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We obtain Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations of a rotating body with given
values of spin and momentum starting from Lagrangian action without auxiliary variables. MPTD
equations correspond to the minimal interaction of our spinning particle with gravity. We briefly discuss
some novel properties deduced from the Lagrangian form of MPTD equations: the emergence of an
effective metric instead of the original one, the noncommutativity of coordinates of the representative point
of the body, spin corrections to the Newton potential due to the effective metric, as well as spin corrections
to the expression for integrals of motion of a given isometry.
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I. INTRODUCTION

The description of spinning bodies in general relativity is
an old subject, which has been under intensive study for the
past 70 years. The first results concerning equations of
motion of a test body in a given background were reported
by Mathisson [1] and Papapetrou [2]. They assumed that
the structure of the test body could be described by a set of
multipoles and have taken the approximation that involves
only the first two terms (the pole-dipole approximation).
The equations are then derived by the integration of the
conservation law for the energy-momentum tensor,
Tμν

;μ ¼ 0. A manifestly covariant formulation was given
by Tulczyjew [3] and Dixon [4] and is under detailed
investigation by many groups. In this work we will refer
Eqs. (6.31)–(6.33) in [4] as Mathisson-Papapetrou-
Tulczyjew-Dixon (MPTD) equations. Detailed analysis
and interpretation of these equations and their generaliza-
tions [5–19] are necessary tasks since they are now widely
used to account for spin effects in compact binaries and
rotating black holes; see [20–25] and references therein.
It should be interesting to obtain these equations starting

from an appropriate Lagrangian action. The vector models
of spin yield one possible way to attack the problem. In
these models, the basic variables in the spin sector are non-
Grassmann vector ωμ and its conjugated momentum πμ.
The spin tensor is a composed quantity constructed from
these variables, Sμν ¼ 2ðωμπν − ωνπμÞ. To have a theory
with the right number of physical degrees of freedom for
the spin (two for an elementary particle with spin one-half,
and three for a rotating body in the pole-dipole approxi-
mation), some constraints on the eight basic variables must
be imposed. This is the main difficulty: besides the

equations of motion, the variational problem should pro-
duce these constraints. Even for the free theory in flat
space, this turns out to be an extremely nontrivial problem
[26–30]. We propose the Lagrangian action without aux-
iliary variables, which, besides the equations of motion,
yields all the desired constraints. To point out some
advantages of the vector model, let us compare it with
the approach developed in [31] for the description of the
relativistic top [26] in the curved background. First, in the
vector model we have four basic variables in the spin sector
instead of six (called ϕa in [31]) for the top. Taking into
account that we present the Lagrangian without auxiliary
variables, the vector model yields more economic formu-
lation. Second, our primary constraints (see T6 and T7

below) follow from the variational problem and yield the
spin supplementary condition (28). In the work [31] the
condition has been added by hand and then considered as a
first-class constraint of the formulation. Third, the vector
model yields two physical degrees of freedom in the spin
sector. Hence, it can be used for the descriptions of both a
rotating body (see below) and an elementary particle with
spin. In particular, the canonical quantization of the vector
model has been considered in [32].
The work is organized as follows. In Sec. II we present

Lagrangian action without auxiliary variables1 for our
spinning particle in an arbitrary curved background and
obtain its Hamiltonian formulation. Section III contains the
detailed derivation and analysis of both Lagrangian and
Hamiltonian equations. The particle has a fixed value of
spin and two physical degrees of freedom in the spin sector.
We also present a modification that yields the model of
Hanson-Regge type [26], with an unfixed value of the spin
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1The variational problem with four auxiliary variables has been
constructed in [33].
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and four physical degrees of freedom. In Sec. IV we present
the MPTD equations in the form convenient for our
analysis. Here we follow the ideas of Dixon [4] and add
the mass-shell condition to MPTD equations, transforming
them into the Hamiltonian system. This allows us to
compare MPTD equations with those of Sec. III. We show
that the class of trajectories of MPTD equations with any
given values of integration constants (squares of spin and of
momentum) is described by our spinning particle with
properly chosen mass and spin. In Sec. V we discuss some
novel properties that can be immediately deduced from the
Lagrangian form of MPTD equations. Notation.—The
dynamical variables are taken in arbitrary parametrization
τ, and then _xμ ¼ dxμ

dτ , μ, ν ¼ 0, 1, 2, 3. The covariant
derivative is ∇Pμ ¼ dPμ

dτ þ Γμ
αβ _x

αPβ and the curvature is
Rσ

λμν¼ ∂μΓσ
λν−∂νΓσ

λμþΓσ
βμΓβ

λν−Γσ
βνΓβ

λμ. The square
brackets mean antisymmetrization, ω½μπν� ¼ ωμπν − ωνπμ.
We use the condensed notation _xμGμν _xν ¼ _xG_x, Nμ

ν _xν ¼
ðN _xÞμ, ω2 ¼ gμνωμων, and so on. The notation for the
scalar functions constructed from second-rank tensors is
θS ¼ θμνSμν, S2 ¼ SμνSμν.

