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We obtain Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations of a rotating body with given
values of spin and momentum starting from Lagrangian action without auxiliary variables. MPTD
equations correspond to the minimal interaction of our spinning particle with gravity. We briefly discuss
some novel properties deduced from the Lagrangian form of MPTD equations: the emergence of an
effective metric instead of the original one, the noncommutativity of coordinates of the representative point
of the body, spin corrections to the Newton potential due to the effective metric, as well as spin corrections
to the expression for integrals of motion of a given isometry.
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I. INTRODUCTION

The description of spinning bodies in general relativity is
an old subject, which has been under intensive study for the
past 70 years. The first results concerning equations of
motion of a test body in a given background were reported
by Mathisson [1] and Papapetrou [2]. They assumed that
the structure of the test body could be described by a set of
multipoles and have taken the approximation that involves
only the first two terms (the pole-dipole approximation).
The equations are then derived by the integration of the
conservation law for the energy-momentum tensor,
T, = 0. A manifestly covariant formulation was given
by Tulczyjew [3] and Dixon [4] and is under detailed
investigation by many groups. In this work we will refer
Egs. (6.31)—(6.33) in [4] as Mathisson-Papapetrou-
Tulczyjew-Dixon (MPTD) equations. Detailed analysis
and interpretation of these equations and their generaliza-
tions [5—19] are necessary tasks since they are now widely
used to account for spin effects in compact binaries and
rotating black holes; see [20-25] and references therein.

It should be interesting to obtain these equations starting
from an appropriate Lagrangian action. The vector models
of spin yield one possible way to attack the problem. In
these models, the basic variables in the spin sector are non-
Grassmann vector @ and its conjugated momentum 7,,.
The spin tensor is a composed quantity constructed from
these variables, S* = 2(w*n* — w’n*). To have a theory
with the right number of physical degrees of freedom for
the spin (two for an elementary particle with spin one-half,
and three for a rotating body in the pole-dipole approxi-
mation), some constraints on the eight basic variables must
be imposed. This is the main difficulty: besides the
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equations of motion, the variational problem should pro-
duce these constraints. Even for the free theory in flat
space, this turns out to be an extremely nontrivial problem
[26-30]. We propose the Lagrangian action without aux-
iliary variables, which, besides the equations of motion,
yields all the desired constraints. To point out some
advantages of the vector model, let us compare it with
the approach developed in [31] for the description of the
relativistic top [26] in the curved background. First, in the
vector model we have four basic variables in the spin sector
instead of six (called ¢, in [31]) for the top. Taking into
account that we present the Lagrangian without auxiliary
variables, the vector model yields more economic formu-
lation. Second, our primary constraints (see 7 and 75
below) follow from the variational problem and yield the
spin supplementary condition (28). In the work [31] the
condition has been added by hand and then considered as a
first-class constraint of the formulation. Third, the vector
model yields two physical degrees of freedom in the spin
sector. Hence, it can be used for the descriptions of both a
rotating body (see below) and an elementary particle with
spin. In particular, the canonical quantization of the vector
model has been considered in [32].

The work is organized as follows. In Sec. II we present
Lagrangian action without auxiliary variables' for our
spinning particle in an arbitrary curved background and
obtain its Hamiltonian formulation. Section III contains the
detailed derivation and analysis of both Lagrangian and
Hamiltonian equations. The particle has a fixed value of
spin and two physical degrees of freedom in the spin sector.
We also present a modification that yields the model of
Hanson-Regge type [26], with an unfixed value of the spin

