffiffiffi
Λ1

Λ2

s
a−1
!#

; ð78Þ

hence

aðτÞ ¼
ffiffiffiffi
Λ1

Λ2

q
sin ð12 ffiffiffiffiffiffi

Λ2

p
τ þ π

2
Þ ð79Þ

where τ ∈
�
− π

24
ffiffiffiffi
Λ2

p ; π

24
ffiffiffiffi
Λ2

p
�
and a ∈

�
þ∞;

ffiffiffiffi
Λ1

Λ2

q �
.

B. Excitation of quantum oscillator

The Hamiltonian under study is

H� ¼ 1

2
p2
� þ 1

2
ω2ðτÞβ2� ð80Þ

where ω ¼ 12
ffiffiffi
2

p
na2ðτÞ. In what follows we drop � for

brevity. The equation of motion reads

d2β
dτ2

¼ −ω2ðτÞβ: ð81Þ

We work in the Heisenberg picture, and assume that

β̂ðτÞ ¼ 1ffiffiffi
2

p ðav�ðτÞ þ a†vðτÞÞ;

p̂ðτÞ ¼ 1ffiffiffi
2

p ðav́�ðτÞ þ a†v́ðτÞÞ ð82Þ

where a and a† are fixed operators and where vðτÞ solves
Eq. (81), i.e.,

d2v
dτ2

¼ −ω2ðτÞv: ð83Þ

We demand the canonical commutation relation and obtain

iI¼ ½β̂; p̂� ¼
�
1ffiffiffi
2

p ðav�ðτÞþa†vðτÞÞ; 1ffiffiffi
2

p ðav́�ðτÞþa†v́ðτÞÞ
�

¼ ½a;a†�v
�v́−vv́�

2
: ð84Þ

We find from Eq. (83)

d
dτ

ðv�v́ − vv́�Þ ¼ 0 ð85Þ

and we fix v�v́ − vv́� ¼ 2i. So a and a† are annihilation
and creation time-independent operators. All time depend-
ence lies in vðτÞ.
The Hamiltonian now reads

Ĥ ≔
1

2
p̂2 þ 1

2
ω2ðτÞβ̂2

¼ a2

4
ððv́�Þ2 þ ω2ðv�Þ2Þ þ ða†Þ2

4
ðv́2 þ ω2v2Þ

þ 2a†aþ 1

4
ðjv́j2 þ ω2jvj2Þ: ð86Þ

We set the vacuum state j0i for a; a† to minimize the energy
at some initial moment τ0. It follows that

vðτ0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ωðτ0Þ

p ; v́ðτ0Þ ¼ i
ffiffiffiffiffiffiffiffiffiffiffi
ωðτ0Þ

p
ð87Þ

and hence

Ĥðτ0Þ ≔
�
a†aþ 1

2

�
ωðτ0Þ ð88Þ

where ωðτ0Þ ¼ 12
ffiffiffi
2

p
na2ðτ0Þ.
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Now, if we assume j0i to be the initial quantum state, and
take into account both modes “�,” then the number of
particlesN at some later time τ1 can be foundwith the formula

h0jNðτ1Þþ1j0i¼h0jĤþðτ1Þþ Ĥ−ðτ1Þj0i
ωðτ1Þ

¼ jv́j2ðτ1Þþ288n2a4ðτ1Þjvj2ðτ1Þ
24

ffiffiffi
2

p
na2ðτ1Þ

: ð89Þ

What remains to be solved is (83) with initial data (87).

C. Numerical results

We fix units so that Λ1 ¼ 1 ¼ Λ2 and also n ¼ 1. So the
Universe contracts from a ¼ ∞, bounces at a ¼ 1 and
reexpands to a ¼ ∞. We set the initial data as aðτ0Þ ¼ 104.
In Fig. 4 we plot the number of particles and the scale factor
versus time. We also find that varying initial a from 104 to
10 does not affect the number of particles produced, which
never exceeds 0.35.