II. LAGRANGIAN AND
HAMILTONIAN FORMULATIONS

The variational problem for the vector model of the spin
interacting with electromagnetic and gravitational fields
can be formulated with various sets of auxiliary variables
[32–35]. For the free theory in flat space there is the
Lagrangian action without auxiliary variables. The con-
figuration space consists of the position xμðτÞ and the
vector ωμðτÞ attached to the point xμ. The action reads

S ¼ −
1ffiffiffi
2

p
Z

dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c2 −

α

ω2

r

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−_xN _x − _ωN _ωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½_xN _xþ _ωN _ω�2 − 4ð_xN _ωÞ2

qr
:

ð1Þ

The matrix Nμν is the projector on the plane orthogonal
to ων,

Nμν ¼ ημν −
ωμων

ω2
; and then Nμνω

ν ¼ 0: ð2Þ

Below we use the notation

T ≡ ½_xN _xþ _ωN _ω�2 − 4ð_xN _ωÞ2: ð3Þ

The double square-root structure in the expression (1) seem
to be typical for the vector models of spin [26]. The
Lagrangian depends on one free parameter α that deter-
mines the value of the spin. The value α ¼ 3ℏ2

4
corresponds

to a spin one-half particle. In the spinless limit, α ¼ 0 and

ωμ ¼ 0, Eq. (1) reduces to the standard expression,
−mc

ffiffiffiffiffiffiffiffiffiffiffiffi
−_xμ _xμ

p
. The equivalent Lagrangian with one aux-

iliary variable λðτÞ is

L ¼ 1

4λ
½_xN _xþ _ωN _ω − T

1
2� − λ

2

�
m2c2 −

α

ω2

�
: ð4Þ

Switching off the spin variables ωμ from Eq. (4), we arrive
at the familiar Lagrangian of spinless particle L ¼
1
2λ _x

2 − λ
2
m2c2. In this formulation the model admits inter-

action with an arbitrary electromagnetic field. The interact-
ing theory is obtained [35] adding the minimal interaction
term, e

c Aμ _xμ, and replacing _ωμ by Dωμ ≡ _ωμ − λ eμ
c F

μνων,
where μ is the magnetic moment.
The Frenkel spin tensor [36] in our model is a composite

quantity constructed from ωμ, and its conjugated momen-
tum πμ ¼ ∂L

∂ _ωμ
as follows:

Sμν ¼ 2ðωμπν − ωνπμÞ ¼ ðSi0 ¼ Di; Sij ¼ 2ϵijkSkÞ: ð5Þ
Here Si is a three-dimensional spin vector andDi is a dipole
electric moment [37]. The model is invariant under repar-
ametrizations and local spin-plane symmetries [38]. The
latter symmetry acts on ωμ and πμ but leaves Sμν invariant.
So only Sμν is an observable quantity. In their work [26],
Hanson and Regge analyzed whether the spin tensor
interacts directly with an electromagnetic field and con-
cluded with the impossibility of constructing the interaction
in closed form. In our model an electromagnetic field
interacts with ωμ from which the spin tensor is constructed.
The minimal interaction with gravitational field can be

achieved by covariantization of the formulation (1). In the
expressions (1)–(3) we replace ημν → gμν and the usual
derivative by the covariant one, _ωμ → ∇ωμ ¼ dωμ

dτ þ
Γμ
αβ _x

αωβ. Thus our Lagrangian in a curved background reads

L ¼ −
1ffiffiffi
2

p
�
m2c2 −

α

ω2

�1
2

L0;

L0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−_xN _x −∇ωN∇ωþ T

1
2

q
: ð6Þ

Velocities _xμ, ∇ωμ and projector Nμν transform like contra-
variant vectors and the covariant tensor, so the action is
manifestly invariantundergeneral-coordinate transformations.
Let us construct the Hamiltonian formulation of the

model (6). Conjugate momenta for xμ and ωμ are pμ ¼ ∂L
∂ _xμ

and πμ ¼ ∂L
∂ _ωμ, respectively. Because of the presence of

Christoffel symbols in ∇ωμ, the conjugated momentum pμ

does not transform as a vector, so it is convenient to
introduce the canonical momentum

Pμ ≡ pμ − Γβ
αμωαπβ; ð7Þ

and the latter transforms as a vector under the general
transformations of the coordinates. The manifest form of
the momenta is as follows:
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Pμ ¼
1ffiffiffi
2

p
L0

�
m2c2 −

α

ω2

�1
2½Nμν _xν − Kμ�; ð8Þ

πμ ¼
1ffiffiffi
2

p
L0

�
m2c2 −

α

ω2

�1
2½Nμν∇ων − Rμ�; ð9Þ

with

Kμ ¼T−1=2½ð_xN _xþ∇ωN∇ωÞðN _xÞμ−2ð_xN∇ωÞðN∇ωÞμ�;
Rμ ¼T−1=2½ð_xN _xþ∇ωN∇ωÞðN∇ωÞμ−2ð_xN∇ωÞðN _xÞμ�:

These vectors obey the following algebraic identities:

K2 ¼ _xN _x; R2 ¼∇ωN∇ω; KR¼−_xN∇ω;

_xRþ∇ωK¼ 0; K _xþR∇ω¼T
1
2: ð10Þ

Using (2) we conclude that ωπ ¼ 0 and Pω ¼ 0; that is, we
found two primary constraints. Using the relations (10) we
find one more primary constraint Pπ ¼ 0. Besides, com-
puting P2 þ π2 given by (8) and (9) we see that all the terms
with derivatives vanish, and we obtain the last primary
constraint

T1 ≡ P2 þm2c2 þ π2 −
α

ω2
¼ 0: ð11Þ

In the result, the action (6) implies four primary constraints,
T1 and

T5≡ωπ¼ 0; T6≡Pω¼ 0; T7≡Pπ¼ 0: ð12Þ

The Hamiltonian is constructed excluding velocities from
the expression

H¼pμ _xþπ _ω−LþλiTi≡P_xþπ∇ω−LþλiTi; ð13Þ

where λi (i ¼ 1, 5, 6, 7) are the Lagrangian multipliers
associated with the primary constraints. From (8) and (9), we
observe the equalities P_x ¼ ð ffiffiffi

2
p

L0Þ−1ðm2c2 − α
ω2Þ12½_xN _x −

_xK� and π∇ω ¼ ð ffiffiffi
2

p
L0Þ−1ðm2c2 − α

ω2Þ12½∇ωN∇ω −∇ωR�.
Together with (10) they implyP_xþ π∇ω ¼ L. Using this in
(13), we conclude that theHamiltonian is composed from the
primary constraints

H ¼ λ1
2

�
P2 þm2c2 þ π2 −

α

ω2

�
þ λ5ðωπÞ þ λ6ðPωÞ

þ λ7ðPπÞ: ð14Þ
The full set of phase-space coordinates consists of the pairs
xμ, pμ and ωμ, πμ. They fulfill the fundamental Poisson
brackets fxμ;pνg¼δμν andfωμ;πνg¼δμν , and then fPμ;Pνg¼
Rσ

λμνπσω
λ, fPμ;ωνg ¼ Γν

μαω
α, fPμ; πνg ¼ −Γα

μνπα. For the
quantities xμ, Pμ, and Sμν these brackets imply the typical
relations used by people for spinning particles in the
Hamiltonian formalism

fxμ; Pνg ¼ δμν ; fPμ; Pνg ¼ −
1

4
RμναβSαβ;

fPμ; Sαβg ¼ Γα
μσSσβ − Γβ

μσSσα;

fSμν; Sαβg ¼ 2ðgμαSνβ − gμβSνα − ðα↔βÞÞ: ð15Þ

To reveal the higher-stage constraints and the Lagrangian
multipliers, we study the equations _Ti ¼ fTi; Hg ¼ 0. T5

implies the secondary constraint

_T5 ¼ 0 ⇒ T3 ≡ π2 −
α

ω2
≈ 0; ð16Þ

and then T1 can be replaced on P2 þm2c2 ≈ 0. The
preservation in time of T7 and T6 gives the Lagrangian
multipliers λ6 and λ7

λ6 ¼
λ1RðπÞ
2M2c2

; λ7 ¼ −
λ1RðωÞ
2M2c2

; ð17Þ

where we have denoted

RðπÞ ¼ 2Rαβμνω
απβπμPν;

RðωÞ ¼ 2Rαβμνω
απβωμPν; ð18Þ

M2 ¼ m2 þ 1

c2
Rαμβνω

απμωβπν ≡m2 þ 1

16c2
θS; ð19Þ

θμν ≡ RαβμνSαβ: ð20Þ

The preservation in time of T1 gives the equation
λ6RðωÞ þ λ7RðπÞ ¼ 0, which is identically satisfied
by virtue of (17). No more constraints are generated
after this step. We summarize the algebra of Poisson
between the constraints in Table I. T6 and T7 represent a
pair of second-class constraints, while T3, T5, and the
combination

T0 ¼ T1 þ
RðπÞ
M2c2

T6 −
RðωÞ
M2c2

T7 ð21Þ

are the first-class constraints. The presence of two primary
first-class constraints T5 and T0 is in correspondence with
the fact that two Lagrangian multipliers remain undeter-
mined. This also is in agreement with the invariance of our

TABLE I. Algebra of constraints.