"The variational problem with four auxiliary variables has been
constructed in [33].
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and four physical degrees of freedom. In Sec. IV we present
the MPTD equations in the form convenient for our
analysis. Here we follow the ideas of Dixon [4] and add
the mass-shell condition to MPTD equations, transforming
them into the Hamiltonian system. This allows us to
compare MPTD equations with those of Sec. III. We show
that the class of trajectories of MPTD equations with any
given values of integration constants (squares of spin and of
momentum) is described by our spinning particle with
properly chosen mass and spin. In Sec. V we discuss some
novel properties that can be immediately deduced from the
Lagrangian form of MPTD equations. Notation.—The
dynamical variables are taken in arbitrary parametrization
7, and then * = d"” , 4, v=0, 1, 2, 3. The covariant
derivative is VP = dg —I—F’;ﬁx“Pﬁ and the curvature is
Rgi/w = OMF"M - ayr"l,, + Faﬁﬂrﬁly - F"ﬁblﬁﬁlﬂ
brackets mean antisymmetrization, ol = o' n¥ — o7,
We use the condensed notation G, x* = xGx, N¥ X" =
(Nx)H, w* = guw®'®”, and so on. The notation for the
scalar functions constructed from second-rank tensors is

0S = 0S,,, S> = S"S,,.

. The square

II. LAGRANGIAN AND
HAMILTONIAN FORMULATIONS

The variational problem for the vector model of the spin
interacting with electromagnetic and gravitational fields
can be formulated with various sets of auxiliary variables
[32-35]. For the free theory in flat space there is the
Lagrangian action without auxiliary variables. The con-
figuration space consists of the position x*(z) and the
vector @*(7) attached to the point x#. The action reads

yfonfe

x \/ —kNE = 0N + /[INE + ONGP - 4(iNG)2.
(1)

is the projector on the plane orthogonal

The matrix N,
to w”,

N, =n,— 22 and then Nyo¥ =0. (2
M—n,w—?, and then N, @" = 0. (2)

Below we use the notation

T = [iNx + @Nw]> — 4(xNo)?. (3)
The double square-root structure in the expression (1) seem
to be typical for the vector models of spin [26]. The

Lagrangian depends on one free parameter « that deter-

mines the value of the spin. The value o = gf{ corresponds

to a spin one-half particle. In the spinless limit, @ = 0 and
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o' =0, Eq. (1) reduces to the standard expression,
—mcy/—x"x,. The equivalent Lagrangian with one aux-
iliary varlable A7) is

1 A
L = — [iNi + @N& — T?] — 3 (m202 - 1). (4)

4) ?

Switching off the spin variables @ from Eq. (4), we arrive
at the familiar Lagrangian of spinless particle L =
53; 42 —4m?c?. In this formulation the model admits inter-
action with an arbitrary electromagnetic field. The interact-
ing theory is obtained [35] adding the minimal interaction
term, £A,¥*, and replacing @ by Do* = & — A% Fw,
where y is the magnetic moment.

The Frenkel spin tensor [36] in our model is a composite
quantity constructed from @*, and its conjugated momen-
tum 7# = gL as follows:

S =2(w'n” —'n") = (8O = D\, S;; = 2;35).  (5)
Here S, is a three-dimensional spin vector and D; is a dipole
electric moment [37]. The model is invariant under repar-
ametrizations and local spin-plane symmetries [38]. The
latter symmetry acts on @ and 7z but leaves S#* invariant.
So only $# is an observable quantity. In their work [26],
Hanson and Regge analyzed whether the spin tensor
interacts directly with an electromagnetic field and con-
cluded with the impossibility of constructing the interaction
in closed form. In our model an electromagnetic field
interacts with @* from which the spin tensor is constructed.

The minimal interaction with gravitational field can be
achieved by covariantization of the formulation (1). In the
expressions (1)-(3) we replace 7,, — g,, and the usual
derivative by the covariant one, @* — Vo' = d“’” +

F" x@”. Thus our Lagrangian in a curved background reads

1 al:
L= —E |:I112C2 - a)_:| L(),
Ly= \/ —iNix — VoNVao + T:. (6)

Velocities X, V' and projector N, transform like contra-
variant vectors and the covariant tensor, so the action is
manifestly invariantunder general-coordinate transformations.