VI. CONCLUSIONS

In this article we have examined the quantum dynamics
of the vacuum Bianchi-IX model, the mixmaster universe.
The Hamiltonian constraint, which consists of isotropic
and anisotropic variables, has been quantized. This split of
variables is crucial both for implementing our procedure
and interpreting the result. Suitable coherent states, namely
the ACS, have been employed to obtain some insight into
the involved quantum dynamics of isotropic background.
Making use of adiabatic approximation, we have identified
the eigenstates for the oscillating anisotropy at its lowest
excitation levels. Our procedure, developed by qualitative
arguments and based on reasonable and tractable approx-
imations, i.e. the replacement of the anisotropy potential
with the harmonic potential and the Born-Oppenheimer-
type evolution, is validated by considerations outside the
adiabatic approximation.

The main features of our quantum model are the
following: (i) the singularity avoidance due to a repulsive
term regularizing the singular spacetime geometry; (ii) the
reduced contraction rate of the Universe due to suppressed
growth of the energy of anisotropy at the quantum level as
it becomes frozen in a fixed quantum state; and (iii) the
stability of quantum Friedmann-like state in the quantum
Bianchi-IX model both in the contraction and expansion
phase. We emphasize that the anisotropic oscillations have
a nonzero ground energy level, which means that there is no
true quantum FRW state.
The resolution of the singularity is due to the repulsive

potential generated by the ACS quantization as in [20]. We
note that our approach to “quantizing singularity” is very
natural. It was developed within an appealing probabilistic
interpretation of quantization procedures and, in a sense, it
extends what is usually meant by canonical quantization
(see Appendix A). Our approach is universal in the sense
that it removes the singularity from anisotropic models,
recently shown to be true also for Bianchi-I models in [36].
In our framework, due to the Born-Oppenheimer approxi-

mation, the anisotropy degrees of freedom are assumed
to be in a quantum eigenstate. This property leads to the
radiation energy density. In the near future, we will focus
on developing our scheme to include transitions between
different energy levels by more detailed computations. The
Born-Huang-like approximation is just a refined version
of the adiabatic approximation as shown in Sec. III B.
Qualitatively, the Born-Huang-like approximation does
not change the behavior of the semiclassical Hamiltonian
obtainedwithin the Born-Oppenheimer-like approximation,
because the former generates a supplementary positive term
∝ q−2 that only renormalizes the term already present (due to
our affine CS quantization). On the other hand, if we apply
only canonical quantization to the system, then no term in
q−2 is present at the beginning in the Born-Oppenheimer-
like approximation. In that case the Born-Huang-like
approximation generates a new term in the semiclassical
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FIG. 4 (color online). The evolution of the number of particles N and the scale factor a from the contracting phase through the
semiclassical bounce to the expanding phase. We fix Λ1 ¼ 1 ¼ Λ2, n ¼ 1, and aðτ0Þ ¼ 104.
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behavior. Since this repulsive term is responsible for the
resolution of the singularity, we can say that, with or without
ACSquantization, the resolution of the singularity holds true
in the case of the Bianchi-IXmodel within the framework of
the Born-Huang approximation.
We emphasize that our approach is completely different

from Misner’s, which was based on the so-called steep wall
approximation, discussed in Appendix B. In the steep wall
approximation, there is no tendency for quantum probability
to be peaked in theminimumof potential, and therefore there
would probably be no quantum suppression of anisotropy
as it occurs for the real potential revealed in the harmonic
approximation of our paper.
We have shown that thewave remains in its lowest energy

states during the quantum phase. Even beyond adiabatic
approximation there is no significant excitation of thewave’s
energy level. It is interpreted that the quantumFRWuniverse,
unlike its classical version, is dynamically stablewith respect
to small isotropy perturbation. Thus, supplementing the
FRW Hamiltonian with the zero-point energy originating
fromquantizationof anisotropic degrees of freedomprovides
a quantum version of the Friedmann model which could be
used for a study of the earliest universe.
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APPENDIX A: AFFINE COHERENT
STATE QUANTIZATION

Coherent state quantization is a particular approach
pertaining to what is named in [30] integral quantization.
When a group action is involved in the construction, one
can insist on covariance aspects of the method. A detailed
presentation of the subject is given in [30] and in chapter 11
of [37]. In this appendix, we give a short compendium of
this approach before particularizing to the integral quan-
tization issued from the affine group representation.