T1 T3 T5 T6 T7

T1 ¼ P2 þm2c2 0 0 0 RðωÞ RðπÞ
T3 ¼ π2 − α

ω2 0 0 −2T3 −2T7 −2T6=ω2

T5 ¼ ωπ 0 0 0 −T6 T7

T6 ¼ Pω −RðωÞ 2T7 T6 0 −M2c2

T7 ¼ Pπ −RðπÞ 2T6=ω2 −T7 M2c2 0
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action with respect to two local symmetries mentioned
above. Taking into account that each second-class con-
straint rules out one phase-space variable, whereas
each first-class constraint rules out two variables,
we have the right number of spin degrees of freedom,
8 − ð2þ 4Þ ¼ 2.
We point out that the first-class constraint T3 ¼ π2 −

α
ω2 ≈ 0 can be replaced on the pair

π2 ¼ const; ω2 ¼ const; ð22Þ
and this gives an equivalent formulation of the model. The
Lagrangian that implies the constraints (12) and (22) has
been studied in [32–34,39]. Hamiltonian and Lagrangian
equations for physical variables of the two formulations
coincide [35], which proves their equivalence.
Using (17), we can present the Hamiltonian (14) in the

form

H ¼ λ1
2

�
P2 þm2c2 þ RðπÞðPωÞ − RðωÞðPπÞ

M2c2

�

þ λ1
2

�
π2 −

α

ω2

�
þ λ5ðωπÞ: ð23Þ

III. EQUATIONS OF MOTION

The dynamics of basic variables is governed by
Hamiltonian equations _z ¼ fz;Hg, where z ¼ ðx; p;ω; πÞ,
and the Hamiltonian is given in (23). The equations can be
written in a manifestly covariant form as follows:

_xμ ¼ λ1½Pμ þ ð2M2c2Þ−1ðRðπÞωμ − RðωÞπμÞ�; ð24Þ

∇Pμ ¼ Rα
βμνπαω

β _xν; ð25Þ

∇ωμ ¼ −λ1
RðωÞ
2M2c2

Pμ þ λ5ω
μ þ λ1π

μ; ð26Þ

∇πμ ¼ −λ1
RðπÞ

2M2c2
Pμ − λ5πμ − λ1

ωμ

ω2
: ð27Þ

Neither constraints nor equations of motion determine the
functions λ1 and λ5. Their presence in the equations ofmotion
implies that evolution of our basic variables is ambiguous.
This is in correspondence with two local symmetries pre-
sented in the model. According to general theory [40–42],
variables with ambiguous dynamics do not represent observ-
able quantities, so we need to search for variables that can be
candidates for observables. Consider the antisymmetric
tensor (5). As a consequence of T6 ¼ 0 and T7 ¼ 0, this
obeys the Tulczyjew supplementary condition

SμνPν ¼ 0: ð28Þ

Besides, the constraints T3 and T5 fix the value of square

SμνSμν ¼ 8α; ð29Þ

so we identify Sμν with the Frenkel spin tensor [36].
Equations (28) and (29) imply that only two components
of the spin tensor are independent, as it should be for a spin
one-half particle. Equations of motion for Sμν follow from
(26) and (27). Besides, using (18) we express Eqs. (24) and
(25) in terms of the spin tensor. This gives the system

_xμ ¼ λ1

�
Pμ þ 1

8M2c2
SμβθβαPα

�
; ð30Þ

∇Pμ ¼ −
1

4
RμναβSαβ _xν ≡ −

1

4
θμν _xν; ð31Þ

∇Sμν ¼ 2ðPμ _xν − Pν _xμÞ; ð32Þ

where θ has been defined in (20). Equation (32), contrary
to Eqs. (26) and (27) for ω and π, does not depend on λ5.
This proves that the spin tensor is invariant under local
spin-plane symmetry. The remaining ambiguity due to λ1
is related with reparametrization invariance and disap-
pears when we work with physical dynamical variables
xiðtÞ. Equations (30)–(32) together with (28) and (29)
form a closed system that determines evolution of a
spinning particle.
To obtain the Hamiltonian equations we can equally use

the Dirac bracket constructed with the help of second-class
constraints

fA;BgD ¼ fA;Bg − 1

M2c2
½fA; T6gfT7; Bg

− fA; T7gfT6; Bg�: ð33Þ

Since the Dirac bracket of a second-class constraint with
any quantity vanishes, we can now omit T6 and T7 from
(23); this yields the Hamiltonian

H1 ¼
λ1
2
ðP2 þm2c2Þ þ λ1

2

�
π2 −

α

ω2

�
þ λ5ðωπÞ: ð34Þ

Then Eqs. (24)–(27) can be obtained according to the rule
_z ¼ fz;H1gD. The quantities xμ, Pμ, and Sμν, being
invariant under spin-plane symmetry, have vanishing
brackets with the corresponding first-class constraints T3

and T5. So, obtaining equations for these quantities, we can
omit the last two terms in H1, arriving at the familiar
relativistic Hamiltonian

H2 ¼
λ1
2
ðP2 þm2c2Þ: ð35Þ

Equations (30)–(32) can be obtained according to the rule
_z ¼ fz;H2gD. From (35) we conclude that our model
describes the spinning particle without a gravimagnetic
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moment. In the Hamiltonian formulation, equations of
motion with a gravimagnetic moment κ have been proposed
by Khriplovich [8,20] adding nonminimal interaction
λ1
2