Let us construct the Hamiltonian formulation of the
model (6). Conjugate momenta for ¥ and o* are p, = gfﬂ
and 7, = 5) - respectively. Because of the presence of
Chrlstoffel symbols in V', the conjugated momentum p,
does not transform as a vector, so it is convenient to
introduce the canonical momentum

P,=p,— ngw“ﬂﬂ, (7)

and the latter transforms as a vector under the general
transformations of the coordinates. The manifest form of
the momenta is as follows:

124017-2



LAGRANGIAN FORMULATION FOR MATHISSON- ...

1 al: .y
P {mzcz_ﬂ I ST
g = mQCz—i%[N Vo —R,),  (9)
H \/ELO 0)2 124 H

with
K, =T""?[(iNx+VwNVw)(Nx), —2(xNVo)(NVo),].
R, =T"'"2[(iNix+VoNVaw)(NVw), - 2(xNVw)(Nx),].

These vectors obey the following algebraic identities:
K*=xNx, R*=VwNVw, KR=-xNVo,
iR+VwoK =0, Ki+RVo=T:. (10)

Using (2) we conclude that oz = 0 and Pw = 0; that is, we
found two primary constraints. Using the relations (10) we
find one more primary constraint Pz = 0. Besides, com-
puting P? + 72 given by (8) and (9) we see that all the terms
with derivatives vanish, and we obtain the last primary
constraint

T, = P>+ m?c* + n?

a
- —=0. 11
- (1

In the result, the action (6) implies four primary constraints,
T, and

Ts=wrn=0, T¢=Pw=0, T;=Pzx=0. (12)

The Hamiltonian is constructed excluding velocities from
the expression

H:p”).f+ﬂ'd)—L+/1,‘TiEP).C‘FEVCU—L‘FA,'T[', (13)

where 1; (i=1, 5, 6, 7) are the Lagrangian multipliers
associated with the primary constraints. From (8) and (9), we
observe the equalities Pk = (v/2Lg)~! (mc® — %):[iNi —

K] and 7Vo = (vV2Lg)~ (m*c> — %):[VoNVe — VoR).
Together with (10) they imply Px + zVw = L. Using this in
(13), we conclude that the Hamiltonian is composed from the
primary constraints

H= 121 <P2+m A+ ——) +s(@7) + 26(Pw)
CO
+ A7(Pr). (14)

The full set of phase-space coordinates consists of the pairs
x*, p, and @, m,. They fulfill the fundamental Poisson
brackets {x*, p,} =&, and {w*,z,} =&, and then {P,,P,} =
R%),m,0" {P, '} =T%0% {P, n,} =-T%n,. Forthe
quantities x*, P*, and S* these brackets imply the typical
relations used by people for spinning particles in the
Hamiltonian formalism

PHYSICAL REVIEW D 92, 124017 (2015)
1

{x*,P,)} =&, {P,.P}= -7 RuapS?,
{Pﬂ’ Saﬁ} = FZGSGﬁ - l"l/josoa’
{Srr, 89} = 2(g2S — P SV — (a<>p)). (15)

To reveal the higher-stage constraints and the Lagrangian
multipliers, we study the equations 7; = {T;, H} = 0. Ts
implies the secondary constraint

T5:0:>T3zn2—%zo, (16)

and then T, can be replaced on P?+ m?c?~0. The
preservation in time of 7; and T, gives the Lagrangian
multipliers 4¢ and 4,

welme w0
where we have denoted
R(z) = 2R g, 0“7’ 7" P,
R() = 2R, 0" 7’ 0 P, (18)
M? = m? + %Raﬂ/ﬁ,w“ﬂ”wﬂﬂ =m? + %QS (19)
0, = RopuS?. (20)

The preservation in time of 7 gives the equation
AsR(w) + 47R(z) =0, which is identically satisfied
by virtue of (17). No more constraints are generated
after this step. We summarize the algebra of Poisson
between the constraints in Table I. T4 and 75 represent a
pair of second-class constraints, while 73, 75, and the
combination

R
—) (21)

R(z)
T = M2c?

TO - T] + M2C2
are the first-class constraints. The presence of two primary
first-class constraints 7's and T is in correspondence with
the fact that two Lagrangian multipliers remain undeter-

mined. This also is in agreement with the invariance of our

TABLE I. Algebra of constraints.

