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We propose a new scalar-tensor model which induces significant deviation from general relativity inside
dense objects like neutron stars, while passing the Solar System and terrestrial experiments, extending a
model proposed by Damour and Esposito-Farese. Unlike their model, we employ a massive scalar field,
dubbed the “asymmetron,” that not only realizes proper cosmic evolution but can also account for the cold
dark matter. In our model, the asymmetron undergoes spontaneous scalarization inside dense objects,
which results in the reduction of the gravitational constant by a factor of order unity. This suggests that
observational tests of the constancy of the gravitational constant in the high-density phase are effective
ways to study the asymmetron model.
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I. INTRODUCTION

General relativity(GR), which describes gravity in terms
of a massless spin 2 field, has been tested and passed all
the precision experimental tests such as the Solar System
and the terrestrial experiments [1]. No observations which
clearly contradict with predictions of GR have been found.
This does not guarantee that GR remains valid under
extreme physical conditions beyond the present experi-
mental limits. Indeed, it is known that GR cannot tell what
happens at the center of black holes and at the very
beginning of the Universe if energy conditions are to be
satisfied [2]. In addition to this, the explanation of the
accelerating expansion of the late time universe may
require the modification of GR on very large scales.
Motivated by these considerations, GR may be viewed
as an effective theory which is valid only in some domain
of space spanned by physical parameters such as length,
energy, and density, although the boundary of such a
domain is not yet well defined. Many possibilities have
been proposed in the literature in various contexts (see
references in [3–6]).
In the near future, direct detection of gravitational waves

will become possible by using the laser interferometers
such as the advanced laser interferometric gravitational
wave observatory (aLIGO) [7], advanced Virgo (aVirgo)
[8], and KAGRA [9]. Target gravitational waves originate
from the vicinity of the compact objects, such as neutron
stars, where the matter density is much larger than any other
place in the Universe. Observation and analysis of such

gravitational waves should enable us to probe the laws of
gravity in such previously unexplored domains.
Scalar-tensor (ST) theories are well studied and natural

alternatives to GR [10–13]. Observations of gravitational
waves enable us to probe ST theories in the high-density
and strong-gravity regime. Interesting targets relevant to
gravitational wave observations are a class of ST theories
which mimic GR in the low-density (or weak-gravity)
regime but significantly deviate from GR in the high-
density (or strong-gravity) regime [14,15]. One natural way
to construct such a model is to introduce interaction
between the standard model particles and the scalar field
by the conformal factor so that the effective potential for the
scalar field depends on the matter density. If the system is
static, the scalar field takes a value that minimizes the
energy of the system. This expectation value depends on
the matter density and controls the interaction strength
between the standard model particles [16]. Then it is
possible that the expectation value vanishes if matter
density is low, and the spontaneous scalarization occurs
if matter density exceeds a critical value. In such a case,
modification of GR occurs only in the high-density region
exceeding the critical density. This mechanism is com-
pletely opposite to the symmetron model proposed in [17]
in which scalarization occurs only when the matter
density becomes smaller than the critical density. In that
model, matter density inside the Solar System is supposed
to be larger than the critical density, and GR is recovered,
but deviation from GR appears in the cosmological
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environment due to the low background density. For this
reason, we call the scalar field that acquires a nonvanishing
expectation value only in high-density environments the
“asymmetron.”
In this context, there is an interesting scalar-tensor theory

proposed by Damour and Esposito-Farese (DEF) [18,19] in
which significant deviation from GR occurs only in the
vicinity and the inside of neutron stars and safely passes the
Solar System experiments. In the DEF model, the scalar
field in the high matter density region becomes tachyonic
due to a particular form of the conformal coupling with the
standard model particles (see left figure of Fig. 1). As a
result, the scalar field takes a large nonvanishing value
inside the neutron star and approaches a nonvanishing but
much smaller value at a distance far away from the star. The
value at infinity is fixed to match the cosmological value
just as in the case of the Fierz-Jordan-Brans-Dicke theory
[20–23], and this value must be small enough to satisfy the
Solar System and terrestrial observational constraints.
Since the magnitude of the scalar field controls the amount
of deviation from GR, significant deviation from GR occurs
only in the inside or vicinity of the neutron stars. Because
of this, the structure of the neutron stars differs from that
under GR, and this suggests that studying neutron stars and
deriving observational consequences is the most effective
way to test the DEF model, as has been pursued in the
literature [24–33].
However, it is known that the DEF model faces the

difficulty of embedding it in the cosmic history [28,34,35].
During inflationary and matter-dominated epochs, the
coupling between the scalar field and the matter field
forces the scalar field to take a nonvanishing value, and the
law of gravity in the present Universe deviates from GR to
an extent incompatible with the existing constraints. Our
main motivation in this paper is to extend the DEF model
to incorporate it in the cosmological context. We achieve
this by dropping the two restrictions imposed in the DEF
model. The first is the mass of the scalar field, and the
second is the energy scale appearing in the conformal
factor. In the DEF model, the scalar field is assumed to be
exactly massless, and the energy scale in the conformal
factor is taken to be around the Planck mass. We do not

impose these conditions and assume that the scalar field is
massive and the energy scale in the conformal factor differs
from the Planck scale. Because of these assumptions, the
effective potential of the asymmetron has a global mini-
mum for any value of the matter density ρ, whereas the
effective potential of the original DEF model does not have
such a property (see Fig. 1).
Let us first briefly explain how the extended DEF model

can be consistently embedded in the cosmology before
describing the quantitative analysis in the subsequent
sections. As is the case with the original DEF model, in
the extended DEF model, the scalar field at the origin in
the presence of matter becomes unstable and should, in
principle, be pushed away from the origin. Thanks to the
mass term, there exists a global minimum of the effective
potential, which helps the asymmetron to settle down at
this point. Assuming the universal conformal coupling, the
scalarization should happen during inflation. Due to the
nonvanishing value of the asymmetron, the gravitational
constant would be different from the one we measure in
the laboratory, and in this sense the law of gravity would
be different from GR, as we know. After inflation, the
Universe is reheated and dominated by radiation. Since
the trace of the radiation energy-momentum tensor is zero,
the asymmetron decouples from the matter and the global
minimum shifts back to the origin of the effective potential.
As the Universe further expands, the Hubble parameter
gradually decreases and eventually becomes smaller than
the mass of the asymmetron. By then, the asymmetron
undergoes damped oscillation, and the Universe gradually
approaches GR. That is, GR is a cosmological attractor
in this model. As a result, GR is recovered to a good
approximation in the present Universe. We will further
show that the oscillating component of the asymmetron,
which interacts only gravitationally with standard model
particles, is a good candidate for cold dark matter.
Therefore, not only is our extended DEF model cosmo-
logically viable, but it also provides a dynamical mecha-
nism for dark matter generation via asymmetron production
during inflation.
Of course, cosmology is not the only arena where the

extended DEF model becomes relevant to observations.
When the matter density inside a compact astrophysical
object exceeds the critical density, the asymmetron would
undergo spontaneous scalarization and the laws of gravity
might deviate from GR considerably. This phenomenon
itself is similar to the original DEF model, but our
asymmetron model provides additional new features as
follows. Due to the mass term, the asymmetron outside the
compact object where no matter exists diminishes expo-
nentially on the length scale of the inverse of the mass. This
is in clear contrast to the original DEF model where the
asymptotic value is arbitrary and fixed by the boundary
condition. Furthermore, the critical density beyond which
the spontaneous scalarization occurs is not necessarily

FIG. 1 (color online). Density-dependent effective potential of
the scalar field for the Damour-Esposito-Farese model (left
figure) and the asymmetron model we consider in this paper
(right figure). Dotted curve in each figure represents the expect-
ation value of ϕ inside the compact object with density ρ.
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around the matter density of the neutron star (it could be
either higher or lower), whereas in the original DEF model
the spontaneous scalarization occurs inside the neutron star
where the gravitational energy becomes comparable to its
rest mass energy. This opens up a new possibility that not
only neutron stars but also less compact astrophysical
objects are the best targets to search for the deviation
from GR.
In this paper, we analyze in detail the spontaneous

scalarization in the asymmetron model and how the
gravitational field changes outside the compact star before
and after the spontaneous scalarization. We also show that
inflation, assuming the universal conformal coupling to all
the matter fields, induces the spontaneous scalarization and
the asymmetron undergoes coherent oscillations in the later
time Universe. As mentioned above, such an oscillating
field can be a candidate for cold dark matter. We show that
there is a parameter space where the production of the
asymmetron can saturate the dark matter content. In the last
section, we further comment on the possibility of the
asymmetron as dark energy.