κ
16
RμναβSμνSαβ to the expression for H2. It would be

interesting to find the corresponding Lagrangian formu-
lation of the model.
Similar to the spinless particle, we can exclude momenta

Pμ from the Hamiltonian equations by using the mass-shell
condition. This yields a second-order equation for the
particle’s position xμðτÞ (so we refer to the resulting
equations as the Lagrangian form of MPTD equations).
To achieve this, we observe that Eq. (30) is linear on P,

_xμ ¼ λ1Tμ
νPν; with Tμ

ν ¼ δμν þ 1

8M2c2
Sμαθαν: ð36Þ

Using the identity

ðSθSÞμν ¼ −
1

2
ðSθÞSμν; where Sθ ¼ Sαβθαβ; ð37Þ

we find the inverse of the matrix T

~Tμ
ν ¼ δμν −

1

8m2c2
Sμσθσν; T ~T ¼ 1; ð38Þ

so (36) can be solved with respect to Pμ, Pμ ¼ 1
λ1
~Tμ

ν _xν. We

substitute Pμ into the constraint P2 þm2c2 ¼ 0, and this
gives the expression for λ1,

λ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Gμν _xμ _xν

p
mc

≡
ffiffiffiffiffiffiffiffiffiffiffiffi
−_xG_x

p

mc
: ð39Þ

We have introduced the effective metric [43]

Gμν ≡ ~Tα
μgαβ ~T

β
ν: ð40Þ

From (36) and (39) we obtain the expression for Pμ,

Pμ ¼ mcffiffiffiffiffiffiffiffiffiffiffiffi
−_xG_x

p
�
_xμ −

1

8m2c2
Sμνθνσ _xσ

�
; ð41Þ

and the Lagrangian form of the Tulczyjew condition

SμνPν ¼ Sμν ~Tνσ _xσ ¼ 0: ð42Þ

Using Eqs. (41) and (42) in (31) and (32) we finally obtain

∇
�

~Tμ
ν _xνffiffiffiffiffiffiffiffiffiffiffiffi

−_xG_x
p

�
¼ −

1

4mc
Rμ

ναβSαβ _xν; ð43Þ

∇Sμν ¼ 1

4mc
ffiffiffiffiffiffiffiffiffiffiffiffi
−_xG_x

p _x½μSν�σθσα _xα: ð44Þ

These equations, together with the conditions (42) and (29),
form a closed system for the set (xμ, Sμν). The consistency

of the constraints (42) and (29) with the dynamical
equations is guaranteed by the Dirac procedure for singular
systems.
The Lagrangian considered above yields the fixed value

of spin; that is, this corresponds to an elementary particle.
Let us present the modification that leads to the theory
with an unfixed spin, and, similar to the Hanson-Regge
approach [26], with a mass-spin trajectory constraint.
Consider the following Lagrangian:

L ¼ −
mcffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−_xN _x − l2

∇ωN∇ω

ω2
þ T

1
2

r
;

T ≡
�
_xN _xþ l2

∇ωN∇ω

ω2

�
2

− 4l2
ð_xN∇ωÞ2

ω2
; ð45Þ

where l is a parameter with the dimension of length.
Applying the Dirac procedure as in Sec. II, we obtain the
Hamiltonian

H ¼ λ1
2

�
P2 þm2c2 þ π2ω2

l2

�
þ λ5ðωπÞ

þ λ6ðPωÞ þ λ7ðPπÞ; ð46Þ

which turns out to be a combination of the first-class
constraints P2 þm2c2 þ π2ω2

l2 ¼ 0, ωπ ¼ 0 and the second-
class constraints Pω ¼ 0, Pπ ¼ 0. The Dirac procedure
stops on the first stage; that is, there are no secondary
constraints. As compared with (6), the first-class con-
straint π2 − α

ω2 ¼ 0 does not appear in the present model.
Because of this, the square of the spin is not fixed,
S2 ¼ 8ðω2π2 − ωπÞ ≈ 8ω2π2. Using this equality, the
mass-shell constraint acquires the stringlike form

P2 þm2c2 þ 1

8l2
S2 ¼ 0: ð47Þ

The model has four physical degrees of freedom in the spin
sector. As the independent gauge-invariant degrees of
freedom, we can take three components Sij of the spin
tensor together with any one product of conjugate coor-
dinates, for instance, ω0π0.