T T Ts Tq T,
T] = P2 + m26‘2 0 O O R(w) R(”)
Ty=n"-% 0 0 —2T; 2T, —2Ts/w
T5 = wn 0 0 0 _TG T7
T¢ = Po R, 2T, T 0 —M?*c?
T, = Pn ~R 2T¢/w* -T7; M>c? 0
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action with respect to two local symmetries mentioned
above. Taking into account that each second-class con-
straint rules out one phase-space variable, whereas
each first-class constraint rules out two variables,
we have the right number of spin degrees of freedom,
8—(2+4)=2

We point out that the first-class constraint 75 = 7% —
%~ 0 can be replaced on the pair

72 = const, ®* = const, (22)

and this gives an equivalent formulation of the model. The
Lagrangian that implies the constraints (12) and (22) has
been studied in [32-34,39]. Hamiltonian and Lagrangian
equations for physical variables of the two formulations
coincide [35], which proves their equivalence.

Using (17), we can present the Hamiltonian (14) in the
form

ﬂ] R(,,)(P(U) - R(w) (P]t)
= 2 <p2 +miet + M?c?
A
4+ <n2 - %) + 25 (). (23)
2 0]

III. EQUATIONS OF MOTION

The dynamics of basic variables is governed by
Hamiltonian equations z = {z, H}, where z = (x, p, w, n),
and the Hamiltonian is given in (23). The equations can be
written in a manifestly covariant form as follows:

=4 [P+ QM) (R = Ripym)]. (24)

VP, = R, m,@’ %", (25)
Vor = 2, X9 pu g (26)
2M?c? ’
R )
RGN
V //{] 2M2 5 P/l )’577:/,4 —_ /11 w—g (27)

Neither constraints nor equations of motion determine the
functions 4; and 5. Their presence in the equations of motion
implies that evolution of our basic variables is ambiguous.
This is in correspondence with two local symmetries pre-
sented in the model. According to general theory [40-42],
variables with ambiguous dynamics do not represent observ-
able quantities, so we need to search for variables that can be
candidates for observables. Consider the antisymmetric
tensor (5). As a consequence of T¢ =0 and 77 = 0, this
obeys the Tulczyjew supplementary condition

Swp, =0. (28)

Besides, the constraints 73 and T'5 fix the value of square
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§#S,, = 8a, (29)

so we identify S$* with the Frenkel spin tensor [36].
Equations (28) and (29) imply that only two components
of the spin tensor are independent, as it should be for a spin
one-half particle. Equations of motion for $#* follow from
(26) and (27). Besides, using (18) we express Egs. (24) and
(25) in terms of the spin tensor. This gives the system

. 1 .
Xﬂ = /11 PM + Wsﬂﬁgﬂap N (30)
1 af i 1
VP, = - 1 R,yop ST X ——19 xv (31)
VSH = 2(Pri — PYRV), (32)

where 6 has been defined in (20). Equation (32), contrary
to Egs. (26) and (27) for w and =, does not depend on 4s.
This proves that the spin tensor is invariant under local
spin-plane symmetry. The remaining ambiguity due to 4,
is related with reparametrization invariance and disap-
pears when we work with physical dynamical variables
x!(t). Bquations (30)—(32) together with (28) and (29)
form a closed system that determines evolution of a
spinning particle.

To obtain the Hamiltonian equations we can equally use
the Dirac bracket constructed with the help of second-class
constraints

AT B)

—{A, T H{T, B}]. (33)

{A.B}p ={A,B} -

Since the Dirac bracket of a second-class constraint with
any quantity vanishes, we can now omit 74 and 7'; from
(23); this yields the Hamiltonian

H, :/%I(P2 m? 2)—|- > <JZ’ _a)—) + As(wn). (34)

Then Egs. (24)—(27) can be obtained according to the rule
z=1{z,H,}p. The quantities x*, P, and S*, being
invariant under spin-plane symmetry, have vanishing
brackets with the corresponding first-class constraints 7’5
and T's. So, obtaining equations for these quantities, we can
omit the last two terms in H, arriving at the familiar
relativistic Hamiltonian

H, = %1 (P + m?c?). (35)

Equations (30)—(32) can be obtained according to the rule
z={z,H,}p. From (35) we conclude that our model
describes the spinning particle without a gravimagnetic
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moment. In the Hamiltonian formulation, equations of
motion with a gravimagnetic moment kx have been proposed
by Khriplovich [8,20] adding nonminimal interaction
%I—%RwaﬂS"”S"ﬁ to the expression for H,. It would be
interesting to find the corresponding Lagrangian formu-
lation of the model.