II. SPONTANEOUS SCALARIZATION
IN THE HIGH-DENSITY REGION

A. Model

We introduce a real massive scalar field ϕ which is
universally coupled to all the matter fields including the
standard model particles through the metric ~gμν ¼ A2ðϕÞgμν
(Thus, ~gμν is the Jordan metric). This ensures that the weak
equivalence principle is satisfied. We assume that gμν
satisfies the Einstein equations. Therefore, the basic action
is given by

S ¼ Sg½gμν� þ Sϕ½gμν;ϕ� þ Sm½~gμν;ϕ�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGN
−
1

2
gμν∂μϕ∂νϕ −

μ2

2
ϕ2

�

þ
Z

d4x
ffiffiffiffiffiffi
−~g

p
Lmð~g;ψmÞ; ð1Þ

where GN is the Newton’s constant and Lm is the matter
Lagrangian of all the matter fields including the standard
model fields. The corresponding equations of motion are
given by

□ϕ − μ2ϕþ A3ðϕÞA;ϕ
~T ¼ 0; ð2Þ

Gμν ¼ 8πGN

�
−
�
1

2
gαβ∂αϕ∂βϕþ μ2

2
ϕ2

�
gμν

þ ∂μϕ∂νϕþ A2ðϕÞ ~Tμν

�
; ð3Þ

where

~Tμν ≡ −
2ffiffiffiffiffiffi
−~g

p δSm
δ~gμν

ð4Þ

is the energy-momentum tensor with respect to ~gμν and
~T ≡ ~gμν ~Tμν. Since all experiments are done with respect to
~gμν, ~Tμν is the normal energy-momentum tensor we use in
the standard general relativity. For this reason, we call ~Tμν

the physical energy-momentum tensor.1 Since ~T is inde-
pendent of ϕ, the first EOM states that the effective
potential for ϕ is

VeffðϕÞ ¼
μ2

2
ϕ2 −

1

4
A4ðϕÞ ~T; ð5Þ

for which we have □ϕ − Veff;ϕ ¼ 0.
Now, let us choose the function A2ðϕÞ such that it is an

even function and it monotonically decreases for ϕ > 0 and
asymptotically approaches a constant value. One simple
form that satisfies all these conditions is given by

A2ðϕÞ ¼ 1 − εþ εe−
ϕ2

2M2 ; ð6Þ

with 0 < ε < 1. In order to derive the quantitative results,
we consider this form of AðϕÞ throughout this paper under
the assumptions that ε ¼ Oð1Þ and is not very close to 0
nor 1. However, our conclusions are also qualitatively valid
for other forms of A2ðϕÞ as long as it satisfies the required
properties mentioned above.
With this choice, the effective potential for ϕ in the

presence of non-relativistic matter, for which ~T ¼ −~ρ,
becomes

VeffðϕÞ ¼
μ2

2
ϕ2 þ 1

4
ð1 − εþ εe−

ϕ2

2M2Þ2 ~ρ: ð7Þ

The shape of Veff is shown in the right panel of Fig. 1.
When ~ρ is uniform and the system is static, ϕ would take a
constant value ϕ̄ which minimizes the effective potential.
Taylor-expanding VeffðϕÞ around ϕ ¼ 0, we have

VeffðϕÞ ¼
1

4
~ρþ 1

2

�
μ2 −

ε~ρ

2M2

�
ϕ2 þOðϕ4Þ: ð8Þ

We find ϕ ¼ 0 is stable for ~ρ < ρPT ≡ 2μ2M2=ε, but
becomes unstable when ~ρ exceeds ρPT. When ~ρ > ρPT, ϕ̄
is given by

1As expected, it can be verified by explicit computation that
the conservation law ~∇μ

~Tμ
ν ¼ 0 is an automatic consequence of

the combination of Eqs. (2) and (3).
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ϕ̄2

2M2
¼ ln fðε; ρPT=~ρÞ;

fðε; ηÞ≡ 2ε

1 − ε

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4εη

ð1 − εÞ2
s

− 1

!−1

: ð9Þ

We see that ϕ̄ depends only logarithmically on ~ρ. Thus,
unless ~ρ takes extremely huge values, ϕ̄ is OðMÞ. To
conclude, the scalar field undergoes spontaneous scalari-
zation when ~ρ > ρPT is realized.
Let us next consider how the gravity behaves in the

symmetric phase where ϕ̄ ¼ 0 is satisfied. In the symmetric
phase, the interactions between ϕ and the other matter
fields are, in the leading order, written as ∼ϕ2Tμν=M2. As
we will see later, for observationally interesting cases,M is
typically much larger than TeV scale, i.e., far beyond the
energy scale accessible by any terrestrial experiments. In
this sense, ϕ completely decouples from the other matter
fields and behaves as a free massive scalar field. Since
A2ðϕ̄Þ ¼ 1, assuming there is no excitation of ϕ field,
Eqs. (3) reduce to the Einstein equations. If ϕ is excited
around ϕ ¼ 0, excitation will be observed as dark compo-
nent interacting only gravitationally with ordinary matter. It
is then natural to suppose that such excitation constitutes
(a part of) dark matter. More detailed analysis of this
possibility including its production mechanism will be
discussed later. Therefore, at low density region ~ρ < ρPT,
GR is recovered.

B. Gravity in spontaneous scalarization phase

Contrary to the symmetric phase, deviation from GR
occurs in the scalarization phase, which we will investigate
in the following. In the scalarization phase, due to a
nonvanishing ϕ̄, matter fields interact with ϕ with inter-
action strength proportional to ϕ̄. This acts as a fifth force
between matter fields. Since ϕ is massive, the interaction
range of the fifth force is limited to ∼1=μ. In addition to the
emergence of the fifth force, field equations for gravity are
also modified. Assuming no excitation of the ϕ field around
ϕ̄, Eqs. (3), rewritten in terms of the Jordan-frame metric
~gμν, become

~Gμν þ Λeff ~gμν ¼ 8πGeff
~Tμν; ð10Þ

where

Λeff ¼ 4πGNμ
2ϕ̄2A−2ðϕ̄Þ

¼ 4πGNερPT ln fðε; ρPT=~ρÞ
�
1 − εþ ε

fðε; ρPT=~ρÞ
�

−1
;

ð11Þ

Geff ¼ A2ðϕ̄ÞGN ¼
�
1 − εþ ε

fðε; ρPT=~ρÞ
�
GN: ð12Þ

We find that ~gμν satisfies the Einstein equations with the
gravitational constant replaced by Geff and with the
effective cosmological constant Λeff . Contrary to the case
of the standard Higgs mechanism, for which a smaller
cosmological constant is realized in the symmetry-breaking
phase compared to that in the symmetric phase, the
opposite phenomenon happens in the current model.
Namely, if there is no (or very tiny) cosmological constant
in the symmetric phase, then a positive vacuum energy of
OðρPTÞ emerges in the spontaneous scalarization phase.
Therefore, if the matter density is larger than ρPT but is still
the same order of magnitude as ρPT, the effective cosmo-
logical constant will also play a non-negligible role in
gravitational physics. In the very high-density region in
which ~ρ ≫ ρPT, we have