1. Covariant integral quantizations

Lie group representations [38] offer a wide range of
possibilities for implementing integral quantization(s). Let
G be a Lie group with left Haar measure dμðgÞ, and let
g ↦ UðgÞ be a UIR of G in a Hilbert space H. Consider a
bounded operator M on H and suppose that the operator

R ≔
Z
G
MðgÞdμðgÞ; MðgÞ ≔ UðgÞMU†ðgÞ ðA1Þ

is defined in a weak sense. From the left invariance of dμðgÞ
we have

Uðg0ÞRU†ðg0Þ ¼
Z
G
Mðg0gÞdμðgÞ ¼ R; ðA2Þ

so R commutes with all operators UðgÞ, g ∈ G. Thus, from
Schur’s lemma, R ¼ cMI with

cM ¼
Z
G
trðρ0MðgÞÞdμðgÞ; ðA3Þ

where the unit trace positive operator ρ0 is chosen in order
to make the integral converge. This family of operators
provides the resolution of the identity on H.Z

G
MðgÞdνðgÞ ¼ I; dνðgÞ ≔ dμðgÞ

cM
; ðA4Þ

and the subsequent quantization of complex-valued func-
tions (or distributions, if well defined) on G

f ↦ Af ¼
Z
G
MðgÞfðgÞdνðgÞ: ðA5Þ

This linear map, function ↦ operator in H, is covariant in
the sense that

UðgÞAfU†ðgÞ ¼ AUðgÞf: ðA6Þ
In the case when f ∈ L2ðG; dμðgÞÞ, the quantity
ðUðgÞfÞðg0Þ ≔ fðg−1g0Þ is the regular representation.
A semiclassical analysis of the operator Af can be

implemented through the study of lower symbols.
Suppose that M is a density, i.e. non-negative unit trace,
operator M ¼ ρ on H. Then the operators ρðgÞ are also

density, and this allows one to build a new function f
̬
ðgÞ as

f
̬
ðgÞ≡ Af

̬
≔
Z
G
trðρðgÞρðg0ÞÞfðg0Þdνðg0Þ: ðA7Þ

The map f ↦ f
̬
is a generalization of the Berezin or heat

kernel transform on G (see [39] and references therein).

One observes that the value f
̬
ðgÞ is the average about g of

the original f with respect to the probability distribution on
½G; dνðg0Þ� defined by g0 ↦ trðρðgÞρðg0ÞÞ.
Let us consider the above procedure in the case of square

integrable UIRs and rank one ρ. For a square-integrable
UIR U for which jψi is an admissible unit vector, i.e.,

cðψÞ ≔
Z
G
dμðgÞjhψ jUðgÞjψij2 < ∞; ðA8Þ

the resolution of the identity is obeyed by the coherent states
jψgi¼UðgÞjψi, in a generalized sense, for the group G:

Z
G
ρðgÞdνðgÞ ¼ I; dνðgÞ ¼ dμðgÞ

cðψÞ ;

ρðgÞ ¼ jψgihψgj: ðA9Þ

2. The case of the affine group

As the complex plane is viewed as the phase space for
the motion of a particle on the line, the half plane is viewed
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as the phase space for the motion of a particle on the half
line. Canonical quantization of the plane is covariant in
the sense that it respects the translation symmetry of the
plane through its Weyl-Heisenberg group extension. Our
approach to the quantization of the half plane follows the
same principle of covariance with respect the affine group
structure of this geometry.
Let the upper half plane Πþ ≔ fðq; pÞjp ∈ R; q > 0g

be equipped with the measure dqdp. Together with the
multiplication

ðq; pÞðq0; p0Þ ¼ ðqq0; p0=qþ pÞ; q ∈ R�þ; p ∈ R;

ðA10Þ
the unity (1,0) and the inverse

ðq; pÞ−1 ¼
�
1

q
;−qp

�
; ðA11Þ

Πþ is indeed viewed as the affine group AffþðRÞ of the real
line, and the measure dqdp is left invariant with respect to
this action. The affine group AffþðRÞ has two nonequiva-
lent UIRs [40,41]. Both are square integrable and this is
the rationale behind continuous wavelet analysis (see the
references in [37]). The UIR Uþ ≡U is realized in the
Hilbert space H ¼ L2ðR�þ; dxÞ:

Uðq; pÞψðxÞ ¼ ðeipx= ffiffiffi
q

p Þψðx=qÞ: ðA12Þ

By adopting the integral quantization scheme described
above, we restrict to the specific case of rank-one density
operator or projector ρ ¼ jψihψ j where ψ is a unit-norm
state in L2ðR�þ; dxÞ which should also be in L2ðR�þ; dx=xÞ
(also called fiducial vector or wavelet). The action of UIR
U produces all affine coherent states, i.e. wavelets, defined
as jq; pi ¼ Uðq; pÞjψi.
Due to the irreducibility and square integrability of the