Similar to the spinless particle, we can exclude momenta
P* from the Hamiltonian equations by using the mass-shell
condition. This yields a second-order equation for the
particle’s position x*(z) (so we refer to the resulting
equations as the Lagrangian form of MPTD equations).
To achieve this, we observe that Eq. (30) is linear on P,

1
W= TP with T4, =8 4

5350, (36)

Using the identity

1

(SOSy™ = ~5(80)8™.  where SO = 0,5, (37)

we find the inverse of the matrix T

™, =&, — NG TT =1, (38)

8m?c?
so (36) can be solved with respect to P#, P¥ = ﬁf‘”,,)'c”. We

substitute P* into the constraint P2 + m2c? = 0, and this
gives the expression for 4,

V=G XY /=iGx
11 = = .

39
mc mc (39)
We have introduced the effective metric [43]

Gy =T 9,51, (40)

From (36) and (39) we obtain the expression for P,

mc

Pt = X+ — SO _x° |, 41
m X 8m2C2 bD‘x ( )

and the Lagrangian form of the Tulczyjew condition
Swp, = ST, x° = 0. (42)

Using Eqgs. (41) and (42) in (31) and (32) we finally obtain

v T" i 1 Ri g (43)
= - X R
V—=xGx dme™ v
1
VS = ——_jluglog i@ 44
dmev—xGx (44)

These equations, together with the conditions (42) and (29),
form a closed system for the set (x*, $#). The consistency
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of the constraints (42) and (29) with the dynamical
equations is guaranteed by the Dirac procedure for singular
systems.

The Lagrangian considered above yields the fixed value
of spin; that is, this corresponds to an elementary particle.
Let us present the modification that leads to the theory
with an unfixed spin, and, similar to the Hanson-Regge
approach [26], with a mass-spin trajectory constraint.
Consider the following Lagrangian:

VoNV
L=-"C i - p YONVO L gy
V2
VoNVo]? Vo)?
T= {XN +p22TY w} _ap UNVOR )
w

where [ is a parameter with the dimension of length.
Applying the Dirac procedure as in Sec. II, we obtain the
Hamiltonian

/11 77.'2(1)2

H > <P2 + m?c? + 2 ) + As(own)

+ A¢(Pw) + A (Pr), (46)

which turns out to be a combination of the first-class
constraints P? + m2c% + # = 0, wr = 0 and the second-
class constraints Pw =0, Pz = 0. The Dirac procedure
stops on the first stage; that is, there are no secondary
constraints. As compared with (6), the first-class con-
straint 72 — % =0 does not appear in the present model.
Because of this, the square of the spin is not fixed,
§? = 8(w*n* — wn) ~ 8w*x*. Using this equality, the
mass-shell constraint acquires the stringlike form

P2+ m?c? + #Sz =0. (47)
The model has four physical degrees of freedom in the spin
sector. As the independent gauge-invariant degrees of
freedom, we can take three components S¥ of the spin
tensor together with any one product of conjugate coor-
dinates, for instance, @°z°.