Λeff ≈ 4πGN
ε

1 − ε
ρPT ln

�
ð1 − εÞ ~ρ

ρPT

�
;

Geff ≈ ð1 − εÞGN: ð13Þ

We find that Λeff is enhanced only logarithmically from
ρPT. Thus, in the very high-density region, the effect of the
effective cosmological constant is much smaller than the
right-hand side of (10) and does not significantly affect
the dynamics. The effective gravitational constant is reduced
by (1 − ε). Thus, gravity is weakened by this amount.
In the above argument, we have ignored the contribution

of the scalar force and focused only on the change in the
pure gravity sector. In order to evaluate the scalar force, let
us consider a test point source of its physical mass MS
immersed in the static and uniform matter distribution in
which spontaneous scalarization occurs. The presence of
the point source distorts the scalar field from ϕ̄ by the
amount δϕ as well as the Einstein-frame metric from ημν by
the amount hμν.

2 We assume MS is so small that both δϕ
and hμν can be obtained by linear perturbation analysis.
Then the equation for δϕ is obtained by linearizing Eq. (2)
on the background ϕ ¼ ϕ̄ given by Eq. (9). On this
background, we have

A3A;ϕjϕ¼ϕ̄ ¼ −
Ā2ξ

M
; ð14Þ

where Ā≡ Aðϕ̄Þ, and we have introduced a dimensionless
parameter ξ defined by

ξ≡ εffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln fðε; ρPT=~ρÞ

p
fðε; ρPT=~ρÞ

: ð15Þ

Notice that in the deep scalarization phase for which
~ρ ≫ ρPT, this parameter is suppressed by a small factor

2For simplicity, we do not take into account the cosmological
constant term given by Eq. (11) which exists in the background.
Inclusion of it is straightforward.
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ρPT=~ρ. Since ξ controls the coupling between the asymme-
tron and matter fields, the coupling is weak in the deep
scalarization phase.
Using this quantity, the equation for δϕ becomes

ðΔ − μ2Þδϕ ¼ −
Ā2ξ

M
~ρS; ~ρS ¼

MS

Ā3
δð~xÞ: ð16Þ

The solution of this equation is given by

δϕðrÞ ¼ ξ

4π

MS

M
e−μr

Ār
: ð17Þ

The metric perturbation hμν can be obtained in the standard
manner. Noting that the gravitational constant is Ā2GN in
the scalarization phase and Ār is the physical distance,
we have

h00 ¼ 2U; hij ¼ 2Uδij; U ≡ ĀGNMS

r
ð18Þ

in the isotropic coordinates (or the PPN coordinates).3

The Jordan-frame metric with first-order deviation from
the background is given by

~gμν ¼ A2ðϕÞgμν ¼ Ā2ðημν þ hμν þ ðlnA2Þ;ϕjϕ¼ϕ̄δϕημνÞ:
ð19Þ

Since the constant overall factor Ā2 is irrelevant to the
following discussion, we will omit it. Substituting the
above results in ~gμν, we find

~g00 ¼ −1þ 2U þ Āξ2MS

2πM2

e−μr

r
; ð20Þ

~gij ¼
�
1þ 2U −

Āξ2MS

2πM2

e−μr

r

�
δij: ð21Þ

We find that the scalar force described by the Yukawa
potential contributes to the metric perturbation in the
Jordan frame which does not match the form predicted
by the pure GR. We can translate this contribution to the
PPN parameter γ (see, for instance, [1]). This parameter is
defined by ~gij ¼ ð1þ 2γ ~UÞδij where ~U is the metric
perturbation of the 00 component, ~g00 ¼ −1þ 2 ~U (in
GR, γ ¼ 1). In the present case, γ becomes

γ ¼ 1 −
2λ

1þ λ
; λ≡ ξ2e−μr

4πM2GN
: ð22Þ

Since M appears in the denominator of A;ϕ in Eq. (2),
naively one would expect that ifM is comparable or smaller

than the Planck scale ∼G−1=2
N , then the scalar force would

become stronger than the gravitational force within the
range ∼μ−1. The above result shows that this naive expect-
ation is not correct since it is ξ2=ðM2GNÞ that determines
the magnitude of the deviation from GR. As we mentioned
earlier, ξ becomes small in the deep scalarization phase,
and the system can become close to GR (jγ − 1j ≪ 1) even
when M ≲G−1=2

N .

C. Spontaneous scalarization only
inside a compact object

Having explained the basic picture of the spontaneous
scalarization, it is intriguing to analyze a situation where a
dense object, inside which spontaneous scalarization
occurs, resides in a vacuum. To capture the essence of
the phenomena, we make the following simplification that
the object is static, uniform, and spherically symmetric and
is made of nonrelativistic matter and its size is much larger
than the Schwarzschild radius so that the metric in the
Einstein frame can be taken to be the Minkowski one, but
density is much larger than ρPT. These assumptions will be
inappropriate in a quantitative sense for dealing with
realistic astrophysical objects such as normal stars, white
dwarfs, neutron stars, and so on, but we believe that the
following result remains qualitatively correct.
With the above assumptions, the equation for ϕ becomes

d2ϕ
dr2

þ 2

r
dϕ
dr

−
dVeff

dϕ
¼ 0: ð23Þ

As is done in [36], let us perform the change of variables as

r → τ; ϕ → x; Veff → −U: ð24Þ

Then, the above equations become

d2x
dτ2

þ 2

τ

dx
dτ

¼ −
dU
dx

; ð25Þ

which represents the motion of a point mass under the
potential U associated with time-dependent friction.
Denoting R by the radius of the object, U changes its
shape at τ ¼ R as shown in Fig. 2. What we want is a
solution xðτÞ with a boundary condition,

xð0Þ ¼ xc; _xð0Þ ¼ 0; xðτ → ∞Þ ¼ 0: ð26Þ

We follow [36] to construct the approximate analytic
solution for this kind of problem.
When R is large enough, x stays near xc for a long time.

This means that xc is very close to ϕ̄ at which U0 ¼ 0. At
τ ¼ R, the friction had become negligible and the kinetic
energy of x is just enough to be compensated for by the
difference of potential energy between x ¼ xðRÞ and x ¼ 0

3If we are living in the scalarization phase, we have to replace
Ā2GN by GN to satisfy the local gravity experiments. See the last
paragraph of the last section for relevant discussion.
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so that x asymptotically approaches zero. Since the
transition at τ ¼ R happens near xc, let us replace UðxÞ
before τ ¼ R by the quadratic form around ϕ̄,

UðxÞ ≈ −
1

2
m2ðx − ϕ̄Þ2; ð27Þ

where m2 is the second derivative of Veff evaluated at ϕ̄,

m2 ≡ Veff;ϕϕðϕ̄Þ

¼ 2μ2

ρPT

�
2ρPT − ð1 − εÞ ~ρ

fðε; ρPT=~ρÞ
�
ln fðε; ρPT=~ρÞ:

ð28Þ

Then Eq. (25) becomes

d2x
dτ2

þ 2

τ

dx
dτ

¼ m2ðx − ϕ̄Þ; ð29Þ

whose solution with the initial condition xð0Þ ¼ xc;
_xð0Þ ¼ 0 is given by

xðτÞ ¼ ϕ̄þ ðxc − ϕ̄Þ sinhðmτÞ
mτ

: ð30Þ

On the other hand, xðτÞ for τ > R with the boundary
condition x → 0 for τ → ∞ is given by

xðτÞ ¼ C
e−μðτ−RÞ

τ
; ð31Þ

where C is the integration constant. Requiring that x and _x
are continuous at τ ¼ R determines xc and C as

xc ¼
−mð1þ RμÞ þm coshðmRÞ þ μ sinhðmRÞ

m coshðmRÞ þ μ sinhðmRÞ ϕ̄; ð32Þ

C ¼ mR coshðmRÞ − sinhðmRÞ
m coshðmRÞ þ μ sinhðmRÞ ϕ̄: ð33Þ

In the high-density limit ~ρ ≫ ρPT, m2 becomes

m2 ¼ 2μ2 ln

�ð1 − εÞ~ρ
ρPT

�
; ð34Þ

which is enhanced by the log factor compared to μ2. Then,
neglecting μ terms in xc yields

xc ≈
−ð1þ RμÞ þ coshðmRÞ

coshðmRÞ ϕ̄: ð35Þ

Thus, if R ≫ m−1ð≫ μ−1Þ is satisfied, then ϕ stays very
close to ϕ̄ until the surface of the object and then decays
exponentially over the length scale μ−1 outside the object.
In other words, we can say that spontaneous scalarization
occurs inside the object when the size of the object is much
greater than the Compton wavelength of ϕ in the symmetric
phase (in addition to the trivial condition that density is
greater than ρPT).

D. Gravity outside the scalarized compact object

Let us consider the metric perturbation outside a compact
object inside which spontaneous scalarization occurs. As in
the previous subsection, we assume that the compact object
is made of nonrelativistic matter. We assume that the matter
density is high enough so that spontaneous scalarization
occurs inside the object but not compact enough so that
gravity is weak everywhere. From Eqs. (3), we see that
this amounts to performing a perturbative expansion of
the metric in the Einstein frame around the Minkowski
metric in terms of a dimensionless quantity given by
(Schwarzshild radius)/(distance).4 In this subsection, we
consider only first-order corrections and treat the linearized
Einstein equations.
We decompose the metric in the Einstein frame as

gμν ¼ ημν þ hμν; jhμνj ≪ 1; ð36Þ

FIG. 2 (color online). PotentialU for τ < R and τ > R. Initially,
x is at xc and asymptotically approaches zero for τ → ∞.

4One may wonder why we do not consider linear perturbation
in the Jordan frame. In order to see why this is not feasible, let us
express the field equations (3) in terms of the Jordan-frame
metric. They are given by

~Gμν þ ~gμνð ~∇α lnA ~∇α lnA − 2 ~∇α ~∇α lnAÞ þ 2 ~∇μ
~∇ν lnA

¼ 8πGN

�
−
�
1

2
~∇αϕ ~∇αϕþ μ2

2
ϕ2

�
~gμν þ ~∇μϕ ~∇νϕþ A2 ~Tμν

�
:

We find that terms containing lnA on the left-hand side of the
above equation are not associated with GN . This makes sense
since they come from Gμν for the Einstein frame. It is now clear
that the Jordan-frame metric cannot be expanded in terms of
(Schwarzshild radius)/(distance). Indeed, since A changes by
OðεÞ from inside to outside of the compact star, a large variation
of the Jordan-frame metric [exceeding OðGNÞ] is induced near
the surface of the compact object.
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where hμν is proportional toGN . As usual, we introduce h̄μν
by h̄μν ¼ hμν − 1

2
ημνh, and impose a gauge condition

∂μh̄μν ¼ 0. Then the linearized field equations become

□h̄μν ¼ −16πGNA2ðϕÞ ~Tμν: ð37Þ

For the nonrelativistic matter, we have

~Tμν ≈ diagðA2 ~ρ; 0; 0; 0Þ: ð38Þ

Thus, only the t − t component becomes nontrivial,

Δh̄00 ¼ −16πGNA4 ~ρ: ð39Þ

Then, the gravitational potential Φ defined by Φ ¼ − 1
2
h00

becomes

Φð~xÞ ¼ −GN

Z
d3x0

A4 ~ρð~x0Þ
j~x − ~x0j : ð40Þ

In particular, when ~x is very far from the object, this
becomes

Φð~xÞ ≈ −
GN

r

Z
d3x0A4 ~ρð~x0Þ: ð41Þ

Since symmetry is restored (ϕ ¼ 0) outside the star, the
Einstein frame is equivalent to the Jordan frame in such a
region. Thus, the physical gravitational potential ~Φ is also
given by Eq. (41). The distance r approaches the physical
distance when r is much larger than the size of the star.
Noting that A3d3x is the physical volume element, the
physical mass MS is given by

MS ¼
Z

d3xA3 ~ρð~xÞ: ð42Þ

If the size of the star is much bigger than μ−1, spontaneous
scalarization occurs inside the star and ϕ takes the uniform
value ϕ̄ given by Eq. (9) everywhere inside the star except
for the thin shell region near the surface. Thus, it is
reasonable to approximate A to be uniform inside the star
(A ¼ Aðϕ̄Þ ¼ Ain) and to have a step-function-like tran-
sition at the surface of the star and to become unity outside
the star. With this simplification, we have

Φð~xÞ ≈ −
GNAinMS

r
: ð43Þ

For ~ρ ≫ ρPT, we have Ain ≈
ffiffiffiffiffiffiffiffiffiffi
1 − ε

p
. Therefore, from the

observer outside the star,MS appears to be decreased by Ain
or, equivalently, GN appears to be decreased by Ain.
Taking a component parallel to ~uμ of the conservation

law ~∇μ
~Tμ

ν ¼ 0 for the nonrelativistic matter and for the
metric ~gμν ¼ A2ημν, we have

∂
∂t ð~ρA

3Þ þ ∂
∂xi ð~ρA

3viÞ ¼ 0; ð44Þ

where vi is defined by ~ui ¼ vi=A. Thus, the mass MS
defined by Eq. (42), which is the sum of mass of each
particle that constitutes the star, is conserved unless no
matter escapes or enters the star. This implies that the
gravitational potential far from the star changes by Ain after
the star undergoes the spontaneous scalarization. At first
glance, it appears that this conclusion is inconsistent with
the Birkhoff’s theorem. In order to understand this in more
detail, let us consider a spherically symmetric star whose
density is initially smaller than ρPT. Let us assume that, at
some time for some reason, a reduction of the radiation
pressure occurs due to depletion of fuel to produce thermal
energy, and the star starts to shrink and the density
eventually exceeds ρPT before the star settles down to a
new stable configuration. By the time the star becomes
static again, the spontaneous scalarization is realized inside
the star. This final state is already described in previous
subsections. Let us write the Einstein-frame metric describ-
ing the transition as

ds2 ¼ −ð1þ 2Φðt; rÞÞdt2 þ ð1þ 2Λðt; rÞÞdr2 þ r2dΩ;

ð45Þ

where both Φ and Λ are treated as linear perturbations just
as in the previous subsection. The scalar field also respects
the spherical symmetry and, hence, ϕ ¼ ϕðt; rÞ. Outside
the star, the t − r component of the Einstein equations (3)
becomes

_Λ ¼ 4πGNr _ϕϕ0: ð46Þ

By integrating this equation along time with fixed r,
we have

r½Λðt → ∞; rÞ − Λðt → −∞; rÞ� ¼ 4πGNr2
Z

∞

−∞
dt _ϕϕ0:

ð47Þ

From the argument of the previous subsection, the left-hand
side of the above equation is equal to ðAin − 1ÞGNMS when
r is much bigger than the radius of the star. Thus, we have