UIR U, the corresponding quantization reads as

f ↦ Af ¼
Z
Πþ

fðq; pÞjq; pihq; pj dqdp
2πc−1

; ðA13Þ

which arises from the resolution of the identityZ
Πþ

jq; pihq; pj dqdp
2πc−1

¼ I; ðA14Þ

where

cγ ≔
Z

∞

0

jψðxÞj2 dx
x2þγ : ðA15Þ

Thus, a necessary condition to have (A14) be true is that
c−1 < ∞, which explains the needed square integrability
of ψ with respect to dx=x implying ψð0Þ ¼ 0, a well-known
requirement in wavelet analysis.

The map (A13) is covariant with respect to the unitary
affine action U:

Uðq0; p0ÞAfU†ðq0; p0Þ ¼ AUðq0;p0Þf; ðA16Þ

with

ðUðq0; p0ÞfÞðq; pÞ ¼ fððq0; p0Þ−1ðq; pÞÞ

¼ f

�
q
q0

; q0ðp − p0Þ
�
; ðA17Þ

U being the left regular representation of the affine group.
In particular, this (fundamental) property is used to
prove Eq. (52).
To simplify, we pick a real fiducial vector. For the

simplest functions, the affine CS quantization produces
the following operators:

Ap ¼ −i
∂
∂x≡ p̂; Aqβ ¼

cβ−1
c−1

q̂β; q̂fðxÞ ¼ xfðxÞ:
ðA18Þ

Whereas Aq ¼ ðc0=c−1Þq̂ is self adjoint, the operator
p̂ ¼ Ap is symmetric but has no self-adjoint extension.
We check that this affine quantization is, up to a multipli-
cative constant, canonical, ½Aq; Ap� ¼ ic0=c−1I.
We obtain the exact canonical rule (i.e. Aq ¼ q̂ and

Ap ¼ p̂) by imposing c0 ¼ c−1. This simply corresponds to
a rescaling of the fiducial vector ψ as ψ1ðxÞ ¼ ψðx=μÞ= ffiffiffi

μ
p

with μ ¼ c0=c−1. In the remainder we assume that this
rescaling has been done and therefore c0ðψÞ ¼ c−1ðψÞ.
The quantization of the product qp yields

Aqp ¼ c0
c−1

q̂ p̂þp̂ q̂
2

¼ q̂ p̂þp̂ q̂
2

≡D; ðA19Þ

where D is the dilation generator. As one of the two
generators (with q̂) of the UIR U of the affine group, it is
essentially self adjoint.
The quantization of the kinetic energy gives

Ap2 ¼ p̂2 þ Kq̂−2; K ¼ KðψÞ ¼
Z

∞

0

ðψ 0ðuÞÞ2u du
c−1

:

ðA20Þ
Therefore, wavelet quantization prevents a quantum free
particle moving on the positive line from reaching the
origin. It is well known that the operator p̂2 ¼ −d2=dx2 in
L2ðR�þ; dxÞ is not essentially self adjoint, whereas the
above regularized operator, defined on the domain of
smooth function of compact support, is essentially self
adjoint for K ≥ 3=4 [42]. Then quantum dynamics of the
free motion is unique.
As usual, the semiclassical aspects are included in the

phase space. The quantum states and their dynamics have
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phase space representations through wavelet symbols. For
the state jϕi one has

Φðq; pÞ ¼ hq; pjϕi=
ffiffiffiffiffiffi
2π

p
; ðA21Þ

with the associated probability distribution on phase space
given by

ρϕðq; pÞ ¼
1

2πc−1
jhq; pjϕij2: ðA22Þ

Having the (energy) eigenstates of some quantum
Hamiltonian H at our disposal, we can compute the time
evolution

ρϕðq; p; tÞ ≔
1

2πc−1
jhq; pje−iHtjϕij2 ðA23Þ

for any state ϕ. The map (A7) yielding lower symbols
from classical f reads in the present case (supposing that
Fubini’s theorem holds):

f
̬
ðq; pÞ ¼ 1ffiffiffiffiffiffi

2π
p

c−1

Z
∞

0

dq0

qq0

Z
∞

0

dx
Z

∞

0

dx0eipðx0−xÞ

× Fpðq0; x − x0Þψ
�
x
q

�
ψ

�
x
q0

�
ψ

�
x0

q

�
ψ

�
x0

q0

�
;