IV. MPTD EQUATIONS AND DYNAMICS
OF REPRESENTATIVE POINT OF
A ROTATING BODY

In this section we discuss the MPTD equations of a
rotating body in the form studied by Dixon (for the relation
of the Dixon equations with those of Papapetrou and
Tulczyjew see p. 335 in [4]),

I N :
VP! = = R STR == (0 (48)

EN
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VS = 2(PHi¥ — PUi), (49)
SP, =0, (50)

and compare them with equations of motion of our
spinning particle. In particular, we show that the effective
metric G, also emerges in this formalism. MPTD equa-
tions appeared in the multipole approach to the description
of a body [1-7,44], where the energy momentum of the
body is modeled by a set of multipoles. In this approach
x#(7) is called the representative point of the body, and we
take it in arbitrary parametrization 7 (contrary to Dixon,
we do not assume the proper-time parametrization; that is,
we do not add the equation g, t*x* = —c? to the system
above). $**(t) is associated with the inner angular momen-
tum, and P#(r) is called momentum. The first-order
equations (48) and (49) appear in the pole-dipole approxi-
mation, while the algebraic equation (50) has been added
by hand.> After that, the number of equations coincides
with the number of variables.

To compare MPTD equations with those of the previous
section, we first observe some useful consequences of the
system (48)—(50).

Take the derivative of the constraint, V($**P,) = 0, and
use (48) and (49); this gives the expression

1
(Px)P* = P>+ + g (SOx ), (51)

which can be written in the form

2

P2 1 U P TH v
P”:@<5"y+8?(59)”y>x =(P—).C)Tyx- (52)

Contract (51) with X,. Taking into account that (Px) < 0,
this gives (Px) = —V/—P2\/—x T &. Using this in Eq. (52)

we obtain

a2
V=xTx

For the latter use we observe that in our model with
composite S* we used the identity (37) to invert 7', then the
Hamiltonian equation (30) has been written in the form
(41), and the latter can be compared with (53).
Contracting (49) with §,, and using (50) we obtain
% (8"S,,) = 0; that is, the square of the spin is a constant
of motion. The contraction of (51) with P, gives (PS6x)=0.
The contraction of (51) with (%), gives (P6x)=0. The

contraction of (48) with P, gives <4 (P?) = —1(P6x) = 0;

~ 1
Tﬂu:(sﬂv +—(Se)ﬂv (53)

Pr=
8P?

(Txy,

2 .. . .
For geometric interpretation of the spin supplementary con-
dition in the multipole approach see [7].
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that is, P? is one more constant of motion, say k, vV —P? =
k =const (in our model this is fixed as k = mc).
Substituting (53) into Egs. (48)—(50) we now can exclude
P* from these equations, modulo to the constant of
motion k = vV —P2.

Thus, the square of momentum cannot be excluded from
the system (48)—(51); that is, MPTD equations in this form
do not represent a Hamiltonian system for the pair x*, P¥.
To improve this point, we note that Eq. (53) acquires a
conventional form (as the expression for conjugate
momenta of x* in the Hamiltonian formalism), if we add
to the system (48)—(50) one more equation, which fixes the
remaining quantity P> (Dixon noticed this for the body in
the electromagnetic field; see his Eq. (4.5) in [44]). To see
how the equation could look, we note that for the non-
rotating body (pole approximation) we expect equations of

motion of the spinless particle, Vp# = 0, pt = 2 3*,
—Xgx

p? + (mc)?> = 0. Independent equations of the system
(48)(51) in this limit read VP¥ =0, P*=-Y=L i,
e

—Xgx
Comparing the two systems, we see that the missing
equation is the mass-shell condition P? + (mc)* = 0.
Returning to the pole-dipole approximation, an admissible
equation should be P? + (mc)? + f(S,...) = 0, where f
must be a constant of motion. Since the only constant of
motion in the arbitrary background is S, we have finally

P? = —(mc)* - f(5?). (54)

With this value of P%, we can exclude P* from MPTD
equations, obtaining a closed system with the second-order
equation for x*. We substitute (53) into (48)—(50), and this
gives

v \X’C_Z _ _4\/1_? 03y, (55)
Ve — — Loy, (56)

N-PN -xT i
(SSOx)* = —8P?(Sx), (57)

where (54) is implied. They determine the evolution of x*
and S* for each given function f(S?).
It is convenient to introduce the effective metric G

composed from the “tetrad field” T,
G = 9o T, T",. (58)

Equation (57) implies the identity

124017-6
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xT i = xGr, (59)
so we can replace V —xT i in (55)—(57) by v/—xGx.