ðAin − 1ÞMS ¼
Z

∞

−∞
dtSr _ϕϕ0; ð48Þ

where Sr ≡ 4πr2 is the surface area of the sphere of radius
r. This result shows that the change of the gravitational
potential before and after the spontaneous scalarization is
compensated by the emission of the scalar wave whose flux
is given by _ϕϕ0. Neglecting the metric perturbation, the
equation of motion for ϕ is given by
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−ϕ̈þ ϕ00 þ 2

r
ϕ0 þ Veff;ϕ ¼ 0: ð49Þ

Before the star starts to shrink, since the density of the star
is less than ρPT, ϕ ¼ 0 everywhere. After the star starts to
shrink and when the density exceeds ρPT, Veff;ϕ at ϕ ¼ 0

becomes unstable inside the star and this acts as a force to
push ϕ into the stable point. In this way, ϕ inside the star
changes its value.5 This change also excites the change of ϕ
outside the star, and it propagates as a wave which decays
as ∼1=r. The contribution of the scalar wave to the Jordan-
frame metric far from the star is given by

~hμν ⊃ −ε
ϕ2

2M2
ημν ∝ r−2: ð50Þ

Thus, this contribution is more suppressed for large r
compared to the gravitational potential and gravitational
wave, both of which decay as ∼1=r, although the latter is
absent in the present case from the beginning due to the
simplified assumption that the system is spherically sym-
metric. For a distant observer, the dominant deviation from
GR caused by the spontaneous scalarization is the change
of the gravitational constant.

III. ASYMMETRON AS DARK MATTER

Having introduced a new scalar field ϕ which interacts
with standard matter only gravitationally in the symmetric
phase, it is natural to identify it with dark matter. As we will
show, the spontaneous scalarization also provides a natural
mechanism for fixing the abundance of dark matter within
the framework of primordial inflation.
Let us consider the effective potential during inflation.

Making the phenomenological approximation that inflation
is caused by the fluid with its equation of state ~Pinf ¼ −~ρinf ,
we have

VeffðϕÞ ¼
μ2

2
ϕ2 þ

�
1 − εþ εe−

ϕ2

2M2

�2
~ρinf : ð51Þ

The true effective potential differs from this potential by the
amount of slow-roll parameters multiplied to the second
term, which is small enough for our present purpose and we
ignore it. Due to the contribution of the pressure, the
coefficient of the second term on the right-hand side is
enhanced by a factor of 4 compared to the case of the
nonrelativistic matter. As a result, ϕ̄ when the spontaneous
scalarization occurs is given by

ϕ̄2

2M2
¼ ln fðε; ρPT=ð4~ρinfÞÞ: ð52Þ

From this, we find that spontaneous scalarization occurs for
~ρinf > ρPT=4, which we assume to be satisfied. The critical
density is not equal to ρPT because ρPT is defined as the
critical density for the case of the nonrelativistic matter [see
below Eq. (8)].
During inflation, at the classical level, the ϕ field

eventually settles down to the value given by Eq. (52)
even if it deviated from that value initially. Roughly
speaking, ϕ̄ divides a domain of ϕ into two regions
according to the different time scale for approaching ϕ̄
from a given ϕ. For ϕ ≪ ϕ̄, we find from Eq. (51)
Veff

00 ≈ − 2ε~ρinf
M2 þOðϕ2Þ. Then we have jVeff

00j=H2
inf≃

1=ðM2GNÞ, where Hinf is the Hubble parameter during
inflation in the Einstein frame. For our case, where
M ≲ G−1=2

N , this ratio is larger than unity. This shows that
ϕ ¼ 0 is unstable and rolls down to ϕ̄ within the Hubble
time. On the other hand, for ϕ ≫ ϕ̄, the second term in
Eq. (51) becomes exponentially suppressed up to the
irrelevant constant part, and we have V 00

eff ≈ μ2 ≪ H2
inf .

Solving the equation of motion for ϕ under the slow-roll
approximation yields ϕ ∝ e−μ

2t=ð3HinfÞ. Thus, the time scale
for ϕ to approach ϕ̄ is given by Hinf=μ2, and this is much
larger than the Hubble time since the range of μ we are
interested in is far below Hinf (see Fig. 3). This implies that
ϕ̄ and a value larger than ϕ̄ are equally likely during
inflation (especially for the last sixty e-folds relevant to the
observable Universe). For the moment, we consider the
case where ϕ stays near ϕ̄ during inflation. As we will
explicitly demonstrate, extension to the case where ϕ is
larger than ϕ̄ can be performed in a straightforward manner.
After inflation, the Universe is reheated and dominated

by radiation. When this happens, ~T vanishes and the
effective potential reduces to the bare potential.6 As the
Universe expands, the Hubble parameter gradually
decreases and at some point becomes equal to μ. Before
this time, ϕ keeps its initial value fixed during infla-
tion. After this time, ϕ oscillates around the origin like

5Since scalarization with a positive ϕ̄ and a negative one are
equally allowed, scalarization occurs randomly on a distance over
the correlation length. As a result, the compact star just after the
spontaneous scalarization may be a mixture of positive and
negative ϕ̄, and the two regions are separated by a domain wall.
Though this may lead to interesting phenomena, the process of
spontaneous scalarization with this effect being taken into
account is complicated and we do not consider it in this paper.

6Strictly speaking, this is not correct since there exists a
nonrelativistic baryon component even in the radiation-domi-
nated era after the QCD phase transition which occurs around
temperature TQCD ≈ 200 MeV. The baryon density at this tem-
perature is estimated as ρbðTQCDÞ ≈ 6 × 10−12 GeV4 for
Ωb ¼ 0.04, gs� ¼ 20, TQCD ¼ 200 MeV. If ρPT is smaller than
ρbðTQCDÞ, which is the case for μ < 10−11 eV (see Fig. 3) when
we require the asymmetron to be dark matter, the baryon forces
the asymmetron to undergo the spontaneous scalarization at the
time of the QCD phase transition. As a result, the result (56)
cannot be applied straightforwardly and we need to modify it in
an appropriate way. Since ρbðTQCDÞ is much smaller than the
nuclear density which is an interesting target for ρPT, we do not
consider this case in this paper and set μ > 10−11 eV.
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ϕðtÞ ∼ sinðμtÞ=t and ρϕ behaves as nonrelativistic matter.
Thus, ρϕ decreases as 1=a3 in the Einstein frame (a is the
scale factor in the Einstein frame). Then the energy density
of ϕ at present time is given by

ρϕ;0 ¼
1

ð1þ zeqÞ3
a3osc
a3eq

ρϕ;osc ¼
1

ð1þ zeqÞ3
a3osc
a3eq

μ2

2
ϕ̄2; ð53Þ

where the subscript “osc” in any quantity means that it is
evaluated when ϕ starts oscillations; i.e., μ ¼ Hosc and

aeq ¼ 1=ð1þ zeqÞ is the scale factor at the time of matter
radiation equality. We assume that there is no additional
entropy production after inflation. Therefore, the entropy
density of radiation decays as 1= ~a3 ¼ A3a3 ( ~a is the scale
factor in the Jordan frame). With this assumption, we have

ρϕ;0 ¼
1

ð1þ zeqÞ3
g�s;eq
g�s;osc

�
g�;osc
g�;eq

�
3=4
�
ρr;eq
~ρr;osc

�
3=4 1

A3
inf

μ2

2
ϕ̄2;