IV. MPTD EQUATIONS AND DYNAMICS
OF REPRESENTATIVE POINT OF

A ROTATING BODY

In this section we discuss the MPTD equations of a
rotating body in the form studied by Dixon (for the relation
of the Dixon equations with those of Papapetrou and
Tulczyjew see p. 335 in [4]),

∇Pμ ¼ −
1

4
Rμ

ναβSαβ _xν ≡ −
1

4
ðθ _xÞμ; ð48Þ
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∇Sμν ¼ 2ðPμ _xν − Pν _xμÞ; ð49Þ

SμνPν ¼ 0; ð50Þ

and compare them with equations of motion of our
spinning particle. In particular, we show that the effective
metric Gμν also emerges in this formalism. MPTD equa-
tions appeared in the multipole approach to the description
of a body [1–7,44], where the energy momentum of the
body is modeled by a set of multipoles. In this approach
xμðτÞ is called the representative point of the body, and we
take it in arbitrary parametrization τ (contrary to Dixon,
we do not assume the proper-time parametrization; that is,
we do not add the equation gμν _xμ _xν ¼ −c2 to the system
above). SμνðτÞ is associated with the inner angular momen-
tum, and PμðτÞ is called momentum. The first-order
equations (48) and (49) appear in the pole-dipole approxi-
mation, while the algebraic equation (50) has been added
by hand.2 After that, the number of equations coincides
with the number of variables.
To compare MPTD equations with those of the previous

section, we first observe some useful consequences of the
system (48)–(50).
Take the derivative of the constraint, ∇ðSμνPνÞ ¼ 0, and

use (48) and (49); this gives the expression

ðP_xÞPμ ¼ P2 _xμ þ 1

8
ðSθ _xÞμ; ð51Þ

which can be written in the form

Pμ ¼ P2

ðP_xÞ
�
δμν þ

1

8P2
ðSθÞμν

�
_xν ≡ P2

ðP_xÞ
~T μ

ν _xν: ð52Þ

Contract (51) with _xμ. Taking into account that ðP_xÞ < 0,

this gives ðP_xÞ ¼ −
ffiffiffiffiffiffiffiffiffi
−P2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−_x ~T _x

p
. Using this in Eq. (52)

we obtain

Pμ ¼
ffiffiffiffiffiffiffiffiffi
−P2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
−_x ~T _x

p ð ~T _xÞμ; ~T μ
ν¼ δμνþ

1

8P2
ðSθÞμν: ð53Þ

For the latter use we observe that in our model with
composite Sμν we used the identity (37) to invert T, then the
Hamiltonian equation (30) has been written in the form
(41), and the latter can be compared with (53).
Contracting (49) with Sμν and using (50) we obtain

d
dτ ðSμνSμνÞ ¼ 0; that is, the square of the spin is a constant
ofmotion. The contraction of (51)withPμ gives ðPSθ _xÞ¼0.
The contraction of (51) with ð_xθÞμ gives ðPθ _xÞ¼0. The
contraction of (48) with Pμ gives

d
dτ ðP2Þ ¼ − 1

2
ðPθ _xÞ ¼ 0;

that is, P2 is one more constant of motion, say k,
ffiffiffiffiffiffiffiffiffi
−P2

p
¼

k ¼ const (in our model this is fixed as k ¼ mc).
Substituting (53) into Eqs. (48)–(50) we now can exclude
Pμ from these equations, modulo to the constant of
motion k ¼

ffiffiffiffiffiffiffiffiffi
−P2

p
.

Thus, the square of momentum cannot be excluded from
the system (48)–(51); that is, MPTD equations in this form
do not represent a Hamiltonian system for the pair xμ, Pμ.
To improve this point, we note that Eq. (53) acquires a
conventional form (as the expression for conjugate
momenta of xμ in the Hamiltonian formalism), if we add
to the system (48)–(50) one more equation, which fixes the
remaining quantity P2 (Dixon noticed this for the body in
the electromagnetic field; see his Eq. (4.5) in [44]). To see
how the equation could look, we note that for the non-
rotating body (pole approximation) we expect equations of
motion of the spinless particle, ∇pμ ¼ 0, pμ ¼ mcffiffiffiffiffiffiffiffi

−_xg_x
p _xμ,

p2 þ ðmcÞ2 ¼ 0. Independent equations of the system

(48)–(51) in this limit read ∇Pμ ¼ 0, Pμ ¼
ffiffiffiffiffiffi
−P2

pffiffiffiffiffiffiffiffi
−_xg_x

p _xμ.

Comparing the two systems, we see that the missing
equation is the mass-shell condition P2 þ ðmcÞ2 ¼ 0.
Returning to the pole-dipole approximation, an admissible
equation should be P2 þ ðmcÞ2 þ fðS;…Þ ¼ 0, where f
must be a constant of motion. Since the only constant of
motion in the arbitrary background is S2, we have finally

P2 ¼ −ðmcÞ2 − fðS2Þ: ð54Þ

With this value of P2, we can exclude Pμ from MPTD
equations, obtaining a closed system with the second-order
equation for xμ. We substitute (53) into (48)–(50), and this
gives

∇ ð ~T _xÞμffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−_x ~T _x

p ¼ −
1

4
ffiffiffiffiffiffiffiffiffi
−P2

p ðθ _xÞμ; ð55Þ

∇Sμν ¼ −
1

4
ffiffiffiffiffiffiffiffiffi
−P2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−_x ~T _x

p _x½μðSθ _xÞν�; ð56Þ

ðSSθ _xÞμ ¼ −8P2ðS_xÞμ; ð57Þ

where (54) is implied. They determine the evolution of xμ

and Sμν for each given function fðS2Þ.
It is convenient to introduce the effective metric G

composed from the “tetrad field” ~T ,

Gμν ≡ gαβ ~T
α
μ
~T β

ν: ð58Þ

Equation (57) implies the identity
2For geometric interpretation of the spin supplementary con-

dition in the multipole approach see [7].
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_x ~T _x ¼ _xG_x; ð59Þ

so we can replace
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−_x ~T _x

p
in (55)–(57) by

ffiffiffiffiffiffiffiffiffiffiffi
−_xG_x

p
.