In summary, we have presented MPTD equations in the
form

-P* - 1
pr = TiF, VP =—— (6%,
=T 169
Vs = 2Pk, smp, =0, (60)
P2+ (mc)? + f(S?) =0, (61)
S2%is a constant of motion, (62)

with 7 given in (53). Now we are ready to compare them
with Hamiltonian equations of our spinning particle, which
we write here in the form

mc ~ 1
Pt = Tx)F, VPt =——(Ox),
V=iV e
Vs# = 2Pk, Swp, =0, (63)
P? + (mc)* =0, (64)

§? = 8a, (65)

with T given in (38). Comparing the systems, we see that
our spinning particle has fixed values of spin and canonical
momentum, while for the MPTD particle the spin is a
constant of motion and the momentum is a function of spin.
We conclude that all the trajectories of a body with given m
and S? = f are described by our spinning particle with spin

a= %} and with the mass equal to /m? — @ In this sense
our spinning particle is equivalent to the MPTD particle.’

MPTD equations in the Lagrangian form (55)—(57) can
be compared with (42)—(44).

V. LAGRANGIAN FORM OF MPTD EQUATIONS

Here we briefly discuss some immediate consequences
that can be obtained from the Lagrangian form (42)—(44),
(29) of MPTD equations.

In the spinless limit Eq. (43) turns into the geodesic
equation. Spin causes deviations from the geodesic motion
due to the right-hand side of this equation, as well as due to
the presence of the tetrad field 7" and the effective metric G
in the left-hand side. In the Newtonian limit the original
metric g,,(x) can be presented through the Newton

‘We point out that our final conclusion remains true even when
we do not add (54) to MPTD equations: to study the class of

trajectories of a body with vV—P? = k and S? = 8 we take our
spinning particle with m = £ and a =&.
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potential in which a test body is immersed. The presence
of G, could be thought of as a contribution to this potential
when the spin of the body is taken into account. Let us
compute the manifest form of G in the field with nearly flat
metric

G = Moy + hyw |h/u/| <L (66)

mn _
uvapf
1 D)
%(hﬂ[)’,ua+hu(l,y/}_hbli.ua_hya.u/i); hence, 01(41/> :R;(w)a/}S f=
(hﬂaﬁ,,—hm’ﬂﬂ)Sﬂ”, where the comma denotes the partial
derivative. The effective metric in the weak field approxi-

mation reads

To linear order in h,, the curvature tensor is R

(1 _ 1 appl) apgl)

Gll’/ = 9w — W ("ﬂaS /}eﬂy + ”D(IS /}gﬁ” ) (67)

Let us consider the Newtonian solution to the linearized

Einstein equations

hoo - —2¢, hl] = —25”¢, hﬂo = 0, (68)

with ¢ = — ’;‘ Using the three-dimensional spin vector and

the dipole electric moment (5), the time-time component of
the effective metric is

2k k
Gpy=-14+—+——=
00 + + 2.2,.3

5 B =D (69)

where n = r/r. Contrary to the Newtonian solution (68),
the space-time components of G, are different from zero,

3k

P AmPerR

[(Dxs);—2(D-n)(nxs);,—n;(Dxs)-n].
(70)

For the space-space components we found

7{[37”\11’%] —5511]82 —SSZSJ+D1DJ

—=(s -n)s(l-nj) + (D-n)D(l-nj)} —12(n xs);(n x s)j}.