ð54Þ

FIG. 3 (color online). Each panel shows three curves μDM, μiso and μ5th as well as contours of constant M for B ¼ 1 (left side) and
B ¼ 104 (right side). Right to each curve of μiso and μ5th is the allowed region satisfying the observational constraints.
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where g�s and g� represent the effective degrees of freedom
entering in the entropy density and energy density of
radiation, respectively. By the time of matter-radiation
equality, the amplitude of ϕ has decreased enough so that
there is little difference between the Einstein frame and the
Jordan frame, i.e., Aeq ≈ 1 to a very good approximation.
Now, by using the Friedmann equation in the Einstein
frame,

μ2 ¼ H2
osc ¼

8πGN

3
A4
inf ~ρr;osc; ð55Þ

to eliminate ~ρr;osc and Eq. (52) to eliminate ϕ̄, we end
up with

Ωϕ;0 ¼
ρϕ;0
ρc;0

¼ g�s;eq
g�s;osc

�
g�;osc
g�;eq

�
3=4 ερPT

2ρc;0

× ln fðε; ρPT=ð4~ρinfÞÞ
1

A2
inf

�
H0

μ

�
3=2

Ω3=4
r;0 : ð56Þ

If this quantity is equal to the observed Ωm;0, then ϕ
constitutes the whole dark matter. This requirement yields a
relation between μ and ρPT, which is shown as μDM ¼
μDMðρPTÞ for four different values of ~Hinf in Fig. 3 [and for
two different values of B. For the definition of B, see
discussion below Eq. (64)]. In this figure, the parameters
are fixed as g�;eq ¼ g�s;eq ¼ 100, and ε ¼ 1=2.
Since there is a strong upper limit on the deviation from

general relativity by the Solar System experiments as well
as the terrestrial ones, we require that the spontaneous
scalarization occurs at a density larger than the Earth
density, i.e., ρPT ≫ ρEarth ≈ 5 × 10−17 GeV4.7 Combining
this with footnote 6, our primary interest for ρPT is
ρPT ≳ 10−11 GeV4. Then, from Fig. 3, we find that the
corresponding restriction on μ is given by μ ≳ 10−11 eV
which we regard as the possible minimum value of our
interest.

A. Isocurvature constraint

We saw in the previous subsection that spontaneous
scalarization occurs during the primordial inflation and this
provides a mechanism for preparing the nonzero value of
the asymmetron to realize its coherent oscillations, which
behave as nonrelativistic matter interacting only gravita-
tionally with other matter fields. There is indeed a param-
eter range of μ and M where the energy density of the

asymmetron is equal to that of dark matter. But before
the asymmetron can be considered as a candidate of dark
matter, it must satisfy other observational constraints. There
are two nontrivial observational constraints, which we will
consider below.
The first constraint is the nondetection of the dark matter

isocurvature perturbation. Since the ϕ field is almost
massless during inflation, this field acquires almost
scale-invariant classical fluctuations during inflation when
each wavelength mode crosses the Hubble horizon. In
addition to this, the standard adiabatic perturbations are
also generated from classical fluctuations of either the
inflaton or other light fields, which are equally shared by
all the existing particle species such as photons, baryons,
and dark matter. On top of this, dark matter has its own
fluctuations coming from the fluctuations of the ϕ field
itself, and these fluctuations act as isocurvature perturba-
tions having no correlation with the adiabatic ones. Since
there is a strong upper limit on the amplitude of the
isocurvature perturbations imposed by CMB observations,
this limit can be converted to the constraint on the domain
of the ðμ; ρPTÞ plane. To see this in a more quantitative
manner, let us first introduce the dark matter isocurvature
perturbation SDM by [37]

SDM ¼ δρDM
ρDM

−
3

4

δργ
ργ

; ð57Þ

where δργ is the density perturbation of photons. This
quantity is conserved as long as the scale considered is the
super-Hubble scale. In the present case, ρDM ¼ ρϕ.
As is done in [38] (but for a different model), we adopt

the approximation of the sudden transition that ϕ is
completely frozen before H ¼ μ (hence, ρϕ is constant
in time) and starts to oscillate exactly when H ¼ μ and
behaves as nonrelativistic matter ρϕ ∝ a−3 [39]. Then, the
hypersurface on which ϕ starts to oscillate coincides with
the one with constant total energy density. Since SDM is
independent of the choice of time slicing, we can compute
δr and δϕ in any time slicing, and we take the H ¼ m
hypersurface for this purpose. On this hypersurface,
we have

ρrð~xÞ þ ρϕð~xÞ ¼ ρtot ¼
3μ2

8πGN
: ð58Þ

Decomposing this relation into the background part and
perturbation part and extracting the perturbation part,
we have

δrð~xÞ ¼ −
Ωϕ

1 −Ωϕ
δϕð~xÞ; ð59Þ

where Ωϕ ¼ ρϕ=ρtot, evaluated at the time when H ¼ μ.
Plugging this relation into the definition of SDM, we have

7It is possible that ρPT < ρEarth and we are living in the
spontaneous scalarization phase. One possibility is that ε is very
tiny ε ≪ 1. Since a large deviation from GR never happens in any
situation for such a case, we do not consider this possibility in this
paper. The second possibility is that ρPT is the order of the critical
density of the Universe. In this case, the asymmetron behaves not
as dark matter but as dark energy. We will briefly discuss this
scenario in the last section.
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SDMð~xÞ ¼
�
1þ 3

4

Ωϕ

1 −Ωϕ

�
δϕð~xÞ ≈ δϕð~xÞ; ð60Þ

where we have used Ωϕ ≪ 1 since the time when the
asymmetron starts to oscillate for the range of μ of our
interest is much earlier than the time of matter-radiation
equality. Since ρϕ ¼ μ2ϕ2=2 in the radiation-dominated
era, we finally have

SDMð~xÞ ¼
2δϕ

ϕ̄
: ð61Þ

Here, δϕ is the perturbation quantum mechanically gen-
erated during inflation. This is uncorrelated with the
(adiabatic) curvature perturbation which is sourced by
other fields. The corresponding power spectrum of SDM
is given by

PCDM ¼ 4

ϕ̄2

�
Hinf

2π

�
2

¼ 8GNμ
2

3π
A4
inf

~ρinf
ερPT

1

lnfðε;ρPT=ð4~ρinfÞÞ
;

ð62Þ

where the modified Friedmann equation,

3H2
inf ¼ 8πGNA4ðϕ̄Þρinf ; ð63Þ

is used to obtain the final expression. The upper limit on
the uncorrelated dark matter isocurvature perturbation by
WMAP 9 yr is given by [37]

PCDM

PR
<

α

1 − α
; α < 0.047 ð95% C:L:Þ; ð64Þ

where PR is the power spectrum of the adiabatic pertur-
bation. For fixed ρPT and ~ρinf , this bound can be converted
into the upper bound on μ which is shown as a line of
μ ¼ μiso in Fig. 3. The region in each panel above μ ¼ μiso
is excluded.
Before moving to the explanation of Fig. 3, let us

comment on the case where the value of ϕ during inflation
is greater than ϕ̄ as mentioned in the paragraph between
Eqs. (52) and (53). Writing the background value of ϕ
during inflation as Bϕ̄ðB ≥ 1Þ, we find that μDM as a
solution of Eq. (56) and μiso as a solution of Eq. (62)
combined with the upper limit of the WMAP constraint
(64) scale as μDM ∝ B4=3 and μiso ∝ B, respectively. Given
these scaling properties under ϕ → Bϕ, we see that the
isocurvature constraint becomes more stringent for larger
B, which is indeed observed in Fig. 3.
Let us first consider the panels on the left side, for which

B ¼ 1. We find that μ ¼ μDM lies above μ ¼ μiso in the
relevant range of ~ρPT for ~Hinf ≳ 2.4 × 1011 GeV. Therefore,
inflation models with ~Hinf higher than this value are
definitely not consistent with the asymmetron model being

responsible for the total dark matter. If ~Hinf decreases to
2.4 × 109 GeV, there appears a range of ρPT for which the
isocurvature constraint is safely satisfied. Indeed, we can
understand that μ ¼ μDM comes below the isocurvature
constraint line if the inflation energy scale is lowered
sufficiently from the expression of PDM given by Eq. (62).
The equation shows that PDM is basically proportional to
~ρinf (the denominator depends only logarithmically on ~ρinf ).
We see if ~Hinf is as low as 107 GeV, the isocurvature
constraint is evaded for all the range of ρPT in which we are
interested (i.e., nuclear energy density). The qualitative
feature remains the same for the panels on the right side, for
which B ¼ 104. The only difference from the case of the
left panels is that, as mentioned above, the value of ~Hinf ,
below which the isocurvature constraint is satisfied, is
lowered compared to the case of B ¼ 1.