In summary, we have presented MPTD equations in the
form

Pμ ¼
ffiffiffiffiffiffiffiffiffi
−P2

p
ffiffiffiffiffiffiffiffiffiffiffi
−_xG_x

p ð ~T _xÞμ; ∇Pμ ¼ −
1

4
ðθ _xÞμ;

∇Sμν ¼ 2P½μ _xν�; SμνPν ¼ 0; ð60Þ

P2 þ ðmcÞ2 þ fðS2Þ ¼ 0; ð61Þ

S2is a constant of motion; ð62Þ

with ~T given in (53). Now we are ready to compare them
with Hamiltonian equations of our spinning particle, which
we write here in the form

Pμ ¼ mcffiffiffiffiffiffiffiffiffiffiffiffi
−_xG_x

p ð ~T _xÞμ; ∇Pμ ¼ −
1

4
ðθ _xÞμ;

∇Sμν ¼ 2P½μ _xν�; SμνPν ¼ 0; ð63Þ

P2 þ ðmcÞ2 ¼ 0; ð64Þ

S2 ¼ 8α; ð65Þ

with ~T given in (38). Comparing the systems, we see that
our spinning particle has fixed values of spin and canonical
momentum, while for the MPTD particle the spin is a
constant of motion and the momentum is a function of spin.
We conclude that all the trajectories of a body with givenm
and S2 ¼ β are described by our spinning particle with spin

α ¼ β
8
and with the mass equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − f2ðβÞ

c2

q
. In this sense

our spinning particle is equivalent to the MPTD particle.3

MPTD equations in the Lagrangian form (55)–(57) can
be compared with (42)–(44).

V. LAGRANGIAN FORM OF MPTD EQUATIONS

Here we briefly discuss some immediate consequences
that can be obtained from the Lagrangian form (42)–(44),
(29) of MPTD equations.
In the spinless limit Eq. (43) turns into the geodesic

equation. Spin causes deviations from the geodesic motion
due to the right-hand side of this equation, as well as due to
the presence of the tetrad field ~T and the effective metric G
in the left-hand side. In the Newtonian limit the original
metric gμνðxÞ can be presented through the Newton

potential in which a test body is immersed. The presence
ofGμν could be thought of as a contribution to this potential
when the spin of the body is taken into account. Let us
compute the manifest form of G in the field with nearly flat
metric

gμν ¼ ηνμ þ hμν; jhμνj ≪ 1: ð66Þ

To linear order in hμν the curvature tensor is Rð1Þ
μναβ¼

1
2
ðhμβ;ναþhνα;μβ−hνβ;μα−hμα;νβÞ; hence, θð1Þμν ¼Rð1Þ

μναβS
αβ¼

ðhμα;βν−hνα;βμÞSβα, where the comma denotes the partial
derivative. The effective metric in the weak field approxi-
mation reads

Gð1Þ
μν ¼ gμν −

1

8m2c2
ðημαSαβθð1Þβν þ ηναSαβθ

ð1Þ
βμ Þ: ð67Þ

Let us consider the Newtonian solution to the linearized
Einstein equations

h00 ¼ −2ϕ; hij ¼ −2δijϕ; hμ0 ¼ 0; ð68Þ

with ϕ ¼ − k
r. Using the three-dimensional spin vector and

the dipole electric moment (5), the time-time component of
the effective metric is

G00 ¼ −1þ 2k
r
þ k
2m2c2r3

½3ðD · nÞ2 −D2�; ð69Þ

where n ¼ r=r. Contrary to the Newtonian solution (68),
the space-time components of Gμν are different from zero,

Gi0 ¼
3k

4m2c2r3
½ðD×sÞi−2ðD ·nÞðn× sÞi−niðD× sÞ ·n�:

ð70Þ

For the space-space components we found

Gij ¼ δijþ
2k
r
δij

þ k
2m2c2r3

�
½3n̂in̂j−5δij�s2−5sisjþDiDj

−
3

2
½ðs ·nÞsðinjÞ þðD ·nÞDðinjÞ�−12ðn×sÞiðn×sÞj

�
:

ð71Þ

We point out that the expressions (67)–(71) are written
without any approximation with respect to the spin. The
contributions due to spin over long distances will be very
small, and then in the Newtonian limit a spinning particle
behaves almost as a spinless one. Probably at short
distances the contributions may be important; to verify
this, other geometries should be considered.