(71)

We point out that the expressions (67)—(71) are written
without any approximation with respect to the spin. The
contributions due to spin over long distances will be very
small, and then in the Newtonian limit a spinning particle
behaves almost as a spinless one. Probably at short
distances the contributions may be important; to verify
this, other geometries should be considered.
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Our formulation reveals one more novel property of
MPTD equations: the mean position of a rotating body will
be represented by noncommutative operators in quantum
theory. Indeed, to construct the quantum theory of a system
with second-class constraints, one should pass from the
Poisson to the Dirac bracket [40—42]. Then one looks for
operators of basic variables with commutators resembling
the Dirac bracket. For our case the Dirac bracket is given by
(33). This yields highly noncommutative algebra for the
position variables

P I

{x, x"}p =P S ra (72)
In the result, the position space is endowed with a non-
commutative structure that originates from the accounting
of the spin degrees of freedom. We point out that a
nonrelativistic spinning particle implies canonical algebra
of position operators; see [38,45]. So the deformation (72)
arises as a relativistic correction induced by spin. It is
known that formalism of dynamical systems with second-
class constraints implies a natural possibility to incorporate
noncommutative geometry into the framework of classical
and quantum theory [26,46—49]. Our model represents an
example where a physically interesting noncommutative
particle (72) emerges in this way. For the case, the
“parameter of noncommutativity” is proportional to the
spin tensor. This allowed us [33] to explain contradictory
results concerning the first relativistic corrections due to the
spin obtained by different authors.

Consider the background metric that admits the Killing
vector &, &,., + &,y = O (the semicolon means the covar-
iant derivative). Then the infinitesimal transformation

X = xt + e (x), ek, (73)
generates the isometry of the metric, that is, leaves it form
invariant, g,,(y) = g,,(y). For the spinless particle the
isometry generates the conserved quantity é%é”. A natural
question is, does this remain true for a vector model of spin,
where the particle does not follow a geodesic trajectory?
From the transformation law of w*,

Ox'"

COx”

w*(z) @*(7) = (3 + e€a)a(z),  (74)
we deduce that éw* = @*(7) — 0*(7) = ew’&* ,, which
corresponds to the transformation law of a form-invariant
vector field. By Noether’s theorem the quantity

oL oL
(&) — = Sy
I OxH ox o+ O

St = p,& + & 1,0" (75)

is conserved. In terms of S¥¥ and P, this coincides with that
of [11],J®) = prg, —1gmwe  Using Egs. (31) and (32), it
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is easy to confirm that J) is conserved. We conclude that
an isometry of the spinless particle remains the isometry for
the vector models of spin. However, the conserved quantity
acquires the spin-dependent term —%S’“’f’w.

VI. CONCLUSIONS

In this work we have presented the Lagrangian action
without auxiliary variables (6) for a description of the
spinning particle in an arbitrary curved background. The
supplementary spin conditions (28) and (29) are guaranteed
by the set of constraints (12) and (16) arising from our
singular Lagrangian in the Hamiltonian formalism.
Because of this, the spin has two physical degrees of
freedom, as it should for a spin one-half particle. Besides,
the reparametrization invariance of the action generates the
mass-shell constraint P? + (mc)? = 0. The description of
the spin on the base of a vectorlike variable allows us to
construct also the Lagrangian (45) with an unfixed value of
spin and stringlike mass-shell constraint (47), as in the
Hanson-Regge model of a relativistic top. In the model (45)
appeared the fundamental length scale and the spin has four
physical degrees of freedom.

We showed that our spinning particle can be used to
study dynamics of a rotating body in curved background:
all the trajectories of MPTD equations with given
values of integration constants, V—P?> =k and S* = 3,
are described by our spinning particle with m :’;‘ and

8}. In this sense the expression (6) yields the
Lagrangian formulation of MPTD equations, and the latter
corresponds to minimal interaction of the particle with
gravity. This demonstrates the effectiveness of the classical
description of spin on the base of a vectorlike non-
Grassmann variable. We have explored our formulation
to obtain, in an unambiguous way, the closed system of
Eqgs. (42)—(44), (29) for the set x*, S*. Some immediate
consequences of this form of MPTD equations have been
discussed in Sec. V. In particular, in the Lagrangian form
of MPTD equations, instead of the original metric g,
emerges the effective metric G,, = g,, + H,, with spin
and field-dependent contribution H,,. According to (40),
the matrix (38), which links canonical momentum and
velocity, plays the role of a tetrad field to compose the
effective metric.

a==k
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