B. Constraint from the fifth force experiments

As is already mentioned, we are interested in the case
where ρPT is between the stellar density and the nuclear
density realized in the neutron stars so that spontaneous
scalarization takes place in compact astrophysical objects
and the OðεÞ deviation from general relativity occurs only
in such regions. In the asymmetron model, the Solar
System is in the symmetric phase (ϕ̄ ¼ 0). As we saw
in the previous section, GR is exactly recovered in this
phase, and this model passes the Solar System and
terrestrial experiments that have placed a very strong limit
on deviation from GR. However, this conclusion must be
reconsidered more carefully if we take the scenario of the
asymmetron being dark matter. In this case, ϕ is coherently
oscillating in time with the angular frequency μ, which
describes the cold dark matter. The value of ϕ averaged
over a time longer than the oscillation period is zero, but the
value at each time is different from zero. Therefore, the
assumption of no excitation of ϕ in the symmetric phase is
violated if we require ϕ to be dark matter.
When ϕ is oscillating in the symmetric phase, the

interaction between matter fields and the ϕ field given
by A3Aϕ

~T [see Eq. (2)] also oscillates as −εa sinðμtÞ=M2

(A ≈ 1 is assumed), where a is the amplitude of the
oscillations of ϕ and is given by a2 ¼ 2hϕ2i (h� � �i
represents the time average over the oscillation period).
The amplitude a is determined from the requirement that
ρϕ ¼ μ2hϕ2i coincides with the dark matter density. This
condition yields

a2 ¼ 2ρDM
μ2

: ð65Þ

The effect of the oscillating ϕ can be observed as the
periodically time-varying gravitational force (period is
π=μ) acting on two massive bodies with a maximum given
by ∼εa=M2 on top of the standard gravitational force. In
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order to see this, let us determine the gravitational potential
in the Jordan frame. To simplify the analysis, based on the
fact that the time scale of interest (e.g., time duration of
experiments) is much larger than the oscillation period
2π=μ,

2π

μ
≈ 4 × 10−4s

�
μ

10−11 eV

�
−1
; ð66Þ

for a range of interest μ ≳ 10−11 eV, we make the approxi-
mation that only the averaged value of ϕ enters the
measurable gravitational potential and the asymmetron,
both of which are simultaneously generated by the source
object such as the Earth. Denoting δϕ by the small
deviation from the background ϕ caused by the presence
of the point mass with its mass Ms (~ρ ¼ Msδð~xÞ), the
equation for δϕ is obtained by linearizing Eq. (2):

Δδϕ − μ2δϕþ ε
ffiffiffiffiffiffiffiffiffi
hϕ2i

p
2M2

~ρ ¼ 0: ð67Þ

The solution of this equation is given by

δϕðrÞ ¼ ε
ffiffiffiffiffiffiffiffiffi
hϕ2i

p
8πM2

Ms

r
e−μr: ð68Þ

As a result, the time-time component of the Jordan-frame
metric is given by

~g00 ¼ −1þ 2GNMs

r
FðrÞ; FðrÞ≡ 1þ ε2hϕ2i

16πM4GN
e−μr:

ð69Þ

The function FðrÞ represents the modification from the
standard gravitational potential.8 Eliminating hϕ2i by
Eq. (65), we have

FðrÞ ¼ 1þ μ2

4πGNε

ρDM
ρ2PT

e−μr: ð70Þ

As expected, the ϕ field contributes to the Yukawa-type
force between two bodies. Various experiments have been
performed to test the inverse square law of gravity. One of
the typical modifications of the inverse square law which is
actively tested by experiments is exactly the form given by
FðrÞ. In [40], deviation from the inverse square law of a
form FðrÞ ¼ 1þ αe−r=λ is assumed and the upper limit on
α is summarized for a wide range of λ from 10−9 m to
1015 m. We converted this constraint in the λ − α plane to

the constraint in the ρPT − μ plane. The result is shown as a
green (dotted) curve in Fig. 3. The region satisfying the
fifth force experiments is right to the green (dotted) curve.
We find that the constraint from the fifth force experiment
is much weaker than the isocurvature one and is always
satisfied for any interesting range of ρPT.

C. Nonminimal coupling of the asymmetron
to the Ricci scalar

So far, we have assumed that the asymmetron ϕ is
minimally coupled to gravity. It is possible to add the
nonminimal coupling term ξRϕ2 to the action (1), namely,

S → Sþ
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
ξRϕ2

�
; ð71Þ

where ξ is a dimensionless parameter that we assume to
be positive and Oð1Þ. In the presence of this term, field
equations (2) and (3) are modified as

□ϕ − ξRϕ − μ2ϕþ A3ðϕÞA;ϕ
~T ¼ 0; ð72Þ

ð1 − 16πGNξϕ
2ÞGμν

¼ 8πGN

�
−
�
1

2
gαβ∂αϕ∂βϕþ μ2

2
ϕ2

�
gμν

þ ∂μϕ∂νϕþ A2ðϕÞ ~Tμν

þ 2ξðgαβ∂αϕ∂βϕþ ϕ□ϕÞgμν
− 2ξð∂μϕ∂νϕþ ϕ∇μ∇νϕÞ

�
: ð73Þ

The first equation shows that the effective potential for the
asymmetron now takes the form of

VeffðϕÞ ¼
ξ

2
Rϕ2 þ μ2

2
ϕ2 −

1

4
A4ðϕÞ ~T: ð74Þ

Having derived the basic equations, let us evaluate how the
cosmological evolution of the asymmetron we have derived
changes due to the nonminimally coupled term. During
inflation, approximating the Hubble parameter to be con-
stant, we have R ≈ 12H2

inf . Since Hinf ≫ μ for the case of
our interest, the Ricci scalar part becomes the dominant
component of the mass term. Expanding Veff up to second
order in ϕ around ϕ ¼ 0 yields

VeffðϕÞ ¼ ~ρinf þ 6ξH2
inf

�
1 −

ε~ρinf
6ξM2H2

inf

�
ϕ2 þOðϕ4Þ:

ð75Þ

The coefficient of the term quadratic in ϕ is negative
for M ≪ G−1=2

N . Thus, the spontaneous scalarization also
occurs during inflation in the presence of the nonminimally

8In addition to the modification by FðrÞ, change of the
Newton’s constant caused by the change of A (hA2i ≠ 1) also
modifies the gravitational. However, this correction is negligibly
small, and we do not take this effect into account in Eq. (69).
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coupled term (for ξ > 0). The value of ϕ that minimizes the
effective potential in the present case is obtained just by
replacing μ with ξ1=2R1=2 in Eq. (52):