ðA24Þ

where Fp stands for the partial inverse Fourier transform

Fpðq; xÞ ¼
1ffiffiffiffiffiffi
2π

p
Z þ∞

−∞
eipxfðq; pÞ: ðA25Þ

For functions f depending on q only, expression (A24)
simplifies to a lower symbol depending on q only:

f
̬
ðqÞ ¼ 1

c−1

Z
∞

0

dq0

qq0
fðq0Þ

Z
∞

0

dxψ2

�
x
q

�
ψ2

�
x
q0

�
:

ðA26Þ
For instance, any power of q is transformed into the same
power up to a constant factor

qβ ↦ qβ
̬
¼ cβ−1c−β−2

c−1
qβ: ðA27Þ

Note that c−2 ¼ 1 from the normalization of ψ .
We notice that q

̬ ¼ c0c−3ðc−1Þ−1q. If we choose the
fiducial vector such that c0 ¼ c−1 in order to obtain the
canonical rule, it remains q

̬ ¼ c−3q. Using a q-rescaling of

the coherent states in the definition of the symbols A
̬

f like

A
̬

f ¼ hλq; pjAfjλq; pi allows one to obtain q
̬ ¼ q if we

choose λ ¼ 1=c−3. Other important symbols are

p ↦ p
̬ ¼ p; ðA28Þ

p2 ↦ p2
̬
¼ p2 þ cðψÞ

q2
;

cðψÞ ¼
Z

∞

0

ðψ 0ðxÞÞ2
�
1þ c0

c−1
x

�
dx: ðA29Þ

qp ↦ qp
̬ ¼ c0c−3

c−1
qp ðA30Þ

Another interesting formula in the semiclassical context
concerns the Fubini-Study metric derived from the symbol
of total differential d with respect to parameters q and p
affine coherent states,

hq;pjdjq;pi¼ iqdp
Z

∞

0

ðψðxÞÞ2xdx¼ iqdpc−3; ðA31Þ

and from the norm squared of djq; pi,

∥djq; pi∥2 ¼ c−4q2dp2 þ L
dq2

q2
;

L ¼
Z

∞

0

dxx2ðψ 0ðxÞ0Þ2 − 1

4
: ðA32Þ

With Klauder’s notations [29]

dσ2ðq; pÞ ≔ 2½∥djq; pi∥2 − jhq; pjdjq; pij2�

¼ 2

�
ðc−4 − c2−3Þq2dp2 þ L

dq2

q2

�
: ðA33Þ

APPENDIX B: QUANTUM ANISOTROPIES

1. General setting

The Hamiltonian Ĥq of Eq. (21) reads

Ĥq ¼ K2

p̂2þ þ p̂2
−

q2
þ 36K3q2=3VnðβÞ; ðB1Þ

where

VnðβÞ ¼
n2

3
e4βþð½2 coshð2

ffiffiffi
3

p
β−Þ − e−6βþ�2 − 4Þ þ n2:

ðB2Þ

More explicitly, we have for Ĥq the expression

Ĥq ¼
2K2ℏ2

q2
ÊðqÞ; ðB3Þ
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with

ÊðqÞ ¼ −
1

2
Δþ χðqÞVnðβÞ; Δ ¼ ∂2

βþ þ ∂2
β−
;

χðqÞ ¼ 18K3

K2ℏ2
q8=3: ðB4Þ

VnðβÞ possesses an absolute minimum for β� ¼ 0, and
near this minimum we have

VnðβÞ ¼ 8ðβ2þ þ β2−Þ þ oðβ2�Þ: ðB5Þ

As mentioned above, VnðβÞ and therefore ÊðqÞ possess
the symmetry C3v. This group has three irreducible
representations usually called A1, A2 and E. Therefore
the eigenstates of ÊðqÞ can be classified according to these
representations.