3We point out that our final conclusion remains true even when
we do not add (54) to MPTD equations: to study the class of
trajectories of a body with

ffiffiffiffiffiffiffiffiffi
−P2

p
¼ k and S2 ¼ β we take our

spinning particle with m ¼ k
c and α ¼ β

8
.
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Our formulation reveals one more novel property of
MPTD equations: the mean position of a rotating body will
be represented by noncommutative operators in quantum
theory. Indeed, to construct the quantum theory of a system
with second-class constraints, one should pass from the
Poisson to the Dirac bracket [40–42]. Then one looks for
operators of basic variables with commutators resembling
the Dirac bracket. For our case the Dirac bracket is given by
(33). This yields highly noncommutative algebra for the
position variables

fxμ; xνgD ¼ 2ω½μπν�

M2c2
≡ Sμν

M2c2
: ð72Þ

In the result, the position space is endowed with a non-
commutative structure that originates from the accounting
of the spin degrees of freedom. We point out that a
nonrelativistic spinning particle implies canonical algebra
of position operators; see [38,45]. So the deformation (72)
arises as a relativistic correction induced by spin. It is
known that formalism of dynamical systems with second-
class constraints implies a natural possibility to incorporate
noncommutative geometry into the framework of classical
and quantum theory [26,46–49]. Our model represents an
example where a physically interesting noncommutative
particle (72) emerges in this way. For the case, the
“parameter of noncommutativity” is proportional to the
spin tensor. This allowed us [33] to explain contradictory
results concerning the first relativistic corrections due to the
spin obtained by different authors.
Consider the background metric that admits the Killing

vector ξμ, ξμ;ν þ ξν;μ ¼ 0 (the semicolon means the covar-
iant derivative). Then the infinitesimal transformation

x0μ ¼ xμ þ εξμðxÞ; ε ≪ 1; ð73Þ

generates the isometry of the metric, that is, leaves it form
invariant, g0μνðyÞ ¼ gμνðyÞ. For the spinless particle the
isometry generates the conserved quantity ∂L

∂ _xμ ξμ. A natural
question is, does this remain true for a vector model of spin,
where the particle does not follow a geodesic trajectory?
From the transformation law of ωμ,

ω0μðτÞ ¼ ∂x0μ
∂xα ω

αðτÞ ¼ ðδμα þ εξμ;αÞωαðτÞ; ð74Þ

we deduce that δωμ ¼ ωμðτÞ − ωμðτÞ ¼ εωνξμ;ν, which
corresponds to the transformation law of a form-invariant
vector field. By Noether’s theorem the quantity

JðξÞ ¼ ∂L
∂ _xμ δx

μ þ ∂L
∂ _ωμ δω

μ ¼ pμξ
μ þ ξμ;νπμω

ν ð75Þ

is conserved. In terms of Sμν and Pμ this coincides with that
of [11], JðξÞ ¼ Pμξμ − 1

4
Sμνξμ;ν. Using Eqs. (31) and (32), it

is easy to confirm that JðξÞ is conserved. We conclude that
an isometry of the spinless particle remains the isometry for
the vector models of spin. However, the conserved quantity
acquires the spin-dependent term − 1

4
Sμνξμ;ν.

VI. CONCLUSIONS

In this work we have presented the Lagrangian action
without auxiliary variables (6) for a description of the
spinning particle in an arbitrary curved background. The
supplementary spin conditions (28) and (29) are guaranteed
by the set of constraints (12) and (16) arising from our
singular Lagrangian in the Hamiltonian formalism.
Because of this, the spin has two physical degrees of
freedom, as it should for a spin one-half particle. Besides,
the reparametrization invariance of the action generates the
mass-shell constraint P2 þ ðmcÞ2 ¼ 0. The description of
the spin on the base of a vectorlike variable allows us to
construct also the Lagrangian (45) with an unfixed value of
spin and stringlike mass-shell constraint (47), as in the
Hanson-Regge model of a relativistic top. In the model (45)
appeared the fundamental length scale and the spin has four
physical degrees of freedom.
We showed that our spinning particle can be used to

study dynamics of a rotating body in curved background:
all the trajectories of MPTD equations with given
values of integration constants,

ffiffiffiffiffiffiffiffiffi
−P2

p
¼ k and S2 ¼ β,

are described by our spinning particle with m ¼ k
c and

α ¼ β
8
. In this sense the expression (6) yields the

Lagrangian formulation of MPTD equations, and the latter
corresponds to minimal interaction of the particle with
gravity. This demonstrates the effectiveness of the classical
description of spin on the base of a vectorlike non-
Grassmann variable. We have explored our formulation
to obtain, in an unambiguous way, the closed system of
Eqs. (42)–(44), (29) for the set xμ, Sμν. Some immediate
consequences of this form of MPTD equations have been
discussed in Sec. V. In particular, in the Lagrangian form
of MPTD equations, instead of the original metric gμν
emerges the effective metric Gμν ¼ gμν þHμν with spin
and field-dependent contribution Hμν. According to (40),
the matrix (38), which links canonical momentum and
velocity, plays the role of a tetrad field to compose the
effective metric.
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