ϕ̄2

2M2
¼ ln f

�
ε;
6ξM2H2

inf

ε~ρinf

�
: ð76Þ

Contrary to Eq. (52), this equation still contains ϕ̄ on the
right-hand side throughHinf and obtaining the precise value
of ϕ̄ requires numerical computation. Nevertheless, due to
the logarithmic dependence of the right-hand side on ϕ̄, we
see that ϕ̄ is OðMÞ for any physically reasonable case.
Significant difference from the case of the minimal cou-
pling arises for ϕ greater than ϕ̄. In the case of the minimal
coupling, the effective potential is dominated by the bare

mass term μ2

2
ϕ2, and this term is not large enough to drive ϕ

toward ϕ̄ within Hubble time. This is the reason why, in the
previous subsections, we have also considered the pos-
sibility that the value of ϕ during inflation is larger than ϕ̄
and isocurvature perturbation from the fluctuation of the ϕ
field is generated. On the other hand, in the present case, the
nonminimally coupled term gives the effective mass to the
asymmetron which is the order of Hinf . As a result, even if
the value of ϕ is greater than ϕ̄ initially, ϕ rolls down to ϕ̄
within Hubble time. Thus, it is natural to assume that ϕ
stays ϕ̄ throughout inflation. In addition to this, fluctuation
of the asymmetron is strongly suppressed on super-Hubble
scales due to the heaviness of the field. This means there is
little amount of isocurvature perturbation left on scales
relevant to CMB observations and the isocurvature con-
straint used in the previous subsection becomes ineffective.
In particular, inflation models with a relatively high-energy
scale, which are not allowed in the minimally coupled case
because of the isocurvature constraint, now become com-
patible with the asymmetron model as dark matter.
Having clarified the dynamics of the asymmetron during

inflation, let us next evaluate the dynamics in the post-
inflationary epochs. To simplify the situation, we assume
that the Universe is instantly reheated and becomes
radiation dominated soon after inflation. Using ~T ¼ 0
for radiation, we find that the Ricci scalar is given by

R ≈ 8πGN ½−ð1 − 6ξÞ _ϕ2 þ 2μ2ϕ2 − 6ξϕ□ϕ�: ð77Þ

This R contributes to the equation of motion for ϕ.
Although the resultant equation is a nonlinear differential
equation for ϕ, the nonlinear contribution is suppressed
compared to the bare mass term. Thus, the nonminimally
coupled term does not play an important role in the
postinflationary epochs and evolution of the asymmetron
is in practice the same as that in the minimally coupled case
which we have already discussed in detail. This shows that
the effect of the nonminimally coupled term on the present
energy density of the asymmetron is only to replace ϕ̄ in

Eq. (53) with the solution of Eq. (76). Since ϕ̄ as the
solution of Eq. (76) differs only by a factor of the order of
unity from the one in the minimally coupled case, we
expect that the curve μDM in each panel on the left side in
Fig. 3 remains qualitatively the same even in the non-
minimally coupled case. This is indeed explicitly con-
firmed from Fig. 4 in which μ ¼ μDM is plotted for
~Hinf ¼ 2.4 × 1013 GeV with ξ ¼ 1 (and similar results
for other values of ~Hinf ).

IV. DISCUSSION AND CONCLUSION

We have proposed the asymmetron model, a class of
scalar-tensor theories, in which the significant deviation
from GR occurs only in the high matter density region. This
is an extended version of the Damour-Esposito model
proposed in [18], adding a mass term and allowing the
energy scale appearing in the conformal factor to differ
from the Planck scale. We have shown that the asymmetron
model can be consistently embedded in the cosmological
framework. In particular, spontaneous scalarization caused
by the inflaton in a dynamical way provides the initial
condition for the subsequent coherent oscillations of the
asymmetron. The damped oscillation has nice properties in
that it not only makes the asymmetron behave as cold dark
matter but also makes GR a cosmological attractor. The
oscillating asymmetron yields a periodically varying fifth
force, but its magnitude is far below the current exper-
imental sensitivities and the model we studied in this paper
is, in practice, indistinguishable from GR in the present
Universe except inside dense compact objects and easily
passes the Solar System and terrestrial experiments. There
is a range of parameter space where the asymmetron can
saturate the whole dark matter component and, at the same
time, significant deviation from GR in the present Universe
occurs only inside dense compact objects such as neu-
tron stars.
In the spontaneous scalarization phase, the gravitational

constant becomes smaller than that in the symmetric phase,
namely, the value determined in laboratories. Thus, the

FIG. 4 (color online). Two curves μDM and μ5th, as well as
contours of the constant M, in the presence of the nonminimally
coupled term (ξ ¼ 1). As is explained in the main text, the
isocurvature constraint becomes ineffective in the present case.
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gravity is weakened only inside dense compact objects,
which is a dominant modification from GR. The scalar
force also operates among matter with strength given by
∼ξ2=ðM2GNÞ (see Sec. II B) compared with the gravita-
tional force. In the deep scalarization phase where ξ ≪ 1,
the scalar force can become tiny even when M is smaller
than the Planck mass G−1=2

N . Furthermore, the interaction
range is limited by ∼μ−1, and for the range of our interest
this scale is rather short. As a result, the weakening of
gravity is the dominant feature representing deviation from
GR when the density of the compact object is much bigger
than the critical density above which spontaneous scalari-
zation occurs. This suggests that the size of the compact
star in the asymmetron model becomes larger than that in
GR. Since the Chandrasekhar mass is proportional to
G−3=2

N , we expect that the Chandrasekhar mass in our
model should be larger than that in GR for compact stars
undergoing spontaneous scalarization.
There are many issues that we did not consider in this

paper and that deserve further investigation. In this paper,
we mainly focused on the mechanism of spontaneous
scalarization in the asymmetron model, its basic
properties, and embedding it in the cosmological frame-
work. Obviously, the next thing to do is to investigate
how to test this model in astrophysics, particularly in
connection to gravitational wave observations. In this
context, it is first interesting to clarify how the stellar
structure (such as the mass-radius relation and the
Chandrasekhar mass) in the asymmetron model is modi-
fied from GR. Gravitational waves from compact binaries
are the main target of the laser interferometers. The
dynamics of binaries, waveforms of the gravitational
waves, and their detectability using the interferometers
for the original DEF model have been studied [24–33].
Performing a similar analysis for the asymmetron model
will help to elucidate which observation is the best probe
for exploring the asymmetron model.
Another intriguing thought is the possibility of the

asymmetron being responsible for dark energy. In this
paper, we have focused on the case where ρPT ≫ ρEarth and

the spontaneous scalarization occurs only in the extremely
high density region. On the other hand, if ρPT is the order of
the current critical density of the Universe, we expect that
the scalarization persists until the present epoch, and the
mass term 1

2
μ2ϕ2 approximately plays the role of the

cosmological constant. Taking M to be the Planck mass,
this is achieved if μ is chosen to be around the Hubble
constant H0. This means that locally, such as in the Solar
System, the asymmetron mediates a long-range force in
addition to the gravitational force. However, since the Solar
System is in the deep scalarization phase, the scalar force is
suppressed by the factor ξ given by Eq. (15). Indeed, if we
take ρPT to be the present critical density of the Universe
and ~ρ the density of solar wind (we assume one proton per
cubic centimeter) and ε ¼ 1=2, we have ξ ≈ 5 × 10−5 and
1 − γ ≈ 2 × 10−10. This value is much below the current
constraint jγ − 1j≲ 10−5 obtained from the time delay
measurement [1]. Thus, the asymmetron as dark energy
can safely pass the Solar System constraints. The most
characteristic feature would be time dependence of the
gravitational constant [see Eq. (12)] through the time
dependence of the matter density ~ρ due to the cosmic
expansion. On cosmological scales, the gravitational con-
stant gradually increases as the Universe expands, and it is
interesting to investigate how the large-scale structure is
affected by such a time-varying gravitational constant.
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