2. Harmonic approximation

Using (B5) we obtain

ÊðqÞ≃ −
1

2
Δþ 8χðqÞðβ2þ þ β2−Þ: ðB6Þ

Introducing the quantum numbers n� ¼ 0; 1;…, corre-
sponding to the independent harmonic Hamiltonians in βþ
and β−, we deduce the harmonic approximation of the
eigenvalues eðnþ; n−Þ of ÊðqÞ:

eðnþ; n−Þ≃ 4
ffiffiffiffiffiffiffiffiffi
χðqÞ

p
ðnþ þ n− þ 1Þ; ðB7Þ

which gives the approximation of the eigenvalues ENðqÞ of
Ĥq, with N ¼ nþ þ n−,

ENðqÞ≃ 24ℏ

q2=3
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K2K3

p
ðN þ 1Þ: ðB8Þ

3. Steep wall approximation

As mentioned above, taking into account the C3v
symmetry and the exponential walls of the potential, we
can approximate VnðβÞ by an equilateral triangular box as
shown on Fig. 3. The interest of this approximation is that it
preserves the symmetry C3v of the potential and it also
possesses an explicit solution in terms of eigenstates and
eigenvalues [43–45].
The size of the triangle is a free parameter that must be

somehow adjusted, e.g., through some variational method.
Let us denote by b the side length of the equilateral

triangle box Tb of Fig. 5, and let us denote by UT the
potential equal to 0 inside the triangle and equal to þ∞
outside. The stationary Schrödinger equation −1

2
Δψ ¼eðTÞψ

with the Dirichlet boundary conditions has the explicit

solution [43–45]. The eigenvalues eðTÞm;n with m¼0;1;2;…
and n ¼ 1; 2;… are given by2

eðTÞm;n ¼ 8π2

3b2

�
m2

3
þ n2 þmn

�
: ðB9Þ

The ground state energy is eðTÞ0;1 . The corresponding
normalized ground state wave function3 ψ0;1 reads [43]

ψ0;1ðβÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

3
ffiffiffi
3

p
b2

s �
sin

�
4πβþ
b
ffiffiffi
3

p þ 2π

3

�

þ 2 sin

�
2πβþ
b
ffiffiffi
3

p þ π

3

�
cos

2πβ−
b

�
; ðB10Þ

where β� ∈ Tb.
Assuming that the harmonic approximation (Sec. B 2)

yields a fairly good approximation to the ground energy of
ÊðqÞ, the length parameter b can be estimated by imposing
that the two ground states coincide up to some small
correction

eðTÞ0;1 ≈ 4
ffiffiffiffiffiffiffiffiffi
χðqÞ

p
: ðB11Þ

This relation yields

b ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2

3
ffiffiffiffiffiffiffiffiffi
χðqÞp

s
: ðB12Þ

This leads to a new approximation eðm; nÞ of the eigen-
values of ÊðqÞ as

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

1.0

FIG. 5 (color online). Contour plot of VðβÞ near its minimum.
Red lines: the three C3v symmetry axes β−¼0, βþ¼β−=

ffiffiffi
3

p
,

βþ ¼ −β−=
ffiffiffi
3

p
. A possible triangular box approximation

is in blue.

2We have changed the parametrization of [43] to have
independent integers.

3We have modified the solution ψ0;1 of [43] in order to take into
account the different origin and the orientation of the triangle.
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eðm; nÞ≃ 4
ffiffiffiffiffiffiffiffiffi
χðqÞ

p �
m2

3
þ n2 þmn

�
: ðB13Þ

The eigenvalues EN of Ĥq are still given formally by

ENðqÞ≃ 24ℏ

q2=3
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K2K3

p
ðN þ 1Þ; ðB14Þ

but nowN does not reduce to a simple integer. It is given by

N ¼ m2

3
þ n2 þmn − 1; with

m ¼ 0; 1;…; n ¼ 1; 2;… ðB15Þ

The last remark concerns the actual discrete spectrum of the
Hamiltonian (B1) [or (B4)]. Clearly, it interpolates between
the spectrum of the isotropic two-dimensional-harmonic
oscillator, which is linear in N and the spectrum of the
triangular steep wall which behaves like squared integers.
This is reminiscent of the one-dimensional-Schrödinger
operator with a symmetric Pöschl-Teller potential for
which the two types, harmonic and infinite square well,
of approximations hold (see for instance [46]). In this
article we have privileged the harmonic side of the
anisotropy potential for obvious reasons, but it seems to
us that a rigorous complete mathematical analysis of the
spectral properties of the operator (B1) is still lacking.
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